51
|
Liu H, Gu D, Xie J. Clinical implications of hedgehog signaling pathway inhibitors. CHINESE JOURNAL OF CANCER 2011; 30:13-26. [PMID: 21192841 PMCID: PMC3137255 DOI: 10.5732/cjc.010.10540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 11/25/2010] [Accepted: 11/25/2010] [Indexed: 12/21/2022]
Abstract
Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nüsslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hh-mediated carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications.
Collapse
Affiliation(s)
- Hailan Liu
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
52
|
Matise MP, Wang H. Sonic hedgehog signaling in the developing CNS where it has been and where it is going. Curr Top Dev Biol 2011; 97:75-117. [PMID: 22074603 DOI: 10.1016/b978-0-12-385975-4.00010-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sonic Hedgehog (Shh) is one of three mammalian orthologs of the Hedgehog (Hh) family of secreted proteins first identified for their role in patterning the Drosophila embryo. In this review, we will highlight some of the outstanding questions regarding how Shh signaling controls embryonic development. We will mainly consider its role in the developing mammalian central nervous system (CNS) where the pathway plays a critical role in orchestrating the specification of distinct cell fates within ventral regions, a process of exquisite complexity that is necessary for the proper wiring and hence function of the mature system. Embryonic development is a process that plays out in both the spatial and the temporal dimensions, and it is becoming increasingly clear that our understanding of Shh signaling in the CNS is grounded in an appreciation for the dynamic nature of this process. In addition, any consideration of Hh signaling must by necessity include a consideration of data from many different model organisms and systems. In many cases, the extent to which insights gained from these studies are applicable to the CNS remains to be determined, yet they provide a strong framework in which to explore its role in CNS development. We will also discuss how Shh controls cell fate diversification through the regulation of patterned target gene expression in the spinal cord, a region where our understanding of the morphogenetic action of graded Shh signaling is perhaps the furthest advanced.
Collapse
Affiliation(s)
- Michael P Matise
- UMDNJ/Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | |
Collapse
|
53
|
Abstract
Rhabdomyosarcomas (RMS) are very heterogeneous tumors that can be divided into three major groups: alveolar rhabdomyosarcoma, embryonal rhabdomyosarcoma, and pleomorphic rhabdomyosarcoma. Concerted efforts over the past a decade have led to an understanding of the genetic underpinnings of many human tumors through genetically engineered models; however, left largely behind in this effort have been rare tumors with poorly understood chromosomal abnormalities including the vast majority of RMS lacking a pathognomonic translocation, i.e. fusion-negative RMS. In this chapter, we review the characteristic genetic abnormalities associated with human RMS and the genetically engineered animal models for these fusion-negative RMS. We explore not only how specific combinations of mutations and cell of origin give rise to different histologically and biologically distinguishable pediatric and adult RMS subtypes, but we also examine how tumor cell phenotype (and tumor "stem" cell phenotype) can vary markedly from the cell of origin.
Collapse
Affiliation(s)
- Ken Kikuchi
- Department of Pediatrics, Pape' Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
54
|
Sauk JJ, Nikitakis NG, Scheper MA. Are we on the brink of nonsurgical treatment for ameloblastoma? ACTA ACUST UNITED AC 2010; 110:68-78. [DOI: 10.1016/j.tripleo.2010.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/06/2010] [Accepted: 01/26/2010] [Indexed: 12/17/2022]
|
55
|
Hedgehog pathway-regulated gene networks in cerebellum development and tumorigenesis. Proc Natl Acad Sci U S A 2010; 107:9736-41. [PMID: 20460306 DOI: 10.1073/pnas.1004602107] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Many genes initially identified for their roles in cell fate determination or signaling during development can have a significant impact on tumorigenesis. In the developing cerebellum, Sonic hedgehog (Shh) stimulates the proliferation of granule neuron precursor cells (GNPs) by activating the Gli transcription factors. Inappropriate activation of Shh target genes results in unrestrained cell division and eventually medulloblastoma, the most common pediatric brain malignancy. We find dramatic differences in the gene networks that are directly driven by the Gli1 transcription factor in GNPs and medulloblastoma. Gli1 binding location analysis revealed hundreds of genomic loci bound by Gli1 in normal and cancer cells. Only one third of the genes bound by Gli1 in GNPs were also bound in tumor cells. Correlation with gene expression levels indicated that 116 genes were preferentially transcribed in tumors, whereas 132 genes were target genes in both GNPs and medulloblastoma. Quantitative PCR and in situ hybridization for some putative target genes support their direct regulation by Gli. The results indicate that transformation of normal GNPs into deadly tumor cells is accompanied by a distinct set of Gli-regulated genes and may provide candidates for targeted therapies.
