51
|
Wu Y, Zhong C, Du T, Qiu J, Xiong M, Hu Y, Chen Y, Li Y, Liu B, Liu Y, Zou B, Jiang S, Gou M. Preparation and characterization of yeast-encapsulated doxorubicin microparticles. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
52
|
Shin D, Christie C, Ju D, Nair RK, Molina S, Berg K, Krasieva TB, Madsen SJ, Hirschberg H. Photochemical internalization enhanced macrophage delivered chemotherapy. Photodiagnosis Photodyn Ther 2017; 21:156-162. [PMID: 29221858 DOI: 10.1016/j.pdpdt.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Macrophage (Ma) vectorization of chemotherapeutic drugs has the advantage for cancer therapy in that it can actively target and maintain an elevated concentration of drugs at the tumor site, preventing their spread into healthy tissue. A potential drawback is the inability to deliver a sufficient number of drug-loaded Ma into the tumor, thus limiting the amount of active drug delivered. This study examined the ability of photochemical internalization (PCI) to enhance the efficacy of released drug by Ma transport. METHODS Tumor spheroids consisting of either F98 rat glioma cells or F98 cells combined with a subpopulation of empty or doxorubicin (DOX)-loaded mouse Ma (RAW264.7) were used as in vitro tumor models. PCI was performed with the photosensitizer AlPcS2a and laser irradiation at 670 nm. RESULTS RAW264.7 Ma pulsed with DOX released the majority of the incorporated DOX within two hours of incubation. PCI significantly increased the toxicity of DOX either as pure drug or derived from monolayers of DOX-loaded Ma. Significant growth inhibition of hybrid spheroids was also observed with PCI even at subpopulations of DOX-loaded Ma as low as 11% of the total initial hybrid spheroid cell number. CONCLUSION Results show that RAW264.7 Ma, pulsed with DOX, could effectively incorporate and release DOX. PCI significantly increased the ability of both free and Ma-released DOX to inhibit the growth of tumor spheroids in vitro. The growth of F98 + DOX loaded Ma hybrid spheroids were synergistically reduced by PCI, compared to either photodynamic therapy or released DOX acting alone.
Collapse
Affiliation(s)
- Diane Shin
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States.
| | - Catherine Christie
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States
| | - David Ju
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States
| | - Rohit Kumar Nair
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States
| | - Stephanie Molina
- Dept. of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas 4505 S. Maryland Pkwy, Las Vegas, NV, 89154-3037, United States
| | - Kristian Berg
- Dept. of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Tatiana B Krasieva
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States
| | - Steen J Madsen
- Dept. of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas 4505 S. Maryland Pkwy, Las Vegas, NV, 89154-3037, United States
| | - Henry Hirschberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, United States
| |
Collapse
|
53
|
Santoni M, Cheng L, Conti A, Mariani C, Lopez-Beltran A, Montironi R, Battelli N. Activity and Functions of Tumor-associated Macrophages in Prostate Carcinogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.eursup.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
54
|
Liu X, Chen L, Huang H, Lv JM, Chen M, Qu FJ, Pan XW, Li L, Yin L, Cui XG, Gao Y, Xu DF. High expression of PDLIM5 facilitates cell tumorigenesis and migration by maintaining AMPK activation in prostate cancer. Oncotarget 2017; 8:98117-98134. [PMID: 29228678 PMCID: PMC5716718 DOI: 10.18632/oncotarget.20981] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022] Open
Abstract
PDZ and LIM domain 5 (PDLIM5) is a cytoskeleton-associated protein and has been shown to bind to a variety of proteins through its specific domain, thereby acting to regulate cell migration and tumor progression. Here, we found that PDLIM5 was abnormally upregulated in prostate cancer (PCa) tissues as compared with that in normal prostate tissue. ONCOMINE microarray data mining showed that PDLIM5 was closely correlated with the prognosis of PCa in terms of Gleason score, tumor metastasis and biochemical recurrence. Lentivirus-mediated short hairpin RNA (shRNA) knockdown of PDLIM5 inhibited cell proliferation and colony formation, arrested hormone independent PCa cells DU145 and PC-3 in G2/M phase, and induced apoptosis. Meanwhile, silencing PDLIM5 inhibited migration and invasion of tumor cells by reversing the mesenchymal phenotype and a similar result was confirmed in a xenograft nude mouse model. Finally, we found PDLIM5 plays a crucial role in regulating malignant tumor cell proliferation, invasion and migration by binding to AMPK and affecting its activation and degradation, and may therefore prove to be a potential oncogenic gene in the development and progression of PCa.
Collapse
Affiliation(s)
- Xi Liu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Lu Chen
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hai Huang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jian-Min Lv
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Ming Chen
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Fa-Jun Qu
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China
| | - Xiu-Wu Pan
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China
| | - Lin Li
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China
| | - Lei Yin
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin-Gang Cui
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China
| | - Yi Gao
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Dan-Feng Xu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
55
|
Exploiting the cancer niche: Tumor-associated macrophages and hypoxia as promising synergistic targets for nano-based therapy. J Control Release 2017; 253:82-96. [PMID: 28285930 DOI: 10.1016/j.jconrel.2017.03.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment has been widely exploited as an active participant in tumor progression. Extensive reports have defined the dual role of tumor-associated macrophages (TAMs) in tumor development. The protumoral effect exerted by the M2 phenotype has been correlated with a negative outcome in most solid tumors. The high infiltration of immune cells in the hypoxic cores of advanced solid tumors leads to a chain reaction of stimuli that enhances the expression of protumoral genes, thrives tumor malignancy, and leads to the emergence of drug resistance. Many studies have shown therapeutic targeting systems, solely to TAMs or tumor hypoxia, however, novel therapeutics that target both features are still warranted. In the present review, we discuss the role of hypoxia in tumor development and the clinical outcome of hypoxia-targeted therapeutics, such as hypoxia-inducible factor (HIF-1) inhibitors and hypoxia-activated prodrugs. Furthermore, we review the state-of-the-art of macrophage-based cancer therapy. We thoroughly discuss the development of novel therapeutics that simultaneously target TAMs and tumor hypoxia. Nano-based systems have been highlighted as interesting strategies for dual modality treatments, with somewhat improved tissue extravasation. Such approach could be seen as a promising strategy to overcome drug resistance and enhance the efficacy of chemotherapy in advanced solid and metastatic tumors, especially when exploiting cell-based nanotherapies. Finally, we provide an in-depth opinion on the importance of exploiting the tumor microenvironment in cancer therapy, and how this could be translated to clinical practice.
Collapse
|
56
|
Bommareddy PK, Patel A, Hossain S, Kaufman HL. Talimogene Laherparepvec (T-VEC) and Other Oncolytic Viruses for the Treatment of Melanoma. Am J Clin Dermatol 2017; 18:1-15. [PMID: 27988837 DOI: 10.1007/s40257-016-0238-9] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many mammalian viruses have properties that can be commandeered for the treatment of cancer. These characteristics include preferential infection and replication in tumor cells, the initiation of tumor cell lysis, and the induction of innate and adaptive anti-tumor immunity. Furthermore, viruses can be genetically engineered to reduce pathogenicity and increase immunogenicity resulting in minimally toxic therapeutic agents. Talimogene laherparepvec (T-VEC; Imlygic™), is a genetically modified herpes simplex virus, type 1, and is the first oncolytic virus therapy to be approved for the treatment of advanced melanoma by the US FDA. T-VEC is attenuated by the deletion of the herpes neurovirulence viral genes and enhanced for immunogenicity by the deletion of the viral ICP47 gene. Immunogenicity is further supported by expression of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) gene, which helps promote the priming of T cell responses. T-VEC demonstrated significant improvement in durable response rate, objective response rate, and progression-free survival in a randomized phase III clinical trial for patients with advanced melanoma. This review will discuss the optimal selection of patients for such treatment and describe how therapy is optimally delivered. We will also discuss future directions for oncolytic virus immunotherapy, which will likely include combination T-VEC clinical trials, expansion of T-VEC to other types of non-melanoma skin cancers, and renewed efforts at oncolytic virus drug development with other viruses.
