51
|
Möckel D, Bartneck M, Niemietz P, Wagner M, Ehling J, Rama E, Weiler M, Gremse F, Eulberg D, Pola R, Pechar M, Etrych T, Storm G, Kiessling F, Tacke F, Lammers T. CCL2 chemokine inhibition primes the tumor vasculature for improved nanomedicine delivery and efficacy. J Control Release 2024; 365:358-368. [PMID: 38016488 DOI: 10.1016/j.jconrel.2023.11.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Blood vessel functionality is crucial for efficient tumor-targeted drug delivery. Heterogeneous distribution and perfusion of angiogenic blood vessels contribute to suboptimal accumulation of (nano-) therapeutics in tumors and metastases. To attenuate pathological angiogenesis, an L-RNA aptamer inhibiting the CC motif chemokine ligand 2 (CCL2) was administered to mice bearing orthotopic 4T1 triple-negative breast cancer tumors. The effect of CCL2 inhibition on tumor blood vessel functionality and tumor-targeted drug delivery was evaluated via multimodal and multiscale optical imaging, employing fluorophore-labeled polymeric (10 nm) and liposomal (100 nm) nanocarriers. Anti-CCL2 treatment induced a dose-dependent anti-angiogenic effect, reflected by a decreased relative blood volume, increased blood vessel maturity and functionality, and reduced macrophage infiltration, accompanied by a shift in the polarization of tumor-associated macrophages (TAM) towards a less M2-like and more M1-like phenotype. In line with this, CCL2 inhibitor treatment improved the delivery of polymers and liposomes to tumors, and enhanced the antitumor efficacy of free and liposomal doxorubicin. Together, these findings demonstrate that blocking the CCL2-CCR2 axis modulates TAM infiltration and polarization, resulting in vascular normalization and improved tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Diana Möckel
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Patricia Niemietz
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Germany
| | - Maike Wagner
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Josef Ehling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Elena Rama
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Marek Weiler
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Felix Gremse
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Gremse-IT GmbH, Aachen, Germany
| | | | - Robert Pola
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Michal Pechar
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Tomas Etrych
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Gert Storm
- Department of Pharmaceutics, Utrecht University, the Netherlands; Department of Biomaterials, Science and Technology, University of Twente, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany.
| |
Collapse
|
52
|
Ibrahim M, Illa-Bochaca I, Fa’ak F, Monson KR, Ferguson R, Lyu C, Vega-Saenz de Miera E, Johannet P, Chou M, Mastroianni J, Darvishian F, Kirchhoff T, Zhong J, Krogsgaard M, Osman I. Kinase Insert Domain Receptor Q472H Pathogenic Germline Variant Impacts Melanoma Tumor Growth and Patient Treatment Outcomes. Cancers (Basel) 2023; 16:18. [PMID: 38201446 PMCID: PMC10778134 DOI: 10.3390/cancers16010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND We previously reported a higher incidence of a pathogenic germline variant in the kinase insert domain receptor (KDR) in melanoma patients compared to the general population. Here, we dissect the impact of this genotype on melanoma tumor growth kinetics, tumor phenotype, and response to treatment with immune checkpoint inhibitors (ICIs) or targeted therapy. METHODS The KDR genotype was determined and the associations between the KDR Q472H variant (KDR-Var), angiogenesis, tumor immunophenotype, and response to MAPK inhibition or ICI treatment were examined. Melanoma B16 cell lines were transfected with KDR-Var or KDR wild type (KDR-WT), and the differences in tumor kinetics were evaluated. We also examined the impact of KDR-Var on the response of melanoma cells to a combination of VEGFR inhibition with MAPKi. RESULTS We identified the KDR-Var genotype in 81/489 (37%) patients, and it was associated with a more angiogenic (p = 0.003) and immune-suppressive tumor phenotype. KDR-Var was also associated with decreased PFS to MAPKi (p = 0.022) and a trend with worse PFS to anti-PD1 therapy (p = 0.06). KDR-Var B16 murine models had increased average tumor volume (p = 0.0027) and decreased CD45 tumor-infiltrating lymphocytes (p = 0.0282). The anti-VEGFR treatment Lenvatinib reduced the tumor size of KDR-Var murine tumors (p = 0.0159), and KDR-Var cells showed synergistic cytotoxicity to the combination of dabrafenib and lenvatinib. CONCLUSIONS Our data demonstrate a role of germline KDR-Var in modulating melanoma behavior, including response to treatment. Our data also suggest that anti-angiogenic therapy might be beneficial in patients harboring this genotype, which needs to be tested in clinical trials.
Collapse
Affiliation(s)
- Milad Ibrahim
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Irineu Illa-Bochaca
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Faisal Fa’ak
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Kelsey R. Monson
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
| | - Robert Ferguson
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
| | - Chen Lyu
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
| | - Eleazar Vega-Saenz de Miera
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Paul Johannet
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Margaret Chou
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Justin Mastroianni
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA (M.K.)
| | - Farbod Darvishian
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA (M.K.)