Collapse
|
56
|
Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 2010; 10:319-31. [PMID: 20414201 DOI: 10.1038/nrc2818] [Citation(s) in RCA: 538] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malignant brain tumours continue to be the cause of a disproportionate level of morbidity and mortality across a wide range of individuals. The most common variants in the adult and paediatric populations - malignant glioma and medulloblastoma, respectively - have been the subject of increasingly intensive research over the past two decades that has led to considerable advances in the understanding of their basic biology and pathogenesis. This Review summarizes these developments in the context of the evolving notion of molecular pathology and discusses the implications that this work has on the design of new treatment regimens.
Collapse
Affiliation(s)
- Jason T Huse
- Departments of Pathology, 408 East 69th Street (Z1304), New York, NY 10065, USA
| | | |
Collapse
|
57
|
Peacock ZS, Cox D, Schmidt BL. Involvement of PTCH1 mutations in the calcifying epithelial odontogenic tumor. Oral Oncol 2010; 46:387-92. [DOI: 10.1016/j.oraloncology.2010.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/16/2022]
|
58
|
Omenetti A, Syn WK, Jung Y, Francis H, Porrello A, Witek RP, Choi SS, Yang L, Mayo M, Gershwin ME, Alpini G, Diehl AM. Repair-related activation of hedgehog signaling promotes cholangiocyte chemokine production. Hepatology 2009; 50:518-27. [PMID: 19575365 PMCID: PMC2722691 DOI: 10.1002/hep.23019] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED The mechanisms mediating hepatic accumulation of inflammatory cells in cholestatic liver disease remain enigmatic. Our thesis is that Hedgehog (Hh) pathway activation promotes hepatic accumulation of immune cells that interact with cholangiocytes. We believe that myofibroblastic hepatic stellate cells (MF-HSCs) release soluble Hh ligands that stimulate cholangiocytes to express chemokines that recruit mononuclear cell types with cognate receptors for these chemokines, thereby orchestrating a repair-related mechanism for liver inflammation. To address this thesis, we used three experimental systems that allow the definition of Hh-dependent mechanisms that induce phenotypic changes in cholangiocytes. First, cholangiocytes were cultured alone or in the presence of Hh-producing MF-HSCs in a transwell coculture system and/or treated with MF-HSC-conditioned medium with or without Hh-neutralizing antibodies. Changes in the cholangiocyte phenotype were then evaluated by microarray analysis, quantitative reverse-transcriptase polymerase chain reaction (QRT-PCR), and/or enzyme-linked immunosorbent assay for chemokine (C-X-C) motif ligand 16 (Cxcl16). Bile duct ligation was chosen to model biliary fibrosis in mice with an overly active Hh pathway, control littermates, and healthy rats, and the gene profile was evaluated by QRT-PCR in whole liver tissue. Second, a transwell chemotaxis assay was used to examine natural killer T (NKT) cell migration in response to cholangiocytes and particularly cholangiocyte-derived Cxcl16. Finally, we studied liver samples from primary biliary cirrhosis patients and controls by QRT-PCR to compare differences in the Hh pathway and Cxcl16. Co-immunostaining of cytokeratin-7 and Cxcl16 was then performed to localize the phenotypic source of Cxcl16. We found that MF-HSCs release soluble Hh ligands that stimulate cholangiocytes to produce Cxcl16 and recruit NKT cells. Hh pathway activation during cholestatic liver injury also induces cholangiocyte expression of Cxcl16. CONCLUSION During biliary injury, Hh pathway activation induces cholangiocyte production of chemokines that recruit NKT cells to portal tracts.
Collapse
Affiliation(s)
- Alessia Omenetti
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Wing-Kin Syn
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Youngmi Jung
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Heather Francis
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Scott & White Hospital, Systems Biology and Translational Medicine, Texas A&M University System Health Science Center, College of Medicine
| | | | - Rafal P. Witek
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Steve S. Choi
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Liu Yang
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Marlyn Mayo
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Gianfranco Alpini
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Scott & White Hospital, Systems Biology and Translational Medicine, Texas A&M University System Health Science Center, College of Medicine, Division of Research, Central Texas Veterans Health Care System
| | - Anna Mae Diehl
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
59
|
Abstract
BACKGROUND Basal cell carcinoma (BCC) is the most common type of skin cancer treated by the dermatologic surgeon. The discovery that patients with the nevoid BCC syndrome had mutations in the human homologue of the Drosophila patched gene led to a rapid increase in our understanding of the pathogenesis of BCC. It is theorized that altered regulation at multiple steps in the patched signal transduction pathway may contribute to the development of BCC. This pathway also plays an essential role in embryonic hair follicle development and during the hair cycle. Taken together, a considerable body of evidence suggests that at least some BCC may be derived from deregulated patched signaling in hair follicle stem cells. OBJECTIVE To review evidence of a follicular derivation of BCC and to highlight emerging therapeutic strategies to block deregulated patched signaling in BCC. CONCLUSION Deregulation of the patched signal transduction pathway is present in the vast majority of human BCCs. Pharmacologic inhibitors of this pathway may offer a therapeutic strategy to block tumor growth. The author has indicated no significant interest with commercial supporters.