Collapse
|
57
|
Taking a Stab at Cancer; Oncolytic Virus-Mediated Anti-Cancer Vaccination Strategies. Biomedicines 2017; 5:biomedicines5010003. [PMID: 28536346 PMCID: PMC5423491 DOI: 10.3390/biomedicines5010003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Vaccines have classically been used for disease prevention. Modern clinical vaccines are continuously being developed for both traditional use as well as for new applications. Typically thought of in terms of infectious disease control, vaccination approaches can alternatively be adapted as a cancer therapy. Vaccines targeting cancer antigens can be used to induce anti-tumour immunity and have demonstrated therapeutic efficacy both pre-clinically and clinically. Various approaches now exist and further establish the tremendous potential and adaptability of anti-cancer vaccination. Classical strategies include ex vivo-loaded immune cells, RNA- or DNA-based vaccines and tumour cell lysates. Recent oncolytic virus development has resulted in a surge of novel viruses engineered to induce powerful tumour-specific immune responses. In addition to their use as cancer vaccines, oncolytic viruses have the added benefit of being directly cytolytic to cancer cells and thus promote antigen recognition within a highly immune-stimulating tumour microenvironment. While oncolytic viruses are perfectly equipped for efficient immunization, this complicates their use upon previous exposure. Indeed, the host's anti-viral counter-attacks often impair multiple-dosing regimens. In this review we will focus on the use of oncolytic viruses for anti-tumour vaccination. We will explore different strategies as well as ways to circumvent some of their limitations.
Collapse
|
58
|
Si J, Shao S, Shen Y, Wang K. Macrophages as Active Nanocarriers for Targeted Early and Adjuvant Cancer Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5108-5119. [PMID: 27560388 DOI: 10.1002/smll.201601282] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/22/2016] [Indexed: 05/18/2023]
Abstract
Taking advantage of the highly permeable vasculature and lack of lymphatic drainage in solid tumors (EPR effect), nanosized drug delivery systems or nanomedicines have been extensively explored for tumor-targeted drug delivery. However, in most clinical cases tumors such as the early stage tumors and post-surgery microscopic residual tumors have not yet developed such pathological EPR features, i.e., EPR-deficient. Therefore, nanomedicines may not be applicable for such these tumors. Macrophages by nature can actively home and extravasate through the tight vascular wall into tumors and migrate to their hypoxic regions, and possess perfect stealth ability for long blood circulation and impressive phagocytosis for drug loadings. Thus, nanomedicines loaded in macrophages would harness both merits and gain the active tumor homing capability independent of the EPR effect for treatments of the EPR-deficient tumors. Herein, the critical considerations, current progress, challenges and future prospects of macrophages as carriers for nanomedicines are summarized, aiming at rational design of EPR-independent tumor-targeting active nanomedicines for targeted early and adjuvant cancer chemotherapy.
Collapse
Affiliation(s)
- Jingxing Si
- Department of Respiratory Medicine, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Shiqun Shao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Kai Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
59
|
Li S, Feng S, Ding L, Liu Y, Zhu Q, Qian Z, Gu Y. Nanomedicine engulfed by macrophages for targeted tumor therapy. Int J Nanomedicine 2016; 11:4107-24. [PMID: 27601898 PMCID: PMC5003564 DOI: 10.2147/ijn.s110146] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL) capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N'-octyl chitosan (SOC) DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC-paclitaxel (PTX) particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC-PTX are a promising pharmaceutical preparation for tumor-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Biomedical Engineering, China Pharmaceutical University
| | - Song Feng
- Department of Biomedical Engineering, China Pharmaceutical University
| | - Li Ding
- Department of Biomedical Engineering, China Pharmaceutical University
| | - Yuxi Liu
- Department of Biomedical Engineering, China Pharmaceutical University
| | - Qiuyun Zhu
- Department of Biomedical Engineering, China Pharmaceutical University
| | - Zhiyu Qian
- Department of Biomedical Engineering, School of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, People's Republic of China
| | - Yueqing Gu
- Department of Biomedical Engineering, China Pharmaceutical University
| |
Collapse
|
60
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
61
|
Immune Cells in Cancer Therapy and Drug Delivery. Mediators Inflamm 2016; 2016:5230219. [PMID: 27212807 PMCID: PMC4860248 DOI: 10.1155/2016/5230219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/23/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022] Open
Abstract
Recent studies indicate the critical role of tumour associated macrophages, tumour associated neutrophils, dendritic cells, T lymphocytes, and natural killer cells in tumourigenesis. These cells can have a significant impact on the tumour microenvironment via their production of cytokines and chemokines. Additionally, products secreted from all these cells have defined specific roles in regulating tumour cell proliferation, angiogenesis, and metastasis. They act in a protumour capacity in vivo as evidenced by the recent studies indicating that macrophages, T cells, and neutrophils may be manipulated to exhibit cytotoxic activity against tumours. Therefore therapy targeting these cells may be promising, or they may constitute drug or anticancer particles delivery systems to the tumours. Herein, we discussed all these possibilities that may be used in cancer treatment.
Collapse
|
62
|
Parallel Aspects of the Microenvironment in Cancer and Autoimmune Disease. Mediators Inflamm 2016; 2016:4375120. [PMID: 26997761 PMCID: PMC4779817 DOI: 10.1155/2016/4375120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer and autoimmune diseases are fundamentally different pathological conditions. In cancer, the immune response is suppressed and unable to eradicate the transformed self-cells, while in autoimmune diseases it is hyperactivated against a self-antigen, leading to tissue injury. Yet, mechanistically, similarities in the triggering of the immune responses can be observed. In this review, we highlight some parallel aspects of the microenvironment in cancer and autoimmune diseases, especially hypoxia, and the role of macrophages, neutrophils, and their interaction. Macrophages, owing to their plastic mode of activation, can generate a pro- or antitumoral microenvironment. Similarly, in autoimmune diseases, macrophages tip the Th1/Th2 balance via various effector cytokines. The contribution of neutrophils, an additional plastic innate immune cell population, to the microenvironment and disease progression is recently gaining more prominence in both cancer and autoimmune diseases, as they can secrete cytokines, chemokines, and reactive oxygen species (ROS), as well as acquire an enhanced ability to produce neutrophil extracellular traps (NETs) that are now considered important initiators of autoimmune diseases. Understanding the contribution of macrophages and neutrophils to the cancerous or autoimmune microenvironment, as well as the role their interaction and cooperation play, may help identify new targets and improve therapeutic strategies.
Collapse
|
63
|
Tan DQ, Zhang L, Ohba K, Ye M, Ichiyama K, Yamamoto N. Macrophage response to oncolytic paramyxoviruses potentiates virus-mediated tumor cell killing. Eur J Immunol 2016; 46:919-28. [PMID: 26763072 DOI: 10.1002/eji.201545915] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 12/04/2015] [Accepted: 01/08/2016] [Indexed: 12/31/2022]
Abstract
Tumor-associated macrophages (TAMs) are known to regulate tumor response to many anti-cancer therapies, including oncolytic virotherapy. Oncolytic virotherapy employing oncolytic paramyxoviruses, such as attenuated measles (MeV) and mumps (MuV) viruses, has demonstrated therapeutic potential against various malignancies. However, the response of TAMs to oncolytic paramyxoviruses and the consequent effect on virotherapeutic efficacy remains to be characterized. Here, we demonstrate that the presence of human monocyte-derived macrophages (MDMs), irrespective of initial polarization state, enhances the virotherapeutic effect of MeV and MuV on breast cancer cells. Notably, our finding contrasts those of several studies involving other oncolytic viruses, which suggest that TAMs negatively impact virotherapeutic efficacy by impeding virus replication and dissemination. We found that the enhanced virotherapeutic effect in the presence of MDMs was due to slightly delayed proliferation and significantly elevated cell death that was not a result of increased virus replication. Instead, we found that the enhanced virotherapeutic effect involved several macrophage-associated anti-tumor mediators, and was associated with the modulation of MDMs towards an anti-tumor phenotype. Our findings present an alternative view on the role of TAMs in oncolytic virotherapy, and highlight the immunotherapeutic potential of oncolytic paramyxoviruses; possibly contributing towards the overall efficacy of oncolytic virotherapy.
