51
|
Fernando TR, Rodriguez-Malave NI, Waters EV, Yan W, Casero D, Basso G, Pigazzi M, Rao DS. LncRNA Expression Discriminates Karyotype and Predicts Survival in B-Lymphoblastic Leukemia. Mol Cancer Res 2015; 13:839-51. [PMID: 25681502 DOI: 10.1158/1541-7786.mcr-15-0006-t] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/27/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Long noncoding RNAs (lncRNA) have been found to play a role in gene regulation with dysregulated expression in various cancers. The precise role that lncRNA expression plays in the pathogenesis of B-acute lymphoblastic leukemia (B-ALL) is unknown. Therefore, unbiased microarray profiling was performed on human B-ALL specimens, and it was determined that lncRNA expression correlates with cytogenetic abnormalities, which was confirmed by qRT-PCR in a large set of B-ALL cases. Importantly, high expression of BALR-2 correlated with poor overall survival and diminished response to prednisone treatment. In line with a function for this lncRNA in regulating cell survival, BALR-2 knockdown led to reduced proliferation, increased apoptosis, and increased sensitivity to prednisolone treatment. Conversely, overexpression of BALR-2 led to increased cell growth and resistance to prednisone treatment. Interestingly, BALR-2 expression was repressed by prednisolone treatment and its knockdown led to upregulation of the glucocorticoid response pathway in both human and mouse B cells. Together, these findings indicate that BALR-2 plays a functional role in the pathogenesis and/or clinical responsiveness of B-ALL, and that altering the levels of particular lncRNAs may provide a future direction for therapeutic development. IMPLICATIONS lncRNA expression has the potential to segregate the common subtypes of B-ALL, predict the cytogenetic subtype, and indicate prognosis.
Collapse
Affiliation(s)
- Thilini R Fernando
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Norma I Rodriguez-Malave
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California. Cellular and Molecular Pathology Ph.D. Program, University of California, Los Angeles, Los Angeles, California
| | - Ella V Waters
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Weihong Yan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - David Casero
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Giuseppe Basso
- Women and Child Health Department-Hematology-Oncology Laboratory, University of Padova, Padova, Italy
| | - Martina Pigazzi
- Women and Child Health Department-Hematology-Oncology Laboratory, University of Padova, Padova, Italy
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California. Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California. Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
52
|
Richmond J, Carol H, Evans K, High L, Mendomo A, Robbins A, Meyer C, Venn NC, Marschalek R, Henderson M, Sutton R, Kurmasheva RT, Kees UR, Houghton PJ, Smith MA, Lock RB. Effective targeting of the P53-MDM2 axis in preclinical models of infant MLL-rearranged acute lymphoblastic leukemia. Clin Cancer Res 2015; 21:1395-405. [PMID: 25573381 DOI: 10.1158/1078-0432.ccr-14-2300] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although the overall cure rate for pediatric acute lymphoblastic leukemia (ALL) approaches 90%, infants with ALL harboring translocations in the mixed-lineage leukemia (MLL) oncogene (infant MLL-ALL) experience shorter remission duration and lower survival rates (∼50%). Mutations in the p53 tumor-suppressor gene are uncommon in infant MLL-ALL, and drugs that release p53 from inhibitory mechanisms may be beneficial. The purpose of this study was to assess the efficacy of the orally available nutlin, RG7112, against patient-derived MLL-ALL xenografts. EXPERIMENTAL DESIGN Eight MLL-ALL patient-derived xenografts were established in immune-deficient mice, and their molecular features compared with B-lineage ALL and T-ALL xenografts. The sensitivity of MLL-ALL xenografts to RG7112 was assessed in vitro and in vivo, and the ability of RG7112 to induce p53, cell-cycle arrest, and apoptosis in vivo was evaluated. RESULTS Gene-expression analysis revealed that MLL-ALL, B-lineage ALL, and T-ALL xenografts clustered according to subtype. Moreover, genes previously reported to be overexpressed in MLL-ALL, including MEIS1, CCNA1, and members of the HOXA family, were significantly upregulated in MLL-ALL xenografts, confirming their ability to recapitulate the clinical disease. Exposure of MLL-ALL xenografts to RG7112 in vivo caused p53 upregulation, cell-cycle arrest, and apoptosis. RG7112 as a single agent induced significant regressions in infant MLL-ALL xenografts. Therapeutic enhancement was observed when RG7112 was assessed using combination treatment with an induction-type regimen (vincristine/dexamethasone/L-asparaginase) against an MLL-ALL xenograft. CONCLUSIONS The utility of targeting the p53-MDM2 axis in combination with established drugs for the management of infant MLL-ALL warrants further investigation.
Collapse
Affiliation(s)
- Jennifer Richmond
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Hernan Carol
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Laura High
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Agnes Mendomo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Alissa Robbins
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Claus Meyer
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia (DCAL), Goethe-University of Frankfurt, Frankfurt/Main, Germany
| | - Nicola C Venn
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia (DCAL), Goethe-University of Frankfurt, Frankfurt/Main, Germany
| | - Michelle Henderson
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Rosemary Sutton
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | | | - Ursula R Kees
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Peter J Houghton
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio
| | | | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| |
Collapse
|
53
|
Adem J, Ropponen A, Eeva J, Eray M, Pelkonen J, Nuutinen U. Rituximab-induced early and late signaling have opposite effects on dexamethasone-induced apoptosis in human follicular lymphoma cells. Leuk Lymphoma 2015; 56:2448-57. [PMID: 25563557 DOI: 10.3109/10428194.2014.1001983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The addition of rituximab (RTX) to standard chemotherapy has improved the treatment of B-cell malignancies. We show here that RTX and dexamethasone (Dex) induced synergistic apoptosis in follicular lymphoma cell lines. However, apoptosis was delayed by RTX-induced early protective signaling. RTX-induced early signaling also decreased Dex-induced apoptosis and led to phosphorylation of ERK1/2, Bcl-2 (at serine 70) and phosphorylation/degradation of BimL/EL. All these events were prevented by the MEK inhibitor, UO126. Therefore, we suggest that RTX-induced ERK-mediated signaling events lead to protection from apoptosis during early signaling and that blocking of Bim and Bcl-2 phosphorylation might be used as a novel strategy for lymphoma treatment.
Collapse
Affiliation(s)
- Jemal Adem
- a Department of Clinical Microbiology , Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland.,e Cancer Center of University of Eastern Finland , Kuopio , Finland
| | - Antti Ropponen
- a Department of Clinical Microbiology , Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Jonna Eeva
- a Department of Clinical Microbiology , Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Mine Eray
- b Fimlab Laboratories Oy, Tampere University Hospital , Tampere , Finland.,c Department of Medicine,University of Tampere , Tampere , Finland
| | - Jukka Pelkonen
- a Department of Clinical Microbiology , Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland.,d Eastern Finland Laboratory Centre (ISLAB) , Kuopio , Finland.,e Cancer Center of University of Eastern Finland , Kuopio , Finland
| | - Ulla Nuutinen
- a Department of Clinical Microbiology , Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
54
|
Davies C, Hogarth LA, Mackenzie KL, Hall AG, Lock RB. p21(WAF1) modulates drug-induced apoptosis and cell cycle arrest in B-cell precursor acute lymphoblastic leukemia. Cell Cycle 2015; 14:3602-12. [PMID: 26506264 PMCID: PMC4825786 DOI: 10.1080/15384101.2015.1100774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022] Open
Abstract
p21(WAF1) is a well-characterized mediator of cell cycle arrest and may also modulate chemotherapy-induced cell death. The role of p21(WAF1) in drug-induced cell cycle arrest and apoptosis of acute lymphoblastic leukemia (ALL) cells was investigated using p53-functional patient-derived xenografts (PDXs), in which p21(WAF1) was epigenetically silenced in T-cell ALL (T-ALL), but not in B-cell precursor (BCP)-ALL PDXs. Upon exposure to diverse cytotoxic drugs, T-ALL PDX cells exhibited markedly increased caspase-3/7 activity and phosphatidylserine (PS) externalization on the plasma membrane compared with BCP-ALL cells. Despite dramatic differences in apoptotic characteristics between T-ALL and BCP-ALL PDXs, both ALL subtypes exhibited similar cell death kinetics and were equally sensitive to p53-inducing drugs in vitro, although T-ALL PDXs were significantly more sensitive to the histone deacetylase inhibitor vorinostat. Transient siRNA suppression of p21(WAF1) in the BCP-ALL 697 cell line resulted in a moderate depletion of the cell fraction in G1 phase and marked increase in PS externalization following exposure to etoposide. Furthermore, stable lentiviral p21(WAF1) silencing in the BCP-ALL Nalm-6 cell line accelerated PS externalization and cell death following exposure to etoposide and vorinostat, supporting previous findings. Finally, the Sp1 inhibitor, terameprocol, inhibited p21(WAF1) expression in Nalm-6 cells exposed to vorinostat and also partially augmented vorinostat-induced cell death. Taken together, these findings demonstrate that p21(WAF1) regulates the early stages of drug-induced apoptosis in ALL cells and significantly modulates their sensitivity to vorinostat.
