51
|
Rybinski B, Franco-Barraza J, Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genomics 2014; 46:223-44. [PMID: 24520152 PMCID: PMC4035661 DOI: 10.1152/physiolgenomics.00158.2013] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/04/2014] [Indexed: 02/07/2023] Open
Abstract
For decades tumors have been recognized as "wounds that do not heal." Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing.
Collapse
Affiliation(s)
- Brad Rybinski
- Cancer Biology Program, Fox Chase Cancer Center/Temple Health, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
52
|
Fève M, Saliou JM, Zeniou M, Lennon S, Carapito C, Dong J, Van Dorsselaer A, Junier MP, Chneiweiss H, Cianférani S, Haiech J, Kilhoffer MC. Comparative expression study of the endo-G protein coupled receptor (GPCR) repertoire in human glioblastoma cancer stem-like cells, U87-MG cells and non malignant cells of neural origin unveils new potential therapeutic targets. PLoS One 2014; 9:e91519. [PMID: 24662753 PMCID: PMC3963860 DOI: 10.1371/journal.pone.0091519] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/10/2014] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs), a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs), U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets.
Collapse
Affiliation(s)
- Marie Fève
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Jean-Michel Saliou
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Maria Zeniou
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Sarah Lennon
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Jihu Dong
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Marie-Pierre Junier
- Neuroscience Paris Seine, UMR8246, Inserm U1130, Institut de Biologie Paris Seine, CNRS, Université Pierre et Marie Curie, Paris, France
| | - Hervé Chneiweiss
- Neuroscience Paris Seine, UMR8246, Inserm U1130, Institut de Biologie Paris Seine, CNRS, Université Pierre et Marie Curie, Paris, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Jacques Haiech
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
53
|
Gadepalli R, Kotla S, Heckle MR, Verma SK, Singh NK, Rao GN. Novel role for p21-activated kinase 2 in thrombin-induced monocyte migration. J Biol Chem 2013; 288:30815-31. [PMID: 24025335 DOI: 10.1074/jbc.m113.463414] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To understand the role of thrombin in inflammation, we tested its effects on migration of THP-1 cells, a human monocytic cell line. Thrombin induced THP-1 cell migration in a dose-dependent manner. Thrombin induced tyrosine phosphorylation of Pyk2, Gab1, and p115 RhoGEF, leading to Rac1- and RhoA-dependent Pak2 activation. Downstream to Pyk2, Gab1 formed a complex with p115 RhoGEF involving their pleckstrin homology domains. Furthermore, inhibition or depletion of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, or Pak2 levels substantially attenuated thrombin-induced THP-1 cell F-actin cytoskeletal remodeling and migration. Inhibition or depletion of PAR1 also blocked thrombin-induced activation of Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2, resulting in diminished THP-1 cell F-actin cytoskeletal remodeling and migration. Similarly, depletion of Gα12 negated thrombin-induced Pyk2, Gab1, p115 RhoGEF, Rac1, RhoA, and Pak2 activation, leading to attenuation of THP-1 cell F-actin cytoskeletal remodeling and migration. These novel observations reveal that thrombin induces monocyte/macrophage migration via PAR1-Gα12-dependent Pyk2-mediated Gab1 and p115 RhoGEF interactions, leading to Rac1- and RhoA-targeted Pak2 activation. Thus, these findings provide mechanistic evidence for the role of thrombin and its receptor PAR1 in inflammation.