Collapse
Affiliation(s)
- Darren Qiancheng Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - LiFeng Zhang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kenji Ohba
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Min Ye
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Koji Ichiyama
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
64
|
Jakeman PG, Hills TE, Fisher KD, Seymour LW. Macrophages and their interactions with oncolytic viruses. Curr Opin Pharmacol 2015; 24:23-9. [PMID: 26164569 DOI: 10.1016/j.coph.2015.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 11/24/2022]
Abstract
Macrophages are a highly plastic cell type and exhibit a range of defensive and regulatory functions in normal physiology. Phagocytic macrophages play an important role in defending against virus infection and they provide an important barrier that can limit the delivery of therapeutic viruses from the injection to the tumour. Within tumours, macrophages generally adopt an immunosuppressive phenotype and are associated with poor clinical prognosis. However their plasticity also provides the opportunity for therapeutic 're-education' of tumour-associated macrophages (TAMs) to adopt an active anticancer role. Oncolytic viruses present the possibility for non-specific stimulation of TAMs, and also the option for tumour-targeted expression of cytokines chosen specifically to modulate macrophage activation.
Collapse
Affiliation(s)
| | - Thomas E Hills
- Department of Oncology, University of Oxford, OX3 7DQ, UK
| | - Kerry D Fisher
- Department of Oncology, University of Oxford, OX3 7DQ, UK
| | | |
Collapse
|
65
|
Jiang PS, Yu CF, Yen CY, Woo CW, Lo SH, Huang YK, Hong JH, Chiang CS. Irradiation Enhances the Ability of Monocytes as Nanoparticle Carrier for Cancer Therapy. PLoS One 2015; 10:e0139043. [PMID: 26418962 PMCID: PMC4587928 DOI: 10.1371/journal.pone.0139043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/07/2015] [Indexed: 01/01/2023] Open
Abstract
The tumor-homing ability of monocytes renders them a potential cellular delivery system for alternative cancer therapies, although their migratory ability can be impaired following reagent uptake. Approaches that enhance monocyte tumor homing and promote their migration will improve the clinical value of these cells as cellular carriers. Previous studies have shown that irradiation (IR) can promote macrophage aggregation in hypoxic regions. To investigate whether IR enhances the infiltration of bone marrow-derived monocytes (BMDMs) into tumors, the infiltration of BMDMs from GFP-transgenic mice in a murine prostate adenocarcinoma TRAMP-C1 model was examined by fluorescence microscopy. IR did not increase the number of BMDMs that infiltrated initially, but did increase monocyte retention within IR-treated tumors for up to 2 weeks. We also showed that BMDMs can take up various imaging and therapeutic agents, although the mobility of BMDMs decreased with increasing load. When BMDMs were differentiated in IR-treated tumor-conditioned medium (IR-CM) in vitro, the nanoparticle load-mediated inhibition of migration was attenuated. These IR-CM-differentiated BMDMs delivered polymer vesicles encapsulating doxorubicin to radiation therapy (RT)-induced hypoxic tumor regions, and enhanced the efficacy of RT. The prolonged retention of monocytes within irradiated tumor tissues and the ability of IR-CM to enhance the migratory ability of cargo-laden BMDMs suggest that monocytes pre-conditioned by IR-CM can potentially act as cellular carriers for targeted therapy following conventional RT.
Collapse
Affiliation(s)
- Pei-Shin Jiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ching-Fang Yu
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chia-Yi Yen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Christopher William Woo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Shao-Hua Lo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yu-Kuan Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ji-Hong Hong
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
66
|
C5orf30 is a negative regulator of tissue damage in rheumatoid arthritis. Proc Natl Acad Sci U S A 2015; 112:11618-23. [PMID: 26316022 DOI: 10.1073/pnas.1501947112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The variant rs26232, in the first intron of the chromosome 5 open reading frame 30 (C5orf30) locus, has recently been associated with both risk of developing rheumatoid arthritis (RA) and severity of tissue damage. The biological activities of human C5orf30 are unknown, and neither the gene nor protein show significant homology to any other characterized human sequences. The C5orf30 gene is present only in vertebrate genomes with a high degree of conservation, implying a central function in these organisms. Here, we report that C5orf30 is highly expressed in the synovium of RA patients compared with control synovial tissue, and that it is predominately expressed by synovial fibroblast (RASF) and macrophages in the lining and sublining layer of the tissue. These cells play a central role in the initiation and perpetuation of RA and are implicated in cartilage destruction. RASFs lacking C5orf30 exhibit increased cell migration and invasion in vitro, and gene profiling following C5orf30 inhibition confirmed up-regulation of genes involved in cell migration, adhesion, angiogenesis, and immune and inflammatory pathways. Importantly, loss of C5orf30 contributes to the pathology of inflammatory arthritis in vivo, because inhibition of C5orf30 in the collagen-induced arthritis model markedly accentuated joint inflammation and tissue damage. Our study reveal C5orf30 to be a previously unidentified negative regulator of tissue damage in RA, and this protein may act by modulating the autoaggressive phenotype that is characteristic of RASFs.
Collapse
|
67
|
Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun 2015; 6:8009. [PMID: 26284300 PMCID: PMC4568295 DOI: 10.1038/ncomms9009] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 07/08/2015] [Indexed: 01/17/2023] Open
Abstract
Cell-based therapy exploits modified human cells to treat diseases but its targeted application in specific tissues, particularly those lying deep in the body where direct injection is not possible, has been problematic. Here we use a magnetic resonance imaging (MRI) system to direct macrophages carrying an oncolytic virus, Seprehvir, into primary and metastatic tumour sites in mice. To achieve this, we magnetically label macrophages with super-paramagnetic iron oxide nanoparticles and apply pulsed magnetic field gradients in the direction of the tumour sites. Magnetic resonance targeting guides macrophages from the bloodstream into tumours, resulting in increased tumour macrophage infiltration and reduction in tumour burden and metastasis. Our study indicates that clinical MRI scanners can not only track the location of magnetically labelled cells but also have the potential to steer them into one or more target tissues. Cell therapy requires the targeting of cells to specific sites in the body. Here Muthana et al. use a standard MRI scanner to direct oncolytic macrophages, labelled with magnetic nanoparticles, to primary and metastatic tumour sites in mice, and demonstrate that this leads to reduced tumour growth.
Collapse
|
68
|
Jakeman PG, Hills TE, Tedcastle AB, Di Y, Fisher KD, Seymour LW. Improved in vitro human tumor models for cancer gene therapy. Hum Gene Ther 2015; 26:249-56. [PMID: 25808057 DOI: 10.1089/hum.2015.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developing effective anticancer treatments is a particular challenge, as agents must contend with not only the target cellular biology, but also with the complex tumor microenvironment. Here we discuss various in vitro strategies that have sought to address this issue, with a particular focus on new methodologies that utilize clinical samples in basic research and their application in gene therapy and virotherapy.
Collapse
Affiliation(s)
- Philip G Jakeman
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Thomas E Hills
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Alison B Tedcastle
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Ying Di
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Kerry D Fisher
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Leonard W Seymour
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
69
|
McIntyre A, Harris AL. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Mol Med 2015; 7:368-79. [PMID: 25700172 PMCID: PMC4403040 DOI: 10.15252/emmm.201404271] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/12/2015] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6-8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table 1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy.
Collapse
Affiliation(s)
- Alan McIntyre
- Hypoxia and angiogenesis Group, Department of Oncology Weatherall Institute of Molecular Medicine University of Oxford, Oxford, UK
| | - Adrian L Harris
- Hypoxia and angiogenesis Group, Department of Oncology Weatherall Institute of Molecular Medicine University of Oxford, Oxford, UK
| |
Collapse
|
70
|
Wang H, Shrestha TB, Basel MT, Pyle M, Toledo Y, Konecny A, Thapa P, Ikenberry M, Hohn KL, Chikan V, Troyer DL, Bossmann SH. Hexagonal magnetite nanoprisms: preparation, characterization and cellular uptake. J Mater Chem B 2015; 3:4647-4653. [DOI: 10.1039/c5tb00340g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nearly perfect hexagonal Fe3O4 nanoplatelet structures, with edge length of 45 ± 5 nm and thickness of 5 to 6 nm were synthesized from iron(iii) acetylacetonate using the dual ligand system oleic and stearic acid.