Collapse
Affiliation(s)
- Carwyn Davies
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW Australia; Sydney, NSW, Australia
- Clinical Pharmacology Modeling and Simulation; GlaxoSmithKline R&D; Sydney, Australia
| | - Linda A Hogarth
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne; Tyne and Wear, UK
| | - Karen L Mackenzie
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW Australia; Sydney, NSW, Australia
| | - Andrew G Hall
- Northern Institute for Cancer Research; Newcastle University; Newcastle upon Tyne; Tyne and Wear, UK
| | - Richard B Lock
- Children's Cancer Institute; Lowy Cancer Research Centre; UNSW Australia; Sydney, NSW, Australia
| |
Collapse
|
55
|
Suryani S, Bracken LS, Harvey RC, Sia KCS, Carol H, Chen IM, Evans K, Dietrich PA, Roberts KG, Kurmasheva RT, Billups CA, Mullighan CG, Willman CL, Loh ML, Hunger SP, Houghton PJ, Smith MA, Lock RB. Evaluation of the in vitro and in vivo efficacy of the JAK inhibitor AZD1480 against JAK-mutated acute lymphoblastic leukemia. Mol Cancer Ther 2014; 14:364-74. [PMID: 25504635 DOI: 10.1158/1535-7163.mct-14-0647] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genome-wide studies have identified a high-risk subgroup of pediatric acute lymphoblastic leukemia (ALL) harboring mutations in the Janus kinases (JAK). The purpose of this study was to assess the preclinical efficacy of the JAK1/2 inhibitor AZD1480, both as a single agent and in combination with the MEK inhibitor selumetinib, against JAK-mutated patient-derived xenografts. Patient-derived xenografts were established in immunodeficient mice from bone marrow or peripheral blood biopsy specimens, and their gene expression profiles compared with the original patient biopsies by microarray analysis. JAK/STAT and MAPK signaling pathways, and the inhibitory effects of targeted drugs, were interrogated by immunoblotting of phosphoproteins. The antileukemic effects of AZD1480 and selumetinib, alone and in combination, were tested against JAK-mutated ALL xenografts both in vitro and in vivo. Xenografts accurately represented the primary disease as determined by gene expression profiling. Cellular phosphoprotein analysis demonstrated that JAK-mutated xenografts exhibited heightened activation status of JAK/STAT and MAPK signaling pathways compared with typical B-cell precursor ALL xenografts, which were inhibited by AZD1480 exposure. However, AZD1480 exhibited modest single-agent in vivo efficacy against JAK-mutated xenografts. Combining AZD1480 with selumetinib resulted in profound synergistic in vitro cell killing, although these results were not translated in vivo despite evidence of target inhibition. Despite validation of target inhibition and the demonstration of profound in vitro synergy between AZD1480 and selumetinib, it is likely that prolonged target inhibition is required to achieve in vivo therapeutic enhancement between JAK and MEK inhibitors in the treatment of JAK-mutated ALL.
Collapse
Affiliation(s)
- Santi Suryani
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Lauryn S Bracken
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Richard C Harvey
- Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Keith C S Sia
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Hernan Carol
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - I-Ming Chen
- Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Kathryn Evans
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Philipp A Dietrich
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Catherine A Billups
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cheryl L Willman
- Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Mignon L Loh
- Department of Pediatrics, University of California at San Francisco, San Francisco, California
| | - Stephen P Hunger
- University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - Peter J Houghton
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio
| | | | - Richard B Lock
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia.
| |
Collapse
|
56
|
Nowak D, Liem NLM, Mossner M, Klaumünzer M, Papa RA, Nowak V, Jann JC, Akagi T, Kawamata N, Okamoto R, Thoennissen NH, Kato M, Sanada M, Hofmann WK, Ogawa S, Marshall GM, Lock RB, Koeffler HP. Variegated clonality and rapid emergence of new molecular lesions in xenografts of acute lymphoblastic leukemia are associated with drug resistance. Exp Hematol 2014; 43:32-43.e1-35. [PMID: 25450514 DOI: 10.1016/j.exphem.2014.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/18/2014] [Accepted: 09/19/2014] [Indexed: 01/22/2023]
Abstract
The use of genome-wide copy-number analysis and massive parallel sequencing has revolutionized the understanding of the clonal architecture of pediatric acute lymphoblastic leukemia (ALL) by demonstrating that this disease is composed of highly variable clonal ancestries following the rules of Darwinian selection. The current study aimed to analyze the molecular composition of childhood ALL biopsies and patient-derived xenografts with particular emphasis on mechanisms associated with acquired chemoresistance. Genomic DNA from seven primary pediatric ALL patient samples, 29 serially passaged xenografts, and six in vivo selected chemoresistant xenografts were analyzed with 250K single-nucleotide polymorphism arrays. Copy-number analysis of non-drug-selected xenografts confirmed a highly variable molecular pattern of variegated subclones. Whereas primary patient samples from initial diagnosis displayed a mean of 5.7 copy-number alterations per sample, serially passaged xenografts contained a mean of 8.2 and chemoresistant xenografts a mean of 10.5 copy-number alterations per sample, respectively. Resistance to cytarabine was explained by a new homozygous deletion of the DCK gene, whereas methotrexate resistance was associated with monoallelic deletion of FPGS and mutation of the remaining allele. This study demonstrates that selecting for chemoresistance in xenografted human ALL cells can reveal novel mechanisms associated with drug resistance.
Collapse
Affiliation(s)
- Daniel Nowak
- Division of Hematology and Oncology, Cedars Sinai Medical Center, University of California, Los Angeles, School of Medicine, Los Angeles, CA, United States; Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany.
| | - Natalia L M Liem
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Maximilian Mossner
- Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany
| | - Marion Klaumünzer
- Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany
| | - Rachael A Papa
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Verena Nowak
- Division of Hematology and Oncology, Cedars Sinai Medical Center, University of California, Los Angeles, School of Medicine, Los Angeles, CA, United States; Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany
| | - Johann C Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany
| | - Tadayuki Akagi
- Department of Stem Cell Biology, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Norihiko Kawamata
- Division of Hematology and Oncology, Cedars Sinai Medical Center, University of California, Los Angeles, School of Medicine, Los Angeles, CA, United States
| | - Ryoko Okamoto
- Division of Hematology and Oncology, Cedars Sinai Medical Center, University of California, Los Angeles, School of Medicine, Los Angeles, CA, United States
| | - Nils H Thoennissen
- Division of Hematology and Oncology, Cedars Sinai Medical Center, University of California, Los Angeles, School of Medicine, Los Angeles, CA, United States
| | - Motohiro Kato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Sanada
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Glenn M Marshall
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Richard B Lock
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - H Phillip Koeffler
- Division of Hematology and Oncology, Cedars Sinai Medical Center, University of California, Los Angeles, School of Medicine, Los Angeles, CA, United States; National University of Singapore, Singapore, Singapore
| |
Collapse
|
57
|
Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood 2014; 125:273-83. [PMID: 25336632 DOI: 10.1182/blood-2014-05-576470] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucocorticoids are critical components of combination chemotherapy regimens in pediatric acute lymphoblastic leukemia (ALL). The proapoptotic BIM protein is an important mediator of glucocorticoid-induced apoptosis in normal and malignant lymphocytes, whereas the antiapoptotic BCL2 confers resistance. The signaling pathways regulating BIM and BCL2 expression in glucocorticoid-treated lymphoid cells remain unclear. In this study, pediatric ALL patient-derived xenografts (PDXs) inherently sensitive or resistant to glucocorticoids were exposed to dexamethasone in vivo. Microarray analysis showed that KLF13 and MYB gene expression changes were significantly greater in dexamethasone-sensitive than -resistant PDXs. Chromatin immunoprecipitation (ChIP) analysis detected glucocorticoid receptor (GR) binding at the KLF13 promoter to trigger KLF13 expression only in sensitive PDXs. Next, KLF13 bound to the MYB promoter, deactivating MYB expression only in sensitive PDXs. Sustained MYB expression in resistant PDXs resulted in maintenance of BCL2 expression and inhibition of apoptosis. ChIP sequencing analysis revealed a novel GR binding site in a BIM intronic region (IGR) that was engaged only in dexamethasone-sensitive PDXs. The absence of GR binding at the BIM IGR was associated with BIM silencing and dexamethasone resistance. This study has identified novel mechanisms of opposing BCL2 and BIM gene regulation that control glucocorticoid-induced apoptosis in pediatric ALL cells in vivo.
Collapse
|
58
|
Toscan CE, Failes T, Arndt GM, Lock RB. High-throughput screening of human leukemia xenografts to identify dexamethasone sensitizers. ACTA ACUST UNITED AC 2014; 19:1391-401. [PMID: 25104793 DOI: 10.1177/1087057114546550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Glucocorticoids (e.g., dexamethasone) form a critical component of chemotherapy regimens for pediatric ALL, and the initial response to glucocorticoid therapy is a major prognostic factor, where resistance is predictive of poor outcome. We have previously established a clinically relevant ALL xenograft model, consisting of primary pediatric ALL biopsies engrafted into immune-deficient mice, in which in vitro and in vivo dexamethasone sensitivity significantly correlated with patient outcome. In this study, we used high-throughput screening (HTS) to identify novel compounds that reverse dexamethasone resistance in a xenograft (ALL-19) derived from a chemoresistant pediatric ALL patient that is representative of the most common pediatric ALL subtype (B-cell precursor [BCP-ALL]). The compound 2-(4-chlorophenoxy)-2-methyl-N-(2-(piperidin-1-yl)phenyl)propanamide showed little cytotoxic activity alone (IC50 = 31 µM), but when combined with dexamethasone, it caused a marked decrease in cell viability. Fixed-ratio combination assays were performed against a broad panel of dexamethasone-resistant and -sensitive xenografts representative of BCP-ALL, T-cell ALL, and Mixed Lineage Leukemia-rearranged ALL, and synergy was observed in six of seven xenografts. We describe here the development of a novel 384-well cell-based high-throughput screening assay for identifying potential dexamethasone sensitizers using a clinically relevant ALL xenograft model.
Collapse
Affiliation(s)
- Cara E Toscan
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Tim Failes
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Greg M Arndt
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Richard B Lock
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
59
|
Jones CL, Bhatla T, Blum R, Wang J, Paugh SW, Wen X, Bourgeois W, Bitterman DS, Raetz EA, Morrison DJ, Teachey DT, Evans WE, Garabedian MJ, Carroll WL. Loss of TBL1XR1 disrupts glucocorticoid receptor recruitment to chromatin and results in glucocorticoid resistance in a B-lymphoblastic leukemia model. J Biol Chem 2014; 289:20502-15. [PMID: 24895125 PMCID: PMC4110265 DOI: 10.1074/jbc.m114.569889] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/23/2014] [Indexed: 01/10/2023] Open
Abstract
Although great advances have been made in the treatment of pediatric acute lymphoblastic leukemia, up to one of five patients will relapse, and their prognosis thereafter is dismal. We have previously identified recurrent deletions in TBL1XR1, which encodes for an F-box like protein responsible for regulating the nuclear hormone repressor complex stability. Here we model TBL1XR1 deletions in B-precursor ALL cell lines and show that TBL1XR1 knockdown results in reduced glucocorticoid receptor recruitment to glucocorticoid responsive genes and ultimately decreased glucocorticoid signaling caused by increased levels of nuclear hormone repressor 1 and HDAC3. Reduction in glucocorticoid signaling in TBL1XR1-depleted lines resulted in resistance to glucocorticoid agonists, but not to other chemotherapeutic agents. Importantly, we show that treatment with the HDAC inhibitor SAHA restores sensitivity to prednisolone in TBL1XR1-depleted cells. Altogether, our data indicate that loss of TBL1XR1 is a novel driver of glucocorticoid resistance in ALL and that epigenetic therapy may have future application in restoring drug sensitivity at relapse.
