51
|
Fukuda Y, Asaoka T, Eguchi H, Yokota Y, Kubo M, Kinoshita M, Urakawa S, Iwagami Y, Tomimaru Y, Akita H, Noda T, Gotoh K, Kobayashi S, Hirata M, Wada H, Mori M, Doki Y. Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in intrahepatic cholangiocarcinoma. Cancer Sci 2020; 111:323-333. [PMID: 31799781 PMCID: PMC7004525 DOI: 10.1111/cas.14267] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 12/18/2022] Open
Abstract
CXCL9, an IFN‐γ inducible chemokine, has been reported to play versatile roles in tumor‐host interrelationships. However, little is known about its role in intrahepatic cholangiocarcinoma (iCCA). Here, we aimed to elucidate the prognostic and biological implications of CXCL9 in iCCA. Endogenous CXCL9 expression and the number of tumor‐infiltrating lymphocytes were immunohistochemically assessed in resection specimens. These data were validated in mice treated by silencing CXCL9 with short hairpin RNA. In addition, the induction of endogenous CXCL9 and the effects of CXCL9 on tumor biological behaviors were evaluated in human cholangiocarcinoma cell lines. Immunohistochemical analyses revealed that high CXCL9 expression was closely correlated with prolonged postoperative survival and a large number of tumor‐infiltrating natural killer (NK) cells. In fact, due to the trafficking of total and tumor necrosis factor‐related apoptosis‐inducing ligand‐expressing NK cells into tumors, CXCL9‐sufficient cells were less tumorigenic in the liver than CXCL9‐deficient cells in mice. Although CXCL9 involvement in tumor growth and invasion abilities differed across cell lines, it did not exacerbate these abilities in CXCL9‐expressing cell lines. We showed that CXCL9 was useful as a prognostic marker. Our findings also suggested that CXCL9 upregulation might offer a therapeutic strategy for treating CXCL9‐expressing iCCA by augmenting anti–tumor immune surveillance.
Collapse
Affiliation(s)
- Yasunari Fukuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuki Yokota
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahiko Kubo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mitsuru Kinoshita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinya Urakawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Michinari Hirata
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Hisashi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
52
|
Mempel TR, Marangoni F. Guidance factors orchestrating regulatory T cell positioning in tissues during development, homeostasis, and response. Immunol Rev 2020; 289:129-141. [PMID: 30977195 DOI: 10.1111/imr.12761] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/29/2022]
Abstract
Over their lifetime, regulatory T cells (Treg) recalibrate their expression of trafficking receptors multiple times as they progress through development, respond to immune challenges, or adapt to the requirements of functioning in various non-lymphoid tissue environments. These trafficking receptors, which include chemokine receptors and other G-protein coupled receptors, integrins, as well as selectins and their ligands, enable Treg not only to enter appropriate tissues from the bloodstream via post-capillary venules, but also to navigate these tissues to locally execute their immune-regulatory functions, and finally to seek out the right antigen-presenting cells and interact with these, in part in order to receive the signals that sustain their survival, proliferation, and functional activity, in part in order to execute their immuno-regulatory function by altering antigen presenting cell function. Here, we will review our current knowledge of when and in what ways Treg alter their trafficking properties. We will focus on the chemokine system and try to identify specialized, non-redundant roles of individual receptors as well as similarities and differences to the conventional T cell compartment.
Collapse
Affiliation(s)
- Thorsten R Mempel
- The Center for Immunology and Inflammatory Diseases at Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Francesco Marangoni
- The Center for Immunology and Inflammatory Diseases at Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
53
|
Bikfalvi A, Billottet C. The CC and CXC chemokines: major regulators of tumor progression and the tumor microenvironment. Am J Physiol Cell Physiol 2020; 318:C542-C554. [PMID: 31913695 DOI: 10.1152/ajpcell.00378.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemokines are a family of soluble cytokines that act as chemoattractants to guide the migration of cells, in particular of immune cells. However, chemokines are also involved in cell proliferation, differentiation, and survival. Chemokines are associated with a variety of human diseases including chronic inflammation, immune dysfunction, cancer, and metastasis. This review discusses the expression of CC and CXC chemokines in the tumor microenvironment and their supportive and inhibitory roles in tumor progression, angiogenesis, metastasis, and tumor immunity. We also specially focus on the diverse roles of CXC chemokines (CXCL9-11, CXCL4 and its variant CXCL4L1) and their two chemokine receptor CXCR3 isoforms, CXCR3-A and CXCR3-B. These two distinct isoforms have divergent roles in tumors, either promoting (CXCR3-A) or inhibiting (CXCR3-B) tumor progression. Their effects are mediated not only directly in tumor cells but also indirectly via the regulation of angiogenesis and tumor immunity. A full comprehension of their mechanisms of action is critical to further validate these chemokines and their receptors as biomarkers or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- INSERM U1029, Pessac, France.,University of Bordeaux, Pessac, France
| | | |
Collapse
|
54
|
Hashemi V, Maleki LA, Esmaily M, Masjedi A, Ghalamfarsa G, Namdar A, Yousefi M, Yousefi B, Jadidi-Niaragh F. Regulatory T cells in breast cancer as a potent anti-cancer therapeutic target. Int Immunopharmacol 2019; 78:106087. [PMID: 31841758 DOI: 10.1016/j.intimp.2019.106087] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/23/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Despite marked advances in treatment approaches, breast cancer is still going to be more prevalent, worldwide. High levels of regulatory T (Treg) cells have repeatedly been demonstrated in circulation, lymph nodes, and tumor samples from patients with various cancer types. The transcription factor Forkhead box protein 3 (Foxp3)-expressing Treg cells have the high suppressive potential of the immune system and are fundamental in preserving immune homeostasis and self-tolerance. However, they enhance tumor development by curbing efficient anti-tumor immune mechanisms in malignancies. Moreover, the accumulation of Treg cells in breast tumors is related to the short overall survival of patients. Treg cell frequency has been applied as an independent predicting factor to diagnose patients with a high risk of relapse. Pulling out all populations of Treg cells to promote the efficacy of anticancer treatment methods may potentially lead to hazardous autoimmune disorders. Thus, realizing the exact structure of tumor-infiltrating Treg cells is pivotal to efficiently target Treg cells in tumors. There are exclusive and non-exclusive approaches to lower down and degrade the number/function of Treg cells. These approaches can include inhibiting tumoral migration, depletion, interference with function, and utilizing T cell plasticity. This review article attempts to clarify the implications concerning the involvement of Treg cells in breast cancer progression and discuss the current approaches in the treatment of this cancer via modulation of Treg cells function.
Collapse
Affiliation(s)
- Vida Hashemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Esmaily
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Masjedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Afshin Namdar
- Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Canada
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
55
|
Blocking the FSTL1-DIP2A Axis Improves Anti-tumor Immunity. Cell Rep 2019; 24:1790-1801. [PMID: 30110636 DOI: 10.1016/j.celrep.2018.07.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Immune dysfunction is a strong factor in the resistance of cancer to treatment. Blocking immune checkpoint pathways is a promising approach to improve anti-tumor immunity, but the clinical efficacies are still limited. We previously identified follistatin-like 1 (FSTL1) as a determinant of immune dysfunction mediated by mesenchymal stromal/stem cells (MSCs) and immunoregulatory cells. Here, we demonstrate that blocking FSTL1 but not immune checkpoint pathways significantly suppresses cancer progression and metastasis in several mouse tumor models with increased MSCs. Expression of DIP2A (the receptor of FSTL1) in tumor cells is critical for FSTL1-induced immunoresistance. FSTL1/DIP2A co-positivity in tumor tissues correlates with poor prognosis in NSCLC patients. Thus, breaking the FSTL1-DIP2A axis may be a useful strategy for successfully inducing anti-tumor immunity.
Collapse
|
56
|
Paluskievicz CM, Cao X, Abdi R, Zheng P, Liu Y, Bromberg JS. T Regulatory Cells and Priming the Suppressive Tumor Microenvironment. Front Immunol 2019; 10:2453. [PMID: 31681327 PMCID: PMC6803384 DOI: 10.3389/fimmu.2019.02453] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Treg play a central role in maintenance of self tolerance and homeostasis through suppression of self-reactive T cell populations. In addition to that role, Treg also survey cancers and suppress anti-tumor immune responses. Thus, understanding the unique attributes of Treg-tumor interactions may permit control of this pathologic suppression without interfering with homeostatic self-tolerance. This review will define the unique role of Treg in cancer growth, and the ways by which Treg inhibit a robust anti-tumor immune response. There will be specific focus placed on Treg homing to the tumor microenvironment (TME), TME formation of induced Treg (iTreg), mechanisms of suppression that underpin cancer immune escape, and trophic nonimmunologic effects of Treg on tumor cells.
Collapse
Affiliation(s)
| | - Xuefang Cao
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Reza Abdi
- Division of Renal Medicine, Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Pan Zheng
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yang Liu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
57
|
Wang L, Simons DL, Lu X, Tu TY, Solomon S, Wang R, Rosario A, Avalos C, Schmolze D, Yim J, Waisman J, Lee PP. Connecting blood and intratumoral T reg cell activity in predicting future relapse in breast cancer. Nat Immunol 2019; 20:1220-1230. [PMID: 31285626 PMCID: PMC8802768 DOI: 10.1038/s41590-019-0429-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/15/2019] [Indexed: 01/25/2023]
Abstract
Regulatory T (Treg) cells play a major role in the development of an immunosuppressive tumor microenvironment. The origin of intratumoral Treg cells and their relationship with peripheral blood Treg cells remain unclear. Treg cells consist of at least three functionally distinct subpopulations. Here we show that peripheral blood CD45RA-FOXP3hi Treg cells (Treg II cells) are phenotypically closest to intratumoral Treg cells, including in their expression of CCR8. Analyses of T cell antigen receptor repertoires further support the hypothesis that intratumoral Treg cells may originate primarily from peripheral blood Treg II cells. Moreover, the signaling responsiveness of peripheral blood Treg II cells to immunosuppressive, T helper type 1 (TH1) and T helper type 2 (TH2) cytokines reflects intratumoral immunosuppressive potential, and predicts future relapse in two independent cohorts of patients with breast cancer. Together, our findings give important insights into the relationship between peripheral blood Treg cells and intratumoral Treg cells, and highlight cytokine signaling responsiveness as a key determinant of intratumoral immunosuppressive potential and clinical outcome.
