51
|
Rezaeian AH, Phan LM, Zhou X, Wei W, Inuzuka H. Pharmacological inhibition of the SKP2/p300 signaling axis restricts castration-resistant prostate cancer. Neoplasia 2023; 38:100890. [PMID: 36871351 PMCID: PMC10006859 DOI: 10.1016/j.neo.2023.100890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
SKP2, an F-box protein of the SCF type of the E3 ubiquitin ligase complex, plays an important function in driving tumorigenesis through the destruction of numerous tumor-suppressive proteins. Besides its critical role in cell cycle regulation, proto-oncogenic functions of SKP2 have also been shown in a cell cycle regulation-independent manner. Therefore, uncovering novel physiological upstream regulators of SKP2 signaling pathways would be essential to retard aggressive malignancies. Here, we report that elevation of SKP2 and EP300 transcriptomic expression is a hallmark of castration-resistant prostate cancer. We also found that SKP2 acetylation is likely a critical driven event in castration-resistant prostate cancer cells. Mechanistically, SKP2-acetylation is mediated by the p300 acetyltransferase enzyme for post-translational modification (PTM) event that is induced upon stimulation with dihydrotestosterone (DHT) in prostate cancer cells. Moreover, ectopic expression of acetylation-mimetic K68/71Q mutant of SKP2 in LNCaP cells could confer resistance to androgen withdrawal-induced growth arrest and promotes prostate cancer stem cell (CSC)-like traits including survival, proliferation, stemness formation, lactate production, migration, and invasion. Furthermore, inhibition of p300-mediated SKP2 acetylation or SKP2-mediated p27-degradation by pharmacological inhibition of p300 or SKP2 could attenuate epithelial-mesenchymal transition (EMT) and the proto-oncogenic activities of the SKP2/p300 and androgen receptor (AR) signaling pathways. Therefore, our study identifies the SKP2/p300 axis as a possible molecular mechanism driving castration-resistant prostate cancers, which provides pharmaceutical insight into inactivation of the SKP2/p300 axis for restriction of CSC-like properties, thereby benefiting clinical diagnosis and cancer therapy.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America
| | - Liem Minh Phan
- David Grant USAF Medical Center, Clinical Investigation Facility, 60th Medical Group, Travis Air Force Base, CA 94535, United States of America
| | - Xiaobo Zhou
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA, United States of America
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA, United States of America
| |
Collapse
|
52
|
Chang KS, Chen ST, Sung HC, Hsu SY, Lin WY, Hou CP, Lin YH, Feng TH, Tsui KH, Juang HH. Androgen Receptor Upregulates Mucosa-Associated Lymphoid Tissue 1 to Induce NF-κB Activity via Androgen-Dependent and -Independent Pathways in Prostate Carcinoma Cells. Int J Mol Sci 2023; 24:ijms24076245. [PMID: 37047218 PMCID: PMC10093854 DOI: 10.3390/ijms24076245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The androgen-dependent or -independent pathways are regarded as primary therapeutic targets for the neoplasm of the prostate. Mucosa-associated lymphoid tissue 1 (MALT1) acting as a paracaspase in the regulation of nuclear factor κB (NF-κB) signal transduction plays a central role in inflammation and oncogenesis in cancers. This study confirmed the potential linkages between androgen and NF-κB activation by inducing MALT1 in the androgen receptor-full length (ARFL)-positive LNCaP and 22Rv1 prostate cancer cells. Although androgen did not stimulate MALT1 expression in AR-null or ectopic ARFL-overexpressed PC-3 cells, the ectopic overexpression of the AR splicing variant 7 (ARv7) upregulated MALT1 to activate NF-κB activities in 22Rv1 and PC-3 cells. Since the nuclear translocation of p50 and p65 was facilitated by ARv7 to motivate NF-κB activity, the expressions of MALT1, prostate-specific antigen (PSA), and N-myc downstream regulated 1 (NDRG1) were therefore induced in ectopic ARv7-overexpressed prostate cancer cells. Ectopic ARv7 overexpression not only enhanced 22Rv1 or PC-3 cell growth and invasion in vitro but also the tumor growth of PC-3 cells in vivo. These results indicate that an androgen receptor induces MALT1 expression androgen-dependently and -independently in ARFL- or ARv7-overexpressed prostate cancer cells, suggesting a novel ARv7/MALT1/NF-κB-signaling pathway may exist in the cells of prostate cancer.
Collapse
|
53
|
Hung CL, Liu HH, Fu CW, Yeh HH, Hu TL, Kuo ZK, Lin YC, Jhang MR, Hwang CS, Hsu HC, Kung HJ, Wang LY. Targeting androgen receptor and the variants by an orally bioavailable Proteolysis Targeting Chimeras compound in castration resistant prostate cancer. EBioMedicine 2023; 90:104500. [PMID: 36893587 PMCID: PMC10011747 DOI: 10.1016/j.ebiom.2023.104500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Despite the advent of improved therapeutic options for advanced prostate cancer, the durability of clinical benefits is limited due to inevitable development of resistance. By constitutively sustaining androgen receptor (AR) signaling, expression of ligand-binding domain truncated AR variants (AR-V(ΔLBD)) accounts for the major mechanism underlying the resistance to anti-androgen drugs. Strategies to target AR and its LBD truncated variants are needed to prevent the emergence or overcome drug resistance. METHODS We utilize Proteolysis Targeting Chimeras (PROTAC) technology to achieve induced degradation of both full-length AR (AR-FL) and AR-V(ΔLBD) proteins. In the ITRI-PROTAC design, an AR N-terminal domain (NTD) binding moiety is appended to von-Hippel-Lindau (VHL) or Cereblon (CRBN) E3 ligase binding ligand with linker. FINDINGS In vitro studies demonstrate that ITRI-PROTAC compounds mechanistically degrade AR-FL and AR-V(ΔLBD) proteins via ubiquitin-proteasome system, leading to impaired AR transactivation on target gene expression, and inhibited cell proliferation accompanied by apoptosis activation. The compounds also significantly inhibit enzalutamide-resistant growth of castration resistant prostate cancer (CRPC) cells. In castration-, enzalutamide-resistant CWR22Rv1 xenograft model without hormone ablation, ITRI-90 displays a pharmacokinetic profile with decent oral bioavailability and strong antitumor efficacy. INTERPRETATION AR NTD that governs the transcriptional activities of all active variants has been considered attractive therapeutic target to block AR signaling in prostate cancer cells. We demonstrated that utilizing PROTAC for induced AR protein degradation via NTD represents an efficient alternative therapeutic strategy for CRPC to overcome anti-androgen resistance. FUNDING The funding detail can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Chiu-Lien Hung
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Hao-Hsuan Liu
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Chih-Wei Fu
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Hsun-Hao Yeh
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsan-Lin Hu
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Zong-Keng Kuo
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Yu-Chin Lin
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Mei-Ru Jhang
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Chrong-Shiong Hwang
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Hung-Chih Hsu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan 33302, Taiwan; Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
| |
Collapse
|
54
|
Chandrasekaran B, Tyagi A, Saran U, Kolluru V, Baby BV, Chirasani VR, Dokholyan NV, Lin JM, Singh A, Sharma AK, Ankem MK, Damodaran C. Urolithin A analog inhibits castration-resistant prostate cancer by targeting the androgen receptor and its variant, androgen receptor-variant 7. Front Pharmacol 2023; 14:1137783. [PMID: 36937838 PMCID: PMC10020188 DOI: 10.3389/fphar.2023.1137783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
We investigated the efficacy of a small molecule ASR-600, an analog of Urolithin A (Uro A), on blocking androgen receptor (AR) and its splice variant AR-variant 7 (AR-V7) signaling in castration-resistant prostate cancer (CRPC). ASR-600 effectively suppressed the growth of AR+ CRPC cells by inhibiting AR and AR-V7 expressions; no effect was seen in AR- CRPC and normal prostate epithelial cells. Biomolecular interaction assays revealed ASR-600 binds to the N-terminal domain of AR, which was further confirmed by immunoblot and subcellular localization studies. Molecular studies suggested that ASR-600 promotes the ubiquitination of AR and AR-V7 resulting in the inhibition of AR signaling. Microsomal and plasma stability studies suggest that ASR-600 is stable, and its oral administration inhibits tumor growth in CRPC xenografted castrated and non-castrated mice. In conclusion, our data suggest that ASR-600 enhances AR ubiquitination in both AR+ and AR-V7 CRPC cells and inhibits their growth in vitro and in vivo models.
Collapse
Affiliation(s)
- Balaji Chandrasekaran
- Department of Pharmaceutical Science, College of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Ashish Tyagi
- Department of Pharmaceutical Science, College of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Uttara Saran
- Department of Pharmaceutical Science, College of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Venkatesh Kolluru
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Becca V. Baby
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Venkat R. Chirasani
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| | - Jyh M. Lin
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Murali K. Ankem
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Chendil Damodaran
- Department of Pharmaceutical Science, College of Pharmacy, Texas A&M University, College Station, TX, United States
- Department of Urology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
55
|
Dhital B, Santasusagna S, Kirthika P, Xu M, Li P, Carceles-Cordon M, Soni RK, Li Z, Hendrickson RC, Schiewer MJ, Kelly WK, Sternberg CN, Luo J, Lujambio A, Cordon-Cardo C, Alvarez-Fernandez M, Malumbres M, Huang H, Ertel A, Domingo-Domenech J, Rodriguez-Bravo V. Harnessing transcriptionally driven chromosomal instability adaptation to target therapy-refractory lethal prostate cancer. Cell Rep Med 2023; 4:100937. [PMID: 36787737 PMCID: PMC9975292 DOI: 10.1016/j.xcrm.2023.100937] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Metastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels. Functional genomics screening coupled with quantitative phosphoproteomics identify MASTL kinase as a survival vulnerability specific of chemotherapy-resistant PCa cells. Mechanistically, MASTL upregulation is driven by transcriptional rewiring mechanisms involving the non-canonical transcription factors androgen receptor splice variant 7 and E2F7 in a circuitry that restrains deleterious CIN and prevents cell death selectively in metastatic therapy-resistant PCa cells. Notably, MASTL pharmacological inhibition re-sensitizes tumors to standard therapy and improves survival of pre-clinical models. These results uncover a targetable mechanism promoting high CIN adaptation and survival of lethal PCa.