Collapse
Affiliation(s)
- Jeff Donovan
- Division of Dermatology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
60
|
van Dop WA, Uhmann A, Wijgerde M, Sleddens-Linkels E, Heijmans J, Offerhaus GJ, van den Bergh Weerman MA, Boeckxstaens GE, Hommes DW, Hardwick JC, Hahn H, van den Brink GR. Depletion of the colonic epithelial precursor cell compartment upon conditional activation of the hedgehog pathway. Gastroenterology 2009; 136:2195-2203.e1-7. [PMID: 19272384 DOI: 10.1053/j.gastro.2009.02.068] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS The intestinal epithelium is a homeostatic system in which differentiated cells are in dynamic equilibrium with rapidly cycling precursor cells. Wnt signaling regulates intestinal epithelial precursor cell fate and proliferation. Homeostatic systems exist by virtue of negative feedback loops, and we have previously identified the Hedgehog (Hh) pathway as a potential negative feedback signal in the colonic epithelium. Indian hedgehog (Ihh) is produced by the differentiated enterocytes and negatively regulates Wnt signaling in intestinal precursor cells. We studied the role of members of the Hh signaling family in the intestine using a conditional genetic approach. METHODS We inactivated the Hh receptor Patched1 (Ptch1) in adult mice, resulting in constitutive activation of the Hh signaling pathway. Effects on colonic mucosal homeostasis were examined. Colon tissues were examined by immunohistochemistry, in situ hybridization, transmission electron microscopy, and real-time polymerase chain reaction. RESULTS Ihh but not Sonic hedgehog (Shh) was expressed in colonic epithelium. Expression of Ptch1 and Gli1 was restricted to the mesenchyme. Constitutive activation of Hh signaling resulted in accumulation of myofibroblasts and colonic crypt hypoplasia. A reduction in the number of epithelial precursor cells was observed with premature development into the enterocyte lineage and inhibition of Wnt signaling. Activation of Hh signaling resulted in induction of the expression of bone morphogenetic proteins (Bmp) and increased Bmp signaling in the epithelium. CONCLUSIONS Hh signaling acts in a negative feedback loop from differentiated cells via the mesenchyme to the colonic epithelial precursor cell compartment in the adult mouse.
Collapse
Affiliation(s)
- Willemijn A van Dop
- Center for Experimental Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Svärd J, Rozell B, Toftgård R, Teglund S. Tumor suppressor gene co-operativity in compound Patched1 and suppressor of fused heterozygous mutant mice. Mol Carcinog 2009; 48:408-19. [PMID: 18781608 DOI: 10.1002/mc.20479] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dysregulation of the Hedgehog signaling pathway is central to the development of certain tumor types, including medulloblastoma and basal cell carcinoma (BCC). Patched1 (Ptch1) and Suppressor of fused (Sufu) are two essential negative regulators of the pathway with tumor suppressor activity. Ptch1(+/-) mice are predisposed to developing medulloblastoma and rhabdomyosarcoma, while Sufu(+/-) mice develop a skin phenotype characterized by basaloid epidermal proliferations. Here, we have studied tumor development in Sufu(+/-)Ptch1(+/-) mice to determine the effect of compound heterozygosity on the onset, incidence, and spectrum of tumors. We found significantly more (2.3-fold) basaloid proliferations in Sufu(+/-)Ptch1(+/-) compared to Sufu(+/-) female, but not male, mice. For medulloblastoma, the cumulative 1-yr incidence was 1.5-fold higher in Sufu(+/-)Ptch1(+/-) compared to Ptch1(+/-) female mice but this strong trend was not statistically significant. Together this suggests a weak genetic interaction of the two tumor suppressor genes. We noted a few rhabdomyosarcomas and pancreatic cysts in the Sufu(+/-)Ptch1(+/-) mice, but the numbers were not significantly different from the single heterozygous mice. Hydrocephalus developed in approximately 20% of the Ptch1(+/-) and Sufu(+/-)Ptch1(+/-) but not in Sufu(+/-) mice. Interestingly, most of the medulloblastomas from the Sufu(+/-)Ptch1(+/-) mice had lost expression of the remaining Ptch1 wild-type allele but not the Sufu wild-type allele. On the contrary, Sufu as well as Gli1 and Gli2 expression was upregulated in the medulloblastomas compared to adult cerebellum in Ptch1(+/-) and Sufu(+/-)Ptch1(+/-) mice. This suggests that Sufu expression may be regulated by Hedgehog pathway activity and could constitute another negative feedback loop in the pathway.