Collapse
Affiliation(s)
- Lei Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Diana L. Simons
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Xuyang Lu
- Department of Biostatistics, UCLA, Los Angeles, CA 90095, USA
| | - Travis Yiwey Tu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Shawn Solomon
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Roger Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Anthony Rosario
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Christian Avalos
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - John Yim
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - James Waisman
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Peter P. Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
58
|
Whiteside TL. Human regulatory T cells (Treg) and their response to cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019; 4:215-228. [PMID: 32953989 PMCID: PMC7500484 DOI: 10.1080/23808993.2019.1634471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Regulatory T cells (Treg) and their role in health and disease is being intensively investigated. Today, human Treg emerge as a highly heterogeneous subset of CD4+ T cells which mediate immune suppression but also regulate responses of non-immune cells. In cancer, Treg occupy a critical although not yet entirely understood role. AREAS COVERED Newly acquired insights into Treg indicate a much greater plasticity and functional heterogeneity of this T cell subset than was previously known. Functional redundancy of Treg and their interactions with a variety of immune and non-immune cellular targets emphasize the central role Treg play in cancer. Treg not only regulate the host responses to cancer; they may also regulate responses to immune therapies. The impact of immune checkpoint blockade on Treg survival, stability and suppressive activity remains to be elucidated. T cell reprogramming by tumor-derived factors, including tumor-derived exosomes (TEX), plays a key role in shaping the Treg repertoire in the tumor microenvironment (TME). The reprogrammed or induced iTreg acquire capabilities to strongly down-regulate anti-tumor immune responses by mechanisms that are specific for each TME. Therapeutic silencing of such Treg calls for the discrimination of "bad" from "good" Treg subsets, an approach that remains elusive in the absence of a definitive "Treg signature." EXPERT OPINION Context-related plasticity and heterogeneity of Treg in the TME are significant barriers to selective therapeutic depletion of those Treg subsets that are reprogramed by the tumor to suppress anti-tumor immunity.
Collapse
Affiliation(s)
- Theresa L. Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| |
Collapse
|
59
|
Lim EL, Okkenhaug K. Phosphoinositide 3-kinase δ is a regulatory T-cell target in cancer immunotherapy. Immunology 2019; 157:210-218. [PMID: 31107985 PMCID: PMC6587315 DOI: 10.1111/imm.13082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Tumour infiltration by regulatory T (Treg) cells contributes to suppression of the anti-tumour immune response, which limits the efficacy of immune-mediated cancer therapies. The phosphoinositide 3-kinase (PI3K) pathway has key roles in mediating the function of many immune cell subsets, including Treg cells. Treg function is context-dependent and depends on input from different cell surface receptors, many of which can activate the PI3K pathway. In this review, we explore how PI3Kδ contributes to signalling through several major immune cell receptors, including the T-cell receptor and co-stimulatory receptors such as CD28 and ICOS, but is antagonized by the immune checkpoint receptors CTLA-4 and PD-1. Understanding how PI3Kδ inhibition affects Treg signalling events will help to inform how best to use PI3Kδ inhibitors in clinical cancer treatment.
Collapse
Affiliation(s)
- Ee Lyn Lim
- Laboratory of Experimental ImmunologyImmunology Frontier Research CentreOsaka UniversitySuitaJapan
| | - Klaus Okkenhaug
- Division of ImmunologyDepartment of PathologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
60
|
Reynders N, Abboud D, Baragli A, Noman MZ, Rogister B, Niclou SP, Heveker N, Janji B, Hanson J, Szpakowska M, Chevigné A. The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells 2019; 8:cells8060613. [PMID: 31216755 PMCID: PMC6627231 DOI: 10.3390/cells8060613] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
First thought to orchestrate exclusively leukocyte trafficking, chemokines are now acknowledged for their multiple roles in the regulation of cell proliferation, differentiation, and survival. Dysregulation of their normal functions contributes to various pathologies, including inflammatory diseases and cancer. The two chemokine receptor 3 variants CXCR3-A and CXCR3-B, together with their cognate chemokines (CXCL11, CXCL10, CXCL9, CXCL4, and CXCL4L1), are involved in the control but also in the development of many tumors. CXCR3-A drives the infiltration of leukocytes to the tumor bed to modulate tumor progression (paracrine axis). Conversely, tumor-driven changes in the expression of the CXCR3 variants and their ligands promote cancer progression (autocrine axis). This review summarizes the anti- and pro-tumoral activities of the CXCR3 variants and their associated chemokines with a focus on the understanding of their distinct biological roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Nathan Reynders
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
- Faculty of Science, Technology and Communication, University of Luxembourg, L-1526 Luxembourg, Luxembourg.
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, CHU, B-4000 Liège, Belgium.
| | - Alessandra Baragli
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Muhammad Zaeem Noman
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, B-4000 Liège, Belgium.
- Neurology Department, CHU, Academic Hospital, University of Liège, B-4000 Liège, Belgium.
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Nikolaus Heveker
- Research Centre, Saint-Justine Hospital, University of Montreal, Montréal H3T 1C5, Canada.
- Department of Biochemistry, University of Montreal, Montréal H3T 1J4, Canada.
| | - Bassam Janji
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, CHU, B-4000 Liège, Belgium.
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicine (CIRM), University of Liège, CHU, B-4000 Liège, Belgium.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
61
|
Expression of costimulatory and inhibitory receptors in FoxP3 + regulatory T cells within the tumor microenvironment: Implications for combination immunotherapy approaches. Adv Cancer Res 2019; 144:193-261. [PMID: 31349899 DOI: 10.1016/bs.acr.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unprecedented success of immune checkpoint inhibitors has given rise to a rapidly growing number of immuno-oncology agents undergoing preclinical and clinical development and an exponential increase in possible combinations. Defining a clear rationale for combinations by identifying synergies between immunomodulatory pathways has therefore become a high priority. Immunosuppressive regulatory T cells (Tregs) within the tumor microenvironment (TME) represent a major roadblock to endogenous and therapeutic tumor immunity. However, Tregs are also essential for the maintenance of immunological self-tolerance, and share many molecular pathways with conventional T cells including cytotoxic T cells, the primary mediators of tumor immunity. Hence the inability to specifically target and neutralize Tregs within the TME of cancer patients without globally compromising self-tolerance poses a significant challenge. Here we review recent advances in the characterization of tumor-infiltrating Tregs with a focus on costimulatory and inhibitory receptors. We discuss receptor expression patterns, their functional role in Treg biology and mechanistic insights gained from targeting these receptors in preclinical models to evaluate their potential as clinical targets. We further outline a framework of parameters that could be used to refine the assessment of Tregs in cancer patients and increase their value as predictive biomarkers. Finally, we propose modalities to integrate our increasing knowledge on Treg phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Such combinations have great potential for synergy, as they could concomitantly enhance cytotoxic T cells and inhibit Tregs within the TME, thereby increasing the efficacy of current cancer immunotherapies.
Collapse
|
62
|
Moreno Ayala MA, Li Z, DuPage M. Treg programming and therapeutic reprogramming in cancer. Immunology 2019; 157:198-209. [PMID: 30866047 DOI: 10.1111/imm.13058] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
Overcoming the immunosuppressive tumour microenvironment is the major challenge impeding cancer immunotherapy today. Regulatory T-cells (Tregs) are prevalent in nearly all cancers and, as immunosuppressive regulators of immune responses, they are the principal opponents of cancer immunotherapy. However, disabling Tregs systemically causes severe autoimmune toxicity, hastening the need for more selective methods to target intratumoural Tregs. In this review, we discuss a burgeoning new modality to specifically target tumour-infiltrating Tregs (TI-Tregs) by reprogramming their functionality from immunosuppressive to immune stimulatory within tumours. As the basis for therapeutic selectivity of TI-Tregs, we will focus on the defining features of Tregs within cancer: their highly activated state controlled by the engagement of key surface receptors, their distinct metabolic programme, and their unique transcriptional programme. By identifying proteins and pathways that distinguish TI-Tregs from other Tregs in the body, as well as from the beneficial antitumour effector T-cells within tumours, we highlight mechanisms to selectively reprogramme TI-Tregs for the treatment of cancer.
Collapse
Affiliation(s)
- Mariela A Moreno Ayala
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zehui Li
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michel DuPage
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
63
|
Santegoets SJ, Duurland CL, Jordanova ES, van Ham JJ, Ehsan I, van Egmond SL, Welters MJP, van der Burg SH. Tbet-positive regulatory T cells accumulate in oropharyngeal cancers with ongoing tumor-specific type 1 T cell responses. J Immunother Cancer 2019; 7:14. [PMID: 30658697 PMCID: PMC6339415 DOI: 10.1186/s40425-019-0497-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/01/2019] [Indexed: 01/13/2023] Open
Abstract
Regulatory T cells (Tregs) may comprise different subsets allowing them to efficiently suppress different types of effector T cells. In this study, we show that high numbers of both conventional and Tbet co-expressing Foxp3hi Tregs accumulate in human papilloma virus (HPV)-driven oropharyngeal squamous cell carcinoma (OPSCC). The infiltration of Tbet+ Foxp3+ Tregs was strongly correlated with a concomitant tumor-specific and conventional type 1-oriented intratumoral T cell infiltrate. Both conventional CD4+CD25+CD127–Foxp3hi Tregs and their Tbethi counterparts exhibited an activated phenotype, co-expressed high levels of CTLA4 and Helios and exhibited a maximally demethylated Foxp3 gene locus TSDR, indicating their full capacity to impede a type 1 effector T cell response. Interestingly, while the prognostic value of conventional Tregs was neutral, a high intratumoral frequency of Tbet+ Tregs was associated with prolonged disease-specific survival, most likely because their presence reflected high numbers of effector T cells. The presence of these Tbet+ Tregs may in part explain why a dense type 1-oriented immune infiltrate in OPSCC is not enough to fully control tumor growth.