Collapse
Affiliation(s)
- Brittiny Dhital
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA; Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Sandra Santasusagna
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Perumalraja Kirthika
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Xu
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Peiyao Li
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | | | - Rajesh K Soni
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhuoning Li
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew J Schiewer
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - William K Kelly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Department of Medicine, Meyer Cancer Center, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Jun Luo
- Urology Department, Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amaia Lujambio
- Oncological Sciences Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Cordon-Cardo
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monica Alvarez-Fernandez
- Head & Neck Cancer Department, Institute de Investigación Sanitaria Principado de Asturias (ISPA), Institute Universitario de Oncología Principado de Asturias (IUOPA), 33011 Oviedo, Spain
| | - Marcos Malumbres
- Cell Division & Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; Cancer Cell Cycle group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Haojie Huang
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Adam Ertel
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Josep Domingo-Domenech
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA.
| | - Veronica Rodriguez-Bravo
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
56
|
Racial Differences in Androgen Receptor (AR) and AR Splice Variants (AR-SVs) Expression in Treatment-Naïve Androgen-Dependent Prostate Cancer. Biomedicines 2023; 11:biomedicines11030648. [PMID: 36979627 PMCID: PMC10044992 DOI: 10.3390/biomedicines11030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Androgen receptor splice variants (AR-SVs) contribute to the aggressive growth of castration-resistant prostate cancer (CRPC). AR-SVs, including AR-V7, are expressed in ~30% of CRPC, but minimally in treatment-naïve primary prostate cancer (PCa). Compared to Caucasian American (CA) men, African American (AA) men are more likely to be diagnosed with aggressive/potentially lethal PCa and have shorter disease-free survival. Expression of a truncated AR in an aggressively growing patient-derived xenograft developed with a primary PCa specimen from an AA patient led us to hypothesize that the expression of AR-SVs could be an indicator of aggressive growth both in PCa progression and at the CRPC stage in AA men. Tissue microarrays (TMAs) were created from formalin-fixed paraffin-embedded (FFPE) prostatectomy tumor blocks from 118 AA and 115 CA treatment-naïve PCa patients. TMAs were stained with AR-V7-speicifc antibody and with antibodies binding to the N-terminus domain (NTD) and ligand-binding domain (LBD) of the AR. Since over 20 AR-SVs have been identified, and most AR-SVs do not as yet have a specific antibody, we considered a 2.0-fold or greater difference in the NTD vs. LBD staining as indication of potential AR-SV expression. Two AA, but no CA, patient tumors stained positively for AR-V7. AR staining with NTD and LBD antibodies was robust in most patients, with 21% of patients staining at least 2-fold more for NTD than LBD, indicating that AR-SVs other than AR-V7 are expressed in primary treatment-naïve PCa. About 24% of the patients were AR-negative, and race differences in AR expression were not statistically significant. These results indicate that AR-SVs are not restricted to CRPC, but also are expressed in primary PCa at higher rate than previously reported. Future investigation of the relative expression of NTD vs. LBD AR-SVs could guide the use of newly developed treatments targeting the NTD earlier in the treatment paradigm.
Collapse
|
57
|
Li X, Zhuo S, Cho YS, Liu Y, Yang Y, Zhu J, Jiang J. YAP antagonizes TEAD-mediated AR signaling and prostate cancer growth. EMBO J 2023; 42:e112184. [PMID: 36588499 PMCID: PMC9929633 DOI: 10.15252/embj.2022112184] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
Hippo signaling restricts tumor growth by inhibiting the oncogenic potential of YAP/TAZ-TEAD transcriptional complex. Here, we uncover a context-dependent tumor suppressor function of YAP in androgen receptor (AR) positive prostate cancer (PCa) and show that YAP impedes AR+ PCa growth by antagonizing TEAD-mediated AR signaling. TEAD forms a complex with AR to enhance its promoter/enhancer occupancy and transcriptional activity. YAP and AR compete for TEAD binding and consequently, elevated YAP in the nucleus disrupts AR-TEAD interaction and prevents TEAD from promoting AR signaling. Pharmacological inhibition of MST1/2 or LATS1/2, or transgenic activation of YAP suppressed the growth of PCa expressing therapy resistant AR splicing variants. Our study uncovers an unanticipated crosstalk between Hippo and AR signaling pathways, reveals an antagonistic relationship between YAP and TEAD in AR+ PCa, and suggests that targeting the Hippo signaling pathway may provide a therapeutical opportunity to treat PCa driven by therapy resistant AR variants.
Collapse
Affiliation(s)
- Xu Li
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Shu Zhuo
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Center for Cancer Targeted Therapies, Signet Therapeutics Inc.Research Institute of Tsinghua University in ShenzhenShenzhenChina
| | - Yong Suk Cho
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Yuchen Liu
- Department of Developmental BiologyHarvard School of Dental MedicineBostonMAUSA
- Harvard Stem Cell InstituteBostonMAUSA
- Dana‐Farber/Harvard Cancer CenterBostonMAUSA
| | - Yingzi Yang
- Department of Developmental BiologyHarvard School of Dental MedicineBostonMAUSA
- Harvard Stem Cell InstituteBostonMAUSA
- Dana‐Farber/Harvard Cancer CenterBostonMAUSA
| | - Jian Zhu
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of General Surgery, The Second Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jin Jiang
- Department of Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
58
|
Preclinical models of prostate cancer - modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo. Nat Rev Urol 2023:10.1038/s41585-023-00726-1. [PMID: 36788359 DOI: 10.1038/s41585-023-00726-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Prostate cancer is well known to be dependent on the androgen receptor (AR) for growth and survival. Thus, AR is the main pharmacological target to treat this disease. However, after an initially positive response to AR-targeting therapies, prostate cancer will eventually evolve to castration-resistant prostate cancer, which is often lethal. Tumour growth was initially thought to become androgen-independent following treatments; however, results from molecular studies have shown that most resistance mechanisms involve the reactivation of AR. Consequently, tumour cells become resistant to castration - the blockade of testicular androgens - and not independent of AR per se. However, confusion still remains on how to properly define preclinical models of prostate cancer, including cell lines. Most cell lines were isolated from patients for cell culture after evolution of the tumour to castration-resistant prostate cancer, but not all of these cell lines are described as castration resistant. Moreover, castration refers to the blockade of testosterone production by the testes; thus, even the concept of "castration" in vitro is questionable. To ensure maximal transfer of knowledge from scientific research to the clinic, understanding the limitations and advantages of preclinical models, as well as how these models recapitulate cancer cell androgen dependency and can be used to study castration resistance mechanisms, is essential.
Collapse
|
59
|
Androgen receptor variant 7 exacerbates hepatocarcinogenesis in a c-MYC-driven mouse HCC model. Oncogenesis 2023; 12:4. [PMID: 36746917 PMCID: PMC9902460 DOI: 10.1038/s41389-023-00449-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Androgen receptor variant 7 (AR-V7), an AR isoform with a truncated ligand-binding domain, functions as a transcription factor in an androgen-independent manner. AR-V7 is expressed in a subpopulation of hepatocellular carcinoma (HCC), however, its role(s) in this cancer is undefined. In this study, we investigated the potential roles of AR-V7 in hepatocarcinogenesis in vivo in a c-MYC-driven mouse HCC model generated by the hydrodynamic tail-vein injection system. The impacts of AR-V7 on gene expression in mouse HCC were elucidated by RNA-seq transcriptome and ontology analyses. The results showed that AR-V7 significantly exacerbated the c-MYC-mediated oncogenesis in the livers of both sexes. The transcriptome and bioinformatics analyses revealed that AR-V7 and c-MYC synergistically altered the gene sets involved in various cancer-related biological processes, particularly in lipid and steroid/sterol metabolisms. Importantly, AR-V7 suppressed a tumor suppressor Claudin 7 expression, upregulated by c-MYC overexpression via the p53 signaling pathway. Claudin 7 overexpression significantly suppressed the c-MYC-driven HCC development under p53-deficient conditions. Our results suggest that the AR-V7 exacerbates the c-MYC-driven hepatocarcinogenesis by potentiating the oncogenic roles and minimizing the anti-oncogenic functions of c-MYC. Since AR-V7 is expressed in a subpopulation of HCC cases, it could contribute to the inter- and intra-heterogeneity of HCC.
Collapse
|
60
|
Ji Y, Zhang R, Han X, Zhou J. Targeting the N-terminal domain of the androgen receptor: The effective approach in therapy of CRPC. Eur J Med Chem 2023; 247:115077. [PMID: 36587421 DOI: 10.1016/j.ejmech.2022.115077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The androgen receptor (AR) is dominant in prostate cancer (PCa) pathology. Current therapeutic agents for advanced PCa include androgen synthesis inhibitors and AR antagonists that bind to the hormone binding pocket (HBP) at the ligand binding domain (LBD). However, AR amplification, AR splice variants (AR-Vs) expression, and intra-tumoral de novo synthesis of androgens result in the reactivation of AR signalling. The AR N-terminal domain (NTD) plays an essential role in AR transcriptional activity. The AR inhibitor targeting NTD could potentially block the activation of both full-length AR and AR-Vs, thus overcoming major resistance mechanisms to current treatments. This review discusses the progress of research in various NTD inhibitors and provides new insight into the development of AR-NTD inhibitors.
Collapse
Affiliation(s)
- Yang Ji
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Xiaoli Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
61
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
62
|
Lin Y, Tan H, Yu G, Zhan M, Xu B. Molecular Mechanisms of Noncoding RNA in the Occurrence of Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24021305. [PMID: 36674820 PMCID: PMC9860629 DOI: 10.3390/ijms24021305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Although several therapeutic options have been shown to improve survival of most patients with prostate cancer, progression to castration-refractory state continues to present challenges in clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them, noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs, especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and lncRNAs, discuss their potential functional mechanisms and highlight their clinical application prospects in CRPC.
Collapse
Affiliation(s)
- Yu Lin
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (M.Z.); (B.X.)
| |
Collapse
|
63
|
Miller KJ, Henry I, Maylin Z, Smith C, Arunachalam E, Pandha H, Asim M. A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Front Oncol 2023; 13:1129140. [PMID: 36937454 PMCID: PMC10014620 DOI: 10.3389/fonc.2023.1129140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.