Collapse
Affiliation(s)
| | - Teena Bhatla
- the Division of Pediatric Hematology and Oncology
| | - Roy Blum
- From the Laura and Isaac Perlmutter Cancer Center
| | - Jinhua Wang
- From the Laura and Isaac Perlmutter Cancer Center
- the Center for Health Informatics and Bioinformatics, and
| | - Steven W. Paugh
- the Hematological Malignancies Program and
- the Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Xin Wen
- From the Laura and Isaac Perlmutter Cancer Center
- the Center for Health Informatics and Bioinformatics, and
| | | | | | - Elizabeth A. Raetz
- the Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, Utah 84102, and
| | | | - David T. Teachey
- the Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - William E. Evans
- the Hematological Malignancies Program and
- the Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Michael J. Garabedian
- the Department of Microbiology, New York University Langone Medical Center, New York, New York 10016
| | - William L. Carroll
- From the Laura and Isaac Perlmutter Cancer Center
- the Division of Pediatric Hematology and Oncology
| |
Collapse
|
60
|
The glucocorticoid receptor 1A3 promoter correlates with high sensitivity to glucocorticoid‐induced apoptosis in human lymphocytes. Immunol Cell Biol 2014; 92:825-36. [DOI: 10.1038/icb.2014.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/13/2022]
|
61
|
Suryani S, Carol H, Chonghaile TN, Frismantas V, Sarmah C, High L, Bornhauser B, Cowley MJ, Szymanska B, Evans K, Boehm I, Tonna E, Jones L, Manesh DM, Kurmasheva RT, Billups C, Kaplan W, Letai A, Bourquin JP, Houghton PJ, Smith MA, Lock RB. Cell and molecular determinants of in vivo efficacy of the BH3 mimetic ABT-263 against pediatric acute lymphoblastic leukemia xenografts. Clin Cancer Res 2014; 20:4520-31. [PMID: 25013123 DOI: 10.1158/1078-0432.ccr-14-0259] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Predictive biomarkers are required to identify patients who may benefit from the use of BH3 mimetics such as ABT-263. This study investigated the efficacy of ABT-263 against a panel of patient-derived pediatric acute lymphoblastic leukemia (ALL) xenografts and utilized cell and molecular approaches to identify biomarkers that predict in vivo ABT-263 sensitivity. EXPERIMENTAL DESIGN The in vivo efficacy of ABT-263 was tested against a panel of 31 patient-derived ALL xenografts composed of MLL-, BCP-, and T-ALL subtypes. Basal gene expression profiles of ALL xenografts were analyzed and confirmed by quantitative RT-PCR, protein expression and BH3 profiling. An in vitro coculture assay with immortalized human mesenchymal cells was utilized to build a predictive model of in vivo ABT-263 sensitivity. RESULTS ABT-263 demonstrated impressive activity against pediatric ALL xenografts, with 19 of 31 achieving objective responses. Among BCL2 family members, in vivo ABT-263 sensitivity correlated best with low MCL1 mRNA expression levels. BH3 profiling revealed that resistance to ABT-263 correlated with mitochondrial priming by NOXA peptide, suggesting a functional role for MCL1 protein. Using an in vitro coculture assay, a predictive model of in vivo ABT-263 sensitivity was built. Testing this model against 11 xenografts predicted in vivo ABT-263 responses with high sensitivity (50%) and specificity (100%). CONCLUSION These results highlight the in vivo efficacy of ABT-263 against a broad range of pediatric ALL subtypes and shows that a combination of in vitro functional assays can be used to predict its in vivo efficacy.
Collapse
Affiliation(s)
- Santi Suryani
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Hernan Carol
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Triona Ni Chonghaile
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Viktoras Frismantas
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Chintanu Sarmah
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Laura High
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Mark J Cowley
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Barbara Szymanska
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Kathryn Evans
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Ingrid Boehm
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Elise Tonna
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Luke Jones
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Donya Moradi Manesh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | | | - Catherine Billups
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Warren Kaplan
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Peter J Houghton
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio
| | | | - Richard B Lock
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| |
Collapse
|
62
|
Dulucq S, Laverdière C, Sinnett D, Krajinovic M. Pharmacogenetic considerations for acute lymphoblastic leukemia therapies. Expert Opin Drug Metab Toxicol 2014; 10:699-719. [PMID: 24673379 DOI: 10.1517/17425255.2014.893294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Advances in our understanding of the pathobiology of childhood acute lymphoblastic leukemia (ALL) have led to risk-targeted treatment regimens and remarkable improvement in survival rates. Still, up to 20% of patients experience treatment failure due to drug resistance. Treatment-related toxicities are often life-threatening and are the primary cause of treatment interruption, while ALL survivors may develop complications due to exposure to chemotherapy and/or irradiation during a vulnerable period of development. Different factors may contribute to variable treatment outcomes including patient genetics that has been shown to play important role. AREAS COVERED This review summarizes candidate gene and genome-wide association studies that identified common polymorphisms underlying variability in treatment responses including a few studies addressing late effects of the treatment. Genetic variants influencing antileukemic drug effects or leukemic cell biology have been identified, including for example variants in folate-dependent enzymes, influx and efflux transporters, metabolizing enzymes, drug receptor or apoptotic proteins. EXPERT OPINION Many pharmacogenetic studies have been conducted in ALL and a variety of potential markers have been identified. Yet more comprehensive insight into genome variations influencing drug responses is needed. Whole exome/genome sequencing, careful study design, mechanistic explanation of association found and collaborative studies will ultimately lead to personalized treatment and improved therapeutic and health outcomes.
Collapse
Affiliation(s)
- Stéphanie Dulucq
- University Health Center Bordeaux, Heamatology Laboratory , Bordeaux , France
| | | | | | | |
Collapse
|
63
|
Samuels AL, Heng JY, Beesley AH, Kees UR. Bioenergetic modulation overcomes glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia. Br J Haematol 2014; 165:57-66. [PMID: 24456076 DOI: 10.1111/bjh.12727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022]
Abstract
Drug-resistant forms of acute lymphoblastic leukaemia (ALL) are a leading cause of death from disease in children. Up to 25% of patients with T-cell ALL (T-ALL) develop resistance to chemotherapeutic agents, particularly to glucocorticoids (GCs), a class of drug to which resistance is one of the strongest indicators of poor clinical outcome. Despite their clinical importance, the molecular mechanisms that underpin GC resistance and leukaemia relapse are not well understood. Recently, we demonstrated that GC-resistance is associated with a proliferative metabolism involving the up-regulation of glycolysis, oxidative phosphorylation and cholesterol biosynthesis. Here we confirm that resistance is directly associated with a glycolytic phenotype and show that GC-resistant T-ALL cells are able to shift between glucose bioenergetic pathways. We evaluated the potential for targeting these pathways in vitro using a glycolysis inhibitor, 2-deoxyglucose (2DG), and the oxidative phosphorylation inhibitor oligomycin in combination with methylprednisolone (MPRED). We found that oligomycin synergized with MPRED to sensitize cells otherwise resistant to GCs. Similarly we observed synergy between MPRED and simvastatin, an inhibitor of cholesterol metabolism. Collectively, our findings suggest that dual targeting of bioenergetic pathways in combination with GCs may offer a promising therapeutic strategy to overcome drug resistance in ALL.
Collapse
Affiliation(s)
- Amy L Samuels
- Division of Children's Leukaemia and Cancer Research, Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | | | | | | |
Collapse
|
64
|
Gagné V, Rousseau J, Labuda M, Sharif-Askari B, Brukner I, Laverdière C, Ceppi F, Sallan SE, Silverman LB, Neuberg D, Kutok JL, Sinnett D, Krajinovic M. Bim polymorphisms: influence on function and response to treatment in children with acute lymphoblastic leukemia. Clin Cancer Res 2013; 19:5240-9. [PMID: 23908358 DOI: 10.1158/1078-0432.ccr-13-1215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Corticosteroids induce apoptosis in the malignant lymphoid cells and are critical component of combination therapy for acute lymphoblastic leukemia (ALL). Several genome-wide microarray studies showed major implication of proapoptotic Bim in mediating corticosteroid-related resistance in leukemia cells. EXPERIMENTAL DESIGN We investigated Bim gene polymorphisms and their association with childhood ALL outcome, and the mechanism underlying the observed finding. RESULTS Lower overall survival (OS) was associated with Bim C29201T located in Bcl-2 homology 3 (BH3) domain (P = 0.01). An association remained significant in multivariate model (P = 0.007), was more apparent in high-risk patients (P = 0.004) and patients treated with dexamethasone (P = 0.009), and was subsequently confirmed in the replication patient cohort (P = 0.03). RNA analysis revealed that C29201T affects generation of γ isoforms (γ1) that lack proapoptotic BH3 domain. The phenotypic effect was minor suggesting the influence of additional factors that may act in conjunction with Bim genotype. Combined analysis with Mcl gene polymorphism (G-486T) revealed profound reduction in OS in individuals with both risk genotypes (P < 0.0005 in discovery and P = 0.002 in replication cohort) and particularly in high-risk patients (P ≤ 0.008). CONCLUSIONS Increased expression of prosurvival Mcl1 and presence of Bim isoforms lacking proapoptotic function might explain marked reduction of OS in a disease and dose-dependent manner in ALL patients carrying Bim- and Mcl1-risk genotypes.