Collapse
Affiliation(s)
- S J Santegoets
- Departments of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - C L Duurland
- Departments of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - E S Jordanova
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA) Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - J J van Ham
- Departments of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - I Ehsan
- Departments of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - S L van Egmond
- Departments of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - M J P Welters
- Departments of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - S H van der Burg
- Departments of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
64
|
D'Agostino G, Cecchinato V, Uguccioni M. Chemokine Heterocomplexes and Cancer: A Novel Chapter to Be Written in Tumor Immunity. Front Immunol 2018; 9:2185. [PMID: 30319638 PMCID: PMC6167476 DOI: 10.3389/fimmu.2018.02185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Infiltrating immune cells are a key component of the tumor microenvironment and play central roles in dictating tumor fate, either promoting anti-tumor immune responses, or sustaining tumor growth, angiogenesis and metastasis. A distinctive microenvironment is often associated to different tumor types, with substantial differences in prognosis. The production of a variety of chemotactic factors by cancer and stromal cells orchestrates cell recruitment, local immune responses or cancer progression. In the last decades, different studies have highlighted how chemotactic cues, and in particular chemokines, can act as natural antagonists or induce synergistic effects on selective receptors by forming heterocomplexes, thus shaping migratory responses of immune cells. A variety of chemokines has been described to be able to form heterocomplexes both in vitro and in vivo under inflammatory conditions, but nowadays little is known on the presence and relevance of heterocomplexes in the tumor microenvironment. In recent years, the alarmin HMGB1, which can be massively released within the tumor microenvironment, has also been described to form a complex with the chemokine CXCL12 enhancing CXCR4-mediated signaling, thus providing an additional regulation of the activity of the chemokine system. In the present review, we will discuss the current knowledge on the synergy occurring between chemokines or inflammatory molecules, and describe the multiple functions exerted by the chemokines expressed in the tumor microenvironment, pointing our attention to the synergism as a possible modulator of tumor suppression or progression.
Collapse
Affiliation(s)
- Gianluca D'Agostino
- Laboratory of Chemokines in Immunity, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Valentina Cecchinato
- Laboratory of Chemokines in Immunity, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Laboratory of Chemokines in Immunity, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
65
|
Ao C, Zeng K. The role of regulatory T cells in pathogenesis and therapy of human papillomavirus-related diseases, especially in cancer. INFECTION GENETICS AND EVOLUTION 2018; 65:406-413. [PMID: 30172014 DOI: 10.1016/j.meegid.2018.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted agent in the world. It can cause condyloma acuminatum, anogenital malignancies, and head and neck cancers. The host immune responses to HPV involve multiple cell types that have regulatory functions, and HPV-mediated changes to regulatory T cells (Tregs) in both the local lesion tissues and the circulatory system of patients have received considerable attention. The role of Tregs in HPV infections ranges from suppression of effector T cell (Teff) responses to protection of tissues from immune-mediated injury in different anatomic subsites. In this review, we explore the influence of Tregs in the immunopathology of HPV-related diseases and therapies targeting Tregs as novel approaches against HPV.
Collapse
Affiliation(s)
- Chunping Ao
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
66
|
The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018. [PMID: 30042343 DOI: 10.3390/cancers10080242] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
|
67
|
The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018. [PMID: 30042343 DOI: 10.3390/cancers10080242]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
|
68
|
Rodriguez GM, Galpin KJC, McCloskey CW, Vanderhyden BC. The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy. Cancers (Basel) 2018; 10:E242. [PMID: 30042343 PMCID: PMC6116043 DOI: 10.3390/cancers10080242] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies.
Collapse
Affiliation(s)
- Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
69
|
Kawano Y, Zavidij O, Park J, Moschetta M, Kokubun K, Mouhieddine TH, Manier S, Mishima Y, Murakami N, Bustoros M, Pistofidis RS, Reidy M, Shen YJ, Rahmat M, Lukyanchykov P, Karreci ES, Tsukamoto S, Shi J, Takagi S, Huynh D, Sacco A, Tai YT, Chesi M, Bergsagel PL, Roccaro AM, Azzi J, Ghobrial IM. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J Clin Invest 2018; 128:2487-2499. [PMID: 29558366 DOI: 10.1172/jci88169] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 03/13/2018] [Indexed: 01/12/2023] Open
Abstract
Despite significant advances in the treatment of multiple myeloma (MM), most patients succumb to disease progression. One of the major immunosuppressive mechanisms that is believed to play a role in myeloma progression is the expansion of regulatory T cells (Tregs). In this study, we demonstrate that myeloma cells drive Treg expansion and activation by secreting type 1 interferon (IFN). Blocking IFN α and β receptor 1 (IFNAR1) on Tregs significantly decreases both myeloma-associated Treg immunosuppressive function and myeloma progression. Using syngeneic transplantable murine myeloma models and bone marrow (BM) aspirates of MM patients, we found that Tregs were expanded and activated in the BM microenvironment at early stages of myeloma development. Selective depletion of Tregs led to a complete remission and prolonged survival in mice injected with myeloma cells. Further analysis of the interaction between myeloma cells and Tregs using gene sequencing and enrichment analysis uncovered a feedback loop, wherein myeloma-cell-secreted type 1 IFN induced proliferation and expansion of Tregs. By using IFNAR1-blocking antibody treatment and IFNAR1-knockout Tregs, we demonstrated a significant decrease in myeloma-associated Treg proliferation, which was associated with longer survival of myeloma-injected mice. Our results thus suggest that blocking type 1 IFN signaling represents a potential strategy to target immunosuppressive Treg function in MM.
Collapse
Affiliation(s)
- Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Hematology, Kumamoto University Hospital, Kumamoto, Japan
| | - Oksana Zavidij
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Katsutoshi Kokubun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tarek H Mouhieddine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuji Mishima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Naoka Murakami
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, and
| | - Mark Bustoros
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mairead Reidy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu J Shen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahshid Rahmat
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Pavlo Lukyanchykov
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, and
| | - Esilida Sula Karreci
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, and
| | - Shokichi Tsukamoto
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiantao Shi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Satoshi Takagi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Daisy Huynh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio Sacco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, BS, Italy
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - P Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, BS, Italy
| | - Jamil Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, and
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
70
|
Marangoni F, Zhang R, Mani V, Thelen M, Ali Akbar NJ, Warner RD, Äijö T, Zappulli V, Martinez GJ, Turka LA, Mempel TR. Tumor Tolerance-Promoting Function of Regulatory T Cells Is Optimized by CD28, but Strictly Dependent on Calcineurin. THE JOURNAL OF IMMUNOLOGY 2018; 200:3647-3661. [PMID: 29661826 DOI: 10.4049/jimmunol.1701220] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Treg) restrain immune responses against malignant tumors, but their global depletion in cancer patients will likely be limited by systemic autoimmune toxicity. Instead, approaches to "tune" their activities may allow for preferential targeting of tumor-reactive Treg. Although Ag recognition regulates Treg function, the roles of individual TCR-dependent signaling pathways in enabling Treg to promote tumor tolerance are not well characterized. In this study, we examined in mouse tumor models the role of calcineurin, a key mediator of TCR signaling, and the role of the costimulatory receptor CD28 in the differentiation of resting central Treg into effector Treg endowed with tumor tropism. We find that calcineurin, although largely dispensable for suppressive activity in vitro, is essential for upregulation of ICOS and CTLA-4 in Treg, as well as for expression of chemokine receptors driving their accumulation in tumors. In contrast, CD28 is not critical, but optimizes the formation of tumor-homing Treg and their fitness in tumor tissue. Accordingly, although deletion of either CnB or CD28 strongly impairs Treg-mediated tumor tolerance, lack of CnB has an even more pronounced impact than lack of CD28. Hence, our studies reveal distinct roles for what has classically been defined as signal 1 and signal 2 of conventional T cell activation in the context of Treg-mediated tumor tolerance.
Collapse
Affiliation(s)
- Francesco Marangoni
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114; .,Harvard Medical School, Boston, MA 02115
| | - Ruan Zhang
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02114
| | - Vinidhra Mani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114.,Harvard Medical School, Boston, MA 02115
| | - Martin Thelen
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114
| | - Noor J Ali Akbar
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114
| | - Ross D Warner
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114
| | - Tarmo Äijö
- Center for Computational Biology, Flatiron Institute, New York, NY 10010
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy; and
| | - Gustavo J Martinez
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Laurence A Turka
- Harvard Medical School, Boston, MA 02115.,Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02114
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114; .,Harvard Medical School, Boston, MA 02115
| |
Collapse
|
71
|
Fujimoto H, Saito Y, Ohuchida K, Kawakami E, Fujiki S, Watanabe T, Ono R, Kaneko A, Takagi S, Najima Y, Hijikata A, Cui L, Ueki T, Oda Y, Hori S, Ohara O, Nakamura M, Saito T, Ishikawa F. Deregulated Mucosal Immune Surveillance through Gut-Associated Regulatory T Cells and PD-1 + T Cells in Human Colorectal Cancer. THE JOURNAL OF IMMUNOLOGY 2018; 200:3291-3303. [PMID: 29581358 DOI: 10.4049/jimmunol.1701222] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Disturbed balance between immune surveillance and tolerance may lead to poor clinical outcomes in some malignancies. In paired analyses of adenocarcinoma and normal mucosa from 142 patients, we found a significant increase of the CD4/CD8 ratio and accumulation of regulatory T cells (Tregs) within the adenocarcinoma. The increased frequency of Tregs correlated with the local infiltration and extension of the tumor. There was concurrent maturation arrest, upregulation of programmed death-1 expression, and functional impairment in CD8+ T cells (CTLs) isolated from the adenocarcinoma. Adenocarcinoma-associated Tregs directly inhibit the function of normal human CTLs in vitro. With histopathological analysis, Foxp3+ Tregs were preferentially located in stroma. Concurrent transcriptome analysis of epithelial cells, stromal cells, and T cell subsets obtained from carcinomatous and normal intestinal samples from patients revealed a distinct gene expression signature in colorectal adenocarcinoma-associated Tregs, with overexpression of CCR1, CCR8, and TNFRSF9, whereas their ligands CCL4 and TNFSF9 were found upregulated in cancerous epithelium. Overexpression of WNT2 and CADM1, associated with carcinogenesis and metastasis, in cancer-associated stromal cells suggests that both cancer cells and stromal cells play important roles in the development and progression of colorectal cancer through the formation of a tumor microenvironment. The identification of CTL anergy by Tregs and the unique gene expression signature of human Tregs and stromal cells in colorectal cancer patients may facilitate the development of new therapeutics against malignancies.