| | - Tomas Kirchhoff
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| | - Judy Zhong
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| | - Michelle Krogsgaard
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA (M.K.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| | - Iman Osman
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| |
Collapse
|
53
|
Ebrahimi N, Manavi MS, Nazari A, Momayezi A, Faghihkhorasani F, Rasool Riyadh Abdulwahid AH, Rezaei-Tazangi F, Kavei M, Rezaei R, Mobarak H, Aref AR, Fang W. Nano-scale delivery systems for siRNA delivery in cancer therapy: New era of gene therapy empowered by nanotechnology. ENVIRONMENTAL RESEARCH 2023; 239:117263. [PMID: 37797672 DOI: 10.1016/j.envres.2023.117263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
RNA interference (RNAi) is a unique treatment approach used to decrease a disease's excessive gene expression, including cancer. SiRNAs may find and destroy homologous mRNA sequences within the cell thanks to RNAi processes. However, difficulties such poor cellular uptake, off-target effects, and susceptibility to destruction by serum nucleases in the bloodstream restrict the therapeutic potential of siRNAs. Since some years ago, siRNA-based therapies have been in the process of being translated into the clinic. Therefore, the primary emphasis of this work is on sophisticated nanocarriers that aid in the transport of siRNA payloads, their administration in combination with anticancer medications, and their use in the treatment of cancer. The research looks into molecular manifestations, difficulties with siRNA transport, the design and development of siRNA-based delivery methods, and the benefits and drawbacks of various nanocarriers. The trapping of siRNA in endosomes is a challenge for the majority of delivery methods, which affects the therapeutic effectiveness. Numerous techniques for siRNA release, including as pH-responsive release, membrane fusion, the proton sponge effect, and photochemical disruption, have been studied to overcome this problem. The present state of siRNA treatments in clinical trials is also looked at in order to give a thorough and systematic evaluation of siRNA-based medicines for efficient cancer therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | | | - Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Amirali Momayezi
- School of Chemical Engineering, Iran University of Science, and Technology, Tehran, Iran
| | | | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Mohammed Kavei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Roya Rezaei
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
54
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
55
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
56
|
Zhao W, Lei J, Ke S, Chen Y, Xiao J, Tang Z, Wang L, Ren Y, Alnaggar M, Qiu H, Shi W, Yin L, Chen Y. Fecal microbiota transplantation plus tislelizumab and fruquintinib in refractory microsatellite stable metastatic colorectal cancer: an open-label, single-arm, phase II trial (RENMIN-215). EClinicalMedicine 2023; 66:102315. [PMID: 38024475 PMCID: PMC10679864 DOI: 10.1016/j.eclinm.2023.102315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Immunotherapy has revolutionized the treatment of cancer. However, microsatellite stable (MSS) metastatic colorectal cancer (mCRC) shows a low response to PD-1 inhibitors. Antiangiogenic therapy can enhance anti-PD-1 efficacy, but it still cannot meet clinical needs. Increasing evidence supported a close relationship between gut microbiome and anti-PD-1 efficacy. This study aimed to explore the efficacy and safety of the combination of fecal microbiota transplantation (FMT) and tislelizumab and fruquintinib in refractory MSS mCRC. Methods In the phase II trial, MSS mCRC patients were administered FMT plus tislelizumab and fruquintinib as a third-line or above treatment. The primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), objective response rate (ORR), disease control rate (DCR), duration of response (DoR), clinical benefit rate (CBR), safety and quality of life. Feces and peripheral blood were collected for exploratory biomarker analysis. This study is registered with Chictr.org.cn, identifier ChiCTR2100046768. Findings From May 10, 2021 to January 17, 2022, 20 patients were enrolled. Median follow-up was 13.7 months. Median PFS was 9.6 months (95% CI 4.1-15.1). Median OS was 13.7 months (95% CI 9.3-17.7). Median DoR was 8.1 months (95% CI 1.7-10.6). ORR was 20% (95% CI 5.7-43.7). DCR was 95% (95% CI 75.1-99.9). CBR was 60% (95% CI 36.1-80.9). Nineteen patients (95%) experienced at least one treatment-related adverse event (TRAE). Six patients (30%) had grade 3-4 TRAEs, with the most common being albuminuria (10%), urine occult blood (10%), fecal occult blood (10%), hypertension (5%), hyperglycemia (5%), liver dysfunction (5%), hand-foot skin reaction (5%), and hypothyroidism (5%). No treatment-related deaths occurred. Responders had a high-abundance of Proteobacteria and Lachnospiraceae family and a low-abundance of Actinobacteriota and Bifidobacterium. The treatment did not change the structure of peripheral blood TCR repertoire. However, the expanded TCRs exhibited the characteristics of antigen-driven responses in responders. Interpretation FMT plus tislelizumab and fruquintinib as third-line or above treatment showed improved survival and manageable safety in refractory MSS mCRC, suggesting a valuable new treatment option for this patient population. Funding This study was supported by the National Natural Science Foundation of China (82102954 to Wensi Zhao) and the Special Project of Central Government for Local Science and Technology Development of Hubei Province (ZYYD2020000169 to Yongshun Chen).