Collapse
Affiliation(s)
- H. Wang
- Kansas State University, Department of Chemistry
- Manhattan
- USA
| | - T. B. Shrestha
- Kansas State University
- Department of Anatomy & Physiology
- Manhattan
- USA
| | - M. T. Basel
- Kansas State University
- Department of Anatomy & Physiology
- Manhattan
- USA
| | - M. Pyle
- Kansas State University
- Department of Anatomy & Physiology
- Manhattan
- USA
| | - Y. Toledo
- Kansas State University, Department of Chemistry
- Manhattan
- USA
| | - A. Konecny
- Kansas State University, Department of Chemistry
- Manhattan
- USA
| | - P. Thapa
- University of Kansas
- Microscopy and Analytical Imaging Laboratory
- Lawrence
- USA
| | - M. Ikenberry
- Kansas State University
- Department of Chemical Engineering
- Manhattan
- USA
| | - K. L. Hohn
- Kansas State University
- Department of Chemical Engineering
- Manhattan
- USA
| | - V. Chikan
- Kansas State University, Department of Chemistry
- Manhattan
- USA
| | - D. L. Troyer
- Kansas State University
- Department of Anatomy & Physiology
- Manhattan
- USA
| | - S. H. Bossmann
- Kansas State University, Department of Chemistry
- Manhattan
- USA
| |
Collapse
|
71
|
Tazzyman S, Murdoch C, Yeomans J, Harrison J, Muthana M. Macrophage-mediated response to hypoxia in disease. HYPOXIA 2014; 2:185-196. [PMID: 27774476 PMCID: PMC5045066 DOI: 10.2147/hp.s49717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypoxia plays a critical role in the pathobiology of various inflamed, diseased tissues, including malignant tumors, atherosclerotic plaques, myocardial infarcts, the synovia of rheumatoid arthritic joints, healing wounds, and sites of bacterial infection. These areas of hypoxia form when the blood supply is occluded and/or the oxygen supply is unable to keep pace with cell growth and/or infiltration of inflammatory cells. Macrophages are ubiquitous in all tissues of the body and exhibit great plasticity, allowing them to perform divergent functions, including, among others, patrolling tissue, combating invading pathogens and tumor cells, orchestrating wound healing, and restoring homeostasis after an inflammatory response. The number of tissue macrophages increases markedly with the onset and progression of many pathological states, with many macrophages accumulating in avascular and necrotic areas, where they are exposed to hypoxia. Recent studies show that these highly versatile cells then respond rapidly to the hypoxia present by altering their expression of a wide array of genes. Here we review the evidence for hypoxia-driven macrophage inflammatory responses in various disease states, and how this influences disease progression and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Munitta Muthana
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK
| |
Collapse
|
72
|
Balvers RK, Belcaid Z, van den Hengel SK, Kloezeman J, de Vrij J, Wakimoto H, Hoeben RC, Debets R, Leenstra S, Dirven C, Lamfers MLM. Locally-delivered T-cell-derived cellular vehicles efficiently track and deliver adenovirus delta24-RGD to infiltrating glioma. Viruses 2014; 6:3080-96. [PMID: 25118638 PMCID: PMC4147687 DOI: 10.3390/v6083080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 12/21/2022] Open
Abstract
Oncolytic adenoviral vectors are a promising alternative for the treatment of glioblastoma. Recent publications have demonstrated the advantages of shielding viral particles within cellular vehicles (CVs), which can be targeted towards the tumor microenvironment. Here, we studied T-cells, often having a natural capacity to target tumors, for their feasibility as a CV to deliver the oncolytic adenovirus, Delta24-RGD, to glioblastoma. The Jurkat T-cell line was assessed in co-culture with the glioblastoma stem cell (GSC) line, MGG8, for the optimal transfer conditions of Delta24-RGD in vitro. The effect of intraparenchymal and tail vein injections on intratumoral virus distribution and overall survival was addressed in an orthotopic glioma stem cell (GSC)-based xenograft model. Jurkat T-cells were demonstrated to facilitate the amplification and transfer of Delta24-RGD onto GSCs. Delta24-RGD dosing and incubation time were found to influence the migratory ability of T-cells towards GSCs. Injection of Delta24-RGD-loaded T-cells into the brains of GSC-bearing mice led to migration towards the tumor and dispersion of the virus within the tumor core and infiltrative zones. This occurred after injection into the ipsilateral hemisphere, as well as into the non-tumor-bearing hemisphere. We found that T-cell-mediated delivery of Delta24-RGD led to the inhibition of tumor growth compared to non-treated controls, resulting in prolonged survival (p = 0.007). Systemic administration of virus-loaded T-cells resulted in intratumoral viral delivery, albeit at low levels. Based on these findings, we conclude that T-cell-based CVs are a feasible approach to local Delta24-RGD delivery in glioblastoma, although efficient systemic targeting requires further improvement.
Collapse
Affiliation(s)
- Rutger K Balvers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Dr. Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Zineb Belcaid
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Dr. Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Sanne K van den Hengel
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Einthovenweg 20, 2333 ZC, The Netherlands.
| | - Jenneke Kloezeman
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Dr. Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Jeroen de Vrij
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Dr. Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Hiroaki Wakimoto
- Molecular Neurosurgery Laboratory, Brain Tumor Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Rob C Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Einthovenweg 20, 2333 ZC, The Netherlands.
| | - Reno Debets
- Laboratory of Experimental Tumor Immunology, Department Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, 3015 GE, The Netherlands.
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Dr. Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Clemens Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Dr. Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Dr. Molewaterplein 50, Ee2236, 3015GE, Rotterdam, The Netherlands.
| |
Collapse
|
73
|
Abstract
Cell-based therapeutics have advanced significantly over the past decade and are poised to become a major pillar of modern medicine. Three cell types in particular have been studied in detail for their ability to home to tumors and to deliver a variety of different payloads. Neural stem cells, mesenchymal stem cells and monocytes have each been shown to have great potential as future delivery systems for cancer therapy. A variety of other cell types have also been studied. These results demonstrate that the field of cell-based therapeutics will only continue to grow.
Collapse
|
74
|
Liu YP, Suksanpaisan L, Steele MB, Russell SJ, Peng KW. Induction of antiviral genes by the tumor microenvironment confers resistance to virotherapy. Sci Rep 2014; 3:2375. [PMID: 23921465 PMCID: PMC3736178 DOI: 10.1038/srep02375] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses obliterate tumor cells in tissue culture but not against the same tumors in vivo. We report that macrophages can induce a powerfully protective antiviral state in ovarian and breast tumors, rendering them resistant to oncolytic virotherapy. These tumors have activated JAK/STAT pathways and expression of interferon-stimulated genes (ISGs) is upregulated. Gene expression profiling (GEP) of human primary ovarian and breast tumors confirmed constitutive activation of ISGs. The tumors were heavily infiltrated with CD68+ macrophages. Exposure of OV-susceptible tumor cell lines to conditioned media from RAW264.7 or primary macrophages activated antiviral ISGs, JAK/STAT signaling and an antiviral state. Anti-IFN antibodies and shRNA knockdown studies show that this effect is mediated by an extremely low concentration of macrophage-derived IFNβ. JAK inhibitors reversed the macrophage-induced antiviral state. This study points to a new role for tumor-associated macrophages in the induction of a constitutive antiviral state that shields tumors from viral attack.