Collapse
Affiliation(s)
| | | | - Zoe Maylin
- *Correspondence: Zoe Maylin, ; Mohammad Asim,
| | | | | | | | | |
Collapse
|
64
|
Khatiwada P, Rimal U, Malla M, Han Z, Shemshedini L. Peptides disrupting TM4SF3 interaction with AR or AR-V7 block prostate cancer cell proliferation. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2023; 3:e230010. [PMID: 37822366 PMCID: PMC10563598 DOI: 10.1530/eo-23-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023]
Abstract
Androgen receptor (AR) plays a vital role in the development and progression of prostate cancer from the primary stage to the usually lethal stage known as castration-resistant prostate cancer (CRPC). Constitutively active AR splice variants (AR-Vs) lacking the ligand-binding domain are partially responsible for the abnormal activation of AR and may be involved in resistance to AR-targeting drugs occurring in CRPC. There is increasing consensus on the potential of drugs targeting protein-protein interactions. Our lab has recently identified transmembrane 4 superfamily 3 (TM4SF3) as a critical interacting partner for AR and AR-V7 and mapped the minimal interaction regions. Thus, we hypothesized that these interaction domains can be used to design peptides that can disrupt the AR/TM4SF3 interaction and kill prostate cancer cells. Peptides TA1 and AT1 were designed based on the TM3SF3 or AR interaction domain, respectively. TA1 or AT1 was able to decrease AR/TM4SF3 protein interaction and protein stability. Peptide TA1 reduced the recruitment of AR and TM4SF3 to promoters of androgen-regulated genes and subsequent activation of these AR target genes. Peptides TA1 and AT1 were strongly cytotoxic to prostate cancer cells that express AR and/or AR-V7. Peptide TA1 inhibited the growth and induced apoptosis of both enzalutamide-sensitive and importantly enzalutamide-resistant prostate cancer cells. TA1 also blocked the migration and malignant transformation of prostate cancer cells. Our data clearly demonstrate that using peptides to target the important interaction AR has with TM4SF3 provides a novel method to kill enzalutamide-resistant prostate cancer cells that can potentially lead to new more effective therapy for CRPC.
Collapse
Affiliation(s)
- Prabesh Khatiwada
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
- Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Ujjwal Rimal
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Mamata Malla
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Zhengyang Han
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Lirim Shemshedini
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
65
|
The SMARCD Family of SWI/SNF Accessory Proteins Is Involved in the Transcriptional Regulation of Androgen Receptor-Driven Genes and Plays a Role in Various Essential Processes of Prostate Cancer. Cells 2022; 12:cells12010124. [PMID: 36611918 PMCID: PMC9818446 DOI: 10.3390/cells12010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Previous studies have demonstrated an involvement of chromatin-remodelling SWI/SNF complexes in the development of prostate cancer, suggesting both tumor suppressor and oncogenic activities. SMARCD1/BAF60A, SMARCD2/BAF60B, and SMARCD3/BAF60C are mutually exclusive accessory subunits that confer functional specificity and are components of all known SWI/SNF subtypes. To assess the role of SWI/SNF in prostate tumorigenesis, we studied the functions and functional relations of the SMARCD family members. Performing RNA-seq in LnCAP cells grown in the presence or absence of dihydrotestosterone, we found that the SMARCD proteins are involved in the regulation of numerous hormone-dependent AR-driven genes. Moreover, we demonstrated that all SMARCD proteins can regulate AR-downstream targets in androgen-depleted cells, suggesting an involvement in the progression to castration-resistance. However, our approach also revealed a regulatory role for SMARCD proteins through antagonization of AR-signalling. We further demonstrated that the SMARCD proteins are involved in several important cellular processes such as the maintenance of cellular morphology and cytokinesis. Taken together, our findings suggest that the SMARCD proteins play an important, yet paradoxical, role in prostate carcinogenesis. Our approach also unmasked the complex interplay of paralogue SWI/SNF proteins that must be considered for the development of safe and efficient therapies targeting SWI/SNF.
Collapse
|
66
|
Modulating the Activity of Androgen Receptor for Treating Breast Cancer. Int J Mol Sci 2022; 23:ijms232315342. [PMID: 36499670 PMCID: PMC9739178 DOI: 10.3390/ijms232315342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The androgen receptor (AR) is a steroid hormone receptor widely detected in breast cancer. Evidence suggests that the AR might be a tumor suppressor in estrogen receptor alpha-positive (ERα+ve) breast cancer but a tumor promoter in estrogen receptor alpha-negative (ERα-ve) breast cancer. Modulating AR activity could be a potential strategy for treating breast cancer. For ERα+ve breast cancer, activation of the AR had been demonstrated to suppress the disease. In contrast, for ERα-ve breast cancer, blocking the AR could confer better prognosis to patients. These studies support the feasibility of utilizing AR modulators as anti-cancer drugs for different subtypes of breast cancer patients. Nevertheless, several issues still need to be addressed, such as the lack of standardization in the determination of AR positivity and the presence of AR splice variants. In future, the inclusion of the AR status in the breast cancer report at the time of diagnosis might help improve disease classification and treatment decision, thereby providing additional treatment strategies for breast cancer.
Collapse
|
67
|
Tautomycin and enzalutamide combination yields synergistic effects on castration-resistant prostate cancer. Cell Death Dis 2022; 8:471. [DOI: 10.1038/s41420-022-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
AbstractThe androgen receptor (AR) plays an essential role in prostate cancer progression and is a key target for prostate cancer treatment. However, patients with prostate cancer undergoing androgen deprivation therapy eventually experience biochemical relapse, with hormone-sensitive prostate cancer progressing into castration-resistant prostate cancer (CRPC). The widespread application of secondary antiandrogens, such as enzalutamide, indicates that targeting AR remains the most efficient method for CRPC treatment. Unfortunately, neither can block AR signaling thoroughly, leading to AR reactivation within several months. Here, we report an approach for suppressing reactivated AR signaling in the CRPC stage. A combination of the protein phosphatase 1 subunit α (PP1α)-specific inhibitor tautomycin and enzalutamide synergistically inhibited cell proliferation and AR signaling in LNCaP and C4-2 cells, as well as in AR variant-positive 22RV1 cells. Our results revealed that enzalutamide competed with residual androgens in CRPC, enhancing tautomycin-mediated AR degradation. In addition, the remaining competitive inhibitory role of enzalutamide on AR facilitated tautomycin-induced AR degradation in 22RV1 cells, further decreasing ARv7 levels via a full-length AR/ARv7 interaction. Taken together, our findings suggest that the combination of tautomycin and enzalutamide could achieve a more comprehensive inhibition of AR signaling in CRPC. AR degraders combined with AR antagonists may represent a new therapeutic strategy for CRPC.
Collapse
|
68
|
Wang J, Park KS, Yu X, Gong W, Earp HS, Wang G, Jin J, Cai L. A cryptic transactivation domain of EZH2 binds AR and AR's splice variant, promoting oncogene activation and tumorous transformation. Nucleic Acids Res 2022; 50:10929-10946. [PMID: 36300627 PMCID: PMC9638897 DOI: 10.1093/nar/gkac861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 12/26/2022] Open
Abstract
Enhancer of Zeste Homolog 2 (EZH2) and androgen receptor (AR) are crucial chromatin/gene regulators involved in the development and/or progression of prostate cancer, including advanced castration-resistant prostate cancer (CRPC). To sustain prostate tumorigenicity, EZH2 establishes non-canonical biochemical interaction with AR for mediating oncogene activation, in addition to its canonical role as a transcriptional repressor and enzymatic subunit of Polycomb Repressive Complex 2 (PRC2). However, the molecular basis underlying non-canonical activities of EZH2 in prostate cancer remains elusive, and a therapeutic strategy for targeting EZH2:AR-mediated oncogene activation is also lacking. Here, we report that a cryptic transactivation domain of EZH2 (EZH2TAD) binds both AR and AR spliced variant 7 (AR-V7), a constitutively active AR variant enriched in CRPC, mediating assembly and/or recruitment of transactivation-related machineries at genomic sites that lack PRC2 binding. Such non-canonical targets of EZH2:AR/AR-V7:(co-)activators are enriched for the clinically relevant oncogenes. We also show that EZH2TAD is required for the chromatin recruitment of EZH2 to oncogenes, for EZH2-mediated oncogene activation and for CRPC growth in vitro and in vivo. To completely block EZH2's multifaceted oncogenic activities in prostate cancer, we employed MS177, a recently developed proteolysis-targeting chimera (PROTAC) of EZH2. Strikingly, MS177 achieved on-target depletion of both EZH2's canonical (EZH2:PRC2) and non-canonical (EZH2TAD:AR/AR-V7:co-activators) complexes in prostate cancer cells, eliciting far more potent antitumor effects than the catalytic inhibitors of EZH2. Overall, this study reports a previously unappreciated requirement for EZH2TAD for mediating EZH2's non-canonical (co-)activator recruitment and gene activation functions in prostate cancer and suggests EZH2-targeting PROTACs as a potentially attractive therapeutic for the treatment of aggressive prostate cancer that rely on the circuits wired by EZH2 and AR.
Collapse
Affiliation(s)
- Jun Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
69
|
A COP1-GATA2 axis suppresses AR signaling and prostate cancer. Proc Natl Acad Sci U S A 2022; 119:e2205350119. [PMID: 36251994 PMCID: PMC9618149 DOI: 10.1073/pnas.2205350119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Androgen receptor (AR) signaling is crucial for driving prostate cancer (PCa), the most diagnosed and the second leading cause of death in male patients with cancer in the United States. Androgen deprivation therapy is initially effective in most instances of AR-positive advanced or metastatic PCa. However, patients inevitably develop lethal castration-resistant PCa (CRPC), which is also resistant to the next-generation AR signaling inhibitors. Most CRPCs maintain AR expression, and blocking AR signaling remains a main therapeutic approach. GATA2 is a pioneer transcription factor emerging as a key therapeutic target for PCa because it promotes AR expression and activation. While directly inhibiting GATA2 transcriptional activity remains challenging, enhancing GATA2 degradation is a plausible therapeutic strategy. How GATA2 protein stability is regulated in PCa remains unknown. Here, we show that constitutive photomorphogenesis protein 1 (COP1), an E3 ubiquitin ligase, drives GATA2 ubiquitination at K419/K424 for degradation. GATA2 lacks a conserved [D/E](x)xxVP[D/E] degron but uses alternate BR1/BR2 motifs to bind COP1. By promoting GATA2 degradation, COP1 inhibits AR expression and activation and represses PCa cell and xenograft growth and castration resistance. Accordingly, GATA2 overexpression or COP1 mutations that disrupt COP1-GATA2 binding block COP1 tumor-suppressing activities. We conclude that GATA2 is a major COP1 substrate in PCa and that COP1 promotion of GATA2 degradation is a direct mechanism for regulating AR expression and activation, PCa growth, and castration resistance.