Collapse
Affiliation(s)
- Wensi Zhao
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Lei
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaobo Ke
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Chen
- Department of Clinical Oncology, Qianjiang Central Hospital, Qianjiang, China
| | - Jiping Xiao
- Department of Abdominal Tumor Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Ze Tang
- Department of Abdominal & Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Li Wang
- Department of Oncology, Xiaochang First People's Hospital, China
| | - Yiping Ren
- Department of Clinical Oncology, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingshan, China
| | - Mohammed Alnaggar
- Department of Internal Medicine, Clinic Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hu Qiu
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Shi
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
57
|
Gu Z, da Silva CG, Ma S, Liu Q, Schomann T, Ossendorp F, Cruz LJ. Dual-Targeting Nanoliposome Improves Proinflammatory Immunomodulation of the Tumor Microenvironment. Adv Healthc Mater 2023; 12:e2302046. [PMID: 37605325 PMCID: PMC11468610 DOI: 10.1002/adhm.202302046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Immunotherapies targeting immune checkpoints have revolutionized cancer treatment by normalizing the immunosuppressive microenvironment of tumors and reducing adverse effects on the immune system. Indoleamine 2,3-dioxygenase (IDO) inhibitors have garnered attention as a promising therapeutic agent for cancer. However, their application alone has shown limited clinical benefits. Cabozantinib, a multitarget tyrosine kinase inhibitor, holds immunomodulatory potential by promoting infiltration and activation of effector cells and inhibiting suppressive immune cells. Despite its potential, cabozantinib as a monotherapy has shown limited efficacy in terms of objective response rate. In this study, IDO-IN-7 and cabozantinib are coencapsulated into liposomes to enhance tumor accumulation and minimize adverse effects. The liposomal combination exhibits potent cytotoxicity and inhibits the function of IDO enzyme. Furthermore, the dual-targeted treatment effectively inhibits tumor development and reverses the suppressive tumor microenvironment by regulating both adaptive and innate branch of immune system. This is evidenced by pronounced infiltration of T cells and B cells, a decrease of regulatory T lymphocytes, a shift to a proinflammatory phenotype of tumor-associated macrophages, and increases levels of neutrophils. This is the first developed of a liposome-delivered combination of IDO inhibitors and cabozantinib, and holds great potential for future clinical application as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zili Gu
- Department of RadiologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| | - Candido G. da Silva
- Department of RadiologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| | - Sen Ma
- Department of OphthalmologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| | - Qi Liu
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Timo Schomann
- Department of RadiologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
- Department of Vascular SurgeryLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| | - Ferry Ossendorp
- Department of ImmunologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| | - Luis J. Cruz
- Department of RadiologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| |
Collapse
|
58
|
Zheng X, Shi Y, Tang D, Xiao H, Shang K, Zhou X, Tan G. Near-Infrared-II Nanoparticles for Vascular Normalization Combined with Immune Checkpoint Blockade via Photodynamic Immunotherapy Inhibit Uveal Melanoma Growth and Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206932. [PMID: 37939284 PMCID: PMC10724444 DOI: 10.1002/advs.202206932] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 09/05/2023] [Indexed: 11/10/2023]
Abstract
Photodynamic therapy (PDT) has been widely employed in tumor treatment due to its effectiveness. However, the tumor hypoxic microenvironment which is caused by abnormal vasculature severely limits the efficacy of PDT. Furthermore, the abnormal vasculature has been implicated in the failure of immunotherapy. In this study, a novel nanoparticle denoted as Combo-NP is introduced, composed of a biodegradable NIR II fluorescent pseudo-conjugate polymer featuring disulfide bonds within its main chain, designated as TPA-BD, and the vascular inhibitor Lenvatinib. Combo-NP exhibits dual functionality by not only inducing cytotoxic reactive oxygen species (ROS) to directly eliminate tumor cells but also eliciting immunogenic cell death (ICD). This ICD response, in turn, initiates a robust cascade of immune reactions, thereby augmenting the generation of cytotoxic T lymphocytes (CTLs). In addition, Combo-NP addresses the issue of tumor hypoxia by normalizing the tumor vasculature. This normalization process enhances the efficacy of PDT while concurrently fostering increased CTLs infiltration within the tumor microenvironment. These synergistic effects synergize to potentiate the photodynamic-immunotherapeutic properties of the nanoparticles. Furthermore, when combined with anti-programmed death-ligand 1 (PD-L1), they showcase notable inhibitory effects on tumor metastasis. The findings in this study introduce an innovative nanomedicine strategy aimed at triggering systemic anti-tumor immune responses for the treatment of Uveal melanoma.
Collapse
Affiliation(s)
- Xiaoqin Zheng
- Department of OphthalmologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Yunyi Shi
- Department of OphthalmologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Kun Shang
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100190P. R. China
| | - Xuezhi Zhou
- Eye Center of Xiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Gang Tan
- Department of OphthalmologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001P. R. China
| |
Collapse
|
59
|
Fei B, Mo Z, Yang J, Wang Z, Li S. Nanodrugs Reprogram Cancer-Associated Fibroblasts and Normalize Tumor Vasculatures for Sequentially Enhancing Photodynamic Therapy of Hepatocellular Carcinoma. Int J Nanomedicine 2023; 18:6379-6391. [PMID: 37954460 PMCID: PMC10638926 DOI: 10.2147/ijn.s429884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023] Open
Abstract
Background The failure of cancer photodynamic therapy (PDT) is largely ascribed to excessive stroma and defective vasculatures that restrain the photosensitizer permeation and the oxygen perfusion in tumors. Method and Results In this study, a nanodrug that integrated the cancer-associated fibroblast (CAF) regulation with tumor vessel normalization was tailored to sequentially sensitize PDT. The nanodrug exhibited high targeting towards CAFs and efficiently reversed the activated CAFs into quiescence, thus decreasing collagen deposition in the tumor microenvironment (TME), which overcame the protective physical barrier. Furthermore, the nanodrug regulated vascular endothelial cells and restored the tumor vasculatures, thereby improving vascular permeability. Based on the combined effects of reprogramming the TME, the nanodrug improved tumor accumulation of photosensitizers and alleviated hypoxia in the TME, which facilitated the subsequent PDT. Importantly, the nanodrug regulated the immunosuppressive TME by favoring the infiltration of immunostimulatory cells over immunosuppressive cells, which potentiated the PDT-induced immune response. Conclusion Our work demonstrates a sequential treatment strategy in which the combination of the CAF regulation and tumor vasculature normalization, followed by PDT, could be a promising modality for sensitizing tumor to PDT.