Collapse
Affiliation(s)
- Vincent Gagné
- Authors' Affiliations: Charles Bruneau Cancer Center, Research Center CHU Sainte-Justine; Departments of Pediatrics and Pharmacology, University of Montreal; Department of Diagnostic Medicine, Jewish General Hospital, Montreal, Quebec, Canada; Departments of Pediatric Oncology and Biostatistics and Computational Biology, Dana-Farber Cancer Institute; Division of Hematology/Oncology, Children's Hospital; and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Gatineau-Sailliant S, Buchbinder N, Callat MP, Nelken B, Pautard B, Vannier JP, Schneider P. [Steroid intake before leukemia diagnosis impairs outcome in childhood acute lymphoblastic leukemia]. Arch Pediatr 2013; 20:341-7. [PMID: 23433842 DOI: 10.1016/j.arcped.2013.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/25/2012] [Accepted: 01/07/2013] [Indexed: 11/18/2022]
Abstract
UNLABELLED The aim of this study was to show that steroid therapy taken before the diagnosis of acute lymphoblastic leukemia (ALL) can alter the management of the disease. PATIENTS AND METHODS We conducted a multicenter retrospective study on 11 children treated between 2005 and 2011, who received oral steroids ranging from 0.6 to 3.3mg/kg/day prednisolone equivalent for a duration of 2 to 15 days during the 2 months prior to diagnosis of ALL. RESULTS Four children had febrile pancytopenia. Among them, 2 had severe infections and a noncontributive bone marrow aspiration. One of them presented a severe tumoral lysis syndrome and was hospitalized twice in the intensive care unit. Two teenagers had central nervous system involvement at diagnosis of T-ALL, 1 having associated cutaneous locations, the second one showing pulmonary and central nervous system (CNS) leukostasis with renal failure and disseminated intravascular coagulation. One child died of septic shock during the induction phase of steroid-resistant T-ALL. Four children had no complications during the induction phase. Steroid resistance occurred in 5 cases and steroid sensitivity could not be evaluated in 3 cases. Three allogeneic bone marrow transplants were performed: the first one because of early CNS relapse, the 2 others because of initial treatment resistance. CONCLUSION Steroids can induce a delay in the management of ALL and seem to favor initial complications, and possibly increase diffuse locations as well as steroid resistance. Their prescription needs to be carefully managed, especially for uncharacteristic infectious symptoms. Then a complete blood count should be done.
Collapse
Affiliation(s)
- S Gatineau-Sailliant
- Service d'immuno-hématologie pédiatrique, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France.
| | | | | | | | | | | | | |
Collapse
|
66
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
67
|
Malyukova A, Brown S, Papa R, O'Brien R, Giles J, Trahair TN, Dalla Pozza L, Sutton R, Liu T, Haber M, Norris MD, Lock RB, Sangfelt O, Marshall GM. FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation. Leukemia 2012; 27:1053-62. [PMID: 23228967 DOI: 10.1038/leu.2012.361] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Loss of function mutation in FBXW7, an E3 ubiquitin ligase, is associated with good prognosis and early glucocorticoid treatment response in childhood T-cell acute lymphoblastic leukemia (T-ALL) by unknown mechanisms. Here, we show that FBXW7 targets the glucocorticoid receptor α (GRα) for ubiquitylation and proteasomal degradation in a manner dependent on glycogen synthase kinase 3 β-mediated phsophorylation. FBXW7 inactivation caused elevated GRα levels, and enhanced the transcriptional response to glucocorticoids. There was significant enhancement of GR transcriptional responses in FBXW7-deficient cell lines and primary T-ALL samples, in particular, for those pro-apoptotic regulatory proteins, BIM and PUMA. Reduced FBXW7 expression or function promoted glucocorticoid sensitivity, but not sensitivity to other chemotherapeutic agents used in T-ALL. Moreover, this was a general feature of different cancer cell types. Taken together, our work defines GRα as a novel FBXW7 substrate and demonstrates that favorable patient prognosis in T-ALL is associated with FBXW7 mutations due to enhanced GRα levels and steroid sensitivity. These findings suggest that inactivation of FBXW7, a putative tumor suppressor protein, may create a synthetic lethal state in the presence of specific anticancer therapies.
Collapse
Affiliation(s)
- A Malyukova
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Manceau S, Giraud C, Declèves X, Batteux F, Chéreau C, Chouzenoux S, Scherrmann JM, Weill B, Perrot JY, Tréluyer JM. Expression and induction by dexamethasone of ABC transporters and nuclear receptors in a human T-lymphocyte cell line. J Chemother 2012; 24:48-55. [PMID: 22546724 DOI: 10.1179/1120009x12z.00000000010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The efficacy of drugs acting within lymphocytes, like antiretroviral drugs in the treatment of HIV infection, depends on their intracellular concentrations modulated by efflux proteins like ABCB1 (P-glycoprotein). In lymphocytes, two glucocorticoids, prednisone and prednisolone, have been shown to induce ABCB1 activity. Yet, no data exist regarding dexamethasone (DEX). We report the modulation of ABC transporters and nuclear receptors' expression by DEX in a commonly used model of human lymphocytes. CCRF-CEM cells were exposed to DEX (100 nM, 2 μM) for 24 to 72 hours. ABCB1 activity was measured using DiOC(6) efflux in flow cytometry. Gene expression levels were quantified by qRT-PCR. ABCB1 activity and mRNA expression increased with DEX concentrations and incubation times. DEX (1 μM, 24 h) increased significantly ABCB1 and GR mRNA expression levels by around 8- and 3.5-fold, respectively (P<10(-6)). ABCB1 induction by DEX in CCRF-CEM cells suggests a potential risk of interaction in lymphocytes when associating DEX to ABCB1 substrates in antiretroviral multitherapies in vivo.
Collapse
|
69
|
Baptista MJ, Muntañola A, Calpe E, Abrisqueta P, Salamero O, Fernández E, Codony C, Giné E, Kalko SG, Crespo M, Bosch F. Differential gene expression profile associated to apoptosis induced by dexamethasone in CLL cells according to IGHV/ZAP-70 status. Clin Cancer Res 2012; 18:5924-33. [PMID: 22966019 DOI: 10.1158/1078-0432.ccr-11-2771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Glucocorticoids are part of the therapeutic armamentarium of chronic lymphocytic leukemia (CLL) where it has been suggested that cells with unmutated IGHV genes exhibit higher sensitivity. The mechanisms by which glucocorticoids are active in CLL are not well elucidated. We aimed to ascertain the activity of dexamethasone in CLL cells according to prognosis and to identify the molecular mechanisms that are influencing the response to this drug. EXPERIMENTAL DESIGN Sensitivity to dexamethasone was analyzed ex vivo in 50 CLL and compared according to IGHV mutational status and/or ZAP-70 expression. The response was further compared by gene expression profiling (GEP) of selected cases. Expression of genes of interest was validated by quantitative reverse transcriptase PCR. RESULTS Response to dexamethasone was higher in cases with unmutated IGHV/high ZAP-70 expression, and the levels of induction of the pro-apoptotic Bim protein correlated with the degree of cell death. GEP analysis showed few genes differentially expressed after dexamethasone treatment between mutated and unmutated cases. However, functional annotation analysis showed that unmutated cases had significant enrichment in terms related to apoptosis. Specific analysis of genes of interest conducted in a large series disclosed that in unmutated IGHV cells, FKBP5 expression was higher at baseline and after dexamethasone exposure and that GILZ was more induced by dexamethasone treatment in these cases. CONCLUSIONS Unmutated IGHV/high ZAP-70 CLL cells exhibit better response to dexamethasone treatment, which is accompanied by a differential expression of genes involved in the glucocorticoid receptor pathway and by an increased induction of genes related to apoptosis.
Collapse
Affiliation(s)
- Maria Joao Baptista
- Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Bhadri VA, Trahair TN, Lock RB. Glucocorticoid resistance in paediatric acute lymphoblastic leukaemia. J Paediatr Child Health 2012; 48:634-40. [PMID: 22050419 DOI: 10.1111/j.1440-1754.2011.02212.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glucocorticoids (GCs), such as prednisolone and dexamethasone, are key components in multi-agent chemotherapy protocols used for the treatment of acute lymphoblastic leukaemia (ALL). Approximately 10% of children with ALL will respond poorly to GCs, and GC resistance is associated with a significantly inferior outcome. This review summarises the current knowledge of GC resistance in ALL, including the roles of the GC receptor and its co-chaperone molecules, the pro-apoptotic and pro-survival B-cell lymphoma 2 family members and alternative non-apoptotic mechanisms of cell death. It concludes with a discussion on therapeutic attempts to overcome GC resistance.
Collapse
Affiliation(s)
- Vivek A Bhadri
- Centre for Children's Cancer and Blood Disorders, Sydney Children's Hospital, Randwick, NSW 2031, Australia.
| | | | | |
Collapse
|
71
|
Glucocorticoid-mediated BIM induction and apoptosis are regulated by Runx2 and c-Jun in leukemia cells. Cell Death Dis 2012; 3:e349. [PMID: 22825467 PMCID: PMC3406588 DOI: 10.1038/cddis.2012.89] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucocorticoids (GCs) are common components of many chemotherapeutic regimens for lymphoid malignancies. GC-induced apoptosis involves an intrinsic mitochondria-dependent pathway. BIM (BCL-2-interacting mediator of cell death), a BCL-2 homology 3-only pro-apoptotic protein, is upregulated by dexamethasone (Dex) treatment in acute lymphoblastic leukemia cells and has an essential role in Dex-induced apoptosis. It has been indicated that Dex-induced BIM is regulated mainly by transcription, however, the molecular mechanisms including responsible transcription factors are unclear. In this study, we found that Dex treatment induced transcription factor Runx2 and c-Jun in parallel with BIM induction. Dex-induced BIM and apoptosis were decreased in cells harboring dominant-negative c-Jun and were increased in cells with c-Jun overexpression. Cells harboring short hairpin RNA for Runx2 also decreased BIM induction and apoptosis. On the Bim promoter, c-Jun bound to and activated the AP-1-binding site at about −2.7 kb from the transcription start site. Treatment with RU486, a GC receptor antagonist, blocked Dex-induced Runx2, c-Jun and BIM induction, as well as apoptosis. Furthermore, pretreatment with SB203580, a p38-mitogen-activated protein kinase (MAPK) inhibitor, decreased Dex-induced Runx2, c-Jun and BIM, suggesting that p38-MAPK activation is upstream of the induction of these molecules. In conclusion, we identified the critical signaling pathway for GC-induced apoptosis, and targeting these molecules may be an alternative approach to overcome GC-resistance in leukemia treatment.