Collapse
|
70
|
Xie J, He H, Kong W, Li Z, Gao Z, Xie D, Sun L, Fan X, Jiang X, Zheng Q, Li G, Zhu J, Zhu G. Targeting androgen receptor phase separation to overcome antiandrogen resistance. Nat Chem Biol 2022; 18:1341-1350. [PMID: 36229685 DOI: 10.1038/s41589-022-01151-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
Patients with castration-resistant prostate cancer inevitably acquire resistance to antiandrogen therapies in part because of androgen receptor (AR) mutations or splice variants enabling restored AR signaling. Here we show that ligand-activated AR can form transcriptionally active condensates. Both structured and unstructured regions of AR contribute to the effective phase separation of AR and disordered N-terminal domain plays a predominant role. AR liquid-liquid phase separation behaviors faithfully report transcriptional activity and antiandrogen efficacy. Antiandrogens can promote phase separation and transcriptional activity of AR-resistant mutants in a ligand-independent manner. We conducted a phase-separation-based phenotypic screen and identified ET516 that specifically disrupts AR condensates, effectively suppresses AR transcriptional activity and inhibits the proliferation and tumor growth of prostate cancer cells expressing AR-resistant mutants. Our results demonstrate liquid-liquid phase separation as an emerging mechanism underlying drug resistance and show that targeting phase separation may provide a feasible approach for drug discovery.
Collapse
Affiliation(s)
- Jingjing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Etern Biopharma, Shanghai, China
| | - Hao He
- Etern Biopharma, Shanghai, China
| | - Wenna Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Etern Biopharma, Shanghai, China
| | - Ziwen Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | | | | | - Lin Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Etern Biopharma, Shanghai, China
| | | | | | | | - Guo Li
- Etern Biopharma, Shanghai, China
| | | | - Guangya Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China. .,Lingang Laboratory, Shanghai, China.
| |
Collapse
|
71
|
Pujantell M, Altfeld M. Consequences of sex differences in Type I IFN responses for the regulation of antiviral immunity. Front Immunol 2022; 13:986840. [PMID: 36189206 PMCID: PMC9522975 DOI: 10.3389/fimmu.2022.986840] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The immune system protects us from pathogens, such as viruses. Antiviral immune mechanisms aim to limit viral replication, and must maintain immunological homeostasis to avoid excessive inflammation and damage to the host. Sex differences in the manifestation and progression of immune-mediated disease point to sex-specific factors modulating antiviral immunity. The exact mechanisms regulating these immunological differences between females and males are still insufficiently understood. Females are known to display stronger Type I IFN responses and are less susceptible to viral infections compared to males, indicating that Type I IFN responses might contribute to the sexual dimorphisms observed in antiviral responses. Here, we review the impact of sex hormones and X chromosome-encoded genes on differences in Type I IFN responses between females and males; and discuss the consequences of sex differences in Type I IFN responses for the regulation of antiviral immune responses.
Collapse
Affiliation(s)
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
72
|
Sowalsky AG, Figueiredo I, Lis RT, Coleman I, Gurel B, Bogdan D, Yuan W, Russo JW, Bright JR, Whitlock NC, Trostel SY, Ku AT, Patel RA, True LD, Welti J, Jimenez-Vacas JM, Rodrigues DN, Riisnaes R, Neeb A, Sprenger CT, Swain A, Wilkinson S, Karzai F, Dahut WL, Balk SP, Corey E, Nelson PS, Haffner MC, Plymate SR, de Bono JS, Sharp A. Assessment of Androgen Receptor Splice Variant-7 as a Biomarker of Clinical Response in Castration-Sensitive Prostate Cancer. Clin Cancer Res 2022; 28:3509-3525. [PMID: 35695870 PMCID: PMC9378683 DOI: 10.1158/1078-0432.ccr-22-0851] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Therapies targeting the androgen receptor (AR) have improved the outcome for patients with castration-sensitive prostate cancer (CSPC). Expression of the constitutively active AR splice variant-7 (AR-V7) has shown clinical utility as a predictive biomarker of AR-targeted therapy resistance in castration-resistant prostate cancer (CRPC), but its importance in CSPC remains understudied. EXPERIMENTAL DESIGN We assessed different approaches to quantify AR-V7 mRNA and protein in prostate cancer cell lines, patient-derived xenograft (PDX) models, publicly available cohorts, and independent institutional clinical cohorts, to identify reliable approaches for detecting AR-V7 mRNA and protein and its association with clinical outcome. RESULTS In CSPC and CRPC cohorts, AR-V7 mRNA was much less abundant when detected using reads across splice boundaries than when considering isoform-specific exonic reads. The RM7 AR-V7 antibody had increased sensitivity and specificity for AR-V7 protein detection by immunohistochemistry (IHC) in CRPC cohorts but rarely identified AR-V7 protein reactivity in CSPC cohorts, when compared with the EPR15656 AR-V7 antibody. Using multiple CRPC PDX models, we demonstrated that AR-V7 expression was exquisitely sensitive to hormonal manipulation. In CSPC institutional cohorts, AR-V7 protein quantification by either assay was associated neither with time to development of castration resistance nor with overall survival, and intense neoadjuvant androgen-deprivation therapy did not lead to significant AR-V7 mRNA or staining following treatment. Neither pre- nor posttreatment AR-V7 levels were associated with volumes of residual disease after therapy. CONCLUSIONS This study demonstrates that further analytical validation and clinical qualification are required before AR-V7 can be considered for clinical use in CSPC as a predictive biomarker.
Collapse
Affiliation(s)
| | | | - Rosina T. Lis
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ilsa Coleman
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Bora Gurel
- Institute of Cancer Research, London, UK
| | | | - Wei Yuan
- Institute of Cancer Research, London, UK
| | | | - John R. Bright
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | | | - Anson T. Ku
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | | | | | | | | | | | - Antje Neeb
- Institute of Cancer Research, London, UK
| | | | | | | | - Fatima Karzai
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Steven P. Balk
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Eva Corey
- University of Washington, Seattle, Washington
| | - Peter S. Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Michael C. Haffner
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Stephen R. Plymate
- University of Washington, Seattle, Washington
- Geriatrics Research, Education and Clinical Center, VAPSHCS, Seattle, Washington
| | - Johann S. de Bono
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Adam Sharp
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
73
|
Jinna N, Rida P, Smart M, LaBarge M, Jovanovic-Talisman T, Natarajan R, Seewaldt V. Adaptation to Hypoxia May Promote Therapeutic Resistance to Androgen Receptor Inhibition in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23168844. [PMID: 36012111 PMCID: PMC9408190 DOI: 10.3390/ijms23168844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) surpasses other BC subtypes as the most challenging to treat due to its lack of traditional BC biomarkers. Nearly 30% of TNBC patients express the androgen receptor (AR), and the blockade of androgen production and AR signaling have been the cornerstones of therapies for AR-positive TNBC. However, the majority of women are resistant to AR-targeted therapy, which is a major impediment to improving outcomes for the AR-positive TNBC subpopulation. The hypoxia signaling cascade is frequently activated in the tumor microenvironment in response to low oxygen levels; activation of the hypoxia signaling cascade allows tumors to survive despite hypoxia-mediated interference with cellular metabolism. The activation of hypoxia signaling networks in TNBC promotes resistance to most anticancer drugs including AR inhibitors. The activation of hypoxia network signaling occurs more frequently in TNBC compared to other BC subtypes. Herein, we examine the (1) interplay between hypoxia signaling networks and AR and (2) whether hypoxia and hypoxic stress adaptive pathways promote the emergence of resistance to therapies that target AR. We also pose the well-supported question, “Can the efficacy of androgen-/AR-targeted treatments be enhanced by co-targeting hypoxia?” By critically examining the evidence and the complex entwinement of these two oncogenic pathways, we argue that the simultaneous targeting of androgen biosynthesis/AR signaling and hypoxia may enhance the sensitivity of AR-positive TNBCs to AR-targeted treatments, derail the emergence of therapy resistance, and improve patient outcomes.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Max Smart
- Rowland Hall, Salt Lake City, UT 84102, USA
| | - Mark LaBarge
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Victoria Seewaldt
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
74
|
Zhao Y, Hu X, Yu H, Liu X, Sun H, Shao C. Alternations of gene expression in PI3K and AR pathways and DNA methylation features contribute to metastasis of prostate cancer. Cell Mol Life Sci 2022; 79:436. [PMID: 35864178 PMCID: PMC11072339 DOI: 10.1007/s00018-022-04456-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The molecular heterogeneity of prostate cancer (PCa) gives rise to distinct tumor subclasses based on epigenetic modification and gene expression signatures. Identification of clinically actionable molecular subtypes of PCa is key to improving patient outcome, and the balance between specific pathways may influence PCa outcome. It is also urgent to identify progression-related markers through cytosine-guanine (CpG) methylation in predicting metastasis for patients with PCa. METHODS We performed bioinformatics analysis of transcriptomic, and clinical data in an integrated cohort of 551 prostate samples. The datasets included retrospective The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. Two algorithms, Least Absolute Shrinkage and Selector Operation and Support Vector Machine-Recursive Feature Elimination, were used to select significant CpGs. RESULTS We found that PCa progression is more likely to occur after the third year through conditional survival (CS) analysis, and prostate-specific antigen (PSA) was a better predictor of Progression-free survival (PFS) than Gleason score (GS). Our study first demonstrated that PCa tumors have distinct expression profiles based on the expression of genes involved in androgen receptor (AR) and PI3K-AKT, which influence disease outcome. Our results also indicated that there are multiple phenotypes relevant to the AR-PI3K axis in PCa, where tumors with mixed phenotype may be more aggressive or have worse outcome than quiescent phenotype. In terms of epigenetics, we obtained CpG sites and their corresponding genes which have a good predictive value of PFS. However, various evidences showed that the predictive value of CpGs corresponding genes was much lower than GpG sites in Overall survival (OS) and PFS. CONCLUSIONS PCa classification specific to AR and PI3K pathways provides novel biological insight into previously established PCa subtypes and may help develop personalized therapies. Our results support the potential clinical utility of DNA methylation signatures to distinguish tumor metastasis and to predict prognosis and outcomes.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Xin Hu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Huimin Sun
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Chen Shao
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
75
|
Kim S, Au CC, Jamalruddin MAB, Abou-Ghali NE, Mukhtar E, Portella L, Berger A, Worroll D, Vatsa P, Rickman DS, Nanus DM, Giannakakou P. AR-V7 exhibits non-canonical mechanisms of nuclear import and chromatin engagement in castrate-resistant prostate cancer. eLife 2022; 11:e73396. [PMID: 35848798 PMCID: PMC9398446 DOI: 10.7554/elife.73396] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 07/17/2022] [Indexed: 11/19/2022] Open
Abstract
Expression of the AR splice variant, androgen receptor variant 7 (AR-V7), in prostate cancer is correlated with poor patient survival and resistance to AR targeted therapies and taxanes. Currently, there is no specific inhibitor of AR-V7, while the molecular mechanisms regulating its biological function are not well elucidated. Here, we report that AR-V7 has unique biological features that functionally differentiate it from canonical AR-fl or from the second most prevalent variant, AR-v567. First, AR-V7 exhibits fast nuclear import kinetics via a pathway distinct from the nuclear localization signal dependent importin-α/β pathway used by AR-fl and AR-v567. We also show that the dimerization box domain, known to mediate AR dimerization and transactivation, is required for AR-V7 nuclear import but not for AR-fl. Once in the nucleus, AR-V7 is transcriptionally active, yet exhibits unusually high intranuclear mobility and transient chromatin interactions, unlike the stable chromatin association of liganded AR-fl. The high intranuclear mobility of AR-V7 together with its high transcriptional output, suggest a Hit-and-Run mode of transcription. Our findings reveal unique mechanisms regulating AR-V7 activity, offering the opportunity to develop selective therapeutic interventions.