Collapse
Affiliation(s)
- Bingyuan Fei
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhanhao Mo
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jinghui Yang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, People's Republic of China
| | - Shuo Li
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
60
|
Choi Y, Jung K. Normalization of the tumor microenvironment by harnessing vascular and immune modulation to achieve enhanced cancer therapy. Exp Mol Med 2023; 55:2308-2319. [PMID: 37907742 PMCID: PMC10689787 DOI: 10.1038/s12276-023-01114-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
Solid tumors are complex entities that actively shape their microenvironment to create a supportive environment for their own growth. Angiogenesis and immune suppression are two key characteristics of this tumor microenvironment. Despite attempts to deplete tumor blood vessels using antiangiogenic drugs, extensive vessel pruning has shown limited efficacy. Instead, a targeted approach involving the judicious use of drugs at specific time points can normalize the function and structure of tumor vessels, leading to improved outcomes when combined with other anticancer therapies. Additionally, normalizing the immune microenvironment by suppressing immunosuppressive cells and activating immunostimulatory cells has shown promise in suppressing tumor growth and improving overall survival. Based on these findings, many studies have been conducted to normalize each component of the tumor microenvironment, leading to the development of a variety of strategies. In this review, we provide an overview of the concepts of vascular and immune normalization and discuss some of the strategies employed to achieve these goals.
Collapse
Affiliation(s)
- Yechan Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Keehoon Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
| |
Collapse
|
61
|
Wang CW, Lee YC, Lin YJ, Firdi NP, Muzakky H, Liu TC, Lai PJ, Wang CH, Wang YC, Yu MH, Wu CH, Chao TK. Deep Learning Can Predict Bevacizumab Therapeutic Effect and Microsatellite Instability Directly from Histology in Epithelial Ovarian Cancer. J Transl Med 2023; 103:100247. [PMID: 37741509 DOI: 10.1016/j.labinv.2023.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains a significant cause of mortality among gynecologic cancers, with the majority of cases being diagnosed at an advanced stage. Before targeted therapies were available, EOC treatment relied largely on debulking surgery and platinum-based chemotherapy. Vascular endothelial growth factors have been identified as inducing tumor angiogenesis. According to several clinical trials, anti-vascular endothelial growth factor-targeted therapy with bevacizumab was effective in all phases of EOC treatment. However, there are currently no biomarkers accessible for regular therapeutic use despite the importance of patient selection. Microsatellite instability (MSI), caused by a deficiency of the DNA mismatch repair system, is a molecular abnormality observed in EOC associated with Lynch syndrome. Recent evidence suggests that angiogenesis and MSI are interconnected. Developing predictive biomarkers, which enable the selection of patients who might benefit from bevacizumab-targeted therapy or immunotherapy, is critical for realizing personalized precision medicine. In this study, we developed 2 improved deep learning methods that eliminate the need for laborious detailed image-wise annotations by pathologists and compared them with 3 state-of-the-art methods to not only predict the efficacy of bevacizumab in patients with EOC using mismatch repair protein immunostained tissue microarrays but also predict MSI status directly from histopathologic images. In prediction of therapeutic outcomes, the 2 proposed methods achieved excellent performance by obtaining the highest mean sensitivity and specificity score using MSH2 or MSH6 markers and outperformed 3 state-of-the-art deep learning methods. Moreover, both statistical analysis results, using Cox proportional hazards model analysis and Kaplan-Meier progression-free survival analysis, confirm that the 2 proposed methods successfully differentiate patients with positive therapeutic effects and lower cancer recurrence rates from patients experiencing disease progression after treatment (P < .01). In prediction of MSI status directly from histopathology images, our proposed method also achieved a decent performance in terms of mean sensitivity and specificity score even for imbalanced data sets for both internal validation using tissue microarrays from the local hospital and external validation using whole section slides from The Cancer Genome Atlas archive.
Collapse
Affiliation(s)
- Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Ching Lee
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yi-Jia Lin
- Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan; Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Nabila Puspita Firdi
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hikam Muzakky
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tzu-Chien Liu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Po-Jen Lai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan; Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chi Wang
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, Taiwan
| | - Mu-Hsien Yu
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Hua Wu
- Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan; Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
62
|
Liu Q, Chen Y, Hu Y, Yang J. Clinical research progress of targeted therapy combined with immunotherapy for advanced cholangiocarcinoma. Cancer Treat Res Commun 2023; 37:100771. [PMID: 39491368 DOI: 10.1016/j.ctarc.2023.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Cholangiocarcinoma (CCA) is a common and highly malignant form of cancer that has shown high rates of morbidity and mortality in recent years. The prognosis for cholangiocarcinoma is generally poor due to its aggressive nature and high recurrence rate. Most patients are diagnosed in the middle or late stages of the disease, making surgical treatment challenging. As a result, there is a pressing need to improve the treatment of advanced cholangiocarcinoma. The advancement of tumor genetics has allowed for more precise and targeted treatment approaches. Targeted molecular therapy has shown promise in cholangiocarcinoma treatment, and the study of immunotherapy has provided hope for patients who are not eligible for surgery or have a poor response to chemotherapy. However, the effectiveness of single targeted therapy or immunotherapy is limited. Therefore, the combination of targeted therapy and immunotherapy represents a significant breakthrough and challenge. Recent research on the combination of targeted therapy and immunotherapy in cholangiocarcinoma has yielded promising results, surpassing the outcomes of single therapy or chemotherapy. This has sparked intense interest in further investigating this combined approach. In this article, we aim to review the development and research findings of targeted therapy combined with immunotherapy, providing new insights for the selection of combined therapy and future clinical research in cholangiocarcinoma.