Collapse
Affiliation(s)
- Jessica Svärd
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | | | | |
Collapse
|
62
|
Huse JT, Holland EC. Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 2009; 19:132-43. [PMID: 19076778 PMCID: PMC2659383 DOI: 10.1111/j.1750-3639.2008.00234.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent improvements in the understanding of brain tumor biology have opened the door to a number of rational therapeutic strategies targeting distinct oncogenic pathways. The successful translation of such “designer drugs” to clinical application depends heavily on effective and expeditious screening methods in relevant disease models. By recapitulating both the underlying genetics and the characteristic tumor‐stroma microenvironment of brain cancer, genetically engineered mouse models (GEMMs) may offer distinct advantages over cell culture and xenograft systems in the preclinical testing of promising therapies. This review focuses on recently developed GEMMs for both glioma and medulloblastoma, and discusses their potential use in preclinical trials. Examples showcasing the use of GEMMs in the testing of molecularly targeted therapeutics are given, and relevant topics, such as stem cell biology, in vivo imaging technology and radiotherapy, are also addressed.
Collapse
Affiliation(s)
- Jason T Huse
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
63
|
Recurrent genomic alterations characterize medulloblastoma arising from DNA double-strand break repair deficiency. Proc Natl Acad Sci U S A 2009; 106:1880-5. [PMID: 19164512 DOI: 10.1073/pnas.0806882106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inactivation of homologous recombination (HR) or nonhomologous end-joining (NHEJ) predisposes to a spectrum of tumor types. Here, we inactivated DNA double-strand break repair (DSBR) proteins, DNA Ligase IV (Lig4), Xrcc2, and Brca2, or combined Lig4/Xrcc2 during neural development using Nestin-cre. In all cases, inactivation of these repair factors, together with p53 loss, led to rapid medulloblastoma formation. Genomic analysis of these tumors showed recurring chromosome 13 alterations via chromosomal loss or translocations involving regions containing Ptch1. Sequence analysis of the remaining Ptch1 allele showed a variety of inactivating mutations in all tumors analyzed, highlighting the critical tumor suppressor function of this hedgehog-signaling regulator. We also observed genomic amplification or up-regulation of either N-Myc or cyclin D2 in all medulloblastomas. Additionally, chromosome 19, which contains Pten, was also selectively deleted in medulloblastoma arising after disruption of HR. Thus, our data highlight the preeminence of Ptch1 as a tumor suppressor in cerebellar granule cells and reveal other genomic events central to the genesis of medulloblastoma.
Collapse
|
64
|
Lo Muzio L. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Dis 2008; 3:32. [PMID: 19032739 PMCID: PMC2607262 DOI: 10.1186/1750-1172-3-32] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 11/25/2008] [Indexed: 02/07/2023] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a hereditary condition characterized by a wide range of developmental abnormalities and a predisposition to neoplasms. The estimated prevalence varies from 1/57,000 to 1/256,000, with a male-to-female ratio of 1:1. Main clinical manifestations include multiple basal cell carcinomas (BCCs), odontogenic keratocysts of the jaws, hyperkeratosis of palms and soles, skeletal abnormalities, intracranial ectopic calcifications, and facial dysmorphism (macrocephaly, cleft lip/palate and severe eye anomalies). Intellectual deficit is present in up to 5% of cases. BCCs (varying clinically from flesh-colored papules to ulcerating plaques and in diameter from 1 to 10 mm) are most commonly located on the face, back and chest. The number of BBCs varies from a few to several thousand. Recurrent jaw cysts occur in 90% of patients. Skeletal abnormalities (affecting the shape of the ribs, vertebral column bones, and the skull) are frequent. Ocular, genitourinary and cardiovascular disorders may occur. About 5–10% of NBCCS patients develop the brain malignancy medulloblastoma, which may be a potential cause of early death. NBCCS is caused by mutations in the PTCH1 gene and is transmitted as an autosomal dominant trait with complete penetrance and variable expressivity. Clinical diagnosis relies on specific criteria. Gene mutation analysis confirms the diagnosis. Genetic counseling is mandatory. Antenatal diagnosis is feasible by means of ultrasound scans and analysis of DNA extracted from fetal cells (obtained by amniocentesis or chorionic villus sampling). Main differential diagnoses include Bazex syndrome, trichoepithelioma papulosum multiplex and Torre's syndrome (Muir-Torre's syndrome). Management requires a multidisciplinary approach. Keratocysts are treated by surgical removal. Surgery for BBCs is indicated when the number of lesions is limited; other treatments include laser ablation, photodynamic therapy and topical chemotherapy. Radiotherapy should be avoided. Vitamin A analogs may play a preventive role against development of new BCCs. Life expectancy in NBCCS is not significantly altered but morbidity from complications can be substantial. Regular follow-up by a multi-specialist team (dermatologist, neurologist and odontologist) should be offered. Patients with NBCCS should strictly avoid an excessive sun exposure.