Collapse
Affiliation(s)
- Hanae Fujimoto
- Department of Immune Regulation Research, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba 260-0856, Japan.,Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yoriko Saito
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Eiryo Kawakami
- RIKEN Medical Sciences Innovation Hub Program, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Saera Fujiki
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Rintaro Ono
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Akiko Kaneko
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Shinsuke Takagi
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yuho Najima
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Atsushi Hijikata
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Lin Cui
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ueki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shohei Hori
- Laboratory for Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; and
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Department of Human Genome Research, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Fumihiko Ishikawa
- Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan;
| |
Collapse
|
72
|
Regulatory T cell inhibition by dasatinib is associated with natural killer cell differentiation and a favorable molecular response—The final results of the D-first study. Leuk Res 2018; 66:66-72. [DOI: 10.1016/j.leukres.2018.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 11/20/2022]
|
73
|
Duggleby R, Danby RD, Madrigal JA, Saudemont A. Clinical Grade Regulatory CD4 + T Cells (Tregs): Moving Toward Cellular-Based Immunomodulatory Therapies. Front Immunol 2018; 9:252. [PMID: 29487602 PMCID: PMC5816789 DOI: 10.3389/fimmu.2018.00252] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/29/2018] [Indexed: 12/26/2022] Open
Abstract
Regulatory T cells (Tregs) are CD4+ T cells that are key players of immune tolerance. They are powerful suppressor cells, able to impact the function of numerous immune cells, including key effectors of inflammation such as effector T cells. For this reason, Tregs are an ideal candidate for the development of cell therapy approaches to modulate immune responses. Treg therapy has shown promising results so far, providing key knowledge on the conditions in which these cells can provide protection and demonstrating that they could be an alternative to current pharmacological immunosuppressive therapies. However, a more comprehensive understanding of their characteristics, isolation, activation, and expansion is needed to be able design cost effective therapies. Here, we review the practicalities of making Tregs a viable cell therapy, in particular, discussing the challenges faced in isolating and manufacturing Tregs and defining what are the most appropriate applications for this new therapy.
Collapse
Affiliation(s)
- Richard Duggleby
- Anthony Nolan Research Institute, London, United Kingdom.,University College London, London, United Kingdom
| | - Robert David Danby
- Anthony Nolan Research Institute, London, United Kingdom.,University College London, London, United Kingdom.,Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - J Alejandro Madrigal
- Anthony Nolan Research Institute, London, United Kingdom.,University College London, London, United Kingdom
| | - Aurore Saudemont
- Anthony Nolan Research Institute, London, United Kingdom.,University College London, London, United Kingdom
| |
Collapse
|
74
|
Metzemaekers M, Vanheule V, Janssens R, Struyf S, Proost P. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Front Immunol 2018; 8:1970. [PMID: 29379506 PMCID: PMC5775283 DOI: 10.3389/fimmu.2017.01970] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
The inflammatory chemokines CXCL9, CXCL10, and CXCL11 are predominantly induced by interferon (IFN)-γ and share an exclusive chemokine receptor named CXC chemokine receptor 3 (CXCR3). With a prototype function of directing temporal and spatial migration of activated T cells and natural killer cells, and inhibitory effects on angiogenesis, these CXCR3 ligands have been implicated in infection, acute inflammation, autoinflammation and autoimmunity, as well as in cancer. Intense former research efforts led to recent and ongoing clinical trials using CXCR3 and CXCR3 ligand targeting molecules. Scientific evidence has claimed mutual redundancy, ligand dominance, collaboration or even antagonism, depending on the (patho)physiological context. Most research on their in vivo activity, however, illustrates that CXCL9, CXCL10, and CXCL11 each contribute to the activation and trafficking of CXCR3 expressing cells in a non-redundant manner. When looking into detail, one can unravel a multistep machinery behind final CXCR3 ligand functions. Not only can specific cell types secrete individual CXCR3 interacting chemokines in response to certain stimuli, but also the receptor and glycosaminoglycan interactions, major associated intracellular pathways and susceptibility to processing by particular enzymes, among others, seem ligand-specific. Here, we overview major aspects of the molecular properties and regulatory mechanisms of IFN-induced CXCR3 ligands, and propose that their in vivo non-redundancy is a reflection of the unprecedented degree of versatility that seems inherent to the IFN-related CXCR3 chemokine system.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
75
|
Sakai K, Maeda S, Yamada Y, Chambers JK, Uchida K, Nakayama H, Yonezawa T, Matsuki N. Association of tumour-infiltrating regulatory T cells with adverse outcomes in dogs with malignant tumours. Vet Comp Oncol 2018; 16:330-336. [DOI: 10.1111/vco.12383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- K. Sakai
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - S. Maeda
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - Y. Yamada
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - J. K. Chambers
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - K. Uchida
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - H. Nakayama
- Department of Veterinary Pathology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - T. Yonezawa
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| | - N. Matsuki
- Department of Veterinary Clinical Pathobiology; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Tokyo Japan
| |
Collapse
|
76
|
Phenotypic and Functional Properties of Tumor-Infiltrating Regulatory T Cells. Mediators Inflamm 2017; 2017:5458178. [PMID: 29463952 PMCID: PMC5804416 DOI: 10.1155/2017/5458178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022] Open
Abstract
Regulatory T (Treg) cells maintain immune homeostasis by suppressing excessive immune responses. Treg cells induce tolerance against self- and foreign antigens, thus preventing autoimmunity, allergy, graft rejection, and fetus rejection during pregnancy. However, Treg cells also infiltrate into tumors and inhibit antitumor immune responses, thus inhibiting anticancer therapy. Depleting whole Treg cell populations in the body to enhance anticancer treatments will produce deleterious autoimmune diseases. Therefore, understanding the precise nature of tumor-infiltrating Treg cells is essential for effectively targeting Treg cells in tumors. This review summarizes recent results relating to Treg cells in the tumor microenvironment, with particular emphasis on their accumulation, phenotypic, and functional properties, and targeting to enhance the efficacy of anticancer treatment.
Collapse
|
77
|
Khairallah AS, Genestie C, Auguste A, Leary A. Impact of neoadjuvant chemotherapy on the immune microenvironment in advanced epithelial ovarian cancer: Prognostic and therapeutic implications. Int J Cancer 2017; 143:8-15. [DOI: 10.1002/ijc.31200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Aya S. Khairallah
- Department of Pathology and Laboratory Medicine; Gustave Roussy Cancer Center; Villejuif France
| | - Catherine Genestie
- Department of Pathology and Laboratory Medicine; Gustave Roussy Cancer Center; Villejuif France
| | - Aurélie Auguste
- INSERM U981 Gynaecological Tumours, Gustave Roussy Cancer Center; Villejuif France
| | - Alexandra Leary
- Department of Pathology and Laboratory Medicine; Gustave Roussy Cancer Center; Villejuif France
- Department of Medical Oncology; Gustave Roussy Cancer Center; Villejuif France
- Faculty of Sciences; University Paris-Sud; Orsay France
| |
Collapse
|
78
|
Ascierto PA, Daniele B, Hammers H, Hirsh V, Kim J, Licitra L, Nanda R, Pignata S. Perspectives in immunotherapy: meeting report from the "Immunotherapy Bridge", Napoli, November 30th 2016. J Transl Med 2017; 15:205. [PMID: 29020960 PMCID: PMC5637331 DOI: 10.1186/s12967-017-1309-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 12/26/2022] Open
Abstract
The complex interactions between the immune system and tumors lead the identification of key molecules that govern these interactions: immunotherapeutics were designed to overcome the mechanisms broken by tumors to evade immune destruction. After the substantial advances in melanoma, immunotherapy currently includes many other type of cancers, but the melanoma lesson is essential to progress in other type of cancers, since immunotherapy is potentially improving clinical outcome in various solid and haematologic malignancies. Monotherapy in pre-treated NSCLC is studied and the use of nivolumab, pembrolizumab and atezolizumab as second-line of advanced NSCLC is demonstrated as well as first line monotherapy and combination therapy in metastatic NSCLC studied. Patients with HNSCC have immunotherapeutic promises as well: the FDA recently approved moAbs targeting immune checkpoint receptors. Nivolumab in combination with ipilumumab showed acceptable safety and encouraging antitumor activity in metastatic renal carcinoma. HCCs have significant amounts of genomic heterogeneity and multiple oncogenic pathways can be activated: the best therapeutic targets identification is ongoing. The treatment of advanced/relapsed EOC remain clearly an unmet need: a better understanding of the relevant immuno-oncologic pathways and their corresponding biomarkers are required. UC is an immunotherapy-responsive disease: after atezolizumab, three other PD-L1/PD-L1 inhibitors (nivolumab, durvalumab, and avelumab) were approved for treatment of platinum-refractory metastatic urothelial carcinoma. Anti-PD-1/PD-L1 monotherapy is associated with a modest response rate in metastatic breast cancer; the addition of chemotherapy is associated with higher response rates. Immunotherapy safety profile is advantageous, although, in contrast to conventional chemotherapy: boosting the immune system leads to a unique constellation of inflammatory toxicities known as immune-related Adverse Events (irAEs) that may warrant the discontinuation of therapy and/or the administration of immunosuppressive agents. Research should explore better combination with less side effects, the right duration of treatments, combination or sequencing treatments with target therapies. At present, treatment decision is based on patient's characteristics.