Collapse
Affiliation(s)
- Yu-Ping Liu
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
75
|
Laoui D, Van Overmeire E, Di Conza G, Aldeni C, Keirsse J, Morias Y, Movahedi K, Houbracken I, Schouppe E, Elkrim Y, Karroum O, Jordan B, Carmeliet P, Gysemans C, De Baetselier P, Mazzone M, Van Ginderachter JA. Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res 2013; 74:24-30. [PMID: 24220244 DOI: 10.1158/0008-5472.can-13-1196] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor-associated macrophages (TAM) are exposed to multiple microenvironmental cues in tumors, which collaborate to endow these cells with protumoral activities. Hypoxia, caused by an imbalance in oxygen supply and demand because of a poorly organized vasculature, is often a prominent feature in solid tumors. However, to what extent tumor hypoxia regulates the TAM phenotype in vivo is unknown. Here, we show that the myeloid infiltrate in mouse lung carcinoma tumors encompasses two morphologically distinct CD11b(hi)F4/80(hi)Ly6C(lo) TAM subsets, designated as MHC-II(lo) and MHC-II(hi) TAM, both of which were derived from tumor-infiltrating Ly6C(hi) monocytes. MHC-II(lo) TAM express higher levels of prototypical M2 markers and reside in more hypoxic regions. Consequently, MHC-II(lo) TAM contain higher mRNA levels for hypoxia-regulated genes than their MHC-II(hi) counterparts. To assess the in vivo role of hypoxia on these TAM features, cancer cells were inoculated in prolyl hydroxylase domain 2 (PHD2)-haplodeficient mice, resulting in better-oxygenated tumors. Interestingly, reduced tumor hypoxia did not alter the relative abundance of TAM subsets nor their M2 marker expression, but specifically lowered hypoxia-sensitive gene expression and angiogenic activity in the MHC-II(lo) TAM subset. The same observation in PHD2(+/+) → PHD2(+/-) bone marrow chimeras also suggests organization of a better-oxygenized microenvironment. Together, our results show that hypoxia is not a major driver of TAM subset differentiation, but rather specifically fine-tunes the phenotype of M2-like MHC-II(lo) TAM.
Collapse
Affiliation(s)
- Damya Laoui
- Authors' Affiliations: Laboratory of Myeloid Cell Immunology, VIB; Laboratory of Cellular and Molecular Immunology; Cell Differentiation Unit, Diabetes Research Centre, Vrije Universiteit Brussel; Biomedical Magnetic Resonance Unit, U.C. Louvain, Brussels; Laboratory of Molecular Oncology and Angiogenesis; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB; and Experimental Medicine and Endocrinology, Department of Experimental Medicine, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Roy DG, Bell JC. Cell carriers for oncolytic viruses: current challenges and future directions. Oncolytic Virother 2013; 2:47-56. [PMID: 27512657 PMCID: PMC4918354 DOI: 10.2147/ov.s36623] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The optimal route for clinical delivery of oncolytic viruses is thought to be systemic intravenous injection; however, the immune system is armed with several highly efficient mechanisms to remove pathogens from the circulatory system. To overcome the challenges faced in trying to delivery oncolytic viruses specifically to tumors via the bloodstream, carrier cells have been investigated to determine their suitability as delivery vehicles for systemic administration of oncolytic viruses. Cell carriers protect viruses from neutralization, one of the most limiting aspects of oncolytic virus interaction with the immune system. Cell carriers can also possess inherent tumor tropism, thus directing the delivery of the virus more specifically to a tumor. With preclinical studies already demonstrating the success and feasibility of this approach with multiple oncolytic viruses, clinical evaluation of cell-mediated delivery of viruses is on the horizon. Meanwhile, ongoing preclinical studies are aimed at identifying new cellular vehicles for oncolytic viruses and improving current promising cell carrier platforms.
Collapse
Affiliation(s)
- Dominic G Roy
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, ON, Canada
| | - John C Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, ON, Canada; Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
77
|
Cangelosi D, Blengio F, Versteeg R, Eggert A, Garaventa A, Gambini C, Conte M, Eva A, Muselli M, Varesio L. Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients. BMC Bioinformatics 2013; 14 Suppl 7:S12. [PMID: 23815266 PMCID: PMC3633028 DOI: 10.1186/1471-2105-14-s7-s12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuroblastoma is the most common pediatric solid tumor. About fifty percent of high risk patients die despite treatment making the exploration of new and more effective strategies for improving stratification mandatory. Hypoxia is a condition of low oxygen tension occurring in poorly vascularized areas of the tumor associated with poor prognosis. We had previously defined a robust gene expression signature measuring the hypoxic component of neuroblastoma tumors (NB-hypo) which is a molecular risk factor. We wanted to develop a prognostic classifier of neuroblastoma patients' outcome blending existing knowledge on clinical and molecular risk factors with the prognostic NB-hypo signature. Furthermore, we were interested in classifiers outputting explicit rules that could be easily translated into the clinical setting. RESULTS Shadow Clustering (SC) technique, which leads to final models called Logic Learning Machine (LLM), exhibits a good accuracy and promises to fulfill the aims of the work. We utilized this algorithm to classify NB-patients on the bases of the following risk factors: Age at diagnosis, INSS stage, MYCN amplification and NB-hypo. The algorithm generated explicit classification rules in good agreement with existing clinical knowledge. Through an iterative procedure we identified and removed from the dataset those examples which caused instability in the rules. This workflow generated a stable classifier very accurate in predicting good and poor outcome patients. The good performance of the classifier was validated in an independent dataset. NB-hypo was an important component of the rules with a strength similar to that of tumor staging. CONCLUSIONS The novelty of our work is to identify stability, explicit rules and blending of molecular and clinical risk factors as the key features to generate classification rules for NB patients to be conveyed to the clinic and to be used to design new therapies. We derived, through LLM, a set of four stable rules identifying a new class of poor outcome patients that could benefit from new therapies potentially targeting tumor hypoxia or its consequences.
Collapse
Affiliation(s)
- Davide Cangelosi
- Laboratory of Molecular Biology, Gaslini Institute, Largo Gaslini 5, 16147 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Xie X, Guo J, Kong Y, Xie GX, Li L, Lv N, Xiao X, Tang J, Wang X, Liu P, Yang M, Xie Z, Wei W, Spencer DM, Xie X. Targeted expression of Escherichia coli purine nucleoside phosphorylase and Fludara® for prostate cancer therapy. J Gene Med 2013; 13:680-91. [PMID: 22009763 DOI: 10.1002/jgm.1620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Previous studies have shown that Herpes Simplex Virus thymidine kinase (HSV-tk)/ganciclovir (GCV) comprised the most commonly used suicide gene therapy for prostate cancer, with modest results being obtained. However, novel suicide genes, such as Escherichia coli purine nucleoside phosphorylase (PNP), have been utilized to demonstrate more potent tumor killing and an enhanced bystander effect on local, non-expressing cells compared to HSV-tk. METHODS PNP/fludarabine (Fludara®; fludarabine phosphate; Berlex Labs, Richmond, CA, USA) was deliveried by prostate-specific, rat probasin-based promoter, ARR2PB. After infection of various cell lines with ADV.ARR(2) PB-PNP and administration of androgen analog, R1881, expression of PNP mRNA was detected; in vivo, the antitumor effect of the ARR(2) PB-PNP/Fludara system was monitored and analyzed, as well as animal survival. RESULTS After in vitro infection with ADV.ARR(2) PB-PNP (multiplicity of infection = 10), LNCaP cells were more sensitive to a lower concentration Fludara (LD(50) , approximately 0.1 µg/ml) in the presence of R1881. Furthermore, robust bystander effects after R1881/Fludara treatment were observed in LNCaP cells after infection with bicistronic vector ADV.ARR2PB/PNP-IRES-EGFP in contrast to a much weaker effect in cells treated with ADV.CMV-HSV-tk/GCV. In vivo, tumor size in the ADV.ARR2PB-PNP/Fludara treatment group was dramatically smaller than in the control groups, and the mice treated with our system had a significantly prolonged survival, with three of eight mice surviving up to the 160-day termination point, as well as no systemic toxicity. CONCLUSIONS The ARR(2) PB-PNP/Fludara system induced massive tumor cell death and a prolonged life span without systemic cytotoxicity; therefore, it might be a more attractive strategy for suicide gene therapy of prostate cancer.