Collapse
Affiliation(s)
- Qin Liu
- The First Affiliated Hospital of Yangtze University, China
| | - Yuanyuan Chen
- The First Affiliated Hospital of Yangtze University, China
| | - Yan Hu
- The First Affiliated Hospital of Yangtze University, China
| | - Jiyuan Yang
- The First Affiliated Hospital of Yangtze University, China.
| |
Collapse
|
63
|
He D, Wang L, Xu J, Zhao J, Bai H, Wang J. Research advances in mechanism of antiangiogenic therapy combined with immune checkpoint inhibitors for treatment of non-small cell lung cancer. Front Immunol 2023; 14:1265865. [PMID: 37915579 PMCID: PMC10618022 DOI: 10.3389/fimmu.2023.1265865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Immunotherapy has changed the treatment strategy of non-small cell lung cancer (NSCLC) in recent years, among which anti-PD-1/PD-L1 antibodies are the most used. However, the majority of patients with NSCLC do not derive benefit from immune checkpoint inhibitors (ICIs). Vascular abnormalities are a hallmark of most solid tumors and facilitate immune evasion. Thus, combining antiangiogenic therapies might increase the effectiveness of anti-PD-1/PD-L1 antibodies. In this paper, the mechanisms of anti-angiogenic agents combined with anti-PD-1/PD-L1 antibodies are illustrated, moreover, relevant clinical studies and predictive immunotherapeutic biomarkers are summarized and analyzed, in order to provide more treatment options for NSCLC patients.
Collapse
Affiliation(s)
| | | | | | | | - Hua Bai
- Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Wang
- Chinese Academy of Medical Sciences (CAMS) Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
64
|
Furukawa N, Yang W, Chao A, Patil A, Mirando A, Pandey N, Popel A. Chemokine-derived oncolytic peptide induces immunogenic cancer cell death and significantly suppresses tumor growth. RESEARCH SQUARE 2023:rs.3.rs-3335225. [PMID: 37886580 PMCID: PMC10602061 DOI: 10.21203/rs.3.rs-3335225/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Chemokinostatin-1 (CKS1) is a 24-mer peptide originally discovered as an anti-angiogenic peptide derived from the CXCL1 chemokine. Here, we demonstrate that CKS1 acts not only as an anti-angiogenic peptide but also as an oncolytic peptide due to its structural and physical properties. CKS1 induced both necrotic and apoptotic cell death specifically in cancer cells while showing minimal toxicity in non-cancerous cells. Mechanistically, CKS1 disrupted the cell membrane of cancer cells quickly after treatment and activated the apoptotic pathway at later time points. Furthermore, immunogenic molecules were released from CKS1 treated cells, indicating that CKS1 induces immunogenic cell death. CKS1 effectively suppressed tumor growth in vivo. Collectively, these data demonstrate that CKS1 is a unique peptide that functions both as an anti-angiogenic peptide and as an oncolytic peptide and has a therapeutic potential to treat cancer.
Collapse
Affiliation(s)
| | - Wendy Yang
- Johns Hopkins University School of Medicine
| | - Alex Chao
- Johns Hopkins University School of Medicine
| | | | | | | | | |
Collapse
|
65
|
Zeng Y, Zhang S, Li S, Song G, Meng T, Yuan H, Hu F. Normalizing Tumor Blood Vessels to Improve Chemotherapy and Inhibit Breast Cancer Metastasis by Multifunctional Nanoparticles. Mol Pharm 2023; 20:5078-5089. [PMID: 37728215 DOI: 10.1021/acs.molpharmaceut.3c00381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The abnormal tumor blood vessels with high leakage can promote tumor cells to infiltrate into the systemic circulation and increase the risk of tumor metastasis. In addition, chemotherapy may destroy tumor blood vessels and further aggravate metastasis. Normalizing tumor blood vessels can reduce vascular leakage and increase vascular integrity. The simultaneous administration of vascular normalization drugs and chemotherapy drugs may resist the blood vessels' destruction of chemotherapy. Here, multifunctional nanoparticles (CCM@LMSN/DOX&St), which combined chemotherapy with tumor blood vessel normalization, were prepared for the treatment of breast cancer. The results showed that CCM@LMSN/DOX&St-loaded sunitinib (St) promoted the expression of junction proteins Claudin-4 and VE-cadherin of endothelial cells, reversed the destruction of DOX to the endothelial cell layer, protected the integrity of the endothelial cell layer, and inhibited the migration of 4T1 tumor cells across the endothelial cell layer. In vivo experiments showed that CCM@LMSN/DOX&St effectively inhibited tumor growth in situ; what is exciting was that it also inhibited distal metastasis of breast cancer. CCM@LMSN/DOX&St encapsulated with St can normalize tumor blood vessels, reverse the damage of DOX to tumor blood vessels, increase the integrity of blood vessels, and prevent tumor cell invasion into blood vessels, which can inhibit breast cancer spontaneous metastasis and reduce chemotherapy-induced metastasis. This drug delivery platform effectively inhibited the progression of tumors and provided a promising solution for effective tumor treatment.