Collapse
Affiliation(s)
- Seaho Kim
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - CheukMan C Au
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | | | | | - Eiman Mukhtar
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Luigi Portella
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Adeline Berger
- Department of Pathology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Daniel Worroll
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Prerna Vatsa
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - David S Rickman
- Department of Pathology, Weill Cornell Medical CollegeNew YorkUnited States
| | - David M Nanus
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Meyer Cancer Center, Weill Cornell Medical CollegeNew YorkUnited States
| | - Paraskevi Giannakakou
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Meyer Cancer Center, Weill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
76
|
Quick J, Santos ND, Cheng MHY, Chander N, Brimacombe CA, Kulkarni J, van der Meel R, Tam YYC, Witzigmann D, Cullis PR. Lipid nanoparticles to silence androgen receptor variants for prostate cancer therapy. J Control Release 2022; 349:174-183. [PMID: 35780952 DOI: 10.1016/j.jconrel.2022.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/18/2022]
Abstract
Advanced-stage prostate cancer remains an incurable disease with poor patient prognosis. There is an unmet clinical need to target androgen receptor (AR) splice variants, which are key drivers of the disease. Some AR splice variants are insensitive to conventional hormonal or androgen deprivation therapy due to loss of the androgen ligand binding domain at the C-terminus and are constitutively active. Here we explore the use of RNA interference (RNAi) to target a universally conserved region of all AR splice variants for cleavage and degradation, thereby eliminating protein level resistance mechanisms. To this end, we tested five siRNA sequences designed against exon 1 of the AR mRNA and identified several that induced potent knockdown of full-length and truncated variant ARs in the 22Rv1 human prostate cancer cell line. We then demonstrated that 2'O methyl modification of the top candidate siRNA (siARvm) enhanced AR and AR-V7 mRNA silencing potency in both 22Rv1 and LNCaP cells, which represent two different prostate cancer models. For downstream in vivo delivery, we formulated siARvm-LNPs and functionally validated these in vitro by demonstrating knockdown of AR and AR-V7 mRNA in prostate cancer cells and loss of AR-mediated transcriptional activation of the PSA gene in both cell lines following treatment. We also observed that siARvm-LNP induced cell viability inhibition was more potent compared to LNP containing siRNA targeting full-length AR mRNA (siARfl-LNP) in 22Rv1 cells as their proliferation is more dependent on AR splice variants than LNCaP and PC3 cells. The in vivo biodistribution of siARvm-LNPs was determined in 22Rv1 tumor-bearing mice by incorporating 14C-radiolabelled DSPC in LNP formulation, and we observed a 4.4% ID/g tumor accumulation following intravenous administration. Finally, treatment of 22Rv1 tumor bearing mice with siARvm-LNP resulted in significant tumor growth inhibition and survival benefit compared to siARfl-LNP or the siLUC-LNP control. To best of our knowledge, this is the first report demonstrating therapeutic effects of LNP-siRNA targeting AR splice variants in prostate cancer.
Collapse
Affiliation(s)
- Joslyn Quick
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nancy Dos Santos
- BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Miffy H Y Cheng
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nisha Chander
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Cedric A Brimacombe
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jayesh Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Roy van der Meel
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
77
|
Gao L, Han B, Dong X. The Androgen Receptor and Its Crosstalk With the Src Kinase During Castrate-Resistant Prostate Cancer Progression. Front Oncol 2022; 12:905398. [PMID: 35832549 PMCID: PMC9271573 DOI: 10.3389/fonc.2022.905398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
While the androgen receptor (AR) signalling is the mainstay therapeutic target for metastatic prostate cancers, these tumours will inevitably develop therapy resistance to AR pathway inhibitors suggesting that prostate tumour cells possess the capability to develop mechanisms to bypass their dependency on androgens and/or AR to survive and progress. In many studies, protein kinases such as Src are reported to promote prostate tumour progression. Specifically, the pro-oncogene tyrosine Src kinase regulates prostate cancer cell proliferation, adhesion, invasion, and metastasis. Not only can Src be activated under androgen depletion, low androgen, and supraphysiological androgen conditions, but also through crosstalk with other oncogenic pathways. Reciprocal activations between Src and AR proteins had also been reported. These findings rationalize Src inhibitors to be used to treat castrate-resistant prostate tumours. Although several Src inhibitors had advanced to clinical trials, the failure to observe patient benefits from these studies suggests that further evaluation of the roles of Src in prostate tumours is required. Here, we summarize the interplay between Src and AR signalling during castrate-resistant prostate cancer progression to provide insights on possible approaches to treat prostate cancer patients.
Collapse
Affiliation(s)
- Lin Gao
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuesen Dong
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Xuesen Dong,
| |
Collapse
|
78
|
Loria R, Vici P, Di Lisa FS, Soddu S, Maugeri-Saccà M, Bon G. Cross-Resistance Among Sequential Cancer Therapeutics: An Emerging Issue. Front Oncol 2022; 12:877380. [PMID: 35814399 PMCID: PMC9259985 DOI: 10.3389/fonc.2022.877380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past two decades, cancer treatment has benefited from having a significant increase in the number of targeted drugs approved by the United States Food and Drug Administration. With the introduction of targeted therapy, a great shift towards a new era has taken place that is characterized by reduced cytotoxicity and improved clinical outcomes compared to traditional chemotherapeutic drugs. At present, targeted therapies and other systemic anti-cancer therapies available (immunotherapy, cytotoxic, endocrine therapies and others) are used alone or in combination in different settings (neoadjuvant, adjuvant, and metastatic). As a result, it is not uncommon for patients affected by an advanced malignancy to receive subsequent anti-cancer therapies. In this challenging complexity of cancer treatment, the clinical pathways of real-life patients are often not as direct as predicted by standard guidelines and clinical trials, and cross-resistance among sequential anti-cancer therapies represents an emerging issue. In this review, we summarize the main cross-resistance events described in the diverse tumor types and provide insight into the molecular mechanisms involved in this process. We also discuss the current challenges and provide perspectives for the research and development of strategies to overcome cross-resistance and proceed towards a personalized approach.
Collapse
Affiliation(s)
- Rossella Loria
- Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizia Vici
- Unit of Phase IV Trials, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Sofia Di Lisa
- Unit of Phase IV Trials, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Medical Oncology A, Department of Radiological, Oncological, and Anatomo-Pathological Sciences, Umberto I University Hospital, University Sapienza, Rome, Italy
| | - Silvia Soddu
- Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Giulia Bon,
| |
Collapse
|
79
|
Yehya A, Ghamlouche F, Zahwe A, Zeid Y, Wakimian K, Mukherji D, Abou-Kheir W. Drug resistance in metastatic castration-resistant prostate cancer: an update on the status quo. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:667-690. [PMID: 36176747 PMCID: PMC9511807 DOI: 10.20517/cdr.2022.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related morbidity and mortality in men globally. Despite improvements in the diagnosis and treatment of PCa, a significant proportion of patients with high-risk localized disease and all patients with advanced disease at diagnosis will experience progression to metastatic castration-resistant prostate cancer (mCRPC). Multiple drugs are now approved as the standard of care treatments for patients with mCRPC that have been shown to prolong survival. Although the majority of patients will respond initially, primary and secondary resistance to these therapies make mCRPC an incurable disease. Several molecular mechanisms underlie the development of mCRPC, with the androgen receptor (AR) axis being the main driver as well as the key drug target. Understanding resistance mechanisms is crucial for discovering novel therapeutic strategies to delay or reverse the progression of the disease. In this review, we address the diverse mechanisms of drug resistance in mCRPC. In addition, we shed light on emerging targeted therapies currently being tested in clinical trials with promising potential to overcome mCRPC-drug resistance.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Fatima Ghamlouche
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Amin Zahwe
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Yousef Zeid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Kevork Wakimian
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
80
|
Luthold C, Hallal T, Labbé DP, Bordeleau F. The Extracellular Matrix Stiffening: A Trigger of Prostate Cancer Progression and Castration Resistance? Cancers (Basel) 2022; 14:cancers14122887. [PMID: 35740556 PMCID: PMC9221142 DOI: 10.3390/cancers14122887] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Despite advancements made in diagnosis and treatment, prostate cancer remains the second most diagnosed cancer among men worldwide in 2020, and the first in North America and Europe. Patients with localized disease usually respond well to first-line treatments, however, up to 30% develop castration-resistant prostate cancer (CRPC), which is often metastatic, making this stage of the disease incurable and ultimately fatal. Over the last years, interest has grown into the extracellular matrix (ECM) stiffening as an important mediator of diseases, including cancers. While this process is increasingly well-characterized in breast cancer, a similar in-depth look at ECM stiffening remains lacking for prostate cancer. In this review, we scrutinize the current state of literature regarding ECM stiffening in prostate cancer and its potential association with disease progression and castration resistance.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Division of Urology, Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
- Correspondence: (D.P.L.); (F.B.)
| | - François Bordeleau
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (D.P.L.); (F.B.)
| |
Collapse
|
81
|
Patel M, Pennel KAF, Quinn JA, Hood H, Chang DK, Biankin AV, Rebus S, Roseweir AK, Park JH, Horgan PG, McMillan DC, Edwards J. Spatial expression of IKK-alpha is associated with a differential mutational landscape and survival in primary colorectal cancer. Br J Cancer 2022; 126:1704-1714. [PMID: 35173303 PMCID: PMC9174220 DOI: 10.1038/s41416-022-01729-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To understand the relationship between key non-canonical NF-κB kinase IKK-alpha(α), tumour mutational profile and survival in primary colorectal cancer. METHODS Immunohistochemical expression of IKKα was assessed in a cohort of 1030 patients who had undergone surgery for colorectal cancer using immunohistochemistry. Mutational tumour profile was examined using a customised gene panel. Immunofluorescence was used to identify the cellular location of punctate IKKα expression. RESULTS Two patterns of IKKα expression were observed; firstly, in the tumour cell cytoplasm and secondly as discrete 'punctate' areas in a juxtanuclear position. Although cytoplasmic expression of IKKα was not associated with survival, high 'punctate' IKKα expression was associated with significantly reduced cancer-specific survival on multivariate analysis. High punctate expression of IKKα was associated with mutations in KRAS and PDGFRA. Dual immunofluorescence suggested punctate IKKα expression was co-located with the Golgi apparatus. CONCLUSIONS These results suggest the spatial expression of IKKα is a potential biomarker in colorectal cancer. This is associated with a differential mutational profile highlighting possible distinct signalling roles for IKKα in the context of colorectal cancer as well as potential implications for future treatment strategies using IKKα inhibitors.