Collapse
Affiliation(s)
- Ravisekhar Gadepalli
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | | | | | | | | |
Collapse
|
54
|
Mehta RS, Liman AD, Passero VA, Liman AK. Lung cancer with gastrointestinal metastasis - review of theories of metastasis with three rare case descriptions. CANCER MICROENVIRONMENT 2013; 6:203-11. [PMID: 23963996 DOI: 10.1007/s12307-013-0135-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/08/2013] [Indexed: 12/27/2022]
Abstract
Approximately 1 in 14 men and women during their lifetime will be diagnosed with lung cancer, which is the leading cause of cancer-related mortality in the world. As of January 1, 2008, there were about 373,500 men and women living with lung cancer in the United States. Fewer than 60,000 of these are estimated to be alive by January 2013, reflecting a poor overall 5-year relative survival rate of under 16 %. With metastatic cancer, the overall 5-year survival is meager 4 %. On the other hand, the overall five-year survival is over 50 % when the cancer is still in the localized stage. However, unfortunately, more than half of cases of lung cancer are diagnosed at an advanced stage Howlader et al. (2010). Cancer metastasis, the single most critical prognostic factor, is still poorly understood and a highly complex phenomenon. The most common sites of lung cancer metastasis are the lymph nodes, liver, adrenals, brain and bones. The gastrointestinal (GI) tract is an exceptionally rare site of metastasis; with only a handful of cases reported in the literature Centeno et al. (Lung Cancer, 18: 101-105, 1997); Hirasaki et al. (World J Gastroenterol, 14: 5481-5483, 2008); Carr and Boulos (Br J Surg, 83: 647, 1996); Otera et al. (Eur Respir Rev, 19: 248-252, 2010); Antler et al. (Cancer, 49: 170-172, 1982); Fujiwara et al. (Gen Thorac Cardiovasc Surg, 59: 748-752, 2011); Stinchcombe et al. (J Clin Oncol, 24: 4939-4940, 2006); John et al. (J Postgrad Med, 48: 199-200, 2002); Carroll and Rajesh (Eur J Cardiothorac Surg, 19: 719-720, 2001); Brown et al. (Dis Colon Rectum, 23: 343-345, 1980). We report three cases of non-small cell (squamous cell) lung cancer with GI tract metastasis-two in the colon and one in the jejunum. Then we present a review of literature exploring various theories of metastasis, as an attempt to understand the reason of preferential tumor metastasis.
Collapse
|
55
|
Yang R, Xu Y, Li P, Zhang X, Wang J, Gu D, Wang Y. Combined upregulation of matrix metalloproteinase-1 and proteinase-activated receptor-1 predicts unfavorable prognosis in human nasopharyngeal carcinoma. Onco Targets Ther 2013; 6:1139-46. [PMID: 23986644 PMCID: PMC3754819 DOI: 10.2147/ott.s50389] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The upregulation of matrix metalloproteinase-1 (MMP-1) has been demonstrated to be correlated with lymph node metastasis of nasopharyngeal carcinoma (NPC), while the activation of protease-activated receptor-1 (PAR-1) mediates proliferation and invasion of NPC cells. The present study investigated the clinical significance of the coexpression of MMP-1 and PAR-1 in NPC patients in determining the prognosis. Methods Immunohistochemistry was performed to detect the expression of MMP-1 and PAR-1 in tumor tissue samples from 266 NPC patients. Results Overexpression of MMP-1 and PAR-1 proteins were, respectively, detected in 190 (71.43%) and 182 (68.42%) of the 266 NPC patients. In addition, the combined MMP-1 and PAR-1 expression was significantly associated with advanced T-stage (P = 0.01), advanced clinical stage (P = 0.002), positive recurrence (P = 0.01), and metastatic status (P = 0.01) of NPC. Moreover, the overall survival in NPC patients with MMP-1 and PAR-1 dual overexpression was significantly shorter than in those with dual low expression (P < 0.001). Furthermore, the multivariate analyses indicated that the combined MMP-1 and PAR-1 overexpression was an independent prognostic factor for overall survival (P = 0.001) in NPC patients, but the upregulation of MMP-1 and PAR-1 alone was, in each case, not an independent prognostic factor for this disease. Conclusion Our data provide convincing evidence, for the first time, that the activation of the MMP-1 and PAR-1 axis may be involved in the tumorigenesis and progression of NPC. The upregulation of MMP-1 in combination with PAR-1 overexpression is an unfavorable prognostic marker for NPC and might offer the possibility of future therapeutic targets.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center and Department of Cell Biology, Department of Clinical Nursing, School of Nursing, The Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
56
|
Gil-Bernabé AM, Lucotti S, Muschel RJ. Coagulation and metastasis: what does the experimental literature tell us? Br J Haematol 2013; 162:433-41. [PMID: 23691951 DOI: 10.1111/bjh.12381] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inhibition of coagulation greatly limits cancer metastasis in many experimental models. Cancer cells trigger coagulation, through expression of tissue factor or P-selectin ligands that have correlated with worse prognosis in human clinical studies. Cancer cells also affect coagulation through expression of thrombin and release of microparticles that augment coagulation. In the cancer-bearing host, coagulation facilitates tumour progression through release of platelet granule contents, inhibition of Natural Killer cells and recruitment of macrophages. We are revisiting this literature in the light of recent studies in which treatment of clinical cohorts with anticoagulant drugs led to diminished metastasis.
