51
|
Shang D, Bi R, Han T, Wang D, Tian Y, Liu Y. Expression and proliferation-promoting role of lymphoid enhancer-binding factor 1 in human clear cell renal carcinoma. Cancer Invest 2014; 32:368-74. [PMID: 24897388 DOI: 10.3109/07357907.2014.919307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lymphoid enhancer-binding factor 1 (LEF1) has been regarded as an important gene for carcinogenesis in many malignancies, however, the role of LEF1 in the progression of human renal cell carcinoma (RCC) has not been well studied. In this study, we investigated the expression of LEF1 in human RCC and the effect on proliferative ability of RCC cells. RCC samples from 138 patients who underwent radical nephrectomy were used in this study, the expression of LEF1 protein was determined by immunohistochemistry and Western blot, mRNA expression was analyzed by RT-PCR and real-time PCR. To investigate the effect of LEF1 on the proliferation of RCC cells, a LEF1 vector was transfected into RCC cells and LEF1 expression was also decreased by using siRNA. Proliferative ability of RCC cells was examined by WST-1 assay and a xenograft study with BALB/C nude mice. Our results indicated that LEF1 expression was significantly increased in stage III, IV and grade 3 RCC than in normal kidney, however, decreased LEF1 expression was found in low-stage and grade RCC compared to that in normal kidney, the expression of LEF1 was correlated to tumor stages, histologic grade, and tumor sizes in RCC. The effect of LEF1 on the proliferation in RCC was also analyzed, our results suggested that RCC cells expressing high levels of LEF1 had significantly increased proliferative ability compared to control cell lines, in contrast, RCC cells with a low LEF1 expression had lower proliferative ability. Moreover, LEF1 promoted proliferation of RCC cells depending on suppressing G2/M cell-cycle arrest. Our study demonstrated that the expression of LEF1 is associated with the progression of RCC and that LEF1 maybe involved in the development of RCC, these suggested LEF1 play a key role and might serve as a therapeutic target in treating advanced RCC.
Collapse
Affiliation(s)
- Donghao Shang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China1
| | | | | | | | | | | |
Collapse
|
52
|
Yokoyama NN, Shao S, Hoang BH, Mercola D, Zi X. Wnt signaling in castration-resistant prostate cancer: implications for therapy. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:27-44. [PMID: 25143959 PMCID: PMC4219296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Increasing evidence has indicated that Wnt signaling plays complex roles in castration resistant prostate cancer (CRPC). Although not all data were consistent, β-catenin nuclear localization and its co-localization with androgen receptor (AR) were more frequently observed in CRPC compared to hormone naïve prostate cancer. This direct interaction between AR and β-catenin seemed to elicit a specific expression of a set of target genes in low androgen conditions in CRPC. Paracrine Wnt signaling also was shown to aid resistance to chemotherapy and androgen deprivation therapy. Results from the next generation sequencing studies (i.e. RNA-seq and whole exosome sequcing) of CRPC specimens have identified the Wnt pathway as one of the top signaling pathways with significant genomic alterations in CRPC, whereas, Wnt pathway alterations were virtually absent in hormone naïve primary prostate cancer. Furthermore, Wnt signaling has been suggested to play an important role in cancer stem cell functions in prostate cancer recurrence and resistance to androgen deprivation therapy. Therefore, in this review we have summarized existing knowledge regarding potential roles of Wnt signaling in CRPC and underline Wnt signaling as a potential therapeutic target for CRPC. Further understanding of Wnt signaling in castration resistance may eventually contribute new insights into possible treatment options for this incurable disease.
Collapse
Affiliation(s)
- Noriko N Yokoyama
- Department of Urology, University of CaliforniaIrvine, Orange, CA 92868, USA
| | - Shujuan Shao
- Department of Urology, University of CaliforniaIrvine, Orange, CA 92868, USA
| | - Bang H Hoang
- Department of Pharmaceutical Sciences, University of CaliforniaIrvine, Orange, CA 92868, USA
| | - Dan Mercola
- Chao Family Comprehensive Cancer Center, University of CaliforniaIrvine, Orange, CA 92868, USA
- Department of Othopeadic Surgery, University of CaliforniaIrvine, Orange, CA 92868, USA
- Department of Pathology and Laboratory Medicine, University of CaliforniaIrvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of CaliforniaIrvine, Orange, CA 92868, USA
- Department of Pharmaceutical Sciences, University of CaliforniaIrvine, Orange, CA 92868, USA
- Department of Pharmacology, University of CaliforniaIrvine, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of CaliforniaIrvine, Orange, CA 92868, USA
| |
Collapse
|
53
|
Daniels G, Li Y, Gellert LL, Zhou A, Melamed J, Wu X, Zhang X, Zhang D, Meruelo D, Logan SK, Basch R, Lee P. TBLR1 as an androgen receptor (AR) coactivator selectively activates AR target genes to inhibit prostate cancer growth. Endocr Relat Cancer 2014; 21:127-42. [PMID: 24243687 PMCID: PMC3947037 DOI: 10.1530/erc-13-0293] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Androgen receptor (AR), a steroid hormone receptor, is critical for prostate cancer growth. However, activation of AR by androgens can also lead to growth suppression and differentiation. Transcriptional cofactors play an important role in this switch between proliferative and anti-proliferative AR target gene programs. Transducin β-like-related protein 1 (TBLR1), a core component of the nuclear receptor corepressor complex, shows both corepressor and coactivator activities on nuclear receptors, but little is known about its effects on AR and prostate cancer. We characterized TBLR1 as a coactivator of AR in prostate cancer cells and determined that the activation is dependent on both phosphorylation and 19S proteosome. We showed that TBLR1 physically interacts with AR and directly occupies the androgen-response elements of the affected AR target genes in an androgen-dependent manner. TBLR1 is primarily localized in the nucleus in benign prostate cells and nuclear expression is significantly reduced in prostate cancer cells in culture. Similarly, in human tumor samples, the expression of TBLR1 in the nucleus is significantly reduced in the malignant glands compared with the surrounding benign prostatic glands (P<0.005). Stable ectopic expression of nuclear TBLR1 leads to androgen-dependent growth suppression of prostate cancer cells in vitro and in vivo by selective activation of androgen-regulated genes associated with differentiation (e.g. KRT18) and growth suppression (e.g. NKX3-1), but not cell proliferation of the prostate cancer. Understanding the molecular switches involved in the transition from AR-dependent growth promotion to AR-dependent growth suppression will lead to more successful treatments for prostate cancer.