Collapse
Affiliation(s)
- Xinhua Xie
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Eisenstein S, Coakley BA, Briley-Saebo K, Ma G, Chen HM, Meseck M, Ward S, Divino C, Woo S, Chen SH, Pan PY. Myeloid-derived suppressor cells as a vehicle for tumor-specific oncolytic viral therapy. Cancer Res 2013; 73:5003-15. [PMID: 23536556 DOI: 10.1158/0008-5472.can-12-1597] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the several impediments to effective oncolytic virus therapy of cancer remains a lack of tumor-specific targeting. Myeloid-derived suppressor cells (MDSC) are immature myeloid cells induced by tumor factors in tumor-bearing hosts. The biodistribution kinetics of MDSC and other immune cell types in a murine hepatic colon cancer model was investigated through the use of tracking markers and MRI. MDSCs were superior to other immune cell types in preferential migration to tumors in comparison with other tissues. On the basis of this observation, we engineered a strain of vesicular stomatitis virus (VSV), an oncolytic rhabdovirus that bound MDSCs and used them as a delivery vehicle. Improving VSV-binding efficiency to MDSCs extended the long-term survival of mice bearing metastatic colon tumors compared with systemic administration of wild-type VSV alone. Survival was further extended by multiple injections of the engineered virus without significant toxicity. Notably, direct tumor killing was accentuated by promoting MDSC differentiation towards the classically activated M1-like phenotype. Our results offer a preclinical proof-of-concept for using MDSCs to facilitate and enhance the tumor-killing activity of tumor-targeted oncolytic therapeutics.
Collapse
Affiliation(s)
- Samuel Eisenstein
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Muthana M, Rodrigues S, Chen YY, Welford A, Hughes R, Tazzyman S, Essand M, Morrow F, Lewis CE. Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation. Cancer Res 2013; 73:490-5. [PMID: 23172310 DOI: 10.1158/0008-5472.can-12-3056] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Frontline anticancer therapies such as chemotherapy and irradiation often slow tumor growth, but tumor regrowth and spread to distant sites usually occurs after the conclusion of treatment. We recently showed that macrophages could be used to deliver large quantities of a hypoxia-regulated, prostate-specific oncolytic virus (OV) to prostate tumors. In the current study, we show that administration of such OV-armed macrophages 48 hours after chemotherapy (docetaxel) or tumor irradiation abolished the posttreatment regrowth of primary prostate tumors in mice and their spread to the lungs for up to 27 or 40 days, respectively. It also significantly increased the lifespan of tumor-bearing mice compared with those given docetaxel or irradiation alone. These new findings suggest that such a novel, macrophage-based virotherapy could be used to markedly increase the efficacy of chemotherapy and irradiation in patients with prostate cancer.
Collapse
Affiliation(s)
- Munitta Muthana
- Academic Unit of Inflammation & Tumor Targeting, University of Sheffield Medical School, Sheffield, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Muthana M, Richardson J, Rodrigues S, Lewis C. Construction of Human Monocyte Derived Macrophages Armed with Oncolytic Viruses. Bio Protoc 2013. [DOI: 10.21769/bioprotoc.809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
82
|
Abstract
Most patients with small intestinal neuroendocrine tumors (SI-NETs), also referred to as midgut carcinoids, present with systemic disease at the time of diagnosis with metastases primarily found in regional lymph nodes and the liver. Curative treatment is not available for these patients and there is a need for novel and specific therapies. Engineered oncolytic viruses may meet the need and play an important role in the future management of SI-NET liver metastases. This review focuses on adenovirus as the oncolytic anti-cancer agent and its potential curative role for SI-NET liver metastases, but it also summarizes the use of oncolytic viruses for NETs in general. It discusses how specific features of neuroendocrine cell biology can be used to engineer viruses to become selective for infection of NET cells and/or replication within NET cells. In addition, it points out the advantages and shortcomings of using replicating viruses in the treatment of cancer and addresses research fields that can increase the efficacy of virus-based therapy.
Collapse
Affiliation(s)
- Magnus Essand
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
83
|
Riboldi E, Porta C, Morlacchi S, Viola A, Mantovani A, Sica A. Hypoxia-mediated regulation of macrophage functions in pathophysiology. Int Immunol 2012. [PMID: 23179187 DOI: 10.1093/intimm/dxs110] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oxygen availability affects cell differentiation, survival and function, with profound consequences on tissue homeostasis, inflammation and immunity. A gradient of oxygen levels is present in most organs of the body as well as in virtually every site of inflammation, damaged or pathological tissue. As a consequence, infiltrating leukocytes, macrophages in particular, are equipped with the capacity to shift their metabolism to anaerobic glycolysis, to generate ATP and induce the expression of factors that increase the supply of oxygen and nutrients. Strikingly, low oxygen conditions (hypoxia) and inflammatory signals share selected transcriptional events, including the activation of members of both the hypoxia-inducible factor and nuclear factor κB families, which may converge to activate specific cell programs. In the pathological response to hypoxia, cancer in particular, macrophages act as orchestrators of disease evolution and their number can be used as a prognostic marker. Here we review mechanisms of macrophage adaptation to hypoxia, their role in disease as well as new perspectives for their therapeutic targeting.
Collapse
Affiliation(s)
- Elena Riboldi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale 'Amedeo Avogadro', Novara 28100, Italy
| | | | | | | | | | | |
Collapse
|
84
|
Bunuales M, Garcia-Aragoncillo E, Casado R, Quetglas JI, Hervas-Stubbs S, Bortolanza S, Benavides-Vallve C, Ortiz-de-Solorzano C, Prieto J, Hernandez-Alcoceba R. Evaluation of monocytes as carriers for armed oncolytic adenoviruses in murine and Syrian hamster models of cancer. Hum Gene Ther 2012; 23:1258-68. [PMID: 22985305 DOI: 10.1089/hum.2012.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Replication-competent (oncolytic) adenoviruses (OAV) can be adapted as vectors for the delivery of therapeutic genes, with the aim of extending the antitumor effect beyond direct cytolysis. Transgene expression using these vectors is usually intense but short-lived, and repeated administrations are hampered by the rapid appearance of neutralizing antibodies (NAbs). We have studied the performance of monocytes as cell carriers to improve transgene expression in cancer models established in athymic mice and immunocompetent Syrian hamsters. Human and hamster monocytic cell lines (MonoMac6 and HM-1, respectively) were loaded with replication-competent adenovirus-expressing luciferase. Intravenous administration of these cells caused a modest increase in transgene expression in tumor xenografts, but this effect was virtually lost in hamsters. In contrast, intratumoral administration of HM-1 cells allowed repeated cycles of expression and achieved partial protection from NAbs in preimmunized hamsters bearing pancreatic tumors. To explore the therapeutic potential of this approach, HM-1 cells were loaded with a hypoxia-inducible OAV expressing the immunostimulatory cytokine interleukin-12 (IL-12). Three cycles of treatment achieved a significant antitumor effect in the hamster model, and transgene expression was detected following each administration, in contrast with the rapid neutralization of the free virus. We propose monocytes as carriers for multiple intratumoral administrations of armed OAVs.
Collapse
Affiliation(s)
- Maria Bunuales
- Division of Hepatology and Gene Therapy, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Chiang CS, Fu SY, Wang SC, Yu CF, Chen FH, Lin CM, Hong JH. Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front Oncol 2012; 2:89. [PMID: 22888475 PMCID: PMC3412458 DOI: 10.3389/fonc.2012.00089] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/19/2012] [Indexed: 11/16/2022] Open
Abstract
Macrophages display different phenotypes with distinct functions and can rapidly respond to environmental changes. Previous studies on TRAMP-C1 tumor model have shown that irradiation has a strong impact on tumor microenvironments. The major changes include the decrease of microvascular density, the increase of avascular hypoxia, and the aggregation of tumor-associated macrophages in avascular hypoxic regions. Similar changes were observed no matter the irradiation was given to tissue bed before tumor implantation (pre-IR tumors), or to established tumors (IR tumors). Recent results on three murine tumors, TRAMP-C1 prostate adenocarcinoma, ALTS1C1 astrocytoma, and GL261 glioma, further demonstrate that different phenotypes of inflammatory cells are spatially distributed into different microenvironments in both IR and pre-IR tumors. Regions with avascular hypoxia and central necrosis have CD11bhigh/Gr-1+ neutrophils in the center of the necrotic area. Next to them are CD11blow/F4/80+ macrophages that sit at the junctions between central necrotic and surrounding hypoxic regions. The majority of cells in the hypoxic regions are CD11blow/CD68+ macrophages. These inflammatory cell populations express different levels of Arg I. This distribution pattern, except for neutrophils, is not observed in tumors receiving chemotherapy or an anti-angiogenesis agent which also lead to avascular hypoxia. This unique distribution pattern of inflammatory cells in IR tumor sites is interfered with by targeting the expression of a chemokine protein, SDF-1α, by tumor cells, and this also increases radiation-induced tumor growth delay. This indicates that irradiated-hypoxia tissues have distinct tumor microenvironments that favor the development of M2 macrophages and that is affected by the levels of tumor-secreted SDF-1α.