Collapse
Affiliation(s)
- Lorenzo Lo Muzio
- Dipartimento di Scienze Chirurgiche, Facoltà di Medicina e Chirurgia, Università degli Studi di Foggia, Foggia, Italy.
| |
Collapse
|
65
|
Omenetti A, Porrello A, Jung Y, Yang L, Popov Y, Choi SS, Witek RP, Alpini G, Venter J, Vandongen HM, Syn WK, Baroni GS, Benedetti A, Schuppan D, Diehl AM. Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest 2008; 118:3331-42. [PMID: 18802480 DOI: 10.1172/jci35875] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 07/16/2008] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) play an important role in tissue construction during embryogenesis, and evidence suggests that this process may also help to remodel some adult tissues after injury. Activation of the hedgehog (Hh) signaling pathway regulates EMT during development. This pathway is also induced by chronic biliary injury, a condition in which EMT has been suggested to have a role. We evaluated the hypothesis that Hh signaling promotes EMT in adult bile ductular cells (cholangiocytes). In liver sections from patients with chronic biliary injury and in primary cholangiocytes isolated from rats that had undergone bile duct ligation (BDL), an experimental model of biliary fibrosis, EMT was localized to cholangiocytes with Hh pathway activity. Relief of ductal obstruction in BDL rats reduced Hh pathway activity, EMT, and biliary fibrosis. In mouse cholangiocytes, coculture with myofibroblastic hepatic stellate cells, a source of soluble Hh ligands, promoted EMT and cell migration. Addition of Hh-neutralizing antibodies to cocultures blocked these effects. Finally, we found that EMT responses to BDL were enhanced in patched-deficient mice, which display excessive activation of the Hh pathway. Together, these data suggest that activation of Hh signaling promotes EMT and contributes to the evolution of biliary fibrosis during chronic cholestasis.
Collapse
Affiliation(s)
- Alessia Omenetti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, and Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
The Hedgehog (Hh) family of proteins control cell growth, survival, and fate, and pattern almost every aspect of the vertebrate body plan. The use of a single morphogen for such a wide variety of functions is possible because cellular responses to Hh depend on the type of responding cell, the dose of Hh received, and the time cells are exposed to Hh. The Hh gradient is shaped by several proteins that are specifically required for Hh processing, secretion, and transport through tissues. The mechanism of cellular response, in turn, incorporates multiple feedback loops that fine-tune the level of signal sensed by the responding cells. Germline mutations that subtly affect Hh pathway activity are associated with developmental disorders, whereas somatic mutations activating the pathway have been linked to multiple forms of human cancer. This review focuses broadly on our current understanding of Hh signaling, from mechanisms of action to cellular and developmental functions. In addition, we review the role of Hh in the pathogenesis of human disease and the possibilities for therapeutic intervention.
Collapse
Affiliation(s)
- Markku Varjosalo
- Department of Molecular Medicine, National Public Health Institute (KTL), and Genome-Scale Biology Program, Biomedicum Helsinki, Institute of Biomedicine and High Throughput Center, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | | |
Collapse
|
67
|
Kawamura S, Hervold K, Ramirez-Weber FA, Kornberg TB. Two patched protein subtypes and a conserved domain of group I proteins that regulates turnover. J Biol Chem 2008; 283:30964-9. [PMID: 18768465 DOI: 10.1074/jbc.m806242200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Patched (Ptc) is a 12-cross membrane protein that binds the secreted Hedgehog protein. Its regulation of the Hedgehog signaling pathway is critical to normal development and to a number of human diseases. This report analyzes features of sequence similarity and divergence in the Ptc protein family and identifies two subtypes distinguished by novel conserved domains. We used these results to propose a rational basis for classification. We show that one of the conserved sequence regions in the C-terminal domain of Ptch1 is responsible, at least in part, for rapid turnover. This sequence is absent in the stable Ptch2 protein.
Collapse
Affiliation(s)
- Shiho Kawamura
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
68
|
Abstract
The hedgehog (Hh) pathway, initially discovered in Drosophila by two Nobel laureates, Dr. Eric Wieschaus and Dr. Christiane Nusslein-Volhard, is a major regulator for cell differentiation, tissue polarity and cell proliferation. Studies from many laboratories, including ours, reveal activation of this pathway in most basal cell carcinomas and in approximately 30% of extracutaneous human cancers, including medulloblastomas, gastrointestinal, lung, breast and prostate cancers. Thus, it is believed that targeted inhibition of Hh signaling may be effective in treating and preventing many types of human cancers. Even more exciting is the discovery and synthesis of specific signaling antagonists for the Hh pathway, which have significant clinical implications in novel cancer therapeutics. This review discusses the major advances in the current understanding of Hh signaling activation in different types of human cancers, the molecular basis of Hh signaling activation, the major antagonists for Hh signaling inhibition and their potential clinical application in human cancer therapy.