Collapse
Affiliation(s)
- Garrett Daniels
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Yirong Li
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Lan Lin Gellert
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Albert Zhou
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Xinyu Wu
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Xinming Zhang
- Department of Pathology, New York University School of Medicine, New York, NY
| | - David Zhang
- Department of Pathology, Mount Sinai School of Medicine, New York, NY
| | - Daniel Meruelo
- Department of Pathology, New York University School of Medicine, New York, NY
- NYU Cancer Institute, New York University School of Medicine, New York, NY
| | - Susan K. Logan
- NYU Cancer Institute, New York University School of Medicine, New York, NY
- Department of Urology, New York University School of Medicine, New York, NY
- Department of Pharmacology, New York University School of Medicine, New York, NY
| | - Ross Basch
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Peng Lee
- Department of Pathology, New York University School of Medicine, New York, NY
- NYU Cancer Institute, New York University School of Medicine, New York, NY
- Department of Pharmacology, New York University School of Medicine, New York, NY
- New York Harbor Healthcare System, New York University School of Medicine, New York, NY
| |
Collapse
|
54
|
Kim Y, Kim J, Jang SW, Ko J. The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer. Oncogene 2014; 34:226-36. [DOI: 10.1038/onc.2013.538] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 11/05/2013] [Accepted: 11/15/2013] [Indexed: 01/10/2023]
|
55
|
Liu C, Wang C, Wang K, Liu L, Shen Q, Yan K, Sun X, Chen J, Liu J, Ren H, Liu H, Xu Z, Hu S, Xu D, Fan Y. SMYD3 as an oncogenic driver in prostate cancer by stimulation of androgen receptor transcription. J Natl Cancer Inst 2013; 105:1719-28. [PMID: 24174655 DOI: 10.1093/jnci/djt304] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Androgen receptor (AR) is critical for prostate tumorigenesis and is frequently overexpressed during prostate cancer (PC) progression. However, few studies have addressed the epigenetic regulation of AR expression. METHODS We analyzed SMYD3 expression in human PC with Western blot and immunohistochemistry. SMYD3 expression was knocked down using short hairpin RNA (shRNA) or small interfering RNA (siRNA). Cell proliferation, colony formation, and apoptosis analyses and xenograft transplantation were performed to evaluate the impact of SMYD3 depletion on PC cells. AR expression and promoter activity were determined using real-time quantitative polymerase chain reaction, western blot, and luciferase reporter assay. AR promoter association with Sp1, SMYD3, and histone modifications was assessed by chromatin immunoprecipitation. Differences in AR mRNA abundance and promoter activity were analyzed using Wilcoxon signed-rank tests, SMYD3 expression was analyzed using with Mann-Whitney U tests for unpaired samples, and tumor weight was analyzed with Student t test. All statistical tests were two-sided. RESULTS The upregulation of SMYD3 protein expression was observed in seven of eight prostate tumor specimens, compared with matched normal tissues. Immunohistochemical analysis showed a strong SMYD3 staining in the nuclei of PC tissues in eight of 25 (32%) cases and in the cytoplasm in 23 out of 25 (92%) cases, whereas benign prostate tissue exhibited weak immunostaining. Depletion of SMYD3 by siRNA or shRNA inhibited PC cell proliferation (72 hours relative to 24 hours: control shRNA vs SMYD3 shRNA 1: mean fold change = 2.76 vs 1.68; difference = 1.08; 95% confidence interval = 0.78 to 1.38, P < .001), colony formation, cell migration, invasion, and xenograft tumor formation. Two functional SMYD3-binding motifs were identified in the AR promoter region. CONCLUSIONS SMYD3 promotes prostate tumorigenesis and mediates epigenetic upregulation of AR expression.
Collapse
Affiliation(s)
- Cheng Liu
- Affiliations of authors: Department of Urology (CL, CW, KW, KY, JC, JL, HR, HL, ZX, YF), Department of General Surgery (LL, SH), and School of Nursing (LL), Shandong University Qilu Hospital, Jinan, Shandong, China; Central Research Laboratory of Shandong University Second Hospital, Jinan, Shandong, China (DX); Department of Urology, Peking University First Hospital, Beijing, China (QS); Department of Urology, Qingdao Municipal Hospital, Qingdao, China (XS); Department of Medicine, Division of Haematology and Centre for Molecular Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden (CW, DX)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Yang Z, Zhang Y, Chen L. Investigation of anti-cancer mechanisms by comparative analysis of naked mole rat and rat. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 2:S5. [PMID: 24565050 PMCID: PMC3852044 DOI: 10.1186/1752-0509-7-s2-s5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background The naked mole rats (NMRs) are small-sized underground rodents with plenty of unusual traits. Their life expectancy can be up to thirty years, more than seven times longer than laboratory rat. Furthermore, they are resistant to both congenital and experimentally induced cancer genesis. These peculiar physiological and pathological characteristics allow them to become a suitable model for cancer and aging research. Results In this paper, we carried out a genome-wide comparative analysis of rat and NMR using the recently published genome sequence of NMR. First, we identified all the rat-NMR orthologous genes and specific genes within each of them. The expanded and contracted numbers of protein families in NMR were also analyzed when compared to rat. Seven cancer-related protein families appeared to be significantly expanded, whereas several receptor families were found to be contracted in NMR. We then chose those rat genes that were inexistent in NMR and adopted KEGG pathway database to investigate the metabolic processes in which their proteins may be involved. These genes were significantly enriched in two rat cancer pathways, "Pathway in cancer" and "Bladder cancer". In the rat "Pathway in cancer", 9 out of 14 paths leading to evading apoptosis appeared to be affected in NMR. In addition, a significant number of other NMR-missing genes enriched in several cancer-related pathways have been known to be related to a variety of cancers, implying that many of them may be also related to tumorigenesis in mammals. Finally, investigation of sequence variations among orthologous proteins between rat and NMR revealed that significant fragment insertions/deletions within important functional domains were present in some NMR proteins, which might lead to expressional and/or functional changes of these genes in different species. Conclusions Overall, this study provides insights into understanding the possible anti-cancer mechanisms of NMR as well as searching for new cancer-related candidate genes.
Collapse
|
57
|
Wang WJ, Yao Y, Jiang LL, Hu TH, Ma JQ, Liao ZJ, Yao JT, Li DF, Wang SH, Nan KJ. Knockdown of lymphoid enhancer factor 1 inhibits colon cancer progression in vitro and in vivo. PLoS One 2013; 8:e76596. [PMID: 24098538 PMCID: PMC3788715 DOI: 10.1371/journal.pone.0076596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/24/2023] Open
Abstract
Expression of lymphoid enhancer factor 1 (LEF1) is frequently altered in different human cancers. This study aimed to assess LEF1 expression in colon cancer tissues and to explore changed phenotypes, gene expressions, and the possible mechanism after knocked down LEF1 expression in colon cancer cell lines. A total of 106 colon cancer and matched paratumorous normal tissues were used to assess LEF1 expression using immunohistochemistry and qRT-PCR. LEF1 lentivirus was used to knockdown LEF1 expression for the assessment of cell viability, cell cycle distribution, apoptosis, and gene expressions. The nude mouse xenograft assay was performed to detect the effects of LEF1 knockdown in vivo. The data showed that the levels of LEF1 mRNA and protein were significantly increased in human colon cancer tissues compared to the matched paratumorous normal tissues and were associated with infiltration depth, lymph node and distant metastases, advanced TNM (tumor-node-metastasis) stages, and shorter overall survival. Furthermore, LEF1 knockdown reduced tumor cell viability, invasion capacity, MMP2 and MMP-9 expression, but induced apoptosis. Nude mouse xenograft assay showed that LEF1 knockdown suppressed tumor formation and growth in vivo. In addition, the expression of Notch pathway-related proteins RBP-jκ and Hes1 was reduced in LEF1 knockdown cells. Taken together, LEF1 protein was overexpressed in colon cancer tissues and knockdown of LEF1 expression inhibited colon cancer growth in vitro and in vivo. These data suggest that targeting of LEF1 expression should be further evaluated for colon cancer prevention and therapy.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Yu Yao
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Li-Li Jiang
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Ting-Hua Hu
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Jie-Qun Ma
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Zi-Jun Liao
- Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Jun-Tao Yao
- Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | | | - Shu-Hong Wang
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
- * E-mail: (K-JN); (S-HW)
| | - Ke-Jun Nan
- Department of Oncology, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an, China
- * E-mail: (K-JN); (S-HW)
| |
Collapse
|
58
|
Fox SA, Richards AK, Kusumah I, Perumal V, Bolitho EM, Mutsaers SE, Dharmarajan AM. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells. Biochem Biophys Res Commun 2013; 440:82-7. [PMID: 24041698 DOI: 10.1016/j.bbrc.2013.09.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/05/2013] [Indexed: 11/24/2022]
Abstract
Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.