Collapse
Affiliation(s)
- Meera Patel
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Kathryn A F Pennel
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jean A Quinn
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hannah Hood
- School of Medicine, Wolfson Medical School Building, University of Glasgow, Glasgow, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Antonia K Roseweir
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - James H Park
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
82
|
Mori JO, Shafran JS, Stojanova M, Katz MH, Gignac GA, Wisco JJ, Heaphy CM, Denis GV. Novel forms of prostate cancer chemoresistance to successful androgen deprivation therapy demand new approaches: Rationale for targeting BET proteins. Prostate 2022; 82:1005-1015. [PMID: 35403746 PMCID: PMC11134172 DOI: 10.1002/pros.24351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
In patients with prostate cancer, the duration of remission after treatment with androgen deprivation therapies (ADTs) varies dramatically. Clinical experience has demonstrated difficulties in predicting individual risk for progression due to chemoresistance. Drug combinations that inhibit androgen biosynthesis (e.g., abiraterone acetate) and androgen signaling (e.g., enzalutamide or apalutamide) have proven so effective that new forms of ADT resistance are emerging. In particular, prostate cancers with a neuroendocrine transcriptional signature, which demonstrate greater plasticity, and potentially, increased predisposition to metastasize, are becoming more prevalent. Notably, these subtypes had in fact been relatively rare before the widespread success of novel ADT regimens. Therefore, better understanding of these resistance mechanisms and potential alternative treatments are necessary to improve progression-free survival for patients treated with ADT. Targeting the bromodomain and extra-terminal (BET) protein family, specifically BRD4, with newer investigational agents may represent one such option. Several families of chromatin modifiers appear to be involved in ADT resistance and targeting these pathways could also offer novel approaches. However, the limited transcriptional and genomic information on ADT resistance mechanisms, and a serious lack of patient diversity in clinical trials, demand profiling of a much broader clinical and demographic range of patients, before robust conclusions can be drawn and a clear direction established.
Collapse
Affiliation(s)
- Joakin O. Mori
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Jordan S. Shafran
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Marija Stojanova
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Mark H. Katz
- Department of Urology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gretchen A. Gignac
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Jonathan J. Wisco
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christopher M. Heaphy
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gerald V. Denis
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
83
|
Yamada-Kanazawa S, Mijiddorj MT, Kajihara I, Kanemaru H, Sawamura S, Makino K, Aoi J, Masuguchi S, Fukushima S. Upregulated androgen receptor variant-7 mRNA and protein in extramammary Paget's disease. J Eur Acad Dermatol Venereol 2022; 36:e724-e726. [PMID: 35592917 DOI: 10.1111/jdv.18229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Affiliation(s)
- S Yamada-Kanazawa
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - M T Mijiddorj
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - I Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - H Kanemaru
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - S Sawamura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - K Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - J Aoi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - S Masuguchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - S Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
84
|
Liu JS, Fang WK, Yang SM, Wu MC, Chen TJ, Chen CM, Lin TY, Liu KL, Wu CM, Chen YC, Chuu CP, Wang LY, Hsieh HP, Kung HJ, Wang WC. Natural product myricetin is a pan-KDM4 inhibitor which with poly lactic-co-glycolic acid formulation effectively targets castration-resistant prostate cancer. J Biomed Sci 2022; 29:29. [PMID: 35534851 PMCID: PMC9082844 DOI: 10.1186/s12929-022-00812-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
Background Castration-resistant prostate cancer (CRPC) with sustained androgen receptor (AR) signaling remains a critical clinical challenge, despite androgen depletion therapy. The Jumonji C-containing histone lysine demethylase family 4 (KDM4) members, KDM4A‒KDM4C, serve as critical coactivators of AR to promote tumor growth in prostate cancer and are candidate therapeutic targets to overcome AR mutations/alterations-mediated resistance in CRPC. Methods In this study, using a structure-based approach, we identified a natural product, myricetin, able to block the demethylation of histone 3 lysine 9 trimethylation by KDM4 members and evaluated its effects on CRPC. A structure-based screening was employed to search for a natural product that inhibited KDM4B. Inhibition kinetics of myricetin was determined. The cytotoxic effect of myricetin on various prostate cancer cells was evaluated. The combined effect of myricetin with enzalutamide, a second-generation AR inhibitor toward C4-2B, a CRPC cell line, was assessed. To improve bioavailability, myricetin encapsulated by poly lactic-co-glycolic acid (PLGA), the US food and drug administration (FDA)-approved material as drug carriers, was synthesized and its antitumor activity alone or with enzalutamide was evaluated using in vivo C4-2B xenografts. Results Myricetin was identified as a potent α-ketoglutarate-type inhibitor that blocks the demethylation activity by KDM4s and significantly reduced the proliferation of both androgen-dependent (LNCaP) and androgen-independent CRPC (CWR22Rv1 and C4-2B). A synergistic cytotoxic effect toward C4-2B was detected for the combination of myricetin and enzalutamide. PLGA-myricetin, enzalutamide, and the combined treatment showed significantly greater antitumor activity than that of the control group in the C4-2B xenograft model. Tumor growth was significantly lower for the combination treatment than for enzalutamide or myricetin treatment alone. Conclusions These results suggest that myricetin is a pan-KDM4 inhibitor and exhibited potent cell cytotoxicity toward CRPC cells. Importantly, the combination of PLGA-encapsulated myricetin with enzalutamide is potentially effective for CRPC. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00812-3.
Collapse
|
85
|
Tyner JW, Haderk F, Kumaraswamy A, Baughn LB, Van Ness B, Liu S, Marathe H, Alumkal JJ, Bivona TG, Chan KS, Druker BJ, Hutson AD, Nelson PS, Sawyers CL, Willey CD. Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Res 2022; 82:1448-1460. [PMID: 35195258 PMCID: PMC9018544 DOI: 10.1158/0008-5472.can-21-3695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Decades of research into the molecular mechanisms of cancer and the development of novel therapeutics have yielded a number of remarkable successes. However, our ability to broadly assign effective, rationally targeted therapies in a personalized manner remains elusive for many patients, and drug resistance persists as a major problem. This is in part due to the well-documented heterogeneity of cancer, including the diversity of tumor cell lineages and cell states, the spectrum of somatic mutations, the complexity of microenvironments, and immune-suppressive features and immune repertoires, which collectively require numerous different therapeutic approaches. Here, we describe a framework to understand the types and biological causes of resistance, providing translational opportunities to tackle drug resistance by rational therapeutic strategies.
Collapse
Affiliation(s)
- Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | | | - Linda B. Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brian Van Ness
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Himangi Marathe
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joshi J. Alumkal
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Keith Syson Chan
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Alan D. Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Peter S. Nelson
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
86
|
Comprehensive genomics in androgen receptor-dependent castration-resistant prostate cancer identifies an adaptation pathway mediated by opioid receptor kappa 1. Commun Biol 2022; 5:299. [PMID: 35365763 PMCID: PMC8976065 DOI: 10.1038/s42003-022-03227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Castration resistance is a lethal form of treatment failure of prostate cancer (PCa) and is associated with ligand-independent activation of the androgen receptor (AR). It is only partially understood how the AR mediates survival and castration-resistant growth of PCa upon androgen deprivation. We investigated integrative genomics using a patient-derived xenograft model recapitulating acquired, AR-dependent castration-resistant PCa (CRPC). Sequencing of chromatin immunoprecipitation using an anti-AR antibody (AR-ChIP seq) revealed distinct profiles of AR binding site (ARBS) in androgen-dependent and castration-resistant xenograft tumors compared with those previously reported based on human PCa cells or tumor tissues. An integrative genetic analysis identified several AR-target genes associated with CRPC progression including OPRK1, which harbors ARBS and was upregulated upon androgen deprivation. Loss of function of OPRK1 retarded the acquisition of castration resistance and inhibited castration-resistant growth of PCa both in vitro and in vivo. Immunohistochemical analysis showed that expression of OPRK1, a G protein-coupled receptor, was upregulated in human prostate cancer tissues after preoperative androgen derivation or CRPC progression. These data suggest that OPRK1 is involved in post-castration survival and cellular adaptation process toward castration-resistant progression of PCa, accelerating the clinical implementation of ORPK1-targeting therapy in the management of this lethal disease. Through comparative genomics using PDX models of androgen-dependent (AD) and androgen-resistant (AR) tumors, Makino et al. identify opioid receptor kappa 1 (OPRK1) as being associated with castration-resistance. Loss of OPRK1 function delays castration-resistance and inhibits castration-resistant growth of prostate cancer cells in culture and in vivo, suggesting OPRK1 as a therapeutic target.