Collapse
Affiliation(s)
- Jingwu Xie
- Department of Pharmacology and Toxicology, Sealy Center for Cancer Cell Biology, University of Texas at Galveston, Galveston, Texas 77555-1048, USA.
| |
Collapse
|
69
|
Gilbertson RJ, Ellison DW. The origins of medulloblastoma subtypes. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:341-65. [PMID: 18039127 DOI: 10.1146/annurev.pathmechdis.3.121806.151518] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Childhood tumors containing cells that are morphologically and functionally similar to normal progenitor cells provide fertile ground for investigating the links between development and cancer. In this respect, integrated studies of normal cerebellar development and the medulloblastoma, a malignant embryonal tumor of the cerebellum, have proven especially fruitful. Emerging evidence indicates that the different precursor cell populations that form the cerebellum and the cell signaling pathways that regulate its development likely represent distinct compartments from which the various subtypes of medulloblastoma arise. Definitive characterization of each medulloblastoma subtype will undoubtedly improve treatment of this disease and provide important insights to the origins of cancer.
Collapse
Affiliation(s)
- Richard J Gilbertson
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
70
|
Abstract
The Hedgehog (HH) family of intercellular signaling proteins has some essential functions in patterning both invertebrate and vertebrate embryos. Identified as an important regulator of segment polarity and tissue organization in flies, the HH pathway can also play a significant role in human development and in cutaneous carcinogenesis. The family received their name because when the D. melanogaster HH protein malfunctions the mutant fly ends up looking like a small prickly ball, similar to a curled up hedgehog. The Sonic hedgehog (SHH) pathway is implicated in the etiology of the most common human cancer, the basal cell carcinoma (BCC). Mutations in the receptor of SHH, the patched gene (PTCH), have been characterized in sporadic BCCs as well as those from patients with the rare genetic syndrome nevoid BCC. Human PTCH is mutated in sporadic as well as hereditary BCCs, and inactivation of this gene is probably a necessary if not sufficient step for tumorigenesis. Delineation of the biochemical pathway in which PTCH functions may lead to rational medical therapy for skin cancer and possibly other tumors.
Collapse
Affiliation(s)
- Omar Lupi
- Universidade Federal do Rio de Janeiro (UFRJ) and Instituto de Dermatologia Prof Rubem Azulay/Santa Casa RJ, Rio de Janeiro, Brazil.
| |
Collapse
|
71
|
Koudijs MJ, den Broeder MJ, Groot E, van Eeden FJ. Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway. BMC DEVELOPMENTAL BIOLOGY 2008; 8:15. [PMID: 18284698 PMCID: PMC2275722 DOI: 10.1186/1471-213x-8-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 02/19/2008] [Indexed: 12/02/2022]
Abstract
Background Aberrant activation of the Hedgehog (Hh) signaling pathway in different organisms has shown the importance of this family of morphogens during development. Genetic screens in zebrafish have assigned specific roles for Hh in proliferation, differentiation and patterning, but mainly as a result of a loss of its activity. We attempted to fully activate the Hh pathway by removing both receptors for the Hh proteins, called Patched1 and 2, which are functioning as negative regulators in this pathway. Results Here we describe a splice-donor mutation in Ptc1, called ptc1hu1602, which in a homozygous state results in a subtle eye and somite phenotype. Since we recently positionally cloned a ptc2 mutant, a ptc1;ptc2 double mutant was generated, showing severely increased levels of ptc1, gli1 and nkx2.2a, confirming an aberrant activation of Hh signaling. As a consequence, a number of phenotypes were observed that have not been reported previously using Shh mRNA overexpression. Somites of ptc1;ptc2 double mutants do not express anteroposterior polarity markers, however initial segmentation of the somites itself is not affected. This is the first evidence that segmentation and anterior/posterior (A/P) patterning of the somites are genetically uncoupled processes. Furthermore, a novel negative function of Hh signaling is observed in the induction of the fin field, acting well before any of the previously reported function of Shh in fin formation and in a way that is different from the proposed early role of Gli3 in limb/fin bud patterning. Conclusion The generation and characterization of the ptc1;ptc2 double mutant assigned novel and unexpected functions to the Hh signaling pathway. Additionally, these mutants will provide a useful system to further investigate the consequences of constitutively activated Hh signaling during vertebrate development.
Collapse
Affiliation(s)
- Marco J Koudijs
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
72
|
Stallings RL. Are chromosomal imbalances important in cancer? Trends Genet 2007; 23:278-83. [PMID: 17400327 DOI: 10.1016/j.tig.2007.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 02/12/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Tumor-specific patterns of large-scale chromosomal imbalances characterize most forms of cancer. Based on evidence primarily from neuroblastomas, it can be argued that large-scale chromosomal imbalances are crucial for tumor pathogenesis and have an impact on the global transcriptional profile of cancer cells, and that some imbalances even initiate cancer. The genes and genetic pathways that have been dysregulated by such imbalances remain surprisingly elusive. Many genes are affected by the regions of gain and loss, and there are complex interactions and relationships that occur between these genes, hindering their identification. The study of untranslated RNA sequences, such as microRNAs, is in its infancy, and it is likely that such sequences are also dysregulated by chromosomal imbalance, contributing to pathogenesis.