Collapse
Affiliation(s)
- Simon A Fox
- Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
| | | | | | | | | | | | | |
Collapse
|
59
|
Inhibition of androgen receptor and β-catenin activity in prostate cancer. Proc Natl Acad Sci U S A 2013; 110:15710-5. [PMID: 24019458 DOI: 10.1073/pnas.1218168110] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Androgen receptor (AR) is the major therapeutic target in aggressive prostate cancer. However, targeting AR alone can result in drug resistance and disease recurrence. Therefore, simultaneous targeting of multiple pathways could in principle be an effective approach to treating prostate cancer. Here we provide proof-of-concept that a small-molecule inhibitor of nuclear β-catenin activity (called C3) can inhibit both the AR and β-catenin-signaling pathways that are often misregulated in prostate cancer. Treatment with C3 ablated prostate cancer cell growth by disruption of both β-catenin/T-cell factor and β-catenin/AR protein interaction, reflecting the fact that T-cell factor and AR have overlapping binding sites on β-catenin. Given that AR interacts with, and is transcriptionally regulated by β-catenin, C3 treatment also resulted in decreased occupancy of β-catenin on the AR promoter and diminished AR and AR/β-catenin target gene expression. Interestingly, C3 treatment resulted in decreased AR binding to target genes accompanied by decreased recruitment of an AR and β-catenin cofactor, coactivator-associated arginine methyltransferase 1 (CARM1), providing insight into the unrecognized function of β-catenin in prostate cancer. Importantly, C3 inhibited tumor growth in an in vivo xenograft model and blocked renewal of bicalutamide-resistant sphere-forming cells, indicating the therapeutic potential of this approach.
Collapse
|
60
|
Wu L, Zhao JC, Kim J, Jin HJ, Wang CY, Yu J. ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res 2013; 73:6068-79. [PMID: 23913826 DOI: 10.1158/0008-5472.can-13-0882] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chromosomal translocations juxtaposing the androgen-responsive TMPRSS2 promoter with the ETS-family transcription factor ERG result in aberrant ERG upregulation in approximately 50% of prostate cancers. Studies to date have shown important roles of ERG in inducing oncogenic properties of prostate cancer. Its molecular mechanisms of action, however, are yet to be fully understood. Here, we report that ERG activates Wnt/LEF1 signaling cascade through multiple mechanisms. ERG bound to the promoters of various Wnt genes to directly increase ligand expression. Consequently, ERG overexpression increased active β-catenin level in the cells and enhanced TCF/LEF1 luciferase reporter activity, which could be partially blocked by WNT-3A inhibitor IWP-2. Most importantly, our data defined LEF1 as a direct target of ERG and that LEF1 inhibition fully abolished ERG-induced Wnt signaling and target gene expression. Furthermore, functional assays showed that Wnt/LEF1 activation phenocopied that of ERG in inducing cell growth, epithelial-to-mesenchymal transition, and cell invasion, whereas blockade of Wnt signaling attenuated these effects. Concordantly, LEF1 expression is significantly upregulated in ERG-high human prostate cancers. Overall, this study provides an important mechanism of activation of Wnt signaling in prostate cancer and nominates LEF1 as a critical mediator of ERG-induced tumorigenesis. Wnt/LEF1 pathway might provide novel targets for therapeutic management of patients with fusion-positive prostate cancer.
Collapse
Affiliation(s)
- Longtao Wu
- Authors' Affiliations: Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
61
|
Hudson BD, Kulp KS, Loots GG. Prostate cancer invasion and metastasis: insights from mining genomic data. Brief Funct Genomics 2013; 12:397-410. [PMID: 23878130 DOI: 10.1093/bfgp/elt021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed malignancy in men in the Western world and the second leading cause of cancer-related deaths among men worldwide. Although most cancers have the potential to metastasize under appropriate conditions, PCa favors the skeleton as a primary site of metastasis, suggesting that the bone microenvironment is conducive to its growth. PCa metastasis proceeds through a complex series of molecular events that include angiogenesis at the site of the original tumor, local migration within the primary site, intravasation into the blood stream, survival within the circulation, extravasation of the tumor cells to the target organ and colonization of those cells within the new site. In turn, each one of these steps involves a complicated chain of events that utilize multiple protein-protein interactions, protein signaling cascades and transcriptional changes. Despite the urgent need to improve current biomarkers for diagnosis, prognosis and drug resistance, advances have been slow. Global gene expression methods such as gene microarrays and RNA sequencing enable the study of thousands of genes simultaneously and allow scientists to examine molecular pathways of cancer pathogenesis. In this review, we summarize the current literature that explored high-throughput transcriptome analysis toward the advancement of biomarker discovery for PCa. Novel biomarkers are strongly needed to enable more accurate detection of PCa, improve prediction of tumor aggressiveness and facilitate the discovery of new therapeutic targets for tailored medicine. Promising molecular markers identified from gene expression profiling studies include HPN, CLU1, WT1, WNT5A, AURKA and SPARC.
Collapse
Affiliation(s)
- Bryan D Hudson
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA.
| | | | | |
Collapse
|
62
|
Functional domains of androgen receptor coactivator p44/Mep50/WDR77and its interaction with Smad1. PLoS One 2013; 8:e64663. [PMID: 23734213 PMCID: PMC3667176 DOI: 10.1371/journal.pone.0064663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/17/2013] [Indexed: 11/20/2022] Open
Abstract
p44/MEP50/WDR77 has been identified as a coactivator of androgen receptor (AR), with distinct growth suppression and promotion function in gender specific endocrine organs and their malignancies. We dissected the functional domains of p44 for protein interaction with transcription factors, transcriptional activation, as well as the functional domains in p44 related to its growth inhibition in prostate cancer. Using a yeast two-hybrid screen, we identified a novel transcription complex AR-p44-Smad1, confirmed for physical interaction by co-immunoprecipitaion and functional interaction with luciferase assays in human prostate cancer cells. Yeast two-hybrid assay revealed that the N-terminal region of p44, instead of the traditional WD40 domain at the C-terminus, mediates the interaction among p44, N-terminus of AR and full length Smad1. Although both N and C terminal domains of p44 are necessary for maximum AR transcriptional activation, the N terminal fragment of p44 alone maintains the basic effect on AR transcriptional activation. Cell proliferation assays with N- and C- terminal deletion mutations indicated that the central portion of p44 is required for nuclear p44 mediated prostate cancer growth inhibition.