Collapse
|
72
|
Wei H, Xiang L, Wayne AS, Chertov O, FitzGerald DJ, Bera TK, Pastan I. Immunotoxin resistance via reversible methylation of the DPH4 promoter is a unique survival strategy. Proc Natl Acad Sci U S A 2012; 109:6898-903. [PMID: 22509046 PMCID: PMC3345006 DOI: 10.1073/pnas.1204523109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
HA22 is a recombinant immunotoxin composed of an anti-CD22 Fv fused to a portion of Pseudomonas exotoxin A. HA22 produced a high rate of complete remissions in drug-resistant hairy cell leukemia and has a lower response rate in pediatric acute lymphoblastic leukemia (ALL). To understand why patients with ALL have poorer responses, we isolated an ALL cell line that is resistant to killing by HA22. The resistance is unstable; without HA22 the cells revert to HA22 sensitivity in 4 mo. We showed that in the resistant cell line, HA22 is unable to ADP ribosylate and inactivate elongation factor-2 (EF2), owing to a low level of DPH4 mRNA and protein, which prevents diphthamide biosynthesis and renders EF2 refractory to HA22. Analysis of the promoter region of the DPH4 gene shows that the CpG island was hypomethylated in the HA22-sensitive cells, heavily methylated in the resistant cells, and reverted to low methylation in the revertant cells. Our data show that immunotoxin resistance is associated with reversible CpG island methylation and silencing of DPH4 gene transcription. Incubation of sensitive cells with the methylation inhibitor 5-azacytidine prevented the emergence of resistant cells, suggesting that this agent in combination with HA22 may be useful in the treatment of some cases of ALL.
Collapse
MESH Headings
- Azacitidine/pharmacology
- Bacterial Toxins/pharmacology
- Base Sequence
- Cell Line, Tumor
- CpG Islands
- DNA Methylation/drug effects
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Exotoxins/pharmacology
- HSP40 Heat-Shock Proteins/genetics
- Humans
- Immunotoxins/pharmacology
- Molecular Sequence Data
- Peptide Elongation Factor 2/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Sialic Acid Binding Ig-like Lectin 2/immunology
Collapse
Affiliation(s)
- Hui Wei
- Laboratory of Molecular Biology and
| | | | - Alan S. Wayne
- Laboratory of Molecular Biology and
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Oleg Chertov
- Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702
| | | | | | | |
Collapse
|
73
|
Haskins WE, Eedala S, Jadhav YA, Labhan MS, Pericherla VC, Perlman EJ. Insights on neoplastic stem cells from gel-based proteomics of childhood germ cell tumors. Pediatr Blood Cancer 2012; 58:722-8. [PMID: 21793190 PMCID: PMC3204330 DOI: 10.1002/pbc.23282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/22/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Childhood germ cell tumors (cGCTs), believed to arise from transformed primordial germ cells by an unknown mechanism, provide a unique model system for investigating cell signaling, pluripotency, and the microenvironment of neoplastic stem cells (NSCs) in vivo. This is the first report of proteomics of cGCTs. PROCEDURE Four dysgerminomas (DYSs) and four childhood endodermal sinus tumors (cESTs), resembling self-renewing and differentiating NSCs, respectively, were selected. Proteomic studies were performed by 2-DE, SDS-PAGE, and cLC/MS/MS with protein database searching. RESULTS 2-DE: 9 of 941 spots were differentially regulated with greater than a twofold change in spot volume for at least three of four gels in each group. Two of nine spots had P values for the t-test analysis of comparisons less than 0.001, while the remaining spots had P values from 0.013 to 0.191. Top-ranked proteins were identified in nine of nine spots with 4.0-38% sequence coverage. APOA1, CRK, and PDIA3 were up-regulated in cESTs. TFG, TYMP, VCP, RBBP, FKBP4, and BiP were up-regulated in DYSs. SDS-PAGE: Up-regulation of NF45 and FKBP4 was observed in four of four cESTs and DYSs, respectively. The fold-changes observed correspond with characteristic genetic changes. CONCLUSION Differential regulation of FKBP4 and NF45, combined with previous research on immunosuppressant binding, suggests that glucocorticoid receptor signaling merits further investigation in cGCTs and NSCs.
Collapse
Affiliation(s)
- William E. Haskins
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, Department of RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Medicine, Division of Hematology & Medical Oncology, Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229,Correspondence: William E. Haskins, Ph.D., Dept. of Biology-BSE 3.108A, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0662, , Phone: (210)563-4492, Fax: (210)458-5658
| | - Sruthi Eedala
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, Department of RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Y.L. Avinash Jadhav
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, Department of RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Manbir S. Labhan
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, Department of RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Vidya C. Pericherla
- Pediatric Biochemistry Laboratory, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, Department of RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249, Department of Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Interdisciplinary Health Research, University of Texas at San Antonio, San Antonio, TX, 78249, Center for Research & Training in the Sciences, University of Texas at San Antonio, San Antonio, TX, 78249
| | - Elizabeth J. Perlman
- Department of Pathology, Northwestern University’s Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, IL, 60614
| |
Collapse
|
74
|
Szymanska B, Wilczynska-Kalak U, Kang MH, Liem NLM, Carol H, Boehm I, Groepper D, Reynolds CP, Stewart CF, Lock RB. Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts. PLoS One 2012; 7:e33894. [PMID: 22479469 PMCID: PMC3315513 DOI: 10.1371/journal.pone.0033894] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/18/2012] [Indexed: 02/02/2023] Open
Abstract
Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and L-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX) and ASP (VXL) against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL.
Collapse
Affiliation(s)
- Barbara Szymanska
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Urszula Wilczynska-Kalak
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Min H. Kang
- Texas Tech University Health Sciences Center, Lubbock, Texas United States of America
| | - Natalia L. M. Liem
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Hernan Carol
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Ingrid Boehm
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Daniel Groepper
- Department of Pharmaceutical Sciences, St. Jude Children's Hospital, Memphis, Tennessee, United States of America
| | - C. Patrick Reynolds
- Texas Tech University Health Sciences Center, Lubbock, Texas United States of America
| | - Clinton F. Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Hospital, Memphis, Tennessee, United States of America
| | - Richard B. Lock
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
75
|
Rainer J, Lelong J, Bindreither D, Mantinger C, Ploner C, Geley S, Kofler R. Research resource: transcriptional response to glucocorticoids in childhood acute lymphoblastic leukemia. Mol Endocrinol 2011; 26:178-93. [PMID: 22074950 DOI: 10.1210/me.2011-1213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Glucocorticoids (GC) induce apoptosis in lymphoblasts and are thus essential in the treatment of acute lymphoblastic leukemia (ALL). Their effects result from gene regulations via the GC receptor (NR3C1/GR), but it is unknown how these changes evolve, what the primary GR targets are, and to what extent responses differ between ALL subtypes and nonlymphoid malignancies. We delineated the transcriptional response to GC on the exon level in a time-resolved manner in a precursor B- and a T childhood ALL model employing Exon microarrays and combined this with genome-wide NR3C1-binding site detection using chromatin immunoprecipitation-on-chip technology. This integrative approach showed that the response was strongly influenced by kinetics and extent of GR autoinduction in both models. Although remarkable differences between the ALL systems were apparent, we defined a set of common response genes enriched in apoptosis-related processes. Globally, GR binding was higher for GC-induced vs. -repressed genes, suggesting that GR mediates gene repression by interaction with distant enhancers or by cross talk with other transcription factors. Exon level analysis defined several new GC-regulated transcript variants of genes, including ATP4B, GPR98, TBCD, and ZBTB16. Our study provides unprecedented insight into the transcriptional response to GC in ALL cells, essential to understand this biologically and clinically important phenomenon. We found evidence of cell type-specific as well as common responses, possibly related to apoptosis induction, and detected induction of novel transcript variants by GC in the investigated systems. Finally, we implemented a bioinformatic framework that might be useful for high-density microarray analyses to identify alternative transcript variant expression.
Collapse
Affiliation(s)
- Johannes Rainer
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
76
|
Davies C, Hogarth LA, Dietrich PA, Bachmann PS, Mackenzie KL, Hall AG, Lock RB. p53-independent epigenetic repression of the p21(WAF1) gene in T-cell acute lymphoblastic leukemia. J Biol Chem 2011; 286:37639-50. [PMID: 21903579 DOI: 10.1074/jbc.m111.272336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The p53 protein is a primary mediator of cellular apoptosis and growth arrest after exposure to DNA-damaging agents. Previous work has shown that the majority of childhood acute lymphoblastic leukemia (ALL) cases express a wild type p53 gene, although the functionality of the p53 pathway has rarely been validated. In the present study, the integrity of the p53 pathway was investigated in a panel of ALL cell lines and xenografts established from direct patient explants in immune-deficient mice. A focused real-time quantitative reverse transcription PCR array of known p53-regulated genes identified p21(WAF1) (CDKN1A) as the highest ranked gene to be differentially expressed between B-cell precursor (BCP)-ALL and T-ALL xenografts following exposure to the DNA-damaging drug etoposide. Lack of p21(WAF1) induction was observed in six of seven T-ALL xenograft lines, as well as primary T-ALL cells following irradiation exposure, despite an otherwise functional p53 response. Repression of p21(WAF1) in T-ALL cells was associated with decreased acetylated H3K9 localized at its promoter compared with BCP-ALL cells, together with increased CpG methylation within the first exon and intron. Although the histone deacetylase inhibitor vorinostat failed to induce p21(WAF1) in T-ALL samples, the combination of vorinostat and the demethylating agent decitabine reactivated expression of the silenced p21(WAF1) gene in the Molt-4 T-ALL cell line. Considering the known anti-apoptotic function of p21(WAF1), our findings have significant implications for the responses of T- versus BCP-ALL cells to chemotherapeutic drugs that induce p21(WAF1).
Collapse
Affiliation(s)
- Carwyn Davies
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
77
|
Jiang N, Koh GS, Lim JY, Kham SK, Ariffin H, Chew FT, Yeoh AE. BIM is a prognostic biomarker for early prednisolone response in pediatric acute lymphoblastic leukemia. Exp Hematol 2011; 39:321-9, 329.e1-3. [DOI: 10.1016/j.exphem.2010.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/02/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022]
|
78
|
Abdelwahab SI, Abdul AB, Mohan S, Taha MME, Syam S, Ibrahim MY, Mariod AA. Zerumbone induces apoptosis in T-acute lymphoblastic leukemia cells. Leuk Res 2011; 35:268-71. [DOI: 10.1016/j.leukres.2010.07.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 07/10/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
|
79
|
Akers SM, Rellick SL, Fortney JE, Gibson LF. Cellular elements of the subarachnoid space promote ALL survival during chemotherapy. Leuk Res 2011; 35:705-11. [PMID: 21269691 DOI: 10.1016/j.leukres.2010.12.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/20/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
Abstract
CNS infiltration by leukemic cells remains a problematic disease manifestation of acute lymphoblastic leukemia (ALL). Prophylactic regimens for CNS leukemia including intrathecal chemotherapeutics have decreased CNS involvement in ALL, but are not without toxicities. Using co-culture models, we show that astrocytes, choroid plexus epithelial cells, and meningeal cells protect ALL cells from chemotherapy-induced cell death using drugs included in prophylactic regimens-cytarabine, dexamethasone, and methotrexate. Understanding how ALL cells survive in the CNS remains invaluable for designing strategies to prevent CNS leukemia and minimizing the need for treatment in this sensitive anatomical site where treatment-induced toxicity is of significant concern.