Collapse
Affiliation(s)
- Paolo A. Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Bruno Daniele
- Department of Oncology and Medical Oncology Unit, G. Rummo Hospital, Benevento, Italy
| | | | - Vera Hirsh
- McGill Department of Oncology, McGill University, Montreal, Canada
| | - Joseph Kim
- Medical Oncology, Yale School of Medicine, New Haven, CT USA
| | - Lisa Licitra
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Rita Nanda
- Section of Hematology–Oncology, Department of Medicine, The University of Chicago, Chicago, IL USA
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| |
Collapse
|
79
|
Wang H, Franco F, Ho PC. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy. Trends Cancer 2017; 3:583-592. [PMID: 28780935 DOI: 10.1016/j.trecan.2017.06.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
Abstract
The promising outcomes observed in cancer immunotherapy are evidence that the immune system provides a powerful arsenal for the restriction of tumor outgrowth; however, the immunosuppressive tumor microenvironment (TME) is known to impair antitumor immunity and impede the efficacy of cancer immunotherapies. Regulatory T cells (Tregs), which prevent overt immune responses and autoimmunity, accumulate aberrantly in some types of tumor to suppress antitumor immunity and support the establishment of an immunosuppressive microenvironment. Ablation of Tregs has been shown to not only unleash antitumor immunity and interrupt formation of an immunosuppressive TME, but also lead to severe autoimmune disorders. Therefore, it is essential to develop approaches to specifically target intratumoral Tregs. Herein, we summarize the immunomodulatory functions of Tregs in the TME and discuss how metabolic regulation of Tregs can facilitate intratumoral Treg accumulation.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Vaud, Switzerland; Ludwig Lausanne Branch, Epalinges, Vaud, Switzerland
| | - Fabien Franco
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Vaud, Switzerland; Ludwig Lausanne Branch, Epalinges, Vaud, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Vaud, Switzerland; Ludwig Lausanne Branch, Epalinges, Vaud, Switzerland.
| |
Collapse
|
80
|
Yildirim N, Akman L, Acar K, Demir S, Ozkan S, Alan N, Zekioglu O, Terek MC, Ozdemir N, Ozsaran A. Do tumor-infiltrating lymphocytes really indicate favorable prognosis in epithelial ovarian cancer? Eur J Obstet Gynecol Reprod Biol 2017; 215:55-61. [PMID: 28601728 DOI: 10.1016/j.ejogrb.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study is to evaluate the impact of lymphocyte infiltration on prognostic parameters, recurrence and survival in ovarian cancer. STUDY DESIGN Sixty-two patients who were primarily operated for epithelial ovarian carcinoma between 1997 and 2008 were included. CD3, CD4, CD8, CD20 and FoxP3 expressions were evaluated immunohistochemically on sections obtained from paraffin-embedded tissues. RESULTS Median follow up was 87 months. In whole cohort, CD3+ and CD8+ T lymphocyte infiltrations were significantly higher in patients with high-grade tumors, advanced stage tumors and the patients with omental metastasis (for CD3 p=0.0001, p=0.029, p=0.016; for CD8 p=0.044, p=0.002, p=0.046, respectively). DFS was significantly lower among patients with CD8+ T lymphocytes with regard to patients who did not have CD8+ T lymphocyte infiltration (p=0.028). In univariate analysis, presence of CD8 cytotoxic T lymphocyte infiltration (p=0.03), stage (0.0001), tumor grade (p=0.007), omental metastasis (p=0.0001) and lymph node metastasis (p=0.0001) were significant risk factors for recurrence. But in multivariate analysis, only stage [HR: 116.6 (95% CI: 13.09-1039.45) (p=0.0001)] was found as an independent risk factor for recurrence. CONCLUSION CD3+ and CD8+ T lymphocyte infiltrations were related with advanced stage, high-grade tumor and the omental metastasis in ovarian cancer. DFS was significantly shorter in patients with CD8+ T lymphocyte infiltration. CD3+ and CD8+ T lymphocyte infiltrations were related with poor prognosis in ovarian cancer.
Collapse
Affiliation(s)
- Nuri Yildirim
- Ege University, Faculty of Medicine, Department of Obstetrics and Gynecology, Izmir, Turkey.
| | - Levent Akman
- Ege University, Faculty of Medicine, Department of Obstetrics and Gynecology, Izmir, Turkey
| | - Kamuran Acar
- Ege University, Faculty of Medicine, Department of Pathology, Izmir, Turkey
| | - Sibel Demir
- Ege University, Faculty of Medicine, Department of Obstetrics and Gynecology, Izmir, Turkey
| | - Sultan Ozkan
- Ege University, Faculty of Medicine, Department of Obstetrics and Gynecology, Izmir, Turkey
| | - Nuran Alan
- Ege University, Faculty of Medicine, Department of Obstetrics and Gynecology, Izmir, Turkey
| | - Osman Zekioglu
- Ege University, Faculty of Medicine, Department of Pathology, Izmir, Turkey
| | - M Cosan Terek
- Ege University, Faculty of Medicine, Department of Obstetrics and Gynecology, Izmir, Turkey
| | - Necmettin Ozdemir
- Ege University, Faculty of Medicine, Department of Pathology, Izmir, Turkey
| | - Aydin Ozsaran
- Ege University, Faculty of Medicine, Department of Obstetrics and Gynecology, Izmir, Turkey
| |
Collapse
|
81
|
Windmüller C, Zech D, Avril S, Boxberg M, Dawidek T, Schmalfeldt B, Schmitt M, Kiechle M, Bronger H. CXCR3 mediates ascites-directed tumor cell migration and predicts poor outcome in ovarian cancer patients. Oncogenesis 2017; 6:e331. [PMID: 28504691 PMCID: PMC5523062 DOI: 10.1038/oncsis.2017.29] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023] Open
Abstract
Intraabdominal tumor dissemination is a major hallmark of epithelial ovarian cancer (EOC), but the underlying mechanisms have not been fully elucidated. The CXCR3 chemokine receptor supports migration of tumor cells to metastatic sites, but its role in ovarian cancer metastasis is largely unknown. Herein, we first screened two independent cohorts of high-grade serous ovarian cancers (HGSCs, discovery set n=60, validation set n=117) and 102 metastatic lesions for CXCR3 expression. In primary tumors, CXCR3 was particularly overexpressed by tumor cells at the invasive front. In intraabdominal metastases, tumor cells revealed a strong CXCR3 expression regardless of its expression in the corresponding primary tumor, suggesting a selection of CXCR3-overexpressing cancer cells into peritoneal niches. In support of this, CXCR3 mediated the migration of tumor cell lines OVCAR3 and SKOV3 toward malignant ascites, which was inhibited by a monoclonal anti-CXCR3 antibody in vitro. These results were prospectively validated in ascites-derived tumor cells from EOC patients ex vivo (n=9). Moreover, tumor cell-associated overexpression of CXCR3 in advanced ovarian cancer patients was associated with a reduced progression-free survival (PFS) and overall survival (OS), which remained independent of optimal debulking, age, FIGO stage and lymph node involvement (PFS: hazard ratio (HR) 2.11, 95% confidence interval (CI) 1.30–3.45, P=0.003; OS: HR 2.36, 95% CI 1.50–3.71, P<0.001). These results in ovarian cancer patients identify CXCR3 as a potential new target to confine peritoneal spread in ovarian cancer after primary cytoreductive surgery.
Collapse
Affiliation(s)
- C Windmüller
- Department of Gynecology and Obstetrics, Technical University of Munich, Munich, Germany
| | - D Zech
- Department of Gynecology and Obstetrics, Technical University of Munich, Munich, Germany
| | - S Avril
- Department of Pathology, Technical University of Munich, Munich, Germany
| | - M Boxberg
- Department of Pathology, Technical University of Munich, Munich, Germany
| | - T Dawidek
- Department of Gynecology and Obstetrics, Technical University of Munich, Munich, Germany.,Department of Pathology, Technical University of Munich, Munich, Germany
| | - B Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Schmitt
- Department of Gynecology and Obstetrics, Technical University of Munich, Munich, Germany
| | - M Kiechle
- Department of Gynecology and Obstetrics, Technical University of Munich, Munich, Germany
| | - H Bronger
- Department of Gynecology and Obstetrics, Technical University of Munich, Munich, Germany
| |
Collapse
|
82
|
Yeong J, Thike AA, Lim JCT, Lee B, Li H, Wong SC, Hue SSS, Tan PH, Iqbal J. Higher densities of Foxp3+ regulatory T cells are associated with better prognosis in triple-negative breast cancer. Breast Cancer Res Treat 2017; 163:21-35. [DOI: 10.1007/s10549-017-4161-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/13/2017] [Indexed: 01/29/2023]
|
83
|
Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting. Vaccines (Basel) 2016; 4:vaccines4030028. [PMID: 27509527 PMCID: PMC5041022 DOI: 10.3390/vaccines4030028] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023] Open
Abstract
Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune responses and establishing an immunosuppressive tumor microenvironment, thus enabling tumor immune evasion. Additionally, recent evidence indicates that Tregs comprise diverse and heterogeneous subsets; phenotypically and functionally distinct subsets of tumor-infiltrating Tregs could contribute differently to cancer prognosis and clinical outcomes. Understanding Treg biology in the setting of cancer, and specifically the tumor microenvironment, is important for designing effective cancer therapies. In this review, we critically examine the role of Tregs in the tumor microenvironment and in cancer progression focusing on human studies. We also discuss the impact of current therapeutic modalities on Treg biology and the therapeutic opportunities for targeting Tregs to enhance anti-tumor immune responses and clinical benefits.