Collapse
Affiliation(s)
- Raymond L Stallings
- Children's Cancer Research Institute and Department of Pediatrics, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, MC 7784, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
73
|
Omenetti A, Yang L, Li YX, McCall SJ, Jung Y, Sicklick JK, Huang J, Choi S, Suzuki A, Diehl AM. Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation. J Transl Med 2007; 87:499-514. [PMID: 17334411 DOI: 10.1038/labinvest.3700537] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In bile duct-ligated (BDL) rodents, as in humans with chronic cholangiopathies, biliary obstruction triggers proliferation of bile ductular cells that are surrounded by fibrosis produced by adjacent myofibroblastic cells in the hepatic mesenchyme. The proximity of the myofibroblasts and cholangiocytes suggests that mesenchymal-epithelial crosstalk promotes the fibroproliferative response to cholestatic liver injury. Studying BDL mice, we found that bile duct obstruction induces activity of the Hedgehog (Hh) pathway, a system that regulates the viability and differentiation of various progenitors during embryogenesis. After BDL, many bile ductular cells and fibroblastic-appearing cells in the portal stroma express Hh ligands, receptor and/or target genes. Transwell cocultures of an immature cholangiocyte line that expresses the Hh receptor, Patched (Ptc), with liver myofibroblastic cells demonstrated that both cell types produced Hh ligands that enhanced each other's viability and proliferation. Further support for the concept that Hh signaling modulates the response to BDL was generated by studying PtcLacZ mice, which have an impaired ability to constrain Hh signaling due to a heterozygous deficiency of Ptc. After BDL, PtcLacZ mice upregulated fibrosis gene expression earlier than wild-type controls and manifested an unusually intense ductular reaction, more expanded fibrotic portal areas, and a greater number of lobular necrotic foci. Our findings reveal that adult livers resurrect developmental signaling systems, such as the Hh pathway, to guide remodeling of the biliary epithelia and stroma after cholestatic injury.
Collapse
MESH Headings
- Animals
- Bile Ducts/metabolism
- Bile Ducts/pathology
- Bile Ducts/surgery
- Biomarkers/metabolism
- Cell Survival
- Cells, Cultured
- Disease Models, Animal
- Epithelium/metabolism
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Hydroxyproline/metabolism
- Kruppel-Like Transcription Factors/metabolism
- Kupffer Cells/metabolism
- Kupffer Cells/pathology
- Ligation
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Biliary/etiology
- Liver Cirrhosis, Biliary/metabolism
- Liver Cirrhosis, Biliary/pathology
- Mesoderm/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Patched Receptors
- Patched-1 Receptor
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Signal Transduction
- Zinc Finger Protein Gli2
Collapse
Affiliation(s)
- Alessia Omenetti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T, McKinnon PJ. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 2007; 26:6442-7. [PMID: 17452975 DOI: 10.1038/sj.onc.1210467] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Sonic Hedgehog (SHH) signaling pathway is indispensable for development, and functions to activate a transcriptional program modulated by the GLI transcription factors. Here, we report that loss of a regulator of the SHH pathway, Suppressor of Fused (Sufu), resulted in early embryonic lethality in the mouse similar to inactivation of another SHH regulator, Patched1 (Ptch1). In contrast to Ptch1+/- mice, Sufu+/- mice were not tumor prone. However, in conjunction with p53 loss, Sufu+/- animals developed tumors including medulloblastoma and rhabdomyosarcoma. Tumors present in Sufu+/-p53-/- animals resulted from Sufu loss of heterozygosity. Sufu+/-p53-/- medulloblastomas also expressed a signature gene expression profile typical of aberrant SHH signaling, including upregulation of N-myc, Sfrp1, Ptch2 and cyclin D1. Finally, the Smoothened inhibitor, hedgehog antagonist, did not block growth of tumors arising from Sufu inactivation. These data demonstrate that Sufu is essential for development and functions as a tumor suppressor.