Collapse
Affiliation(s)
- Ana M Gil-Bernabé
- Department of Oncology, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
57
|
Senescent fibroblasts enhance early skin carcinogenic events via a paracrine MMP-PAR-1 axis. PLoS One 2013; 8:e63607. [PMID: 23675494 PMCID: PMC3651095 DOI: 10.1371/journal.pone.0063607] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 04/05/2013] [Indexed: 11/19/2022] Open
Abstract
The incidence of carcinoma increases greatly with aging, but the cellular and molecular mechanisms underlying this correlation are only partly known. It is established that senescent fibroblasts promote the malignant progression of already-transformed cells through secretion of inflammatory mediators. We investigated here whether the senescent fibroblast secretome might have an impact on the very first stages of carcinogenesis. We chose the cultured normal primary human epidermal keratinocyte model, because after these cells reach the senescence plateau, cells with transformed and tumorigenic properties systematically and spontaneously emerge from the plateau. In the presence of medium conditioned by autologous senescent dermal fibroblasts, a higher frequency of post-senescence emergence was observed and the post-senescence emergent cells showed enhanced migratory properties and a more marked epithelial-mesenchymal transition. Using pharmacological inhibitors, siRNAs, and blocking antibodies, we demonstrated that the MMP-1 and MMP-2 matrix metalloproteinases, known to participate in late stages of cancer invasion and metastasis, are responsible for this enhancement of early migratory capacity. We present evidence that MMPs act by activating the protease-activated receptor 1 (PAR-1), whose expression is specifically increased in post-senescence emergent keratinocytes. The physiopathological relevance of these results was tested by analyzing MMP activity and PAR-1 expression in skin sections. Both were higher in skin sections from aged subjects than in ones from young subjects. Altogether, our results suggest that during aging, the dermal and epidermal skin compartments might be activated coordinately for initiation of skin carcinoma, via a paracrine axis in which MMPs secreted by senescent fibroblasts promote very early epithelial-mesenchymal transition of keratinocytes undergoing transformation and oversynthesizing the MMP-activatable receptor PAR-1.