Collapse
|
84
|
CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. Br J Cancer 2016; 115:553-63. [PMID: 27490802 PMCID: PMC4997538 DOI: 10.1038/bjc.2016.172] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Tumour-infiltrating lymphocytes (TILs) are associated with improved survival in several epithelial cancers. The two chemokines CXCL9 and CXCL10 facilitate chemotactic recruitment of TILs, and their intratumoral accumulation is a conceivable way to improve TIL-dependent immune intervention in cancer. However, the prognostic impact of CXCL9 and CXCL10 in high-grade serous ovarian cancer (HGSC) is largely unknown. METHODS One hundred and eighty four cases of HGSC were immunohistochemically analyzed for CXCL9, CXCL10. TILs were assessed using CD3, CD56 and FOXP3 staining. Chemokine regulation was investigated using the ovarian cancer cell lines OV-MZ-6 and SKOV-3. RESULTS High expression of CXCL9 and CXCL10 was associated with an approximately doubled overall survival (n=70, CXCL9: HR 0.41; P=0.006; CXCL10: HR 0.46; P=0.010) which was confirmed in an independent validation set (n=114; CXCL9: HR 0.60; P=0.019; CXCL10: HR 0.52; P=0.005). Expression of CXCR3 ligands significantly correlated with TILs. In human ovarian cancer cell lines the cyclooxygenase (COX) metabolite Prostaglandin E2 was identified as negative regulator of chemokine secretion, whereas COX inhibition by indomethacin significantly upregulated CXCL9 and CXCL10. In contrast, celecoxib, the only COX inhibitor prospectively evaluated for therapy of ovarian cancer, suppressed NF-κB activation and inhibited chemokine release. CONCLUSION Our results support the notion that CXCL9 and CXCL10 exert tumour-suppressive function by TIL recruitment in human ovarian cancer. COX inhibition by indomethacin, not by celecoxib, may be a promising approach to concomitantly improve immunotherapies.
Collapse
|
85
|
Colbeck EJ, Hindley JP, Smart K, Jones E, Bloom A, Bridgeman H, McPherson RC, Turner DG, Ladell K, Price DA, O'Connor RA, Anderton SM, Godkin AJ, Gallimore AM. Eliminating roles for T-bet and IL-2 but revealing superior activation and proliferation as mechanisms underpinning dominance of regulatory T cells in tumors. Oncotarget 2016; 6:24649-59. [PMID: 26433463 PMCID: PMC4694785 DOI: 10.18632/oncotarget.5584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/22/2015] [Indexed: 12/28/2022] Open
Abstract
Foxp3+ regulatory T cells (Tregs) are often highly enriched within the tumor-infiltrating T cell pool. Using a well-characterised model of carcinogen-induced fibrosarcomas we show that the enriched tumor-infiltrating Treg population comprises largely of CXCR3+ T-bet+ ‘TH1-like’ Tregs which are thymus-derived Helios+ cells. Whilst IL-2 maintains homeostatic ratios of Tregs in lymphoid organs, we found that the perturbation in Treg frequencies in tumors is IL-2 independent. Moreover, we show that the TH1 phenotype of tumor-infiltrating Tregs is dispensable for their ability to influence tumor progression. We did however find that unlike Tconvs, the majority of intra-tumoral Tregs express the activation markers CD69, CD25, ICOS, CD103 and CTLA4 and are significantly more proliferative than Tconvs. Moreover, we have found that CD69+ Tregs are more suppressive than their CD69− counterparts. Collectively, these data indicate superior activation of Tregs in the tumor microenvironment, promoting their suppressive ability and selective proliferation at this site.
Collapse
Affiliation(s)
- Emily J Colbeck
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - James P Hindley
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Kathryn Smart
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Emma Jones
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Anja Bloom
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Hayley Bridgeman
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Rhoanne C McPherson
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Darryl G Turner
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kristin Ladell
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - David A Price
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Richard A O'Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stephen M Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew J Godkin
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Awen M Gallimore
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
86
|
Abstract
In the last 15 years, it has become apparent that ovarian cancer is recognized by the immune system, taking into account that T cell infiltration can be associated with increased overall survival. Several studies indicate that a correct combination of cluster of differentiation 8 and cluster of differentiation 4 T cells is key to fight tumor progression and that the presence of regulatory T cells (Tregs) infiltrating ovarian solid tumors (or present in ascites) is deleterious. Several markers that characterize Tregs include glucocorticoid-induced tumor necrosis factor receptor, cytotoxic T lymphocyte antigen-4, and forkhead box protein 3 (Foxp3). Research has shown that Tregs can infiltrate cancerous tissue and contribute to tumor growth by secreting immunosuppressive cytokines such as transforming growth factor beta and interleukin (IL)-10. Importantly, these cells might hamper the efficacy of immunotherapeutic approaches, thus strategies involving depletion or regulation of this population have been proposed and tested in experimental models. In this Minireview, we will discuss the relevance of Tregs in ovarian cancer and the experimental approaches destined to impair their immunosuppressive effects.
Collapse
Affiliation(s)
- Manindra Singh
- a Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Molecular and Cell Biology Program , Ohio University , Athens , OH , USA
| | - Tiffany Loftus
- b Department of Biomedical Sciences , Heritage College of Osteopathic Medicine, Ohio University , Athens , OH , USA
| | - Erin Webb
- b Department of Biomedical Sciences , Heritage College of Osteopathic Medicine, Ohio University , Athens , OH , USA
| | - Fabian Benencia
- a Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Molecular and Cell Biology Program , Ohio University , Athens , OH , USA.,b Department of Biomedical Sciences , Heritage College of Osteopathic Medicine, Ohio University , Athens , OH , USA
| |
Collapse
|
87
|
Davis RJ, Van Waes C, Allen CT. Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer. Oral Oncol 2016; 58:59-70. [PMID: 27215705 PMCID: PMC4912416 DOI: 10.1016/j.oraloncology.2016.05.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/10/2023]
Abstract
A significant subset of head and neck cancers display a T-cell inflamed phenotype, suggesting that patients with these tumors should respond to therapeutic approaches aimed at strengthening anti-tumor immune responses. A major barrier to the development of an effective anti-tumor immune response, at baseline or in response to immunotherapy, is the development of an immunosuppressive tumor microenvironment. Several well described mechanisms of effector immune cell suppression in the head and neck cancer microenvironment are discussed here, along with updates on current trials designed to translate what we have learned from pre-clinical and correlative clinical studies into improved responses in patients with head and neck cancer following immune activating therapies.
Collapse
Affiliation(s)
- Ruth J Davis
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Clint T Allen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
88
|
Nosko A, Kluger MA, Diefenhardt P, Melderis S, Wegscheid C, Tiegs G, Stahl RAK, Panzer U, Steinmetz OM. T-Bet Enhances Regulatory T Cell Fitness and Directs Control of Th1 Responses in Crescentic GN. J Am Soc Nephrol 2016; 28:185-196. [PMID: 27297951 DOI: 10.1681/asn.2015070820] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/05/2016] [Indexed: 12/11/2022] Open
Abstract
Th1 cells are central pathogenic mediators of crescentic GN (cGN). Mechanisms responsible for Th1 cell downregulation, however, remain widely unknown. Recently, it was proposed that activation of the Th1-characteristic transcription factor T-bet optimizes Foxp3+ regulatory T (Treg) cells to counteract Th1-type inflammation. Because very little is known about the role of T-bet+ Treg1 cells in inflammatory diseases, we studied the function of these cells in the nephrotoxic nephritis (NTN) model of cGN. The percentage of Treg1 cells progressively increased in kidneys of nephritic wild-type mice during the course of NTN, indicating their functional importance. Notably, naïve Foxp3CrexT-betfl/fl mice, lacking Treg1 cells, showed spontaneous skewing toward Th1 immunity. Furthermore, absence of Treg1 cells resulted in aggravated NTN with selectively dysregulated renal and systemic Th1 responses. Detailed analyses of Treg cells from Foxp3CrexT-betfl/fl mice revealed unaltered cytokine production and suppressive capacity. However, in competitive cotransfer experiments, wild-type Treg cells outcompeted T-bet-deficient Treg cells in terms of population expansion and expression levels of Foxp3, indicating that T-bet expression is crucial for general Treg fitness. Additionally, T-bet-deficient Treg cells lacked expression of the Th1-characteristic trafficking receptor CXCR3, which correlated with significant impairment of renal Treg infiltration. In summary, our data indicate a new subtype of Treg cells in cGN. These Treg1 cells are characterized by activation of the transcription factor T-bet, which enhances the overall fitness of these cells and optimizes their capacity to downregulate Th1 responses by inducing chemokine receptor CXCR3 expression.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Wegscheid
- Institut für experimentelle Immunologie und Hepatologie, Universitätsklinikum Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institut für experimentelle Immunologie und Hepatologie, Universitätsklinikum Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
89
|
Qian XQ, Chen LL, Cheng Q, Tian Y, Luo XF, Wan XY. Inhibition of Notch 1 receptor influenced the differentiation of Lin-CD45RA-dendritic cell precursors within ovarian carcinoma microenvironment. BMC Immunol 2016; 17:14. [PMID: 27259477 PMCID: PMC4893273 DOI: 10.1186/s12865-016-0150-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/08/2016] [Indexed: 02/02/2023] Open
Abstract
Background Previous evidence suggested that the differentiation of Lin-CD45RA-DC precursors were prior to plasmcytoid dendritic cells (pDCs) than myeloid dendritic cells (mDCs) within ovarian cancer microenvironment. However, the mechanism is still unclear. Therefore, we investigated the function of Notch 1 signal pathway in the differentiation of Lin-CD45RA-DC precursors. Methods The CD34+ hematopoietic stem cells were extracted from umbilical cord blood in term parturition, and Lin-CD45RA-DC precusors were separated and induced mature. Expression of Notch1 receptor and ligands in Lin-CD45RA-DC precusors was detected by Real-time PCR and was down-regulated by shRNA or γ-secretase inhibitor (GSI). Flow cytometry was used to analyze the subset of DCs with or without SKOV3 culture supernatants. IL-12 level was detected by ELISA. Results Expression of Notch1 receptors and ligands were detected in Lin-CD45RA-DC precursor cells. The Notch1 mRNA in Lin-CD45RA-DC precursors can be down-regulated by shRNA-Notch1 lentivirus transfection and GSI. ShRNA mediated Notch 1 knock-down significantly differentiated less plasmcytoid dendritic cells (pDCs), but generated more myeloid dendritic cells (mDCs), and this would not be influenced by the supernatant of the ovarian carcinoma cell line. GSI had the same effect in the differentiation of pDC. The secretion of IL-12 significantly increased after Notch1 knock-down with or without SKOV3 culture supernatants. Conclusions Notch1 is an important signaling pathway in the differentiation of Lin-CD45RA-DC precursor cells to plasmcytoid dendritic cells (pDCs). And this would not be affected by the supernatant of the ovarian carcinoma cell line.