Collapse
Affiliation(s)
- Yingping Zeng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Shufen Zhang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Sufen Li
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Guangtao Song
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
66
|
Zhao M, Guan P, Xu S, Lu H, Liu Z. Molecularly Imprinted Nanomedicine for Anti-angiogenic Cancer Therapy via Blocking Vascular Endothelial Growth Factor Signaling. NANO LETTERS 2023; 23:8674-8682. [PMID: 37721331 DOI: 10.1021/acs.nanolett.3c02514] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The VEGF-VEGFR2 (VEGF = vascular endothelial growth factor) signaling has been a promising target in cancer therapy. However, because conventional anti-angiogenic therapeutics suffer from drawbacks, particularly severe side effects, novel anti-angiogenic strategies are much needed. Herein, we report the rational engineering of VEGF-targeted molecularly imprinted polymer nanoparticles (nanoMIP) for anti-angiogenic cancer therapy. The anti-VEGF nanomedicine was prepared via a state-of-the-art molecular imprinting approach using the N-terminal epitope of VEGF as the template. The nanoMIP could target the two major pro-angiogenic isoforms (VEGF165 and VEGF121) with high affinity and thereby effectively block the VEGF-VEGFR2 signaling, yielding a potent anti-angiogenic effect of "killing two birds with one stone". In vivo experiments demonstrated that the anti-VEGF nanoMIP effectively suppressed tumor growth via anti-angiogenesis in a xenograft model of human colon carcinoma without apparent side effects. Thus, this study not only proposes an unprecedented anti-angiogenic strategy for cancer therapy but also provides a new paradigm for the rational development of MIPs-based "drug-free" nanomedicines.
Collapse
Affiliation(s)
- Menghuan Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Peixin Guan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
67
|
Lin Q, Choyke PL, Sato N. Visualizing vasculature and its response to therapy in the tumor microenvironment. Theranostics 2023; 13:5223-5246. [PMID: 37908739 PMCID: PMC10614675 DOI: 10.7150/thno.84947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
Tumor vasculature plays a critical role in the progression and metastasis of tumors, antitumor immunity, drug delivery, and resistance to therapies. The morphological and functional changes of tumor vasculature in response to therapy take place in a spatiotemporal-dependent manner, which can be predictive of treatment outcomes. Dynamic monitoring of intratumor vasculature contributes to an improved understanding of the mechanisms of action of specific therapies or reasons for treatment failure, leading to therapy optimization. There is a rich history of methods used to image the vasculature. This review describes recent advances in imaging technologies to visualize the tumor vasculature, with a focus on enhanced intravital imaging techniques and tumor window models. We summarize new insights on spatial-temporal vascular responses to various therapies, including changes in vascular perfusion and permeability and immune-vascular crosstalk, obtained from intravital imaging. Finally, we briefly discuss the clinical applications of intravital imaging techniques.
Collapse
Affiliation(s)
| | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
68
|
Yao S, Lan H, Han Y, Mao C, Yang M, Zhang X, Jin K. From organ preservation to selective surgery: How immunotherapy changes colorectal surgery? Surg Open Sci 2023; 15:44-53. [PMID: 37637243 PMCID: PMC10450522 DOI: 10.1016/j.sopen.2023.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
The emergence of immunotherapy has revolutionized the traditional treatment paradigm of colorectal cancer (CRC). Among them, immune checkpoint blockade has become the first-line treatment for metastatic colorectal cancer (mCRC) and has made significant progress in the treatment of locally advanced colorectal cancer (LACRC). We reviewed a series of clinical trials that have made breakthrough progress. We will emphasize the breakthrough progress in achieving organ preservation in patients with high microsatellite instability or DNA mismatch repair deficiency (MSI-H/dMMR), and based on this, we propose the concept of selective surgery, which includes selectively removing or preserving lymph nodes, with the aim of proving our idea through more research in the future.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Chunsen Mao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650106, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| |
Collapse
|
69
|
Ghaffari S, Rezaei N. Eosinophils in the tumor microenvironment: implications for cancer immunotherapy. J Transl Med 2023; 21:551. [PMID: 37587450 PMCID: PMC10433623 DOI: 10.1186/s12967-023-04418-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023] Open
Abstract
Despite being an integral part of the immune response in the tumor microenvironment (TME), few studies have mechanistically elucidated eosinophil functions in cancer outcomes. Eosinophils are a minor population of granulocytes that are mostly explored in asthma and allergic disorders. Their influence on primary and metastatic tumors, however, has recently come to light. Eosinophils' diverse armamentarium of mediators and receptors allows them to participate in innate and adaptive immunity, such as type 1 and type 2 immunity, and shape TME and tumor outcomes. Based on TME cells and cytokines, activated eosinophils drive other immune cells to ultimately promote or suppress tumor growth. Discovering exactly what conditions determine the pro-tumorigenic or anti-tumorigenic role of eosinophils allows us to take advantage of these signals and devise novel strategies to target cancer cells. Here, we first revisit eosinophil biology and differentiation as recognizing eosinophil mediators is crucial to their function in homeostatic and pathological conditions as well as tumor outcome. The bulk of our paper discusses eosinophil interactions with tumor cells, immune cells-including T cells, plasma cells, natural killer (NK) cells-and gut microbiota. Eosinophil mediators, such as IL-5, IL-33, granulocyte-macrophage colony-stimulating factor (GM-CSF), thymic stromal lymphopoietin (TSLP), and CCL11 also determine eosinophil behavior toward tumor cells. We then examine the implications of these findings for cancer immunotherapy approaches, including immune checkpoint blockade (ICB) therapy using immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy. Eosinophils synergize with CAR T cells and ICB therapy to augment immunotherapies.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
70
|
Gao Y, Zeng X, Liao X. Correlation between microvessel maturity and ISUP grades assessed using contrast-enhanced transrectal ultrasonography in prostate cancer. Open Med (Wars) 2023; 18:20230772. [PMID: 37588658 PMCID: PMC10426265 DOI: 10.1515/med-2023-0772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
This study aimed to assess the correlation among the peak intensity (PI) values of quantitative parameters, microvessel density (MVD), microvessel maturity, and International Society of Urological Pathology (ISUP) grades in biopsy specimens from prostate cancer (PCa) patients. The study population included PCa patients who underwent targeted and systematic biopsy, without radiation or chemohormonal therapy before biopsy. Contrast-enhanced transrectal ultrasonography (CE-TRUS) was performed in all patients before biopsy. Contrast-enhancement patterns and PI values of quantitative parameters were observed. Tumor tissue samples were immunostained for CD31 expression. MVD, microvessel maturity, and ISUP grades were determined in prostate biopsy specimens. Based on the contrast enhancement patterns of prostate lesions, 16 patients were assigned to a low-enhancement group and 45 to a high-enhancement group. The number of mature vessels, MVD, mature vessel index, and ISUP grades were all higher in the high-enhancement group than in the low-enhancement group (all P < 0.05). The immature vessel index was lower in the high-enhancement group than in the low-enhancement group (P < 0.05). The PI value was positively correlated with the number of mature vessels (r = 0.372). In conclusion, enhancement patterns on CE-TRUS can reflect microvessel maturity in PCa. The PI value was positively correlated with the number of mature vessels.