Collapse
Affiliation(s)
- Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancers. Recent advances include preclinical proof of feasibility for a single-shot virotherapy cure, identification of drugs that accelerate intratumoral virus propagation, strategies to maximize the immunotherapeutic action of oncolytic viruses and clinical confirmation of a critical viremic threshold for vascular delivery and intratumoral virus replication. The primary clinical milestone has been completion of accrual in a phase 3 trial of intratumoral herpes simplex virus therapy using talimogene laherparepvec for metastatic melanoma. Key challenges for the field are to select 'winners' from a burgeoning number of oncolytic platforms and engineered derivatives, to transiently suppress but then unleash the power of the immune system to maximize both virus spread and anticancer immunity, to develop more meaningful preclinical virotherapy models and to manufacture viruses with orders-of-magnitude higher yields than is currently possible.
Collapse
|
87
|
Ding M, Cao X, Xu HN, Fan JK, Huang HL, Yang DQ, Li YH, Wang J, Li R, Liu XY. Prostate cancer-specific and potent antitumor effect of a DD3-controlled oncolytic virus harboring the PTEN gene. PLoS One 2012; 7:e35153. [PMID: 22509396 PMCID: PMC3324420 DOI: 10.1371/journal.pone.0035153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/09/2012] [Indexed: 11/18/2022] Open
Abstract
Prostate cancer is a major health problem for men in Western societies. Here we report a Prostate Cancer-Specific Targeting Gene-Viro-Therapy (CTGVT-PCa), in which PTEN was inserted into a DD3-controlled oncolytic viral vector (OV) to form Ad.DD3.E1A.E1B(Δ55)-(PTEN) or, briefly, Ad.DD3.D55-PTEN. The woodchuck post-transcriptional element (WPRE) was also introduced at the downstream of the E1A coding sequence, resulting in much higher expression of the E1A gene. DD3 is one of the most prostate cancer-specific genes and has been used as a clinical bio-diagnostic marker. PTEN is frequently inactivated in primary prostate cancers, which is crucial for prostate cancer progression. Therefore, the Ad.DD3.D55-PTEN has prostate cancer specific and potent antitumor effect. The tumor growth rate was almost completely inhibited with the final tumor volume after Ad.DD3.D55-PTEN treatment less than the initial volume at the beginning of Ad.DD3.D55-PTEN treatment, which shows the powerful antitumor effect of Ad.DD3.D55-PTEN on prostate cancer tumor growth. The CTGVT-PCa construct reported here killed all of the prostate cancer cell lines tested, such as DU145, 22RV1 and CL1, but had a reduced or no killing effect on all the non-prostate cancer cell lines tested. The mechanism of action of Ad.DD3.D55-PTEN was due to the induction of apoptosis, as detected by TUNEL assays and flow cytometry. The apoptosis was mediated by mitochondria-dependent and -independent pathways, as determined by caspase assays and mitochondrial membrane potential.
Collapse
Affiliation(s)
- Miao Ding
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Cao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hai-neng Xu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun-kai Fan
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hong-ling Huang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong-qin Yang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-hua Li
- Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jian Wang
- Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Runsheng Li
- Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
- * E-mail: (RL); (XL)
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Xinyuan Institute of Medicine and Biotechnology, College of Biological Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- * E-mail: (RL); (XL)
| |
Collapse
|
88
|
Lartigue L, Wilhelm C, Servais J, Factor C, Dencausse A, Bacri JC, Luciani N, Gazeau F. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS NANO 2012; 6:2665-2678. [PMID: 22324868 DOI: 10.1021/nn300060u] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
One of the first biointeractions of magnetic nanoparticles with living systems is characterized by nanoparticle-protein complex formation. The proteins dynamically encompass the particles in the protein corona. Here we propose a method based on nanomagnetism that allows a specific in situ monitoring of interactions between iron oxide nanoparticles and blood plasma. Tracking the nanoparticle orientation through their optical birefringence signal induced by an external magnetic field provides a quantitative real-time detection of protein corona at the surface of nanoparticles and assesses eventual onset of particle aggregation. Since some of the plasma proteins may cause particle aggregation, we use magnetic fractionation to separate the nanoparticle clusters (induced by "destabilizing proteins") from well-dispersed nanoparticles, which remain isolated due to a stabilizing corona involving other different types of proteins. Our study shows that the "biological identity" (obtained after the particles have interacted with proteins) and aggregation state (clustered versus isolated) of nanoparticles depend not only on their initial surface coating, but also on the concentration of plasma in the suspension. Low plasma concentrations (which are generally used in vitro) lead to different protein/nanoparticle complexes than pure plasma, which reflects the in vivo conditions. As a consequence, by mimicking in vivo conditions, we show that macrophages can perceive several different populations of nanoparticle/protein complexes (differing in physical state and in nature of associated proteins) and uptake them to a different extent. When extrapolated to what would happen in vivo, our results suggest a range of cell responses to a variety of nanoparticle/protein complexes which circulate in the body, thereby impacting their tissue distribution and their efficiency and safety for diagnostic and therapeutic use.
Collapse
Affiliation(s)
- Lénaic Lartigue
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS/Université Paris-Diderot, PRES Sorbonne Paris Cité, 75205 Paris cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Basel MT, Balivada S, Shrestha TB, Seo GM, Pyle MM, Tamura M, Bossmann SH, Troyer DL. A cell-delivered and cell-activated SN38-dextran prodrug increases survival in a murine disseminated pancreatic cancer model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:913-20. [PMID: 22238072 PMCID: PMC3583224 DOI: 10.1002/smll.201101879] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Indexed: 05/29/2023]
Abstract
Enzyme-activated prodrugs have been investigated and sought after as highly specific, low-side-effect treatments, especially for cancer therapy. Unfortunately, excellent targets for enzyme-activated therapy are rare. Here a system based on cell delivery that can carry both a prodrug and an activating enzyme to the cancer site is demonstrated. Raw264.7 cells (mouse monocyte/macrophage-like cells, Mo/Ma) are engineered to express intracellular rabbit carboxylesterase (InCE), which is a potent activator of the prodrug irinotecan to SN38. InCE expression is regulated by the TetOn® system, which silences the gene unless a tetracycline, such as doxycycline, is present. Concurrently, an irinotecan-like prodrug, which is conjugated to dextran and can be loaded into the cytoplasm of Mo/Ma, is synthesized. To test the system, a murine pancreatic cancer model is generated by intraperitoneal (i.p.) injection of Pan02 cells. Engineered Mo/Ma are loaded with the prodrug and are injected i.p. Two days later, doxycycline was given i.p. to activate InCE, which activated the prodrug. A survival study demonstrates that this system significantly increased survival in a murine pancreatic cancer model. Thus, for the first time, a prodrug/activating enzyme system, which is self-contained within tumor-homing cells and can prolong the life of i.p. pancreatic tumor bearing mice, is demonstrated.