Collapse
Affiliation(s)
- Stephen M Akers
- Cancer Cell Biology Program, Robert C. Byrd Health Sciences Center, West Virginia University, School of Medicine, Morgantown, WV, USA
| | | | | | | |
Collapse
|
80
|
Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers. Blood 2011; 117:902-14. [PMID: 21048156 DOI: 10.1182/blood-2010-01-262691] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
Bone marrow mesenchymal cells (MSCs) can protect leukemic cells from chemotherapy, thus increasing their survival rate. We studied the potential molecular mechanisms underlying this effect in acute lymphoblastic leukemia (ALL) cells. Coculture of ALL cells with MSCs induced on the lymphoblast plasma membrane the expression of a signaling complex formed by hERG1 (human ether-à-go-go-related gene 1) channels, the β1-integrin subunit, and the chemokine receptor CXC chemokine receptor-4. The assembly of such a protein complex activated both the extracellular signal-related kinase 1/2 (ERK1/2) and the phosphoinositide 3-kinase (PI3K)/Akt prosurvival signaling pathways. At the same time, ALL cells became markedly resistant to chemotherapy-induced apoptosis. hERG1 channel function appeared to be important for both the initiation of prosurvival signals and the development of drug resistance, because specific channel blockers decreased the protective effect of MSCs. NOD/SCID mice engrafted with ALL cells and treated with channel blockers showed reduced leukemic infiltration and had higher survival rates. Moreover, hERG1 blockade enhanced the therapeutic effect produced by corticosteroids. Our findings provide a rationale for clinical testing of hERG1 blockers in the context of antileukemic therapy for patients with ALL.
Collapse
|
81
|
Accordi B, Espina V, Giordan M, VanMeter A, Milani G, Galla L, Ruzzene M, Sciro M, Trentin L, De Maria R, te Kronnie G, Petricoin E, Liotta L, Basso G. Functional protein network activation mapping reveals new potential molecular drug targets for poor prognosis pediatric BCP-ALL. PLoS One 2010; 5:e13552. [PMID: 21042412 PMCID: PMC2958847 DOI: 10.1371/journal.pone.0013552] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 09/27/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In spite of leukemia therapy improvements obtained over the last decades, therapy is not yet effective in all cases. Current approaches in Acute Lymphoblastic Leukemia (ALL) research focus on identifying new molecular targets to improve outcome for patients with a dismal prognosis. In this light phosphoproteomics seems to hold great promise for the identification of proteins suitable for targeted therapy. METHODOLOGY/PRINCIPAL FINDINGS We employed Reverse Phase Protein Microarrays to identify aberrantly activated proteins in 118 pediatric B-cell precursor (BCP)-ALL patients. Signal transduction pathways were assayed for activation/expression status of 92 key signalling proteins. We observed an increased activation/expression of several pathways involved in cell proliferation in poor clinical prognosis patients. MLL-rearranged tumours revealed BCL-2 hyperphosphorylation through AMPK activation, which indicates that AMPK could provide a functional role in inhibiting apoptosis in MLL-rearranged patients, and could be considered as a new potential therapeutic target. Second, in patients with poor clinical response to prednisone we observed the up-modulation of LCK activity with respect to patients with good response. This tyrosine-kinase can be down-modulated with clinically used inhibitors, thus modulating LCK activity could be considered for further studies as a new additional therapy for prednisone-resistant patients. Further we also found an association between high levels of CYCLIN E and relapse incidence. Moreover, CYCLIN E is more expressed in early relapsed patients, who usually show an unfavourable prognosis. CONCLUSIONS/SIGNIFICANCE We conclude that functional protein pathway activation mapping revealed specific deranged signalling networks in BCP-ALL that could be potentially modulated to produce a better clinical outcome for patients resistant to standard-of-care therapies.
Collapse
Affiliation(s)
- Benedetta Accordi
- Oncohematology Laboratory, Department of Pediatrics, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma 2010; 51:1968-2005. [PMID: 20849387 DOI: 10.3109/10428194.2010.506570] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are integral components in the treatment protocols of acute lymphoblastic leukemia, multiple myeloma, and non-Hodgkin lymphoma owing to their ability to induce apoptosis of these malignant cells. Resistance to GC therapy is associated with poor prognosis. Although they have been used in clinics for decades, the signal transduction pathways involved in GC-induced apoptosis have only partly been resolved. Accumulating evidence shows that this cell death process is mediated by a communication between nuclear GR affecting gene transcription of pro-apoptotic genes such as Bim, mitochondrial GR affecting the physiology of the mitochondria, and the protein kinase glycogen synthase kinase-3 (GSK3), which interacts with Bim following exposure to GCs. Prevention of Bim up-regulation, mitochondrial GR translocation, and/or GSK3 activation are common causes leading to GC therapy failure. Various protein kinases positively regulating the pro-survival Src-PI3K-Akt-mTOR and Raf-Ras-MEK-ERK signal cascades have been shown to be activated in malignant leukemic cells and antagonize GC-induced apoptosis by inhibiting GSK3 activation and Bim expression. Targeting these protein kinases has proven effective in sensitizing GR-positive malignant lymphoid cells to GC-induced apoptosis. Thus, intervening with the pro-survival kinase network in GC-resistant cells should be a good means of improving GC therapy of hematopoietic malignancies.
Collapse
Affiliation(s)
- Shlomit Kfir-Erenfeld
- The Lautenberg Center of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
83
|
GX15-070 (obatoclax) overcomes glucocorticoid resistance in acute lymphoblastic leukemia through induction of apoptosis and autophagy. Cell Death Dis 2010; 1:e76. [PMID: 21364679 PMCID: PMC3032343 DOI: 10.1038/cddis.2010.53] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucocorticoids (GCs) are common components of many chemotherapeutic regimens for lymphoid malignancies including acute lymphoblastic leukemia (ALL). The BCL-2 family has an essential role in regulating GC-induced cell death. Here we show that downregulation of antiapoptotic BCL-2 family proteins, especially MCL-1, enhances GC-induced cell death. Thus we target MCL-1 by using GX15-070 (obatoclax) in ALL cells. Treatment with GX15-070 in both dexamethasone (Dex)-sensitive and -resistant ALL cells shows effective growth inhibition and cell death. GX15-070 induces caspase-3 cleavage and increases the Annexin V-positive population, which is indicative of apoptosis. Before the onset of apoptosis, GX15-070 induces LC3 conversion as well as p62 degradation, both of which are autophagic cell death markers. A pro-apoptotic molecule BAK is released from the BAK/MCL-1 complex following GX15-070 treatment. Consistently, downregulation of BAK reduces caspase-3 cleavage and cell death, but does not alter LC3 conversion. In contrast, downregulation of ATG5, an autophagy regulator, decreases LC3 conversion and cell death, but does not alter caspase-3 cleavage, suggesting that apoptosis and autophagy induced by GX15-070 are independently regulated. Downregulation of Beclin-1, which is capable of crosstalk between apoptosis and autophagy, affects GX15-070-induced cell death through apoptosis but not autophagy. Taken together, GX15-070 treatment in ALL could be an alternative regimen to overcome glucocorticoid resistance by inducing BAK-dependent apoptosis and ATG5-dependent autophagy.
Collapse
|
84
|
Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood 2010; 116:3013-22. [PMID: 20647567 DOI: 10.1182/blood-2010-05-284968] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids play a critical role in the therapy of lymphoid malignancies, including pediatric acute lymphoblastic leukemia (ALL), although the mechanisms underlying cellular resistance remain unclear. We report glucocorticoid resistance attributable to epigenetic silencing of the BIM gene in pediatric ALL biopsies and xenografts established in immune-deficient mice from direct patient explants as well as a therapeutic approach to reverse resistance in vivo. Glucocorticoid resistance in ALL xenografts was consistently associated with failure to up-regulate BIM expression after dexamethasone exposure despite confirmation of a functional glucocorticoid receptor. Although a comprehensive assessment of BIM CpG island methylation revealed no consistent changes, glucocorticoid resistance in xenografts and patient biopsies significantly correlated with decreased histone H3 acetylation. Moreover, the histone deacetylase inhibitor vorinostat relieved BIM repression and exerted synergistic antileukemic efficacy with dexamethasone in vitro and in vivo. These findings provide a novel therapeutic strategy to reverse glucocorticoid resistance and improve outcome for high-risk pediatric ALL.
Collapse
|
85
|
Schwartz JR, Sarvaiya PJ, Vedeckis WV. Glucocorticoid receptor knock down reveals a similar apoptotic threshold but differing gene regulation patterns in T-cell and pre-B-cell acute lymphoblastic leukemia. Mol Cell Endocrinol 2010; 320:76-86. [PMID: 20170710 PMCID: PMC2844487 DOI: 10.1016/j.mce.2010.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/22/2010] [Accepted: 02/09/2010] [Indexed: 01/04/2023]
Abstract
Glucocorticoids (GCs) are used in combination therapy for treating acute lymphoblastic leukemia (ALL). In T-cell (CEM-C7) and pre-B-cell (697) ALL cell lines, dexamethasone (Dex) treatment causes an auto-upregulation of glucocorticoid receptor (GR) mRNA transcripts and protein. We hypothesized that there is a threshold level of GR transcripts/protein needed for cells to respond to the apoptosis-inducing effects of hormone. GR knock down using a doxycycline-controllable shRNAmir indicated that the apoptotic response changes from sensitive to resistant with changing GR levels. Titration of the 697 cell GR to equal that of the CEM-C7 T-cell ALL line caused a shift in sensitivity to that seen in CEM-C7 cells. While the same level of GR is required to trigger apoptosis in both T-cell and pre-B-cell ALL lineages, similarities and differences were observed for the regulation of target genes in these lineages. These preliminary gene regulation patterns may lead to the development of a molecular signature for GC-sensitive and GC-resistant leukemia cells.