Collapse
Affiliation(s)
- Yong Gao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 530021Guangxi, China
| | - Xuerong Zeng
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 530021Guangxi, China
| | - Xinhong Liao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd,
Nanning, 530021Guangxi, China
| |
Collapse
|
71
|
Kawamura E, Matsubara T, Kawada N. New Era of Immune-Based Therapy in Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2023; 15:3993. [PMID: 37568808 PMCID: PMC10417782 DOI: 10.3390/cancers15153993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (CC) accounts for approximately 20% of all biliary tract cancer (BTC) cases and 10-15% of all primary liver cancer cases. Many patients are diagnosed with unresectable BTC, and, even among patients with resectable BTC, the 5-year survival rate is approximately 20%. The BTC incidence rate is high in Southeast and East Asia and has increased worldwide in recent years. Since 2010, cytotoxic chemotherapy, particularly combination gemcitabine + cisplatin (ABC-02 trial), has been the first-line therapy for patients with BTC. In 2022, a multicenter, double-blind, randomized phase 3 trial (TOPAZ-1 trial) examined the addition of programmed death-ligand 1 immunotherapy (durvalumab) to combination gemcitabine + cisplatin for BTC treatment, resulting in significantly improved survival without notable additional toxicity. As a result of this trial, this three-drug combination has become the new standard first-line therapy, leading to notable advances in BTC management for the first time since 2010. The molecular profiling of BTC has continued to drive the development of new targeted therapies for use when first-line therapies fail. Typically, second-line therapy decisions are based on identified genomic alterations in tumor tissue. Mutations in fibroblast growth factor receptor 1/2/3, isocitrate dehydrogenase 1/2, and neurotrophic tyrosine receptor kinase A/B/C are relatively frequent in intrahepatic CC, and precision medicines are available that can target associated pathways. In this review, we suggest strategies for systemic pharmacotherapy with a focus on intrahepatic CC, in addition to presenting the results and safety outcomes of clinical trials evaluating immune checkpoint inhibitor therapies in BTC.
Collapse
Affiliation(s)
- Etsushi Kawamura
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
72
|
An S, Liu J, Huang G, Kang F, Wei W. PET imaging of tumor vascular normalization in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2023; 50:2940-2943. [PMID: 37458760 DOI: 10.1007/s00259-023-06337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Affiliation(s)
- Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
73
|
Wang X, Zhang H, Chen X, Wu C, Ding K, Sun G, Luo Y, Xiang D. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery. Acta Biomater 2023; 166:42-68. [PMID: 37257574 DOI: 10.1016/j.actbio.2023.05.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
In order to achieve targeted delivery of anticancer drugs, efficacy improvement, and side effect reduction, various types of nanoparticles are employed. However, their therapeutic effects are not ideal. This phenomenon is caused by tumor microenvironment abnormalities such as abnormal blood vessels, elevated interstitial fluid pressure, and dense extracellular matrix that affect nanoparticle penetration into the tumor's interstitium. Furthermore, nanoparticle properties including size, charge, and shape affect nanoparticle transport into tumors. This review comprehensively goes over the factors hindering nanoparticle penetration into tumors and describes methods for improving nanoparticle distribution by remodeling the tumor microenvironment and optimizing nanoparticle physicochemical properties. Finally, a critical analysis of future development of nanodrug delivery in oncology is further discussed. STATEMENT OF SIGNIFICANCE: This article reviews the factors that hinder the distribution of nanoparticles in tumors, and describes existing methods and approaches for improving the tumor accumulation from the aspects of remodeling the tumor microenvironment and optimizing the properties of nanoparticles. The description of the existing methods and approaches is followed by highlighting their advantages and disadvantages and put forward possible directions for the future researches. At last, the challenges of improving tumor accumulation in nanomedicines design were also discussed. This review will be of great interest to the broad readers who are committed to delivering nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xiaohui Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chunrong Wu
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Ke Ding
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Guiyin Sun
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Debing Xiang
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| |
Collapse
|
74
|
Watanabe H, Matsushita Y, Tamura K, Motoyama D, Sugiyama T, Otsuka A, Miyake H. Assessments of therapeutic effects according to timings for combined therapy with axitinib and immune check point inhibitor in a mouse renal cell carcinoma model. Sci Rep 2023; 13:11361. [PMID: 37443122 PMCID: PMC10344912 DOI: 10.1038/s41598-023-37857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Recently, several types of systemic therapy using tyrosine kinase inhibitor (TKI) and immune checkpoint inhibitor (ICI) have been performed for advanced renal cell carcinoma (aRCC) patients; however, the optimal strategy of sequential treatment with these agents has not been well established. The objective of this study was to determine the differences of therapeutic effects according to timing for the introduction of TKI and ICI using a mouse RCC, RenCa model. The effects of combined treatment of TKI and/or ICI with axitinib, anti-mouse programmed death (PD)-1, or PD-ligand 1 (PD-L1) antibody on tumor growth and survival after subcutaneous and intravenous injection of RenCa cells, respectively, were compared according to three different treatment schedules: simultaneous administration, initial axitinib administration, and initial ICI administration. Infiltrating patterns of lymphocytes into tumors after combined treatments were evaluated by immunohistochemical staining. In mice treated with anti-PD-1 and anti-PD-L1 antibodies, significantly marked inhibitory effects on subcutaneous growth of tumors were observed in the simultaneous and initial ICI treatment groups, but not the group with the initial axitinib administration, compared to controls without treatment. Survival intervals of mice after intravenous injection of RenCa cells were significantly longer in the simultaneous and initial ICI administration, but not the initial axitinib administration, compared to the control. Furthermore, both CD8+ to CD3+ and CD8+ to CD11b+ T-lymphocyte ratios in subcutaneous RenCa tumors were significantly higher in the simultaneous and initial ICI administration, but not the initial axitinib administration, compared to the control. Favorable control against aRCC progression may be achieved by administering TKI and ICI simultaneously or ICI followed by TKI.