Collapse
Affiliation(s)
- Matthew T. Basel
- 1600 Denison Ave., Coles Hall 228, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506 (U.S.A.)
| | - Sivasai Balivada
- 1600 Denison Ave, Coles Hall 228, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506 (U.S.A.)
| | - Tej B. Shrestha
- 1600 Denison Ave, Coles Hall 228, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506 (U.S.A.)
| | - Gwi-Moon Seo
- 1600 Denison Ave, Coles Hall 228, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506 (U.S.A.)
| | - Marla M. Pyle
- 1600 Denison Ave, Coles Hall 228, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506 (U.S.A.)
| | - Masaaki Tamura
- 1600 Denison Ave, Coles Hall 228, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506 (U.S.A.)
| | - Stefan H. Bossmann
- Chem-Biochem Building 143, Department of Chemistry, Kansas State University, Manhattan, KS 66506 (U.S.A.)
| | - Deryl L. Troyer
- 1600 Denison Ave., Coles Hall 228, Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506 (U.S.A.)
| |
Collapse
|
90
|
Choi J, Kim HY, Ju EJ, Jung J, Park J, Chung HK, Lee JS, Lee JS, Park HJ, Song SY, Jeong SY, Choi EK. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 2012; 33:4195-203. [PMID: 22398206 DOI: 10.1016/j.biomaterials.2012.02.022] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 02/09/2012] [Indexed: 12/13/2022]
Abstract
Drug targeting to tumors with limited toxicity and enhanced efficacy of drug is one of the important goals for cancer treatment pharmaceutics. Monocytes/macrophages are able to migrate to tumor sites across the blood barriers by acting as Trojan horses carrying drug cargoes. Taking this advantage, we have intended to develop an efficient administration system using a biologically active carrier of mouse peritoneal macrophage bearing liposomal doxorubicin (macrophage-LP-Dox). We expect that this system could improve the cancer therapeutic efficacy through deeper penetration into tumor even hypoxic region behind tumor blood vessel. We first confirmed that macrophages containing iron oxides could migrate and infiltrate into tumors effectively by MR imaging. Next, we showed that doxorubicin (Dox) encapsulated with liposomes (LP-Dox) was successfully loaded into macrophages, in which the biological activity of macrophage and cytotoxicity of Dox against tumor cells were well preserved. Delivery of Dox into tumor tissue by systemic administration of macrophage-LP-Dox was verified in both subcutaneous and metastasis xenograft tumor models. Importantly, the effective inhibition of in vivo tumor growth was proved with this system. Our results provide the feasibility of macrophages-LP-drug as an active biocarrier for the enhancement of therapeutic effects in cancer treatment and open new perspectives for the active delivery of drugs.
Collapse
Affiliation(s)
- Jinhyang Choi
- Institute for Innovative Cancer Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, Abayaweera G, Dani R, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomedicine 2012; 7:297-306. [PMID: 22287840 PMCID: PMC3265998 DOI: 10.2147/ijn.s28344] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.
Collapse
Affiliation(s)
- Matthew T Basel
- Department of Anatomy and Physiology, College of Veterinary Medicine, Manhattan, KS, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, Abayaweera G, Dani R, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomedicine 2012. [PMID: 22287840 DOI: 10.2147/ijn.s28344.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.
Collapse
Affiliation(s)
- Matthew T Basel
- Department of Anatomy and Physiology, College of Veterinary Medicine, Manhattan, KS, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kang ST, Yeh CK. Intracellular acoustic droplet vaporization in a single peritoneal macrophage for drug delivery applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13183-13188. [PMID: 21936541 DOI: 10.1021/la203212p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study investigated the acoustic droplet vaporization (ADV) of perfluoropentane (PFP) droplets in single droplet-loaded macrophages (DLMs) by insonation with single three-cycle ultrasound pulses. Transient responses of intracellular ADV within a single DLM were observed with synchronous high-speed photography and cavitation detection. Ultrasound B-mode imaging was further applied to demonstrate the contrast enhancement of ADV-generated bubbles from a group of DLMs. The PFP droplets incorporated in a DLM can be liberated from the cell body after being vaporized into gas bubbles. Inertial cavitation can be simultaneously induced at the same time that bubbles appear. The coalescence of bubbles occurring at the onset of vaporization may facilitate gas embolotherapy and ultrasound imaging. Macrophages can be potential carriers transporting PFP droplets to avascular and hypoxic regions in tumors for ultrasound-controlled drug release and ADV-based tumor therapies.
Collapse
Affiliation(s)
- Shih-Tsung Kang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013
| | | |
Collapse
|
94
|
Sottnik JL, Zhang J, Macoska JA, Keller ET. The PCa Tumor Microenvironment. CANCER MICROENVIRONMENT 2011; 4:283-97. [PMID: 21728070 DOI: 10.1007/s12307-011-0073-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/23/2011] [Indexed: 12/31/2022]
Abstract
The tumor microenvironment (TME) is a very complex niche that consists of multiple cell types, supportive matrix and soluble factors. Cells in the TME consist of both host cells that are present at tumor site at the onset of tumor growth and cells that are recruited in either response to tumor- or host-derived factors. PCa (PCa) thrives on crosstalk between tumor cells and the TME. Crosstalk results in an orchestrated evolution of both the tumor and microenvironment as the tumor progresses. The TME reacts to PCa-produced soluble factors as well as direct interaction with PCa cells. In return, the TME produces soluble factors, structural support and direct contact interactions that influence the establishment and progression of PCa. In this review, we focus on the host side of the equation to provide a foundation for understanding how different aspects of the TME contribute to PCa progression. We discuss immune effector cells, specialized niches, such as the vascular and bone marrow, and several key protein factors that mediate host effects on PCa. This discussion highlights the concept that the TME offers a potentially very fertile target for PCa therapy.
Collapse
Affiliation(s)
- Joseph L Sottnik
- Department of Urology, University of Michigan, RM 5308 CC, Ann Arbor, MI, 48109-8940, USA
| | | | | | | |
Collapse
|
95
|
Laoui D, Van Overmeire E, Movahedi K, Van den Bossche J, Schouppe E, Mommer C, Nikolaou A, Morias Y, De Baetselier P, Van Ginderachter JA. Mononuclear phagocyte heterogeneity in cancer: different subsets and activation states reaching out at the tumor site. Immunobiology 2011; 216:1192-202. [PMID: 21803441 DOI: 10.1016/j.imbio.2011.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/25/2011] [Accepted: 06/23/2011] [Indexed: 12/22/2022]
Abstract
Mononuclear phagocytes are amongst the most versatile cells of the body, contributing to tissue genesis and homeostasis and safeguarding the balance between pro- and anti-inflammatory reactions. Accordingly, these cells are notoriously heterogeneous, functioning in distinct differentiation forms (monocytes, MDSC, macrophages, DC) and adopting different activation states in response to a changing microenvironment. Accumulating evidence exists that mononuclear phagocytes contribute to all phases of the cancer process. These cells orchestrate the inflammatory events during de novo carcinogenesis, participate in tumor immunosurveillance, and contribute to the progression of established tumors. At the tumor site, cells such as tumor-associated macrophages (TAM) are confronted with different tumor microenvironments, leading to TAM subsets with specialized functions. A better refinement of the molecular and functional heterogeneity of tumor-associated mononuclear phagocytes might pave the way for novel cancer therapies that directly target these tumor-supporting cells.
Collapse
Affiliation(s)
- Damya Laoui
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Owen MR, Stamper IJ, Muthana M, Richardson GW, Dobson J, Lewis CE, Byrne HM. Mathematical modeling predicts synergistic antitumor effects of combining a macrophage-based, hypoxia-targeted gene therapy with chemotherapy. Cancer Res 2011; 71:2826-37. [PMID: 21363914 DOI: 10.1158/0008-5472.can-10-2834] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tumor hypoxia is associated with low rates of cell proliferation and poor drug delivery, limiting the efficacy of many conventional therapies such as chemotherapy. Because many macrophages accumulate in hypoxic regions of tumors, one way to target tumor cells in these regions could be to use genetically engineered macrophages that express therapeutic genes when exposed to hypoxia. Systemic delivery of such therapeutic macrophages may also be enhanced by preloading them with nanomagnets and applying a magnetic field to the tumor site. Here, we use a new mathematical model to compare the effects of conventional cyclophosphamide therapy with those induced when macrophages are used to deliver hypoxia-inducible cytochrome P450 to locally activate cyclophosphamide. Our mathematical model describes the spatiotemporal dynamics of vascular tumor growth and treats cells as distinct entities. Model simulations predict that combining conventional and macrophage-based therapies would be synergistic, producing greater antitumor effects than the additive effects of each form of therapy. We find that timing is crucial in this combined approach with efficacy being greatest when the macrophage-based, hypoxia-targeted therapy is administered shortly before or concurrently with chemotherapy. Last, we show that therapy with genetically engineered macrophages is markedly enhanced by using the magnetic approach described above, and that this enhancement depends mainly on the strength of the applied field, rather than its direction. This insight may be important in the treatment of nonsuperficial tumors, where generating a specific orientation of a magnetic field may prove difficult. In conclusion, we demonstrate that mathematical modeling can be used to design and maximize the efficacy of combined therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Markus R Owen
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|