Collapse
|
63
|
Imberg-Kazdan K, Ha S, Greenfield A, Poultney CS, Bonneau R, Logan SK, Garabedian MJ. A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells. Genome Res 2013; 23:581-91. [PMID: 23403032 PMCID: PMC3613576 DOI: 10.1101/gr.144774.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/31/2013] [Indexed: 01/22/2023]
Abstract
The androgen receptor (AR) is a mediator of both androgen-dependent and castration-resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. We identified 45 AR-regulators, which include known pathway components and genes with functions not previously linked to AR regulation, such as HIPK2 (a protein kinase) and MED19 (a subunit of the Mediator complex). Depletion of HIPK2 and MED19 in human prostate cancer cells decreased AR target gene expression and, importantly, reduced the proliferation of androgen-dependent and castration-resistant prostate cancer cells. We also systematically analyzed additional Mediator subunits and uncovered a small subset of Mediator subunits that interpret AR signaling and affect AR-dependent transcription and prostate cancer cell proliferation. Importantly, targeting of HIPK2 by an FDA-approved kinase inhibitor phenocopied the effect of depletion by RNAi and reduced the growth of AR-positive, but not AR-negative, treatment-resistant prostate cancer cells. Thus, our screen has yielded new AR regulators including drugable targets that reduce the proliferation of castration-resistant prostate cancer cells.
Collapse
Affiliation(s)
- Keren Imberg-Kazdan
- Department of Biochemistry and Department of Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Susan Ha
- Department of Biochemistry and Department of Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Department of Urology, New York University School of Medicine, New York, New York 10016, USA
| | - Alex Greenfield
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | | | - Richard Bonneau
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Susan K. Logan
- Department of Biochemistry and Department of Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Department of Urology, New York University School of Medicine, New York, New York 10016, USA
- NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Michael J. Garabedian
- Department of Urology, New York University School of Medicine, New York, New York 10016, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
- NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
64
|
Hsieh IS, Chang KC, Tsai YT, Ke JY, Lu PJ, Lee KH, Yeh SD, Hong TM, Chen YL. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis 2012. [PMID: 23188675 DOI: 10.1093/carcin/bgs371] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prostate cancer (PCa) is a leading cause of mortality and morbidity in men worldwide, and emerging evidence suggests that the CD44(high) prostate tumor-initiating cells (TICs) are associated with its poor prognosis. Although microRNAs are frequently dysregulated in human cancers, the influence of microRNAs on PCa malignancy and whether targeting TIC-associated microRNAs inhibit PCa progression remain unclear. In this study, we found that miR-320 is significantly downregulated in PCa. Overexpression of miR-320 in PCa cells decreases PCa tumorigenesis in vitro and in vivo. Global gene expression profiling of miR-320-overexpressing PCa cells reveals that downstream target genes of Wnt/β-catenin pathway and cancer stem cell markers are significantly decreased. MicroRNA-320 inhibits β-catenin expression by targeting the 3'-untranslated region of β-catenin mRNA. The reduction of miR-320 associated with increased β-catenin was also found in CD44(high) subpopulation of prostate cancer cells and clinical PCa specimens. Interestingly, knockdown of miR-320 significantly increases the cancer stem-like properties, such as tumorsphere formation, chemoresistance and tumorigenic abilities, although enriching the population of stem-like TICs among PCa cells. Furthermore, increased miR-320 expression in prostate stem-like TICs significantly suppresses stem cell-like properties of PCa cells. These results support that miR-320 is a key negative regulator in prostate TICs, and suggest developing miR-320 as a novel therapeutic agent may offer benefits for PCa treatment.
Collapse
Affiliation(s)
- I-Shan Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Hiremath M, Dann P, Fischer J, Butterworth D, Boras-Granic K, Hens J, Van Houten J, Shi W, Wysolmerski J. Parathyroid hormone-related protein activates Wnt signaling to specify the embryonic mammary mesenchyme. Development 2012; 139:4239-49. [PMID: 23034629 DOI: 10.1242/dev.080671] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) regulates cell fate and specifies the mammary mesenchyme during embryonic development. Loss of PTHrP or its receptor (Pthr1) abolishes the expression of mammary mesenchyme markers and allows mammary bud cells to revert to an epidermal fate. By contrast, overexpression of PTHrP in basal keratinocytes induces inappropriate differentiation of the ventral epidermis into nipple-like skin and is accompanied by ectopic expression of Lef1, β-catenin and other markers of the mammary mesenchyme. In this study, we document that PTHrP modulates Wnt/β-catenin signaling in the mammary mesenchyme using a Wnt signaling reporter, TOPGAL-C. Reporter expression is completely abolished by loss of PTHrP signaling and ectopic reporter activity is induced by overexpression of PTHrP. We also demonstrate that loss of Lef1, a key component of the Wnt pathway, attenuates the PTHrP-induced abnormal differentiation of the ventral skin. To characterize further the contribution of canonical Wnt signaling to embryonic mammary development, we deleted β-catenin specifically in the mammary mesenchyme. Loss of mesenchymal β-catenin abolished expression of the TOPGAL-C reporter and resulted in mammary buds with reduced expression of mammary mesenchyme markers and impaired sexual dimorphism. It also prevented the ectopic, ventral expression of mammary mesenchyme markers caused by overexpression of PTHrP in basal keratinocytes. Therefore, we conclude that a mesenchymal, canonical Wnt pathway mediates the PTHrP-dependent specification of the mammary mesenchyme.
Collapse
Affiliation(s)
- Minoti Hiremath
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Becker-Santos DD, Guo Y, Ghaffari M, Vickers ED, Lehman M, Altamirano-Dimas M, Oloumi A, Furukawa J, Sharma M, Wang Y, Dedhar S, Cox ME. Integrin-linked kinase as a target for ERG-mediated invasive properties in prostate cancer models. Carcinogenesis 2012; 33:2558-67. [PMID: 23027626 DOI: 10.1093/carcin/bgs285] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Approximately half of prostate cancers (PCa) carry TMPRSS2-ERG translocations; however, the clinical impact of this genomic alteration remains enigmatic. Expression of v-ets erythroblastosis virus E26 oncogene like (avian) gene (ERG) promotes prostatic epithelial dysplasia in transgenic mice and acquisition of epithelial-to-mesenchymal transition (EMT) characteristics in human prostatic epithelial cells (PrECs). To explore whether ERG-induced EMT in PrECs was associated with therapeutically targetable transformation characteristics, we established stable populations of BPH-1, PNT1B and RWPE-1 immortalized human PrEC lines that constitutively express flag-tagged ERG3 (fERG). All fERG-expressing populations exhibited characteristics of in vitro and in vivo transformation. Microarray analysis revealed >2000 commonly dysregulated genes in the fERG-PrEC lines. Functional analysis revealed evidence that fERG cells underwent EMT and acquired invasive characteristics. The fERG-induced EMT transcript signature was exemplified by suppressed expression of E-cadherin and keratins 5, 8, 14 and 18; elevated expression of N-cadherin, N-cadherin 2 and vimentin, and of the EMT transcriptional regulators Snail, Zeb1 and Zeb2, and lymphoid enhancer-binding factor-1 (LEF-1). In BPH-1 and RWPE-1-fERG cells, fERG expression is correlated with increased expression of integrin-linked kinase (ILK) and its downstream effectors Snail and LEF-1. Interfering RNA suppression of ERG decreased expression of ILK, Snail and LEF-1, whereas small interfering RNA suppression of ILK did not alter fERG expression. Interfering RNA suppression of ERG or ILK impaired fERG-PrEC Matrigel invasion. Treating fERG-BPH-1 cells with the small molecule ILK inhibitor, QLT-0267, resulted in dose-dependent suppression of Snail and LEF-1 expression, Matrigel invasion and reversion of anchorage-independent growth. These results suggest that ILK is a therapeutically targetable mediator of ERG-induced EMT and transformation in PCa.