Collapse
Affiliation(s)
- Xue-Qian Qian
- Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Li Chen
- Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Cheng
- Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Tian
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79#, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Feng Luo
- Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yun Wan
- Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1#, Hangzhou, China. .,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
90
|
Takeuchi Y, Nishikawa H. Roles of regulatory T cells in cancer immunity. Int Immunol 2016; 28:401-9. [PMID: 27160722 DOI: 10.1093/intimm/dxw025] [Citation(s) in RCA: 393] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
CD4(+) regulatory T cells (Tregs) expressing the transcription factor FoxP3 are highly immune suppressive and play central roles in the maintenance of self-tolerance and immune homeostasis, yet in malignant tumors they promote tumor progression by suppressing effective antitumor immunity. Indeed, higher infiltration by Tregs is observed in tumor tissues, and their depletion augments antitumor immune responses in animal models. Additionally, increased numbers of Tregs and, in particular, decreased ratios of CD8(+) T cells to Tregs among tumor-infiltrating lymphocytes are correlated with poor prognosis in various types of human cancers. The recent success of cancer immunotherapy represented by immune checkpoint blockade has provided a new insight in cancer treatment, yet more than half of the treated patients did not experience clinical benefits. Identifying biomarkers that predict clinical responses and developing novel immunotherapies are therefore urgently required. Cancer patients whose tumors contain a large number of neoantigens stemming from gene mutations, which have not been previously recognized by the immune system, provoke strong antitumor T-cell responses associated with clinical responses following immune checkpoint blockade, depending on the resistance to Treg-mediated suppression. Thus, integration of a strategy restricting Treg-mediated immune suppression may expand the therapeutic spectrum of cancer immunotherapy towards patients with a lower number of neoantigens. In this review, we address the current understanding of Treg-mediated immune suppressive mechanisms in cancer, the involvement of Tregs in cancer immunotherapy, and strategies for effective and tolerable Treg-targeted therapy.
Collapse
Affiliation(s)
- Yoshiko Takeuchi
- Division of Cancer Immunology, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan and
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan and Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
91
|
Chen X, Du Y, Lin X, Qian Y, Zhou T, Huang Z. CD4+CD25+ regulatory T cells in tumor immunity. Int Immunopharmacol 2016; 34:244-249. [PMID: 26994448 DOI: 10.1016/j.intimp.2016.03.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 01/11/2023]
Abstract
Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Depletion of Tregs results in the onset of a variety of autoimmune diseases. Tregs are defined based on expression of CD4, CD25, and the transcription factor, FoxP3. It is now clear that three inhibitory cytokines, IL-10, IL-35 and TGF-β, are key mediators of Tregs function. Tregs have been shown to be important contributors to the development of immune tolerance toward tumors and play a critical role in the induction of tolerance to tumor associated antigens and suppression of anti-tumor immunity. Increasing researches support the existence of elevated numbers of regulatory T cells in cancer patients. Poor prognosis and decreased survival rates are closely correlated with higher Treg cell frequencies. Depletion of Tregs or blockade of their immune inhibitory role can enhance anti-tumor effects. Recent evidence suggests that Tregs may be responsible for the failure of host anti-tumor immunity by suppressing cytotoxic T-cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of Tregs in tumor immunity.
Collapse
Affiliation(s)
- Xin Chen
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yong Du
- Department of Pediatrics, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - XiuQing Lin
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yan Qian
- Department of Pediatrics, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ting Zhou
- Department of Pediatrics, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - ZhiMing Huang
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
92
|
Pacella I, Timperi E, Accapezzato D, Martire C, Labbadia G, Cavallari EN, D'Ettorre G, Calvo L, Rizzo F, Severa M, Coccia EM, Vullo V, Barnaba V, Piconese S. IFN-α promotes rapid human Treg contraction and late Th1-like Treg decrease. J Leukoc Biol 2016; 100:613-23. [PMID: 26921346 DOI: 10.1189/jlb.5a0415-140r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
Type I IFNs are pleiotropic cytokines that exert concerted activities in the development of antiviral responses. Regulatory T cells represent a physiologic checkpoint in the balance between immunity and tolerance, requiring fine and rapid controls. Here, we show that human regulatory T cells are particularly sensitive to the sequential effects of IFN-α. First, IFN-α exerts a rapid, antiproliferative and proapoptotic effect in vitro and in vivo, as early as after 2 d of pegylated IFN/ribavirin therapy in patients with chronic hepatitis C. Such activities result in the decline, at d 2, in circulating regulatory T cell frequency and specifically of the activated regulatory T cell subset. Later, IFN-based therapy restrains the fraction of regulatory T cells that can be polarized into IFN-γ-producing Th1-like regulatory T cells known to contribute to chronic immune activation in type 1 inflammation. Indeed, Th1-like regulatory T cell frequency significantly declines after 30 d of therapy in vivo in relation to the persistent decline of relevant IL-12 sources, namely, myeloid and 6-sulfo LacNAc-expressing dendritic cells. This event is recapitulated by experiments in vitro, providing evidence that it may be attributable to the inhibitory effect of IFN-α on IL-12-induced, Th1-like regulatory T cell polarization. In summary, our results suggest that IFN-α-driven, early regulatory T cell depletion contributes to the development of antiviral immunity, ultimately resulting in the resolution of type 1 inflammation.
Collapse
Affiliation(s)
- Ilenia Pacella
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Eleonora Timperi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Daniele Accapezzato
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Carmela Martire
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Giancarlo Labbadia
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Eugenio N Cavallari
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Rome, Italy
| | - Ludovica Calvo
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Fabiana Rizzo
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy; and
| | - Martina Severa
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy; and
| | - Eliana M Coccia
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy; and
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Rome, Italy;
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
93
|
Valmori D, Ayyoub M. CD4 + T helper cell responses to NY-ESO-1 tumor antigen in ovarian cancer resist perversion into immunosuppressive Tregs. Oncoimmunology 2015; 4:e946370. [PMID: 26587312 DOI: 10.4161/21624011.2014.946370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/15/2022] Open
Abstract
In a recent study, we have demonstrated that T helper type 1 (TH1) cells specific for the tumor antigen NY-ESO-1 are amplified at ovarian tumor sites but are not "perverted" into immunosuppressive FOXP3+ regulatory T cells (Tregs). These findings encourage the development of protocols aiming to eliminate, or inactivate, FOXP3+ Tregs and reinforce Type I anticancer immunity, to improve clinical outcomes.
Collapse
Affiliation(s)
- Danila Valmori
- Institut National de la Santé et de la Recherche Médicale; Equipe Labellisée Ligue Contre le Cancer; Institut de Cancérologie de l'Ouest ; Nantes-Saint Herblain, France ; Faculty of Medicine; University of Nantes ; Nantes, France
| | - Maha Ayyoub
- Institut National de la Santé et de la Recherche Médicale; Equipe Labellisée Ligue Contre le Cancer; Institut de Cancérologie de l'Ouest ; Nantes-Saint Herblain, France
| |
Collapse
|
94
|
O’Connor RA, Anderton SM. Inflammation-associated genes: risks and benefits to Foxp3+ regulatory T-cell function. Immunology 2015; 146:194-205. [PMID: 26190495 PMCID: PMC4582961 DOI: 10.1111/imm.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023] Open
Abstract
Foxp3(+) regulatory T (Treg) cells prevent the development of autoimmunity and immunopathology, as well as maintaining homeostasis and tolerance to commensal microorganisms. The suppressive activity of Treg cells is their defining characteristic, generating great interest in their therapeutic potential. However, suppressive and effector functions are not entirely exclusive. Considerable evidence points to the ability of supposedly anti-inflammatory Foxp3-expressing Treg cells to also express transcription factors that have been characterized as cardinal drivers of T effector cell function. We will consider the mounting evidence that Treg cells can function in non-suppressive capacities and review the impetus for this functional change, its relevance to developing immune and autoimmune responses and its significance to the development of Treg-based therapies.
Collapse
Affiliation(s)
- Richard A O’Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of EdinburghEdinburgh, UK
| | - Stephen M Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of EdinburghEdinburgh, UK
| |
Collapse
|
95
|
Braza F, Durand M, Degauque N, Brouard S. Regulatory T Cells in Kidney Transplantation: New Directions? Am J Transplant 2015; 15:2288-300. [PMID: 26234373 DOI: 10.1111/ajt.13395] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/03/2015] [Accepted: 05/24/2015] [Indexed: 01/25/2023]
Abstract
The contribution of regulatory T cells in the maintenance of kidney graft survival is of major interest. Although many experimental models suggest a role in the induction of graft tolerance, reproducing these findings in clinic is less clear. While modulation of the regulatory T cell response is a promising therapeutic concept in transplantation, a better understanding of function, phenotype and biology is needed to be able to optimally exploit these cells in order to induce graft tolerance. With this in mind, we review here the current understanding of the phenotypic-functional delineation of Tregs and how Tregs can contribute to graft survival. We highlight their potential role in long-term graft survival and kidney operational tolerance. We also discuss the mechanisms needed for the molecular development of regulatory T cells: A combination of FOXP3 molecular partners, epigenetic, metabolic, and posttranslational modifications are necessary to generate well-functioning regulatory T cells and maintain their core identify. We discuss how an improved understanding of these mechanisms will permit the identification of new potent therapeutic strategies to improve kidney graft survival.