Collapse
|
58
|
Tas F, Ciftci R, Kilic L, Bilgin E, Keskin S, Sen F, Yildiz I, Yasasever V. Clinical and prognostic significance of coagulation assays in melanoma. Melanoma Res 2013; 22:368-75. [PMID: 22889867 DOI: 10.1097/cmr.0b013e328357be7c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The activation of coagulation and fibrinolysis is frequently found among cancer patients. Such tumors are considered to be associated with a higher risk of invasion, metastases, and eventually worse outcome. The aim of this study is to explore the clinical and prognostic value of blood coagulation tests for melanoma patients. Pretreatment blood coagulation tests including prothrombin time (PT), activated partial thromboplastin time (APTT), prothrombin activity (PTA), international normalized ratio (INR), D-dimer (DD), fibrinogen (F) levels, and platelet (PLT) counts were carried out. This prospective study included 61 melanoma patients [stage I-II (n=10), stage III (n=14), stage IV (n=37), M1c (n=26) disease], and 50 healthy controls. It included 34 (56%) men, median age 53 years, range 16-88 years. Over half of the patients (54%) were in the metastatic stage and most of them (70%) had M1c. The plasma level of pretreatment blood coagulation tests including DD, F, APTT, INR levels, and PLT counts showed a statistically significant difference between the patient and the control group (P<0.001 for all, but P=0.049 for INR). The levels of INR, DD, F, and PLT counts were higher and APTT was lower in the melanoma group, whereas the PT and PTA levels did not show any significant difference. There was a significant association between PT, PTA, INR, and PLT levels and the age of the patient. Patients with node metastasis in M0 disease had higher levels of PTA and PLT counts (P=0.002 and 0.048, respectively) and lower levels of PT and INR (P=0.056 and 0.046, respectively). The M1c patients tended to have higher plasma F levels (437 vs. 297 mg/dl, P=0.055) than M1a and M1b patients. The 1-year survival rate for all patients was 70%. In association with distant metastasis, advanced metastatic stage (M1c), elevated lactate dehydrogenase, and erythrocyte sedimentation rate, only elevated plasma F levels had a significantly adverse effect on survival among the coagulation parameters (P=0.031). The 1-year survival rates for patients with high and normal F levels were 58 and 88%, respectively. In conclusion, changes in the coagulation-fibrinolytic system are often present in melanoma and elevation in the plasma F level is associated with decreased survival.
Collapse
Affiliation(s)
- Faruk Tas
- Institute of Oncology, University of Istanbul, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. JOURNAL OF DRUG DELIVERY 2013; 2013:705265. [PMID: 23533772 PMCID: PMC3606784 DOI: 10.1155/2013/705265] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/06/2013] [Indexed: 12/30/2022]
Abstract
Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor's vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.
Collapse
|
60
|
Regué L, Mou F, Avruch J. G protein-coupled receptors engage the mammalian Hippo pathway through F-actin: F-Actin, assembled in response to Galpha12/13 induced RhoA-GTP, promotes dephosphorylation and activation of the YAP oncogene. Bioessays 2013; 35:430-5. [PMID: 23450633 DOI: 10.1002/bies.201200163] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hippo pathway, a cascade of protein kinases that inhibits the oncogenic transcriptional coactivators YAP and TAZ, was discovered in Drosophila as a major determinant of organ size in development. Known modes of regulation involve surface proteins that mediate cell-cell contact or determine epithelial cell polarity which, in a tissue-specific manner, use intracellular complexes containing FERM domain and actin-binding proteins to modulate the kinase activities or directly sequester YAP. Unexpectedly, recent work demonstrates that GPCRs, especially those signaling through Galpha12/13 such as the protease activated receptor PAR1, cause potent YAP dephosphorylation and activation. This response requires active RhoA GTPase and increased assembly of filamentous (F-)actin. Morever, cell architectures that promote F-actin assembly per se also activate YAP by kinase-dependent and independent mechanisms. These findings unveil the ability of GPCRs to activate the YAP oncogene through a newly recognized signaling function of the actin cytoskeleton, likely to be especially important for normal and cancerous stem cells.