Collapse
Affiliation(s)
- Daiana D Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Perry AS, O'Hurley G, Raheem OA, Brennan K, Wong S, O'Grady A, Kennedy AM, Marignol L, Murphy TM, Sullivan L, Barrett C, Loftus B, Thornhill J, Hewitt SM, Lawler M, Kay E, Lynch T, Hollywood D. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer. Int J Cancer 2012; 132:1771-80. [PMID: 22915211 DOI: 10.1002/ijc.27798] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/12/2012] [Indexed: 12/22/2022]
Abstract
Aberrant activation of Wnts is common in human cancers, including prostate. Hypermethylation associated transcriptional silencing of Wnt antagonist genes SFRPs (Secreted Frizzled-Related Proteins) is a frequent oncogenic event. The significance of this is not known in prostate cancer. The objectives of our study were to (i) profile Wnt signaling related gene expression and (ii) investigate methylation of Wnt antagonist genes in prostate cancer. Using TaqMan Low Density Arrays, we identified 15 Wnt signaling related genes with significantly altered expression in prostate cancer; the majority of which were upregulated in tumors. Notably, histologically benign tissue from men with prostate cancer appeared more similar to tumor (r = 0.76) than to benign prostatic hyperplasia (BPH; r = 0.57, p < 0.001). Overall, the expression profile was highly similar between tumors of high (≥ 7) and low (≤ 6) Gleason scores. Pharmacological demethylation of PC-3 cells with 5-Aza-CdR reactivated 39 genes (≥ 2-fold); 40% of which inhibit Wnt signaling. Methylation frequencies in prostate cancer were 10% (2/20) (SFRP1), 64.86% (48/74) (SFRP2), 0% (0/20) (SFRP4) and 60% (12/20) (SFRP5). SFRP2 methylation was detected at significantly lower frequencies in high-grade prostatic intraepithelial neoplasia (HGPIN; 30%, (6/20), p = 0.0096), tumor adjacent benign areas (8.82%, (7/69), p < 0.0001) and BPH (11.43% (4/35), p < 0.0001). The quantitative level of SFRP2 methylation (normalized index of methylation) was also significantly higher in tumors (116) than in the other samples (HGPIN = 7.45, HB = 0.47, and BPH = 0.12). We show that SFRP2 hypermethylation is a common event in prostate cancer. SFRP2 methylation in combination with other epigenetic markers may be a useful biomarker of prostate cancer.
Collapse
Affiliation(s)
- Antoinette S Perry
- Prostate Molecular Oncology, Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Chalmel F, Lardenois A, Evrard B, Mathieu R, Feig C, Demougin P, Gattiker A, Schulze W, Jégou B, Kirchhoff C, Primig M. Global human tissue profiling and protein network analysis reveals distinct levels of transcriptional germline-specificity and identifies target genes for male infertility. Hum Reprod 2012; 27:3233-48. [PMID: 22926843 DOI: 10.1093/humrep/des301] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mammalian spermatogenesis is a process that involves a complex expression program in both somatic and germ cells present in the male gonad. A number of studies have attempted to define the transcriptome of male meiosis and gametogenesis in rodents and primates. Few human transcripts, however, have been associated with testicular somatic cells and germ cells at different post-natal developmental stages and little is known about their level of germline-specificity compared with non-testicular tissues. METHODS We quantified human transcripts using GeneChips and a total of 47 biopsies from prepubertal children diagnosed with undescended testis, infertile adult patients whose spermatogenesis is arrested at consecutive stages and fertile control individuals. These results were integrated with data from enriched normal germ cells, non-testicular expression data, phenotype information, predicted regulatory DNA-binding motifs and interactome data. RESULTS Among 3580 genes for which we found differential transcript concentrations in somatic and germ cells present in human testis, 933 were undetectable in 45 embryonic and adult non-testicular tissues, including many that were corroborated at protein level by published gene annotation data and histological high-throughput protein immunodetection assays. Using motif enrichment analyses, we identified regulatory promoter elements likely involved in germline development. Finally, we constructed a regulatory disease network for human fertility by integrating expression signals, interactome information, phenotypes and functional annotation data. CONCLUSIONS Our results provide broad insight into the post-natal human testicular transcriptome at the level of cell populations and in a global somatic tissular context. Furthermore, they yield clues for genetic causes of male infertility and will facilitate the identification of novel cancer/testis genes as targets for cancer immunotherapies.
Collapse
Affiliation(s)
- Frédéric Chalmel
- Inserm Unit 1085-IRSET, Université de Rennes 1, EHESP School of Public Health, F-35042 Rennes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
The Wnts are secreted cysteine-rich glycoproteins that have important roles in the developing embryo as well as in tissue homeostasis in adults. Dysregulation of Wnt signalling can lead to several types of cancer, including prostate cancer. A hallmark of the signalling pathway is the stabilization of the transcriptional co-activator β-catenin, which not only regulates expression of many genes implicated in cancer but is also an essential component of cadherin cell adhesion complexes. β-catenin regulates gene expression by binding members of the T-cell-specific transcription factor/lymphoid enhancer-binding factor 1 (TCF/LEF-1) family of transcription factors. In addition, β-catenin associates with the androgen receptor, a key regulator of prostate growth that drives prostate cancer progression. Wnt/β-catenin signalling can be controlled by secreted Wnt antagonists, many of which are downregulated in cancer. Activation of the Wnt/β-catenin pathway has effects on prostate cell proliferation, differentiation and the epithelial-mesenchymal transition, which is thought to regulate the invasive behaviour of tumour cells. However, whether targeting Wnt/β-catenin signalling is a good therapeutic option for prostate cancer remains unclear.