Collapse
|
87
|
Wang H, Chang Z, Cai GD, Yang P, Chen JH, Yang SS, Guo YF, Wang MY, Zheng XH, Lei JP, Liu PQ, Zhao DP, Wang JJ. The novel indomethacin derivative CZ-212-3 exerts antitumor effects on castration-resistant prostate cancer by degrading androgen receptor and its variants. Acta Pharmacol Sin 2022; 43:1024-1032. [PMID: 34321613 DOI: 10.1038/s41401-021-00738-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022]
Abstract
Androgen receptor (AR) serves as a main therapeutic target for prostate cancer (PCa). However, resistance to anti-androgen therapy (SAT) inevitably occurs. Indomethacin is a nonsteroidal anti-inflammatory drug that exhibits activity against prostate cancer. Recently, we designed and synthesized a series of new indomethacin derivatives (CZ compounds) via Pd (II)-catalyzed synthesis of substituted N-benzoylindole. In this study, we evaluated the antitumor effect of these novel indomethacin derivatives in castration-resistant prostate cancer (CRPC). Upon employing CCK-8 cell viability assays and colony formation assays, we found that these derivatives had high efficacy against CRPC tumor growth in vitro. Among these derivatives, CZ-212-3 exhibited the most potent efficacy against CRPC cell survival and on apoptosis induction. Mechanistically, CZ-212-3 significantly suppressed the expression of AR target gene networks by degrading AR and its variants. Consistently, CZ-212-3 significantly inhibited tumor growth in CRPC cell line-based xenograft and PDX models in vivo. Taken together, the data show that the indomethacin derivative CZ-212-3 significantly inhibited CRPC tumor growth by degrading AR and its variants and could be a promising agent for CRPC therapy.
Collapse
|
88
|
Cistrome and transcriptome analysis identifies unique androgen receptor (AR) and AR-V7 splice variant chromatin binding and transcriptional activities. Sci Rep 2022; 12:5351. [PMID: 35354884 PMCID: PMC8969163 DOI: 10.1038/s41598-022-09371-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
The constitutively active androgen receptor (AR) splice variant, AR-V7, plays an important role in resistance to androgen deprivation therapy in castration resistant prostate cancer (CRPC). Studies seeking to determine whether AR-V7 is a partial mimic of the AR, or also has unique activities, and whether the AR-V7 cistrome contains unique binding sites have yielded conflicting results. One limitation in many studies has been the low level of AR variant compared to AR. Here, LNCaP and VCaP cell lines in which AR-V7 expression can be induced to match the level of AR, were used to compare the activities of AR and AR-V7. The two AR isoforms shared many targets, but overall had distinct transcriptomes. Optimal induction of novel targets sometimes required more receptor isoform than classical targets such as PSA. The isoforms displayed remarkably different cistromes with numerous differential binding sites. Some of the unique AR-V7 sites were located proximal to the transcription start sites (TSS). A de novo binding motif similar to a half ARE was identified in many AR-V7 preferential sites and, in contrast to conventional half ARE sites that bind AR-V7, FOXA1 was not enriched at these sites. This supports the concept that the AR isoforms have unique actions with the potential to serve as biomarkers or novel therapeutic targets.
Collapse
|
89
|
Rajput S, Pink D, Findlay S, Woolner E, Lewis JD, McDermott MT. Application of Surface-Enhanced Raman Spectroscopy to Guide Therapy for Advanced Prostate Cancer Patients. ACS Sens 2022; 7:827-838. [PMID: 35271265 DOI: 10.1021/acssensors.1c02551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A critical unmet need for advanced prostate cancer (PCa) patients is optimizing systemic treatments to maximize the benefit for individuals. The response of patients with metastatic castration-resistant prostate cancer (mCRPC) to androgen receptor (AR)-directed hormonal treatments (i.e., enzalutamide and abiraterone) is mediated by the expression of a molecular variant of the androgen receptor called androgen receptor variant 7 (AR-V7). Detection and measurement of AR-V7 in mCRPC patients will lead to more informed PCa treatment. Herein, we demonstrate a quantitative nanoparticle-enhanced sandwich antibody assay for the successful ex vivo measurement of AR-V7 protein in serum from mCRPC patients. The nanoparticles are constructed as extrinsic Raman spectroscopy labels (ERLs), and surface-enhanced Raman spectroscopy (SERS) is used for assay readout. Our approach does not require specialized specimen collection materials, circulating tumor cell enrichment, or pretreatment of serum. Calibration of our assay is accomplished by expressing AR-V7 in an appropriate cell line as AR-V7 is not commercially available. We demonstrate a linear calibration curve from cell lysate and correlate lysate protein with mRNA from cultured prostate cancer cells. Finally, we demonstrate a novel pilot-scale application for clinical use by quantitatively measuring AR-V7 in serum of seven advanced PCa patients. Distinct separation of PCa patients by AR-V7 status (positive or negative) was observed. Together, the presence and amount of AR-V7 in serum offer predictive and prognostic value to inform selection between two classes of systemic treatments (i.e., hormones or taxanes). Triaging patients that are AR-V7-positive to other systemic treatments (e.g., taxane-based chemotherapy) can improve progression-free survival and overall survival.
Collapse
Affiliation(s)
- Sunil Rajput
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Desmond Pink
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Scott Findlay
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Emma Woolner
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Mark T. McDermott
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
90
|
Ferguson DC, Mata DA, Tay TKY, Traina TA, Gucalp A, Chandarlapaty S, D’Alfonso TM, Brogi E, Mullaney K, Ladanyi M, Arcila ME, Benayed R, Ross DS. Androgen receptor splice variant-7 in breast cancer: clinical and pathologic correlations. Mod Pathol 2022; 35:396-402. [PMID: 34593966 PMCID: PMC8863633 DOI: 10.1038/s41379-021-00924-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/09/2022]
Abstract
Androgen receptor (AR) inhibitor therapy is a developing treatment for AR-positive breast cancer (BC) with ongoing clinical trials. AR splice variant-7 (AR-V7) is a truncated variant of AR that leads to AR inhibitor therapy resistance in prostate cancer; recent studies have identified AR-V7 in BC and theorized that AR-V7 can have a similar impact. This study assessed the prevalence and clinicopathologic features associated with AR-V7 in a large BC cohort. BC samples were evaluated by MSK-Fusion targeted RNAseq for AR-V7 detection and MSK-IMPACT targeted DNAseq, including triple-negative tumors with no driver alteration and estrogen receptor-positive/ESR1 wildtype tumors progressing on therapy. Among 196 primary and metastatic/recurrent cases (196 RNAseq, 194DNAseq), 9.7% (19/196) were AR-V7 positive and 90.3% (177/196) AR-V7 negative. All AR-V7 positive BC were AR-positive by immunohistochemistry (19/19). The prevalence of AR-V7 by receptor subtype (N = 189) was: 18% (12/67) in ER-/PgR-/HER2-negative BC, 3.7% (4/109) in ER-positive/HER2-negative BC, and 15.4% (2/13) in HER2-positive BC; AR-V7 was detected in one ER-positive/HER2-unknown BC. Apocrine morphology was observed in 42.1% (8/19) of AR-V7 positive BC and 3.4% (6/177) AR-V7 negative BC (P < 0.00001). Notably, AR-V7 was detected in 2 primary BC and 7 metastatic/recurrent BC patients with no prior endocrine therapy. We conclude that positive AR IHC and apocrine morphology are pathologic features that may indicate testing for AR-V7 is warranted in both primary and metastatic BC in the appropriate clinical context. The study findings further encourage the assessment of AR-V7 as a predictive biomarker for AR antagonist benefit in ongoing clinical BC trials.
Collapse
Affiliation(s)
- Donna C. Ferguson
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas A. Mata
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy KY. Tay
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tiffany A. Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ayca Gucalp
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy M. D’Alfonso
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kerry Mullaney
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria E. Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dara S. Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
91
|
Cole RN, Chen W, Pascal LE, Nelson JB, Wipf P, Wang Z. (+)-JJ-74-138 is a novel non-competitive androgen receptor antagonist. Mol Cancer Ther 2022; 21:483-492. [DOI: 10.1158/1535-7163.mct-21-0432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
|
92
|
Chelakkot C, Yang H, Shin YK. Relevance of Circulating Tumor Cells as Predictive Markers for Cancer Incidence and Relapse. Pharmaceuticals (Basel) 2022; 15:75. [PMID: 35056131 PMCID: PMC8781286 DOI: 10.3390/ph15010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Shedding of cancer cells from the primary site or undetectable bone marrow region into the circulatory system, resulting in clinically overt metastasis or dissemination, is the hallmark of unfavorable invasive cancers. The shed cells remain in circulation until they extravasate to form a secondary metastatic lesion or undergo anoikis. The circulating tumor cells (CTCs) found as single cells or clusters carry a plethora of information, are acknowledged as potential biomarkers for predicting cancer prognosis and cancer progression, and are supposed to play key roles in determining tailored therapies for advanced diseases. With the advent of novel technologies that allow the precise isolation of CTCs, more and more clinical trials are focusing on the prognostic and predictive potential of CTCs. In this review, we summarize the role of CTCs as a predictive marker for cancer incidence, relapse, and response to therapy.
Collapse
Affiliation(s)
- Chaithanya Chelakkot
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Genobio Corp., Seoul 08394, Korea
| | - Hobin Yang
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
| | - Young Kee Shin
- Bio-MAX/N-Bio, Bio-MAX Institute, Seoul National University, Seoul 08226, Korea
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08226, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08226, Korea
| |
Collapse
|
93
|
Abstract
The Androgen Receptor (AR), transcriptionally activated by its ligands, testosterone and dihydrotestosterone (DHT), is widely expressed in cells and tissues, influencing normal biology and disease states. The protein product of the AR gene is involved in the regulation of numerous biological functions, including the development and maintenance of the normal prostate gland and of the cardiovascular, musculoskeletal and immune systems. Androgen signalling, mediated by AR protein, plays a crucial role in the development of prostate cancer (PCa), and is presumed to be involved in other cancers including those of the breast, bladder, liver and kidney. Significant research and reviews have focused on AR protein function; however, inadequate research and literature exist to define the function of AR mRNA in normal and cancer cells. The AR mRNA transcript is nearly 11 Kb long and contains a long 3’ untranslated region (UTR), suggesting its biological role in post-transcriptional regulation, consequently affecting the overall functions of both normal and cancer cells. Research has demonstrated that many biological activities, including RNA stability, translation, cellular trafficking and localization, are associated with the 3’ UTRs of mRNAs. In this review, we describe the potential role of the AR 3’ UTR and summarize RNA-binding proteins (RBPs) that interact with the AR mRNA to regulate post-transcriptional metabolism. We highlight the importance of AR mRNA as a critical modulator of carcinogenesis and its important role in developing therapy-resistant prostate cancer.
Collapse
Affiliation(s)
- Eviania Likos
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA
| | - Asmita Bhattarai
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA
| | - Crystal M Weyman
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Girish C Shukla
- Department of Biological, Geo. and Evs. Sciences, Cleveland State University, Cleveland, OH, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
94
|
Vorontsova SK, Zavarzin IV, Shirinian VZ, Bozhenko EI, Andreeva OE, Sorokin DV, Scherbakov AM, Minyaev ME. Synthesis and crystal structures of D-annulated pentacyclic steroids: looking within and beyond AR signalling in prostate cancer. CrystEngComm 2022. [DOI: 10.1039/d1ce01417j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbocyclic steroids D-annulated at 16α and 17α positions with a 5-membered ring E are easily accessible via the interrupted Nazarov cyclization. Three steroid series have been structurally studied: chlorine-containing D-annulated...