Collapse
Affiliation(s)
- Laura Regué
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
61
|
Lin CH, Yu MC, Chiang CC, Bien MY, Chien MH, Chen BC. Thrombin-induced NF-κB activation and IL-8/CXCL8 release is mediated by c-Src-dependent Shc, Raf-1, and ERK pathways in lung epithelial cells. Cell Signal 2013; 25:1166-75. [PMID: 23357535 DOI: 10.1016/j.cellsig.2013.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/03/2013] [Accepted: 01/21/2013] [Indexed: 02/02/2023]
Abstract
In addition to its functions in thrombosis and hemostasis, thrombin also plays an important role in lung inflammation. Our previous report showed that thrombin activates the protein kinase C (PKC)α/c-Src and Gβγ/Rac1/PI3K/Akt signaling pathways to induce IκB kinase α/β (IKKα/β) activation, NF-κB transactivation, and IL-8/CXCL8 expressions in human lung epithelial cells (ECs). In this study, we further investigated the mechanism of c-Src-dependent Shc, Raf-1, and extracellular signal-regulated kinase (ERK) signaling pathways involved in thrombin-induced NF-κB activation and IL-8/CXCL8 release. Thrombin-induced increases in IL-8/CXCL8 release and κB-luciferase activity were inhibited by the Shc small interfering RNA (siRNA), p66Shc siRNA, GW 5074 (a Raf-1 inhibitor), and PD98059 (a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor). Treatment of A549 cells with thrombin increased p66Shc and p46/p52Shc phosphorylation at Tyr239/240 and Tyr317, which was inhibited by cell transfection with the dominant negative mutant of c-Src (c-Src DN). Thrombin caused time-dependent phosphorylation of Raf-1 and ERK, which was attenuated by the c-Src DN. Thrombin-induced IKKα/β phosphorylation was inhibited by GW 5074 and PD98059. Treatment of cells with thrombin induced Gβγ, c-Src, and p66Shc complex formation in a time-dependent manner. Taken together, these results show for the first time that thrombin activates Shc, Raf-1, and ERK through Gβγ, c-Src, and Shc complex formation to induce IKKα/β phosphorylation, NF-κB activation, and IL-8/CXCL8 release in human lung ECs.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
62
|
Lowe KL, Navarro-Nunez L, Watson SP. Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res 2012; 129 Suppl 1:S30-7. [PMID: 22682130 DOI: 10.1016/s0049-3848(12)70013-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has long been recognised that the function of platelets in health and disease span far beyond their roles in haemostasis and thrombosis. The observation that tumour cells induce platelet aggregation was followed by extensive experimental evidence linking platelets to cancer progression. Aggregated platelets coat tumour cells during their transit through the bloodstream and mediate adherence to vascular endothelium, protection from shear stresses, evasion from immune molecules, and release of an array of bioactive molecules that facilitate tumour cell extravasation and growth at metastatic sites. The sialyated membrane glycoprotein podoplanin is found on the leading edge of tumour cells and is thought to influence their migratory and invasive properties. Podoplanin elicits powerful platelet aggregation and is the endogenous ligand for the platelet C-type lectin receptor, CLEC-2, which itself regulates podoplanin signalling. Here, the bidirectional relationship between CLEC-2 and podoplanin is described and considered in the context of tumour growth and metastasis.
Collapse
Affiliation(s)
- Kate L Lowe
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
63
|
Liu Y, Xu L, Zeng Q, Wang J, Wang M, Xi D, Wang X, Yang D, Luo X, Ning Q. Downregulation of FGL2/prothrombinase delays HCCLM6 xenograft tumour growth and decreases tumour angiogenesis. Liver Int 2012; 32:1585-1595. [PMID: 22925132 DOI: 10.1111/j.1478-3231.2012.02865.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/22/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fibrinogen-like protein 2 (FGL2), which directly generates thrombin from prothrombin without activation of the conventional coagulation cascade, was shown to be overexpressed in various human malignant tumours. AIMS Herein, we aimed to investigate its expression pattern, biological function and mechanism of action in hepatocellular carcinoma (HCC). METHODS FGL2 expression and colocalization with fibrin was examined in 15 HCC tissues. FGL2 downregulation was performed by targeting microRNA in a HCCLM6 cell line in which FGL2 was highly expressed in xenografts of nude mice. The effects of FGL2 knockdown on tumour growth and angiogenesis were evaluated in vitro and in vivo. Cytometric bead arrays were employed to identify FGL2-regulated signalling pathways. RESULTS FGL2 was overexpressed in HCC tissues and colocalized with fibrin deposition. Knockdown of FGL2 expression in HCCLM6 cells (hFGL2(low) HCCLM6) resulted in delayed xenografts tumour growth within an observation period of 42 days and decreased vascularization, which was accompanied by decreased phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). In vitro hFGL2(low) HCCLM6 cells exhibited decreased proliferation without significant induction of apoptosis. Overexpression of FGL2 in HCCLM6 cells or addition of recombinant hFGL2 protein induced phosphorylation of p38-MAPK and ERK1/2 involving protease-activated receptors (PARs).activation. CONCLUSIONS FGL2 contributes to HCC tumour growth and angiogenesis in a thrombin-dependent manner, and downregulation of its expression might be of therapeutic significance in HCC.