Collapse
|
70
|
Zhao W, Ji X, Zhang F, Li L, Ma L. Embryonic stem cell markers. Molecules 2012; 17:6196-236. [PMID: 22634835 PMCID: PMC6268870 DOI: 10.3390/molecules17066196] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/31/2012] [Accepted: 05/04/2012] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem cell (ESC) markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM) technique and magnetic cell sorting (MACS) are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs), which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
| | - Xiang Ji
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Fangfang Zhang
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Liang Li
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Lan Ma
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; (W.Z.); (X.J.); (F.Z.); (L.L.)
| |
Collapse
|
71
|
Huang FI, Chen YL, Chang CN, Yuan RH, Jeng YM. Hepatocyte growth factor activates Wnt pathway by transcriptional activation of LEF1 to facilitate tumor invasion. Carcinogenesis 2012; 33:1142-8. [PMID: 22436613 DOI: 10.1093/carcin/bgs131] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hepatocyte growth factor (HGF) is a secretory protein that plays important roles in cancer growth and metastasis. Lymphoid-enhancing factor 1 (LEF1) is a transcription factor mediating Wnt/β-catenin signaling. Using microarray analysis, we found HGF induced expression of LEF1 in liver and breast cancer cell lines. HGF induced expression of LEF1 through phosphatidylinositol 3-kinase/Akt and nuclear factor-kappa B (NF-κB) signaling. Multiple NF-κB-binding sites were mapped within 3 kb upstream of LEF1 transcription initiation site. NF-κB binding to a site 2 kb upstream of LEF1 transcription initiation site was confirmed by chromatin immunoprecipitation assay. Knockdown of LEF1 inhibited the expression of Slug and Zinc finger E-box-binding homeobox 2 (ZEB2) and markedly attenuated HGF-induced tumor migration and invasion. Using immunohistochemical staining, we found LEF1 was frequently expressed in multiple types of carcinoma but not in the non-tumorous epithelial cells. Our finding suggest that transcriptional activation of LEF1 is a mechanism of cross talk between HGF/c-Met and Wnt/β-catenin pathways and is essential for HGF-induced tumor invasion.
Collapse
Affiliation(s)
- Fang-I Huang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
72
|
Shang D, Liu Y, Xu X, Han T, Tian Y. 5-aza-2'-deoxycytidine enhances susceptibility of renal cell carcinoma to paclitaxel by decreasing LEF1/phospho-β-catenin expression. Cancer Lett 2011; 311:230-6. [PMID: 21880414 DOI: 10.1016/j.canlet.2011.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 11/19/2022]
Abstract
We investigated the molecular mechanisms by which 5-aza-2'-deoxycytidine (DAC) and paclitaxel (PTX) use lymphoid enhancer-binding factor 1 (LEF1) and the Wnt/β-catenin pathway to synergistically interact against renal cell carcinoma (RCC). LEF1 expression was examined by real-time PCR and immunohistochemistry. The regulation of LEF1/β-catenin protein expression by DAC and/or PTX was examined by Western blot and immunoprecipitation. To analyze the effect of LEF1 on the proliferative ability of RCC cells and the synergy of DAC and PTX against RCC cells, an expression vector containing the full-length cDNA for LEF1 was transfected into RCC cells, and LEF1 expression was also decreased using siRNA technology. Our results confirmed that DAC and PTX synergistically decreased the expression of LEF1 in vivo and in vitro. Moreover, treatment of RCC cell lines with the combination of DAC and PTX caused a synergistic decrease in LEF1/phospho-β-catenin. Our study also demonstrated a negative correlation between LEF1 expression and the proliferative ability of RCC cells. Although interfering with LEF1 expression did not abolish the synergy between the two agents, RCC cells expressing high levels of LEF1 displayed an increased synergistic effect compared with RCC cells expressing low levels of LEF1. This study suggests that LEF1 can enhance the proliferation of RCC cells and that the LEF1/β-catenin complex plays an important role in the synergy of DAC and PTX against RCC cells. Moreover, the synergy between DAC and PTX may be more effective in RCC cells expressing high levels of LEF1.
Collapse
Affiliation(s)
- Donghao Shang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
73
|
Shiota M, Yokomizo A, Naito S. Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J Mol Endocrinol 2011; 47:R25-41. [PMID: 21504942 DOI: 10.1530/jme-11-0018] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Few effective therapies exist for the treatment of castration-resistant prostate cancer (CRPC). Recent evidence suggests that CRPC may be caused by augmented androgen/androgen receptor (AR) signaling, generally involving AR overexpression. Aberrant androgen/AR signaling associated with AR overexpression also plays a key role in prostate carcinogenesis. Although AR overexpression could be attributed to gene amplification, only 10-20% of CRPCs exhibit AR gene amplification, and aberrant AR expression in the remaining instances of CRPC is thought to be attributed to transcriptional, translational, and post-translational mechanisms. Overexpression of AR at the protein level, as well as the mRNA level, has been found in CRPC, suggesting a key role for transcriptional regulation of AR expression. Since the analysis of the AR promoter region in the 1990s, several transcription factors have been reported to regulate AR transcription. In this review, we discuss the molecules involved in the control of AR gene expression, with emphasis on its transcriptional control by transcription factors in prostate cancer. We also consider the therapeutic potential of targeting AR expression.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
74
|
Expression of Long-chain Fatty Acyl-CoA Synthetase 4 in Breast and Prostate Cancers Is Associated with Sex Steroid Hormone Receptor Negativity. Transl Oncol 2011; 3:91-8. [PMID: 20360933 DOI: 10.1593/tlo.09202] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 01/05/2023] Open
Abstract
Previous studies have shown that key enzymes involved in lipid metabolic pathways are differentially expressed in normal compared with tumor tissues. However, the precise role played by dysregulated expression of lipid metabolic enzymes and altered lipid homeostasis in carcinogenesis remains to be established. Fatty acid synthase is overexpressed in a variety of cancers, including breast and prostate. The purpose of the present study was to examine the expression patterns of additional lipid metabolic enzymes in human breast and prostate cancers. This was accomplished by analysis of published expression databases, with confirmation by immunoblot assays. Our results indicate that the fatty acid-activating enzyme, long-chain fatty acyl-CoA synthetase 4 (ACSL4), is differentially expressed in human breast cancer as a function of estrogen receptor alpha (ER) status. In 10 separate studies, ACSL4 messenger RNA (mRNA) was overexpressed in ER-negative breast tumors. Of 50 breast cancer cell lines examined, 17 (89%) of 19 ER-positive lines were negative for ACSL4 mRNA expression and 20 (65%) of 31 ER-negative lines expressed ACSL4 mRNA. The inverse relationship between ER expression and ACSL4 expression was also observed for androgen receptor status in both breast and prostate cancers. Furthermore, loss of steroid hormone sensitivity, such as that observed in Raf1-transfected MCF-7 cells and LNCaP-AI cells, was associated with induction of ACSL4 expression. Ablation of ACSL4 expression inMDA-MB-231 breast cancer cells had no effect on cell proliferation; however, sensitivity to the cytotoxic effects of triacsin C was increased three-fold in the cells lacking ACSL4.