Collapse
Affiliation(s)
| | | | - Wayne V. Vedeckis
- Corresponding author at: Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, Louisiana, 70112, USA. Tel: +1 504-568-8175; fax: +1 504-568-6997; (W.V. Vedeckis)
| |
Collapse
|
86
|
Bonapace L, Bornhauser BC, Schmitz M, Cario G, Ziegler U, Niggli FK, Schäfer BW, Schrappe M, Stanulla M, Bourquin JP. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 2010; 120:1310-23. [PMID: 20200450 DOI: 10.1172/jci39987] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 01/06/2010] [Indexed: 12/26/2022] Open
Abstract
In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL.
Collapse
Affiliation(s)
- Laura Bonapace
- Department of Oncology, University Children's Hospital, University of Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
High LM, Szymanska B, Wilczynska-Kalak U, Barber N, O'Brien R, Khaw SL, Vikstrom IB, Roberts AW, Lock RB. The Bcl-2 homology domain 3 mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic in vitro and in vivo interactions with established drugs. Mol Pharmacol 2010; 77:483-94. [PMID: 20038611 DOI: 10.1124/mol.109.060780] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antiapoptotic Bcl-2 proteins are overexpressed in a number of cancers, including leukemias, and are frequently associated with resistance to conventional chemotherapeutic drugs. ABT-737, a Bcl-2 homology domain 3 mimetic (for structure, see Nature 435:677-681, 2005) inhibits the prosurvival function of Bcl-2, Bcl-X(L), and Bcl-w. We show that ABT-737 was effective as a single agent against a panel of pediatric acute lymphoblastic leukemia (ALL) xenografts, previously established, from patient biopsies, in immunodeficient mice. Although in vitro resistance of leukemia cell lines correlated with expression of the prosurvival protein Mcl-1, there was no relationship between Mcl-1 expression and in vivo xenograft response to ABT-737. However, expression of the pro-apoptotic protein Bim, and the extent of its association with Bcl-2, significantly correlated with in vivo ABT-737 sensitivity. ABT-737 potentiated the antileukemic effects of L-asparaginase, topotecan, vincristine, and etoposide against drug-resistant xenografts in vitro and in vivo. Finally, we show that the combination of L-asparaginase (by specifically down-regulating Mcl-1 protein levels), topotecan (by activating p53 via DNA damage), and ABT-737 (by inhibiting antiapoptotic Bcl-2 family members) caused profound synergistic antileukemic efficacy both in vitro and in vivo. Rational targeting of specific components of the apoptotic pathway may be a useful approach to improve the treatment of refractory or relapsed pediatric ALL. Overall, this study supports the inclusion of the clinical derivative of ABT-737, ABT-263 (for structure, see Cancer Res 68:3421-3428, 2008), into clinical trials against relapsed/refractory pediatric ALL.
Collapse
Affiliation(s)
- Laura M High
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Nicholson L, Hall AG, Redfern CP, Irving J. NFkappaB modulators in a model of glucocorticoid resistant, childhood acute lymphoblastic leukemia. Leuk Res 2010; 34:1366-73. [PMID: 20106524 DOI: 10.1016/j.leukres.2009.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/19/2009] [Accepted: 12/19/2009] [Indexed: 11/20/2022]
Abstract
Glucocorticoids (GCs) are pivotal agents in the treatment of childhood acute lymphoblastic leukaemia (ALL) but the molecular basis of GC-resistance remains unclear. Expression-array studies have shown that commonly upregulated genes associated with GC-sensitivity include GR, glucocorticoid-induced leucine zipper (GILZ) and IkappaBalpha, which all negatively interact with components of the pro-survival NFkappaB pathway and therefore may be critical determinants of GC-sensitivity. We have investigated these regulators and their effect on NFkappaB activity in GC-resistant descendents of the B-lineage ALL cell line, PreB 697. We show that while differential up regulation of the modulators (GILZ, GR and IkappaBalpha) was demonstrated in GC-sensitive compared to GC-resistant sub-lines, this was not coupled with altered nuclear translocation or functionality of the RelA, p50 or c-Rel subunits of NFkappaB. Thus, GC-resistance in the PreB 697 cell line model is not mediated by NFkappaB, however further investigation of the impact of these GC-sensitive associated proteins on other survival pathways, such as the RAS-RAF-MEK-ERK pathway, is warranted.
Collapse
Affiliation(s)
- Lindsay Nicholson
- Northern Institute for Cancer Research, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, Tyne and Wear NE2 4HH, UK
| | | | | | | |
Collapse
|
89
|
Smith LK, Cidlowski JA. Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes. PROGRESS IN BRAIN RESEARCH 2010; 182:1-30. [PMID: 20541659 DOI: 10.1016/s0079-6123(10)82001-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glucocorticoids exert a wide range of physiological effects, including the induction of apoptosis in lymphocytes. The progression of glucocorticoid-induced apoptosis is a multi-component process requiring contributions from both genomic and cytoplasmic signaling events. There is significant evidence indicating that the transactivation activity of the glucocorticoid receptor is required for the initiation of glucocorticoid-induced apoptosis. However, the rapid cytoplasmic effects of glucocorticoids may also contribute to the glucocorticoid-induced apoptosis-signaling pathway. Endogenous glucocorticoids shape the T-cell repertoire through both the induction of apoptosis by neglect during thymocyte maturation and the antagonism of T-cell receptor (TCR)-induced apoptosis during positive selection. Owing to their ability to induce apoptosis in lymphocytes, synthetic glucocorticoids are widely used in the treatment of haematological malignancies. Glucocorticoid chemotherapy is limited, however, by the emergence of glucocorticoid resistance. The development of novel therapies designed to overcome glucocorticoid resistance will dramatically improve the efficacy of glucocorticoid therapy in the treatment of haematological malignancies.
Collapse
Affiliation(s)
- Lindsay K Smith
- Molecular Endocrinology Group, Laboratory of Signal Transduction, NIEHS, NIH, DHHS, Research Triangle Park, NC, USA
| | | |
Collapse
|
90
|
Redjimi N, Gaudin F, Touboul C, Emilie D, Pallardy M, Biola-Vidamment A, Fernandez H, Prévot S, Balabanian K, Machelon V. Identification of glucocorticoid-induced leucine zipper as a key regulator of tumor cell proliferation in epithelial ovarian cancer. Mol Cancer 2009; 8:83. [PMID: 19814803 PMCID: PMC2763858 DOI: 10.1186/1476-4598-8-83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/08/2009] [Indexed: 12/30/2022] Open
Abstract
Background Little is known about the molecules that contribute to tumor progression of epithelial ovarian cancer (EOC), currently a leading cause of mortality from gynecological malignancies. Glucocorticoid-Induced Leucine Zipper (GILZ), an intracellular protein widely expressed in immune tissues, has been reported in epithelial tissues and controls some of key signaling pathways involved in tumorigenesis. However, there has been no report on GILZ in EOC up to now. The objectives of the current study were to examine the expression of GILZ in EOC and its effect on tumor cell proliferation. Results GILZ expression was measured by immunohistochemical staining in tissue sections from 3 normal ovaries, 7 benign EOC and 50 invasive EOC. GILZ was not detected on the surface epithelium of normal ovaries and benign tumors. In contrast, it was expressed in the cytoplasm of tumor cells in 80% EOC specimens. GILZ immunostaining scores correlated positively to the proliferation marker Ki-67 (Spearman test in univariate analysis, P < 0.00001, r = 0.56). They were also higher in tumor cells containing large amounts of phosphorylated protein kinase B (p-AKT) (unpaired t test, P < 0.0001). To assess the effect of GILZ on proliferation and AKT activation, we used the BG-1 cell line derived from ovarian tumor cells as a cellular model. GILZ expression was either enhanced by stable transfection or decreased by the use of small interfering (si) RNA targeting GILZ. We found that GILZ increased cell proliferation, phospho-AKT cellular content and AKT kinase activity. Further, GILZ upregulated cyclin D1 and phosphorylated retinoblastoma (p-Rb), downregulated cyclin-dependent kinase inhibitor p21, and promoted the entry into S phase of cell cycle. Conclusion The present study is the first to identify GILZ as a molecule produced by ovarian cancer cells that promotes cell cycle progression and proliferation. Our findings clearly indicate that GILZ activates AKT, a crucial signaling molecule in tumorigenesis. GILZ thus appears as a potential key molecule in EOC.
Collapse
|
91
|
Jaramillo MC, Frye JB, Crapo JD, Briehl MM, Tome ME. Increased manganese superoxide dismutase expression or treatment with manganese porphyrin potentiates dexamethasone-induced apoptosis in lymphoma cells. Cancer Res 2009; 69:5450-7. [PMID: 19549914 DOI: 10.1158/0008-5472.can-08-4031] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glucocorticoid-induced apoptosis is exploited for the treatment of hematologic malignancies. Innate and acquired resistance limits treatment efficacy; however, resistance mechanisms are not well understood. Previously, using WEHI7.2 murine thymic lymphoma cells, we found that increasing the resistance to hydrogen peroxide (H(2)O(2)) by catalase transfection or selection for H(2)O(2) resistance caused glucocorticoid resistance. This suggests the possibility that increasing H(2)O(2) sensitivity could sensitize the cells to glucocorticoids. In other cell types, increasing manganese superoxide dismutase (MnSOD) can increase intracellular H(2)O(2). The current study showed that increased expression of MnSOD sensitized WEHI7.2 cells to glucocorticoid-induced apoptosis and H(2)O(2). Treatment of WEHI7.2 cells with the catalytic antioxidant Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)), a manganoporphyrin, mimicked the effects of increased MnSOD expression. MnTE-2-PyP(5+) also sensitized WEHI7.2 cells to cyclophosphamide and inhibited cell growth; it had no effect on the WEHI7.2 cell response to doxorubicin or vincristine. In primary follicular lymphoma cells, MnTE-2-PyP(5+) increased cell death due to dexamethasone. Treatment of H9c2 cardiomyocytes with MnTE-2-PyP(5+) inhibited doxorubicin cytotoxicity. The profile of MnTE-2-PyP(5+) effects suggests MnTE-2-PyP(5+) has potential for use in hematologic malignancies that are treated with glucocorticoids, cyclophosphamide, and doxorubicin.