Collapse
Affiliation(s)
- Y Lee
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN 38405, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Signalling by Hh (Hedgehog) proteins is among the most actively studied receptor-mediated phenomena relevant to development and post-embryonic homoeostatic events. The impact of signalling by the Hh proteins is profound, and work pertaining to the presentation of these proteins and the pathways engaged by them continues to yield unique insights into basic aspects of morphogenic signalling. We review here the mechanisms of signalling relevant to the actions of Hh proteins in vertebrates. We emphasize findings within the past several years on the recognition of, in particular, Sonic hedgehog by target cells, pathways of transduction employed by the seven-pass transmembrane protein Smoothened and end points of action, as manifest in the regulation of the Gli transcription factors. Topics of extended interest are those regarding the employment of heterotrimeric G-proteins and G-protein-coupled receptor kinases by Smoothened. We also address the pathways, insofar as known, linking Smoothened to the expression and stability of Gli1, Gli2 and Gli3. The mechanisms by which Hh proteins signal have few, if any, parallels. It is becoming clear in vertebrates, however, that several facets of signalling are shared in common with other venues of signalling. The challenge in understanding both the actions of Hh proteins and the overlapping forms of regulation will be in understanding, in molecular terms, both common and divergent signalling events.
Collapse
Affiliation(s)
- Natalia A Riobo
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
76
|
Shimokawa T, Svärd J, Heby-Henricson K, Teglund S, Toftgård R, Zaphiropoulos PG. Distinct roles of first exon variants of the tumor-suppressor Patched1 in Hedgehog signaling. Oncogene 2007; 26:4889-96. [PMID: 17310997 DOI: 10.1038/sj.onc.1210301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Patched1 (PTCH1) is one of the key molecules involved in the Hedgehog (HH) signaling pathway and acts as the receptor of HH ligands. Additionally, PTCH1 inhibits the positive signal transductor Smoothened (SMO). Several PTCH1 splice variants are known but the functional differences among them are not clear. Here, we demonstrate the unique biological properties of the PTCH1 isoforms generated by alternative first exon usage. All isoforms examined worked as functional receptors of both Sonic HH and Desert HH. However, the signaling upregulated isoforms PTCH1-1B and -1C inhibited SMO and the pathway transcription factors glioma 1 (GLI1) and GLI2 to a higher extent than PTCH1-1 and -1Ckid. Moreover, in situ hybridizations allowed the detection of the Ptch1 isoforms in specific structures of the developing mouse embryo. Additionally, the differences in the N-terminal tail had a dramatic influence on the steady states of the proteins, with PTCH1-1B and -1C levels being significantly higher than PTCH1-1 and -1Ckid. This implies that the pronounced signaling inhibitory properties of PTCH1-1B and -1C may be mostly due to this high-protein expression rather than to intrinsic functional differences. Thus, our study supports a role of splicing variation and promoter choice for HH signaling regulation.
Collapse
Affiliation(s)
- T Shimokawa
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
77
|
Wang Y, McMahon AP, Allen BL. Shifting paradigms in Hedgehog signaling. Curr Opin Cell Biol 2007; 19:159-65. [PMID: 17303409 DOI: 10.1016/j.ceb.2007.02.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 02/06/2007] [Indexed: 11/30/2022]
Abstract
Hedgehog (Hh) signaling proteins regulate multiple developmental and adult homeostatic processes. A defining feature of Hh signaling is that relatively small changes in the concentration of Hh ligand elicit dramatically different cellular responses. As a result, the processing, release and trafficking of Hh ligands must be tightly regulated to ensure proper signaling. In addition, sensitive and specific intracellular signaling cascades are needed to interpret subtle differences in the level of Hh signal to execute an appropriate response. A detailed understanding of the mechanisms that regulate these responses is critical to shaping our view of this key regulatory system.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
78
|
Lewis MT, Visbal AP. The hedgehog signaling network, mammary stem cells, and breast cancer: connections and controversies. ERNST SCHERING FOUNDATION SYMPOSIUM PROCEEDINGS 2007:181-217. [PMID: 17939302 DOI: 10.1007/2789_2007_051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several signal transduction networks have been implicated in the regulation of mammary epithelial stem cell self-renewal and maintenance (Kalirai and Clarke 2006; Liu et al. 2005). These signaling networks include those of the Wnt, Notch, TGFO, EGF, FGF, IGF, and most recently, the Hedgehog (Hh) families of secreted ligands. However, we currently know very little about the cellular and molecular mechanisms by which these signaling pathways function to regulate normal epithelial stem/progenitor cells. What is clear is that the regulatory signaling networks thought to control normal stem/progenitor cell self-renewal and maintenance are, with the current sole exception of the hedgehog network, well-documented to have contributory roles in mammary cancer development and disease progression when misregulated. In this review, genetic regulation of mammary gland development by hedgehog network genes is outlined, highlighting a developing controversy as to whether activated hedgehog signaling regulates normal regenerative mammary epithelial stem cells or, indeed, whether activated hedgehog signaling functions at all in ductal development. In addition, the question of whether inappropriate hedgehog network activation influences breast cancer development is addressed, with emphasis on the prospects for using hedgehog signaling antagonists clinically for breast cancer treatment or prevention.
Collapse
Affiliation(s)
- M T Lewis
- Baylor Breast Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Room N1210; MS:BCM600, One Baylor Plaza, 77030 Houston, TX, USA.
| | | |
Collapse
|