Collapse
|
75
|
Li Y, Ligr M, McCarron JP, Daniels G, Zhang D, Zhao X, Ye F, Wang J, Liu X, Osman I, Mencher SK, Lepor H, Wang LG, Ferrari A, Lee P. Natura-alpha targets forkhead box m1 and inhibits androgen-dependent and -independent prostate cancer growth and invasion. Clin Cancer Res 2011; 17:4414-24. [PMID: 21606178 DOI: 10.1158/1078-0432.ccr-11-0431] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The development of new effective therapeutic agents with minimal side effects for prostate cancer (PC) treatment is much needed. Indirubin, an active molecule identified in the traditional Chinese herbal medicine-Qing Dai (Indigo naturalis), has been used to treat leukemia for decades. However, the anticancer properties of Natura-alpha, an indirubin derivative, are not well studied in solid tumors, particularly in PC. EXPERIMENTAL DESIGN The growth kinetics and invasion ability of on human PC cell lines with or without Natura-alpha treatment were measured by cell proliferation and invasion assays. The antitumor effects of Natura-alpha were examined in nude mice tumor xenograft models, and in a patient with advanced hormone-refractory metastatic PC. Signal network proteins targeted by Natura-alpha were analyzed by using proteomic pathway array analysis (PPAA) on xenografts. RESULTS Natura-alpha inhibited the growth of both androgen-dependent (LNCaP) and androgen-independent (LNCaP-AI, PC-3, and DU145) PC cells with IC(50) between 4 to 10 mmol/L, and also inhibited invasion of androgen-independent PC cells. Its antitumor effects were further evident in in vivo tumor reduction in androgen-dependent and androgen-independent nude mice tumor xenograft models and reduced tumor volume in the patient with hormone refractory metastatic PC. PPAA revealed that antiproliferative and antiinvasive activities of Natura-alpha on PC might primarily be through its downregulation of Forkhead box M1 (FOXM1) protein. Forced overexpression of FOXM1 largely reversed the inhibition of growth and invasion by Natura-alpha. CONCLUSION Natura-alpha could serve as a novel and effective therapeutic agent for treatment of both hormone-sensitive and hormone-refractory PC with minimal side effects.
Collapse
Affiliation(s)
- Yirong Li
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Matuszak EA, Kyprianou N. Androgen regulation of epithelial-mesenchymal transition in prostate tumorigenesis. Expert Rev Endocrinol Metab 2011; 6:469-482. [PMID: 23667383 PMCID: PMC3648215 DOI: 10.1586/eem.11.32] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostate cancer patient mortality is ascribed to the spread of cancerous cells to areas outside the prostate gland and the inability of current treatment strategies to effectively block progression to metastasis. Understanding the cellular mechanisms contributing to the dissemination of malignant cells and metastasis is critically significant to the generation of effective therapeutic modalities for improved patient survival while combating therapeutic resistance. In recent years, the phenomenon of epithelial-mesenchymal transitions (EMTs) has received considerable attention due to accumulating evidence indicating a role for this developmentally conserved process in tumorigenesis. Cancer cells at the invasive edges of tumors undergo EMT under the influence of contextual signals that they receive from the microenvironment, such as TGF-β. Also derived from developmental studies is the fact that EMT induction is reversible; thus, upon removal of EMT-inducing signals, cells occasionally revert to the epithelial state of their cellular ancestors via the process of mesenchymal-epithelial transition. This article discusses the current evidence supporting a central role for EMT and its reverse process, mesenchymal-epithelial transition, in the metastatic progression of prostate cancer to advanced disease and the involvement of androgen signaling in its regulation towards the development of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Emily A Matuszak
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Department of Surgery/Urology, University of Kentucky College of Medicine, KY, USA
| | - Natasha Kyprianou
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
- Department of Surgery/Urology, University of Kentucky College of Medicine, KY, USA
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
77
|
Knudsen KE, Kelly WK. Outsmarting androgen receptor: creative approaches for targeting aberrant androgen signaling in advanced prostate cancer. Expert Rev Endocrinol Metab 2011; 6:483-493. [PMID: 22389648 PMCID: PMC3289283 DOI: 10.1586/eem.11.33] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prostatic adenocarcinomas are reliant on androgen receptor (AR) activity for survival and progression. Therefore, first-line therapeutic intervention for disseminated disease entails the use of AR-directed therapeutics, achieved through androgen deprivation and direct AR antagonists. While initially effective, recurrent, 'castrate-resistant' prostate cancers arise, for which there is no durable means of treatment. An abundance of clinical study and preclinical modeling has led to the revelation that restored AR activity is a major driver of therapeutic failure and castrate-resistant prostate cancer development. The mechanisms underpinning AR reactivation have been identified, providing the foundation for a new era of drug discovery and rapid translation into the clinic. As will be reviewed in this article, these creative new ways of suppressing AR show early promise.
Collapse
Affiliation(s)
- Karen E Knudsen
- Kimmel Cancer Center, Thomas Jefferson University, 233 10th Street, BLSB 1008, Philadelphia, PA 19107, USA
| | - William Kevin Kelly
- Solid Tumor Oncology, 834 Chestnut Street, Ben Franklin House, Suite 314, Philadelphia, PA 19107, USA
| |
Collapse
|
78
|
Wu X, Daniels G, Shapiro E, Xu K, Huang H, Li Y, Logan S, Greco MA, Peng Y, Monaco ME, Melamed J, Lepor H, Grishina I, Lee P. LEF1 identifies androgen-independent epithelium in the developing prostate. Mol Endocrinol 2011; 25:1018-26. [PMID: 21527502 DOI: 10.1210/me.2010-0513] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Lymphoid enhancer-binding factor (LEF)1 is a major mediator and a target in canonical Wnt/β-catenin pathway. Interactions between the androgen receptor (AR) and canonical Wnt pathways have been implicated in the development of the genitourinary organs. Here, we investigated the localization and role of LEF1-positive cells during development of the prostate gland in human and in the murine model. We show that during human prostate development, LEF1 is restricted to the basal epithelial layer of the urogenital sinus. During mouse development, Lef1 is also present in the urogenital mesenchyme in addition to the basal epithelial layer of the urogenital sinus. In the course of elongation and branching of the prostatic ducts, Lef1 is localized to the proliferating epithelium at the distal tips of the buds. Notably, during branching morphogenesis, domains of Lef1 and AR are mutually exclusive. We further employed the TOPGAL reporter strain to examine the dynamics of Wnt signaling in the context of prostate regression upon a 7-d treatment with a competitive AR inhibitor, bicalutamide. We found that Wnt/Lef1-positive basal cells are not dependent upon androgen for survival. Furthermore, upon bicalutamide treatment, Wnt/Lef1-positive basal progenitors repopulated the luminal compartment. We conclude that Wnt/Lef1 activity identifies an androgen-independent population of prostate progenitors, which is important for embryonic development and organ maintenance and regeneration in the adult.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Urology, New York University School of Medicine, 423 East 23rd Street, New York, New York 10010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Peng Y, Li Y, Gellert LL, Zou X, Wang J, Singh B, Xu R, Chiriboga L, Daniels G, Pan R, Zhang DY, Garabedian MJ, Schneider RJ, Wang Z, Lee P. Androgen receptor coactivator p44/Mep50 in breast cancer growth and invasion. J Cell Mol Med 2011; 14:2780-9. [PMID: 19840198 PMCID: PMC3822728 DOI: 10.1111/j.1582-4934.2009.00936.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hormones and their receptors play an important role in the development and progression of breast carcinoma. Although the primary focus has been on oestrogen and oestrogen receptor (ER), androgen, androgen receptor (AR) and its coactivator(s) have been implicated in tumorigenesis of breast carcinoma and warrant further investigation. AR coactivator p44/Mep50 is identified as a subunit of methylosome complex and lately characterized as an AR coactivator that enhances AR mediated transcription activity in a ligand dependent manner. In prostate cancer, p44 is expressed in the nucleus of benign epithelia and translocated into the cytoplasm in cancer cells. Furthermore, nuclear expression of p44 inhibits prostate cancer growth. In this report, we examined the expression and function of p44 in breast cancer. In addition to being an AR coactivator, p44 also functions as an ER coactivator. In contrast to findings in prostate cancer, the expression of p44 shows strong cytoplasmic expression in morphologically normal terminal ductal lobular units, while nuclear p44 is observed in both ductal carcinoma in situ and invasive carcinoma. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in MCF7 breast cancer cells in the presence of oestrogen and the process is ERα dependent. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during tumorigenesis in breast.