Collapse
|
95
|
Zhang B, Zhang M, Yang Y, Li Q, Yu J, Zhu S, Niu Y, Shang Z. Targeting KDM4A-AS1 represses AR/AR-Vs deubiquitination and enhances enzalutamide response in CRPC. Oncogene 2022; 41:387-399. [PMID: 34759344 PMCID: PMC8755543 DOI: 10.1038/s41388-021-02103-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is a highly malignant type of advanced cancer resistant to androgen deprivation therapy. One of the important mechanisms for the development of CRPC is the persistent imbalanced regulation of AR and AR splice variants (AR/AR-Vs). In this study, we reported KDM4A-AS1, a recently discovered lncRNA, as a tumor promoter that was significantly increased in CRPC cell lines and cancer tissues. Depletion of KDM4A-AS1 significantly reduced cell viability, proliferation, migration in vitro, and tumor growth in vivo. We found that by binding to the NTD domain, KDM4A-AS1 enhances the stability of USP14-AR/AR-Vs complex, and promoted AR/AR-Vs deubiquitination to protect it from MDM2-mediated ubiquitin-proteasome degradation. Moreover, KDM4A-AS1 was found to enhance CRPC drug resistance to enzalutamide by repressing AR/AR-Vs degradation; antisense oligonucleotide drugs targeting KDM4A-AS1 significantly reduced the growth of tumors with enzalutamide resistance. Taken together, our results indicated that KDM4A-AS1 played an important role in the progression of CRPC and enzalutamide resistance by regulating AR/AR-Vs deubiquitination; targeting KDM4A-AS1 has broad clinical application potential.
Collapse
Affiliation(s)
- Boya Zhang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Mingpeng Zhang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yanjie Yang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qi Li
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianpeng Yu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shimiao Zhu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
96
|
Iwabuchi E, Miki Y, Suzuki T, Sasano H. Visualization of the protein-protein interactions of hormone receptors in hormone-dependent cancer research. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R132-R142. [PMID: 37435453 PMCID: PMC10259353 DOI: 10.1530/eo-22-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 07/13/2023]
Abstract
In hormone-dependent cancers, the activation of hormone receptors promotes the progression of cancer cells. Many proteins exert their functions through protein-protein interactions (PPIs). Moreover, in such cancers, hormone-hormone receptor binding, receptor dimerization, and cofactor mobilization PPIs occur primarily in hormone receptors, including estrogen, progesterone, glucocorticoid, androgen, and mineralocorticoid receptors. The visualization of hormone signaling has been primarily reported by immunohistochemistry using specific antibodies; however, the visualization of PPIs is expected to improve our understanding of hormone signaling and disease pathogenesis. Visualization techniques for PPIs include Förster resonance energy transfer (FRET) and bimolecular fluorescence complementation analysis; however, these techniques require the insertion of probes in the cells for PPI detection. Proximity ligation assay (PLA) is a method that could be used for both formalin-fixed paraffin-embedded (FFPE) tissue as well as immunostaining. It can also visualize hormone receptor localization and post-translational modifications of hormone receptors. This review summarizes the results of recent studies on visualization techniques for PPIs with hormone receptors; these techniques include FRET and PLA. In addition, super-resolution microscopy has been recently reported to be applicable to their visualization in both FFPE tissues and living cells. Super-resolution microscopy in conjunction with PLA and FRET could also contribute to the visualization of PPIs and subsequently provide a better understanding of the pathogenesis of hormone-dependent cancers in the future.
Collapse
Affiliation(s)
- Erina Iwabuchi
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDes), Tohoku University, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
97
|
Pang JP, Shen C, Zhou WF, Wang YX, Shan LH, Chai X, Shao Y, Hu XP, Zhu F, Zhu DY, Xiao L, Xu L, Xu XH, Li D, Hou TJ. Discovery of novel antagonists targeting the DNA binding domain of androgen receptor by integrated docking-based virtual screening and bioassays. Acta Pharmacol Sin 2022; 43:229-239. [PMID: 33767381 PMCID: PMC8724294 DOI: 10.1038/s41401-021-00632-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023]
Abstract
Androgen receptor (AR), a ligand-activated transcription factor, is a master regulator in the development and progress of prostate cancer (PCa). A major challenge for the clinically used AR antagonists is the rapid emergence of resistance induced by the mutations at AR ligand binding domain (LBD), and therefore the discovery of novel anti-AR therapeutics that can combat mutation-induced resistance is quite demanding. Therein, blocking the interaction between AR and DNA represents an innovative strategy. However, the hits confirmed targeting on it so far are all structurally based on a sole chemical scaffold. In this study, an integrated docking-based virtual screening (VS) strategy based on the crystal structure of the DNA binding domain (DBD) of AR was conducted to search for novel AR antagonists with new scaffolds and 2-(2-butyl-1,3-dioxoisoindoline-5-carboxamido)-4,5-dimethoxybenzoicacid (Cpd39) was identified as a potential hit, which was competent to block the binding of AR DBD to DNA and showed decent potency against AR transcriptional activity. Furthermore, Cpd39 was safe and capable of effectively inhibiting the proliferation of PCa cell lines (i.e., LNCaP, PC3, DU145, and 22RV1) and reducing the expression of the genes regulated by not only the full-length AR but also the splice variant AR-V7. The novel AR DBD-ARE blocker Cpd39 could serve as a starting point for the development of new therapeutics for castration-resistant PCa.
Collapse
Affiliation(s)
- Jin-Ping Pang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Fang Zhou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Xia Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu-Hu Shan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xin Chai
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Shao
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ping Hu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Zhu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dan-Yan Zhu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Xiao
- School of Life Science, Huzhou University, Huzhou, 313000, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Xiao-Hong Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Dan Li
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ting-Jun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
98
|
Ikeuchi W, Wakita Y, Zhang G, Li C, Itakura K, Yamakawa T. AT-rich interaction domain 5A regulates the transcription of interleukin-6 gene in prostate cancer cells. Prostate 2022; 82:97-106. [PMID: 34633095 PMCID: PMC8665135 DOI: 10.1002/pros.24251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is a pleiotropic cytokine that confers androgen-independence and aggressiveness in prostate cancer (PCa); however, the molecular mechanisms regulating IL-6 expression remain unclear. The expression of ARID5A, an AT-rich interaction domain (ARID) DNA-binding motif-containing transcription factor is positively correlated with IL-6 expression in human PCa. We, therefore, hypothesized that ARID5A could regulate IL-6 expression in PCa. METHODS The relationship between ARID5A and IL-6 in PCa patients was analyzed using statistical analyses of multiple clinical microarray data sets. To investigate whether ARID5A regulates IL-6 expression, CRISPR-driven ARID5A knockout clones were established in DU145 and PC-3 cells. RESULTS Analysis of three microarray data sets showed a positive correlation between ARID5A and IL-6 expression. The expression of IL-6 in ARID5A knockout clones was significantly reduced compared with control clones in both PCa cell lines. Knockout of ARID5A did not result in any loss of IL-6 mRNA stability. Instead, we observed a significant decrease in the occupancy of both active RNA Polymerase II and the active histone mark, H3K4me3 at the IL-6 transcriptional start site in ARID5A knockout PCa cells, suggesting a role for transcriptional regulation. CONCLUSIONS Our study demonstrated that loss of ARID5A downregulates the expression of IL-6 at the transcriptional level.
Collapse
Affiliation(s)
- Wataru Ikeuchi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Yuriko Wakita
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Guoxiang Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Chun Li
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Keiichi Itakura
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Takahiro Yamakawa
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
99
|
AR Structural Variants and Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:195-211. [DOI: 10.1007/978-3-031-11836-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
100
|
Ribelli G, Simonetti S, Iuliani M, Rossi E, Vincenzi B, Tonini G, Pantano F, Santini D. Osteoblasts Promote Prostate Cancer Cell Proliferation Through Androgen Receptor Independent Mechanisms. Front Oncol 2021; 11:789885. [PMID: 34966687 PMCID: PMC8711264 DOI: 10.3389/fonc.2021.789885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with metastatic prostate cancer frequently develop bone metastases that elicit significant skeletal morbidity and increased mortality. The high tropism of prostate cancer cells for bone and their tendency to induce the osteoblastic-like phenotype are a result of a complex interplay between tumor cells and osteoblasts. Although the role of osteoblasts in supporting prostate cancer cell proliferation has been reported by previous studies, their precise contribution in tumor growth remains to be fully elucidated. Here, we tried to dissect the molecular signaling underlining the interactions between castration-resistant prostate cancer (CRPC) cells and osteoblasts using in vitro co-culture models. Transcriptomic analysis showed that osteoblast-conditioned media (OCM) induced the overexpression of genes related to cell cycle in the CRPC cell line C4-2B but, surprisingly, reduced androgen receptor (AR) transcript levels. In-depth analysis of AR expression in C4-2B cells after OCM treatment showed an AR reduction at the mRNA (p = 0.0047), protein (p = 0.0247), and functional level (p = 0.0029) and, concomitantly, an increase of C4-2B cells in S-G2-M cell cycle phases (p = 0.0185). An extensive proteomic analysis revealed in OCM the presence of some molecules that reduced AR activation, and among these, Matrix metalloproteinase-1 (MMP-1) was the only one able to block AR function (0.1 ng/ml p = 0.006; 1 ng/ml p = 0.002; 10 ng/ml p = 0.0001) and, at the same time, enhance CRPC proliferation (1 ng/ml p = 0.009; 10 ng/ml p = 0.033). Although the increase of C4-2B cell growth induced by MMP-1 did not reach the proliferation levels observed after OCM treatment, the addition of Vorapaxar, an MMP-1 receptor inhibitor (Protease-activated receptor-1, PAR-1), significantly reduced C4-2B cell cycle (0.1 μM p = 0.014; 1 μM p = 0.0087). Overall, our results provide a novel AR-independent mechanism of CRPC proliferation and suggest that MMP-1/PAR-1 could be one of the potential pathways involved in this process.
Collapse
Affiliation(s)
- Giulia Ribelli
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Sonia Simonetti
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Michele Iuliani
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Elisabetta Rossi
- Department of Immunology and Molecular Oncology, Istituto Oncologico Veneto (IOV) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Francesco Pantano
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|