Collapse
Affiliation(s)
- Yanling Liu
- Department and Institute of Infectious Disease, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Malignant melanoma and its stromal nonimmune microecosystem. JOURNAL OF ONCOLOGY 2012; 2012:584219. [PMID: 22811710 PMCID: PMC3395267 DOI: 10.1155/2012/584219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/23/2012] [Accepted: 05/27/2012] [Indexed: 02/07/2023]
Abstract
In recent years, rapid advances were reached in the understanding of a series of biologic signals influencing cutaneous malignant melanoma (CMM) cells. CMM is in close contact with a peculiar dermal extracellular matrix (ECM). Stromal cells store and release various structural ECM components. The impact on CMM growth and progression is mediated through strong and long-lasting effects of ECM products. This paper summarizes some peculiar aspects of the peri-CMM stroma showing intracytoplasmic loads in Factor XIIIa, CD34, versican, and α (IV) collagen chains. The restricted peri-CMM skin territory exhibiting such changes corresponds to the area showing neoangiogenesis and extravascular unicellular metastatic spread. The latter inconspicuous migratory CMM cells possibly correspond to CMM stem cells or to CMM cells with aberrant HOX gene expression. Their presence is associated with an increased risk for metastases in the regional sentinel lymph nodes. In conclusion, the CMM-stroma connection appears crucial to the growth regulation, invasiveness and initial metastatic spread of CMM cells. Although much remains to be learned in this field, the active intervention of the peri-CMM stroma is likely involved in the inconspicuous early metastatic migration of CMM cells.
Collapse
|
65
|
Caliendo G, Santagada V, Perissutti E, Severino B, Fiorino F, Frecentese F, Juliano L. Kallikrein protease activated receptor (PAR) axis: an attractive target for drug development. J Med Chem 2012; 55:6669-86. [PMID: 22607152 DOI: 10.1021/jm300407t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Giuseppe Caliendo
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università degli Studi di Napoli Federico II, Via D. Montesano, 49, 80131, Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
66
|
Zhu L, Wang X, Wu J, Mao D, Xu Z, He Z, Yu A. Cooperation of protease-activated receptor 1 and integrin ανβ5 in thrombin-mediated lung cancer cell invasion. Oncol Rep 2012; 28:553-60. [PMID: 22665038 DOI: 10.3892/or.2012.1851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/27/2012] [Indexed: 11/05/2022] Open
Abstract
Protease-activated receptor 1 (PAR1) and integrins play an important role in thrombin-mediated tumor cell invasion. However, the role of PAR1 and integrin ανβ5 and the relationship between the two receptors in thrombin-induced lung cancer invasion remains unknown. Moreover, the mechanisms through which immobilized thrombin facilitates tumor invasion are poorly understood. In this study, both native and immobilized thrombin promoted lung cancer cell adhesion, migration and extracellular signal-regulated kinase phosphorylation. Integrin ανβ5 is involved in both native and immobilized thrombin-mediated tumor cell invasion; PAR1 had no effect on immobilized thrombin-mediated cell invasion. PAR1 and integrin ανβ5 colocalized on the surface of native thrombin-treated cells. This study suggests that targeting of integrin ανβ5 or the PAR1-integrin ανβ5 complex may present an important therapeutic opportunity to prevent lung cancer invasion.
Collapse
Affiliation(s)
- Lingyun Zhu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | | | | | | | | | | | | |
Collapse
|