Collapse
Affiliation(s)
- Yi Peng
- Department of Pathology, New York University School of Medicine, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Zhang K, Waxman DJ. PC3 prostate tumor-initiating cells with molecular profile FAM65Bhigh/MFI2low/LEF1low increase tumor angiogenesis. Mol Cancer 2010; 9:319. [PMID: 21190562 PMCID: PMC3024252 DOI: 10.1186/1476-4598-9-319] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/29/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cancer stem-like cells are proposed to sustain solid tumors by virtue of their capacity for self-renewal and differentiation to cells that comprise the bulk of the tumor, and have been identified for a variety of cancers based on characteristic clonal morphologies and patterns of marker gene expression. METHODS Single cell cloning and spheroid culture studies were used to identify a population of cancer stem-like cells in the androgen-independent human prostate cancer cell line PC3. RESULTS We demonstrate that, under standard culture conditions, ~10% of PC3 cells form holoclones with cancer stem cell characteristics. These holoclones display high self-renewal capability in spheroid formation assays under low attachment and serum-free culture conditions, retain their holoclone morphology when passaged at high cell density, exhibit moderate drug resistance, and show high tumorigenicity in scid immunodeficient mice. PC3 holoclones readily form spheres, and PC3-derived spheres yield a high percentage of holoclones, further supporting their cancer stem cell-like nature. We identified one gene, FAM65B, whose expression is consistently up regulated in PC3 holoclones compared to paraclones, the major cell morphology in the parental PC3 cell population, and two genes, MFI2 and LEF1, that are consistently down regulated. This molecular profile, FAM65Bhigh/MFI2low/LEF1low, also characterizes spheres generated from parental PC3 cells. The PC3 holoclones did not show significant enriched expression of the putative prostate cancer stem cell markers CD44 and integrin α2β1. PC3 tumors seeded with holoclones showed dramatic down regulation of FAM65B and dramatic up regulation of MFI2 and LEF1, and unexpectedly, a marked increase in tumor vascularity compared to parental PC3 tumors, suggesting a role of cancer stem cells in tumor angiogenesis. CONCLUSIONS These findings support the proposal that PC3 tumors are sustained by a small number of tumor-initiating cells with stem-like characteristics, including strong self-renewal and pro-angiogenic capability and marked by the expression pattern FAM65Bhigh/MFI2low/LEF1low. These markers may serve as targets for therapies designed to eliminate cancer stem cell populations associated with aggressive, androgen-independent prostate tumors such as PC3.
Collapse
Affiliation(s)
- Kexiong Zhang
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
81
|
Wei JJ, Wu X, Peng Y, Shi G, Basturk O, Olca B, Yang X, Daniels G, Osman I, Ouyang J, Hernando E, Pellicer A, Rhim JS, Melamed J, Lee P. Regulation of HMGA1 expression by microRNA-296 affects prostate cancer growth and invasion. Clin Cancer Res 2010; 17:1297-305. [PMID: 21138859 DOI: 10.1158/1078-0432.ccr-10-0993] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE High-motility group AT-hook gene 1 (HMGA1) is a non-histone nuclear binding protein that is developmentally regulated. HMGA1 is significantly overexpressed in and associated with high grade and advance stage of prostate cancer (PC). The oncogenic role of HMGA1 is at least mediated through chromosomal instability and structural aberrations. However, regulation of HMGA1 expression is not well understood. Identification of microRNA-mediated HMGA1 regulation will provide a promising therapeutic target in treating PC. EXPERIMENTAL DESIGN In this study, we examined the functional relation between miR-296 and HMGA1 expression in several PC cell lines and a large PC cohort. We further examined the oncogenic property of HMGA1 regulated by miR-296. RESULTS Here we report that miR-296, a microRNA predicted to target HMGA1, specifically represses HMGA1 expression by promoting degradation and inhibiting HMGA1translation. Repression of HMGA1 by miR-296 is direct and sequence specific. Importantly, ectopic miR-296 expression significantly reduced PC cell proliferation and invasion, in part through the downregulation of HMGA1. Examining PC patient samples, we found an inverse correlation between HMGA1 and miR-296 expression: high levels of HMGA1 were associated with low miR-296 expression and strongly linked to more advanced tumor grade and stage. CONCLUSIONS Our results indicate that miR-296 regulates HMGA1 expression and is associated with PC growth and invasion.
Collapse
Affiliation(s)
- Jian-Jun Wei
- Department of Pathology, Northwestern University, Feinberg Medical School, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:293-312. [PMID: 20418721 DOI: 10.1097/med.0b013e328339f31e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
83
|
Erdfelder F, Hertweck M, Filipovich A, Uhrmacher S, Kreuzer KA. High lymphoid enhancer-binding factor-1 expression is associated with disease progression and poor prognosis in chronic lymphocytic leukemia. Hematol Rep 2010; 2:e3. [PMID: 22184516 PMCID: PMC3222268 DOI: 10.4081/hr.2010.e3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/19/2010] [Accepted: 04/22/2010] [Indexed: 11/22/2022] Open
Abstract
We determined lymphoid enhancer-binding factor-1 (LEF1) mRNA expression in 112 chronic lymphocytic leukemia (CLL) samples and assessed correlations with the prognostic markers ZAP70 and CD38, Binet stages, the percentage of lymphocytes in the peripheral blood, and fibromodulin (FMOD) transcripts. The mean LEF1 relative expression ratios (RER) were 53.72 and 37.10 in ZAP70-positive and ZAP70-negative patients, respectively (P=0.004). However, we did not observe a significant difference in LEF1 expression between CD38-positive and CD38-negative patients. Moreover, patients requiring treatment showed a mean LEF1 RER of 85.61 whereas patients in recently diagnosed Binet A stage had a mean of only 22.01 (P<0.001). We also found significant correlations of LEF1 with the percentage of lymphocytes and FMOD expression. Our results suggest that high LEF1 expression is associated with poor prognosis and disease progression. Thus, LEF1 might be involved in the process of disease progression and possibly can serve as a molecular parameter for risk assessment and/or monitoring of CLL.
Collapse
Affiliation(s)
- Felix Erdfelder
- Department I of Internal Medicine, University at Cologne, Germany
| | | | | | | | | |
Collapse
|