Collapse
Affiliation(s)
- Melba C Jaramillo
- Department of Pathology, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
92
|
Rambal AA, Panaguiton ZLG, Kramer L, Grant S, Harada H. MEK inhibitors potentiate dexamethasone lethality in acute lymphoblastic leukemia cells through the pro-apoptotic molecule BIM. Leukemia 2009; 23:1744-54. [PMID: 19404317 PMCID: PMC2761998 DOI: 10.1038/leu.2009.80] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glucocorticoids (GC) are common components of many chemotherapeutic regimens for lymphoid malignancies. GC-induced apoptosis involves an intrinsic mitochondria-dependent pathway. We and others have shown that BIM (BCL-2 interacting mediator of cell death), a BH3-only pro-apoptotic protein, is up-regulated by dexamethasone (Dex) treatment in acute lymphoblastic leukemia (ALL) cells and plays an essential role in Dex-induced apoptosis. Furthermore, BIM is inactivated by extracellular signal-regulated kinase (ERK)-mediated phosphorylation. We therefore hypothesized co-treatment with Dex and MEK/ERK inhibitors would promote apoptosis in ALL cells through BIM up-regulation and activation. We show here that MEK inhibitors (PD184352 and PD98059) synergistically enhance Dex lethality in a variety of ALL cells and in two primary ALL specimens. Co-treatment with Dex and PD184352 results in BIM accumulation, pro-apoptotic BAX/BAK activation, and cytochrome c release from mitochondria. Down-regulation of BIM by short-hairpin RNA in ALL cells suppressed BAX/BAK activation, cytochrome c release, and cell death by Dex/PD184352 co-treatment. BIM accumulated by this treatment sequesters anti-apoptotic BCL-XL/MCL-1, resulting in the release of BAK from these anti-apoptotic molecules. This study provides a rational foundation for future attempts to improve the activity of glucocorticoids with clinically relevant pharmacologic MEK inhibitors in the treatment of ALL and possibly other hematologic malignancies.
Collapse
Affiliation(s)
- A A Rambal
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
93
|
Beesley AH, Weller RE, Senanayake S, Welch M, Kees UR. Receptor mutation is not a common mechanism of naturally occurring glucocorticoid resistance in leukaemia cell lines. Leuk Res 2009; 33:321-5. [DOI: 10.1016/j.leukres.2008.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 05/23/2008] [Accepted: 08/05/2008] [Indexed: 11/27/2022]
|
94
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
95
|
Gross KL, Cidlowski JA. Tissue-specific glucocorticoid action: a family affair. Trends Endocrinol Metab 2008; 19:331-9. [PMID: 18805703 PMCID: PMC2720031 DOI: 10.1016/j.tem.2008.07.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/19/2022]
Abstract
Glucocorticoids exert a wide variety of physiological and pathological responses, most of which are mediated by the ubiquitously expressed glucocorticoid receptor (GR). The glucocorticoid response varies among individuals, as well as within tissues from the same individual, and this phenomenon can be partially explained through understanding the process of generating bioavailable ligand and the molecular heterogeneity of GR. This review focuses on the recent advances in our understanding of prereceptor ligand metabolism, GR subtypes and GR polymorphisms. Furthermore, we evaluate the impact of tissue- and individual-specific diversity in the glucocorticoid pathway on human health and disease.
Collapse
Affiliation(s)
- Katherine L Gross
- Molecular Endocrinology Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
96
|
Perger L, Lee EY, Shamberger RC. Management of children and adolescents with a critical airway due to compression by an anterior mediastinal mass. J Pediatr Surg 2008; 43:1990-7. [PMID: 18970930 DOI: 10.1016/j.jpedsurg.2008.02.083] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/24/2008] [Accepted: 02/29/2008] [Indexed: 10/21/2022]
Abstract
This study used retrospective review of patients with critical airway due to compression by an anterior mediastinal mass treated at a single pediatric teaching institution. Diagnostic workup is reviewed with a focus on diagnostic biopsy. Algorithm for streamlining the choice of biopsy technique and minimizing invasive procedures is suggested.
Collapse
Affiliation(s)
- Lena Perger
- Department of Surgery, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
97
|
Glycogen synthase kinase 3beta-mediated serine phosphorylation of the human glucocorticoid receptor redirects gene expression profiles. Mol Cell Biol 2008; 28:7309-22. [PMID: 18838540 DOI: 10.1128/mcb.00808-08] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aberrant glycogen synthase kinase 3beta (GSK-3beta) activity is associated with the progression of several pathological conditions such as diabetes, Alzheimer's, and cancer. GSK-3beta regulates cellular processes by directly phosphorylating metabolic enzymes and transcription factors. Here, we discovered a new target for GSK-3beta phosphorylation: the human glucocorticoid receptor (GR). Glucocorticoid signaling is essential for life and regulates diverse biological functions from cell growth to metabolism to apoptosis. Specifically, we found hormone-dependent GR phosphorylation on serine 404 by GSK-3beta. Cells expressing a GR that is incapable of GSK-3beta phosphorylation had a redirection of the global transcriptional response to hormone, including the activation of additional signaling pathways, in part due to the altered ability of unphosphorylatable GR to recruit transcriptional cofactors CBP/p300 and the p65 (RelA) subunit of NF-kappaB. Furthermore, GSK-3beta-mediated GR phosphorylation inhibited glucocorticoid-dependent NF-kappaB transrepression and attenuated the glucocorticoid-dependent cell death of osteoblasts. Collectively, our results describe a novel convergence point of the GSK-3beta and the GR pathways, resulting in altered hormone-regulated signaling. Our results also provide a mechanism by which GSK-3beta activity can dictate how cells will ultimately respond to glucocorticoids.
Collapse
|
98
|
Dexamethasone-induced apoptotic mechanisms in myeloma cells investigated by analysis of mutant glucocorticoid receptors. Blood 2008; 112:1338-45. [PMID: 18515658 DOI: 10.1182/blood-2007-11-124156] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which the glucocorticoid (GC) dexamethasone induces apoptosis in multiple myeloma (MM) cells is unknown, although previous work suggests that either transactivation through the glucocorticoid response element (GRE), transrepression of NF-kappaB, phosphorylation of RAFTK (Pyk2), or induction of Bim is important. We studied this question by ectopically expressing mutant glucocorticoid receptors (GRs) in the dexamethasone-resistant MM1R cell line, which has lost its GR. Lentiviral-mediated reexpression of wild-type GR restored GRE transactivation, NF-kappaB transrepression, RAFTK phosphorylation, Bim induction, and dexamethasone-induced apoptosis. We then reexpressed 4 GR mutants, each possessing various molecular effects, into MM1R cells. A perfect correlation was present between induction of GRE transactivation and induction of apoptosis. In contrast, NF-kappaB transrepression and RAFTK phosphorylation were not required for apoptosis. Although not required for dexamethasone-mediated apoptosis, NF-kappaB inhibition achieved by gene transfer suggested that NF-kappaB transrepression could contribute to apoptosis in dexamethasone-treated cells. Dexamethasone treatment of MM1R cells expressing a mutant incapable of inducing apoptosis successfully resulted in RAFTK (Pyk2) phosphorylation and Bim induction indicating the latter GR-mediated events were not sufficient to induce apoptosis. MM1R cells expressing mutant GRs will be helpful in defining the molecular mechanisms of dexamethasone-induced apoptosis of myeloma cells.
Collapse
|
99
|
Masoudi A, Amini E, Wolff JE, Fuller GN, Ketonen L, Mahajan A. Shrinkage of germinoma by dexamethasone only. Pediatr Blood Cancer 2008; 50:1079. [PMID: 18000859 DOI: 10.1002/pbc.21421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
100
|
Miller AL, Komak S, Webb MS, Leiter EH, Thompson EB. Gene expression profiling of leukemic cells and primary thymocytes predicts a signature for apoptotic sensitivity to glucocorticoids. Cancer Cell Int 2007; 7:18. [PMID: 18045478 PMCID: PMC2228275 DOI: 10.1186/1475-2867-7-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 11/28/2007] [Indexed: 01/26/2023] Open
Abstract
Background Glucocorticoids (GC's) play an integral role in treatment strategies designed to combat various forms of hematological malignancies. GCs also are powerful inhibitors of the immune system, through regulation of appropriate cytokines and by causing apoptosis of immature thymocytes. By activating the glucocorticoid receptor (GR), GCs evoke apoptosis through transcriptional regulation of a complex, interactive gene network over a period of time preceding activation of the apoptotic enzymes. In this study we used microarray technology to determine whether several disparate types of hematologic cells, all sensitive to GC-evoked apoptosis, would identify a common set of regulated genes. We compared gene expression signatures after treatment with two potent synthetic GCs, dexamethasone (Dex) and cortivazol (CVZ) using a panel of hematologic cells. Pediatric CD4+/CD8+ T-cell leukemia was represented by 3 CEM clones: two sensitive, CEM-C7–14 and CEM-C1–6, and one resistant, CEM-C1–15, to Dex. CEM-C1–15 was also tested when rendered GC-sensitive by several treatments. GC-sensitive pediatric B-cell leukemia was represented by the SUP-B15 line and adult B-cell leukemia by RS4;11 cells. Kasumi-1 cells gave an example of the rare Dex-sensitive acute myeloblastic leukemia (AML). To test the generality of the correlations in malignant cell gene sets, we compared with GC effects on mouse non-transformed thymocytes. Results We identified a set of genes regulated by GCs in all GC-sensitive malignant cells. A portion of these were also regulated in the thymocytes. Because we knew that the highly Dex-resistant CEM-C1–15 cells could be killed by CVZ, we tested these cells with the latter steroid and again found that many of the same genes were now regulated as in the inherently GC-sensitive cells. The same result was obtained when we converted the Dex-resistant clone to Dex-sensitive by treatment with forskolin (FSK), to activate the adenyl cyclase/protein kinase A pathway (PKA). Conclusion Our results have identified small sets of genes that correlate with GC-sensitivity in cells from several hematologic malignancies. Some of these are also regulated in normal mouse thymocytes.
Collapse
Affiliation(s)
- Aaron L Miller
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | | | | |
Collapse
|