Collapse
Affiliation(s)
- F Braza
- Université, de Nantes, Faculté de Médecine, Nantes, F-44035, France.,INSERM, UMR 1064, Nantes, F-44093, France.,CHU de Nantes, ITUN, Nantes, F-44093, France
| | - M Durand
- Université, de Nantes, Faculté de Médecine, Nantes, F-44035, France.,INSERM, UMR 1064, Nantes, F-44093, France.,CHU de Nantes, ITUN, Nantes, F-44093, France
| | - N Degauque
- INSERM, UMR 1064, Nantes, F-44093, France.,CHU de Nantes, ITUN, Nantes, F-44093, France
| | - S Brouard
- INSERM, UMR 1064, Nantes, F-44093, France.,CHU de Nantes, ITUN, Nantes, F-44093, France
| |
Collapse
|
96
|
Lunardi S, Lim SY, Muschel RJ, Brunner TB. IP-10/CXCL10 attracts regulatory T cells: Implication for pancreatic cancer. Oncoimmunology 2015; 4:e1027473. [PMID: 26405599 PMCID: PMC4570127 DOI: 10.1080/2162402x.2015.1027473] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 01/05/2023] Open
Abstract
Pancreatic stellate cells (PSCs) are key components of pancreatic ductal adenocarcinoma (PDAC). We recently demonstrated that IP-10/CXCL10 is highly expressed by PSCs in the presence of pancreatic cancer cells (PCCs) and its expression correlates with infiltration by regulatory T cells (Tregs) and poor survival. Thus, stromal cells in pancreatic cancer can promote immunosuppression and tumor progression, through the expression of IP-10.
Collapse
Affiliation(s)
- Serena Lunardi
- Gray Institute for Radiation Oncology and Biology; Department of Oncology; University of Oxford; Oxford, UK
| | - Su Yin Lim
- Gray Institute for Radiation Oncology and Biology; Department of Oncology; University of Oxford; Oxford, UK
| | - Ruth J Muschel
- Gray Institute for Radiation Oncology and Biology; Department of Oncology; University of Oxford; Oxford, UK
- These authors contributed equally to this work
| | - Thomas B Brunner
- Gray Institute for Radiation Oncology and Biology; Department of Oncology; University of Oxford; Oxford, UK
- Department of Radiation Oncology; University Hospitals Freiburg; Freiburg, Germany
- These authors contributed equally to this work
| |
Collapse
|
97
|
Abstract
Chemokines are chemotactic cytokines that control the migration of cells between tissues and the positioning and interactions of cells within tissue. The chemokine superfamily consists of approximately 50 endogenous chemokine ligands and 20 G protein-coupled seven-transmembrane spanning signaling receptors. Chemokines mediate the host response to cancer by directing the trafficking of leukocytes into the tumor microenvironment. This migratory response is complex and consists of diverse leukocyte subsets with both antitumor and protumor activities. Although chemokines were initially appreciated as important mediators of immune cell migration, we now know that they also play important roles in the biology of nonimmune cells important for tumor growth and progression. Chemokines can directly modulate the growth of tumors by inducing the proliferation of cancer cells and preventing their apoptosis. They also direct tumor cell movement required for metastasis. Chemokines can also indirectly modulate tumor growth through their effects on tumor stromal cells and by inducing the release of growth and angiogenic factors from cells in the tumor microenvironment. In this Masters of Immunology primer, we focus on recent advances in understanding the complex nature of the chemokine system in tumor biology with a focus on how the chemokine system could be used to augment cancer immunotherapeutic strategies to elicit a more robust and long-lasting host antitumor immune response.
Collapse
Affiliation(s)
- Melvyn T Chow
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
98
|
Maeda S, Ohno K, Fujiwara-Igarashi A, Uchida K, Tsujimoto H. Changes in Foxp3-Positive Regulatory T Cell Number in the Intestine of Dogs With Idiopathic Inflammatory Bowel Disease and Intestinal Lymphoma. Vet Pathol 2015; 53:102-12. [PMID: 26173451 DOI: 10.1177/0300985815591081] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although regulatory T cells (Tregs) play an integral role in immunologic tolerance and the maintenance of intestinal homeostasis, their involvement in canine gastrointestinal diseases, including idiopathic inflammatory bowel disease (IBD) and intestinal lymphoma, remains unclear. Here we show altered numbers of forkhead box P3 (Foxp3)-positive Tregs in the intestine of dogs with IBD and intestinal lymphoma. IBD was diagnosed in 48 dogs; small cell intestinal lymphoma was diagnosed in 46 dogs; large cell intestinal lymphoma was diagnosed in 30 dogs; and 25 healthy beagles were used as normal controls. Foxp3-positive Tregs in the duodenal mucosa were examined by immunohistochemistry and immunofluorescence. Duodenal expression of interleukin-10 mRNA was quantified by real-time reverse transcription polymerase chain reaction. The number of Foxp3-positive lamina propria cells and the expression of interleukin-10 mRNA were significantly lower in dogs with IBD than in healthy dogs and dogs with intestinal lymphoma. The number of Foxp3-positive intraepithelial cells was higher in dogs with small cell intestinal lymphoma. Some large cell intestinal lymphoma cases had high numbers of Foxp3-positive cells, but the increase was not statistically significant. Double-labeling immunofluorescence showed that CD3-positive granzyme B-negative helper T cells expressed Foxp3. In small cell intestinal lymphoma cases, the overall survival of dogs with a high Treg density was significantly worse than that of dogs with a normal Treg density. These results suggest that a change in the number of Foxp3-positive Tregs contributes to the pathogenesis of canine IBD and intestinal lymphoma by disrupting mucosal tolerance and suppressing antitumor immunity, respectively.
Collapse
Affiliation(s)
- S Maeda
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - K Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - A Fujiwara-Igarashi
- Department of Veterinary Radiology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - K Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - H Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
99
|
Lee W, Kim HS, Baek SY, Lee GR. Transcription factor IRF8 controls Th1-like regulatory T-cell function. Cell Mol Immunol 2015; 13:785-794. [PMID: 26166768 DOI: 10.1038/cmi.2015.72] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 12/17/2022] Open
Abstract
Recent studies have suggested that regulatory T (Treg) cells comprise a heterogeneous population that regulates various aspects of the immune response, and that Treg cells use the factors that are expressed in their target cells to regulate them. We searched for factors that regulate Th1 response in Treg cells using a meta-analysis. In the process, we discovered that transcription factor interferon regulatory factor 8 (IRF8) was selectively expressed in Treg and Th1 cells. IRF8-deficient Treg cells showed defective expression of CXCR3 and aberrant expression of the Il4 and Il17 genes. Upon treatment with alpha galactosyl-C18-ceramide (αGal-C18-Cer), IRF8-deficient mice showed defective Treg cell recruitment in the liver. Eliciting Th1 immune response by anti-CD40 antibody injection in mice induced IRF8 expression in Treg cells. The expression of IRF8 was induced by Foxp3 in Treg cells. IRF8 had no effect on T-bet expression in Treg and vice versa. Thus, our results strongly suggest that IRF8 controls Th1 immune response in Treg cells independent of T-bet.
Collapse
Affiliation(s)
- Wonyong Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 121-742, Korea
| | - Hyeong Su Kim
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 121-742, Korea
| | - Song Yi Baek
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 121-742, Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 121-742, Korea
| |
Collapse
|
100
|
Ondondo B, Colbeck E, Jones E, Smart K, Lauder SN, Hindley J, Godkin A, Moser B, Ager A, Gallimore A. A distinct chemokine axis does not account for enrichment of Foxp3(+) CD4(+) T cells in carcinogen-induced fibrosarcomas. Immunology 2015; 145:94-104. [PMID: 25495686 PMCID: PMC4405327 DOI: 10.1111/imm.12430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022] Open
Abstract
The frequency of CD4+ Foxp3+ regulatory T (Treg) cells is often significantly increased in the blood of tumour-bearing mice and people with cancer. Moreover, Treg cell frequencies are often higher in tumours compared with blood and lymphoid organs. We wished to determine whether certain chemokines expressed within the tumour mass selectively recruit Treg cells, thereby contributing to their enrichment within the tumour-infiltrating lymphocyte pool. To achieve this goal, the chemokine profile of carcinogen-induced fibrosarcomas was determined, and the chemokine receptor expression profiles of both CD4+ Foxp3− and CD4+ Foxp3+ T cells were compared. These analyses revealed that the tumours are characterized by expression of inflammatory chemokines (CCL2, CCL5, CCL7, CCL8, CCL12, CXCL9, CXCL10 and CX3CL1), reflected by an enrichment of activated Foxp3− and Foxp3+ T cells expressing T helper type 1-associated chemokine receptors. Notably, we found that CXCR3+ T cells were significantly enriched in the tumours although curiously we found no evidence that CXCR3 was required for their recruitment. Instead, CXCR3 marks a population of activated Foxp3− and Foxp3+ T cells, which use multiple and overlapping ligand receptor pairs to guide their migration to tumours. Collectively, these data indicate that enrichment of Foxp3+ cells in tumours characterized by expression of inflammatory chemokines, does not occur via a distinct chemokine axis, thus selective chemokine blockade is unlikely to represent a meaningful therapeutic strategy for preventing Treg cell accumulation in tumours.
Collapse
Affiliation(s)
- Beatrice Ondondo
- Institute of Infection Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|