Collapse
Affiliation(s)
- Hiromitsu Watanabe
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| | - Yuto Matsushita
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Keita Tamura
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Daisuke Motoyama
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Takayuki Sugiyama
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Atsushi Otsuka
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
75
|
Liu YG, Jiang ST, Zhang L, Zheng H, Zhang T, Zhang JW, Zhao HT, Sang XT, Xu YY, Lu X. Worldwide productivity and research trend of publications concerning tumor immune microenvironment (TIME): a bibliometric study. Eur J Med Res 2023; 28:229. [PMID: 37430294 DOI: 10.1186/s40001-023-01195-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND As the complexity and diversity of the tumor immune microenvironment (TIME) are becoming better understood, burgeoning research has progressed in this field. However, there is a scarcity of literature specifically focused on the bibliometric analysis of this topic. This study sought to investigate the development pattern of TIME-related research from 2006 to September 14, 2022, from a bibliometric perspective. METHODS We acquired both articles and reviews related to TIME from the Web of Science Core Collection (WoSCC) (retrieved on September 14, 2022). R package "Bibliometrix" was used to calculate the basic bibliometric features, present the collaborative conditions of countries and authors, and generate a three-field plot to show the relationships among authors, affiliations, and keywords. VOSviewer was utilized for co-authorship analysis of country and institution and keyword co-occurrence analysis. CiteSpace was used for citation burst analysis of keywords and cited references. In addition, Microsoft Office Excel 2019 was used to develop an exponential model to fit the cumulative publication numbers. RESULTS A total of 2545 publications on TIME were included, and the annual publication trend exhibited a significant increase over time. China and Fudan University were the most productive country and institution, with the highest number of publications of 1495 and 396, respectively. Frontiers in Oncology held the highest number of publications. A number of authors were recognized as the main contributors in this field. The clustering analysis revealed six clusters of keywords that highlighted the research hot spots in the fields of basic medical research, immunotherapy, and various cancer types separately. CONCLUSIONS This research analyzed 16 years of TIME-related research and sketched out a basic knowledge framework that includes publications, countries, journals, authors, institutions, and keywords. The finding revealed that the current research hot spots of the TIME domain lie in "TIME and cancer prognosis", "cancer immunotherapy", and "immune checkpoint". Our researchers identified the following areas: "immune checkpoint-based immunotherapy", "precise immunotherapy" and "immunocyte pattern", which may emerge as frontiers and focal points in the upcoming years, offering valuable avenues for further exploration.
Collapse
Affiliation(s)
- Yao-Ge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shi-Tao Jiang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Han Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ting Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jun-Wei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
76
|
Hamada Y, Tanoue K, Kita Y, Tanabe K, Hokonohara K, Wada M, Hozaka Y, Oi H, Nakayama C, Higashi M, Arigami T, Mori S, Ohtsuka T. Vascular endothelial growth factor inhibitors promote antitumor responses via tumor microenvironment immunosuppression in advanced colorectal cancer. Scand J Gastroenterol 2023; 58:1009-1020. [PMID: 36987919 DOI: 10.1080/00365521.2023.2194011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE This study aims to investigate changes in the tumor immune environment of patients who underwent therapy with a vascular endothelial growth factor (VEGF) inhibitor for advanced colorectal cancer. METHODS Patients (n = 135) with T3 or T4 colorectal cancer were included in this retrospective study. They were classified as follows: patients who had not received preoperative treatment (UPFRONT group, n = 54), who had received FOLFOX as preoperative chemotherapy (FOLFOX group, n = 55), and who had undergone resection after combination FOLFOX and bevacizumab as unresectable colorectal cancer (B-MAB group, n = 26). The number of cytotoxic T lymphocytes (CTLs), FOXP3+ lymphocytes (including regulatory T cells (Tregs)), CD163+ monocytes (including M2-type tumor-associated macrophages (TAM-M2 type)), and programmed cell death 1 (PD-1)+ lymphocytes was evaluated immunohistochemically in the cancer cell area (CC) and stromal cell area (ST) of surgical specimens, and compared among the three groups. RESULTS The CTL population did not differ among the three groups in both areas. In the B-MAB group, the numbers of PD-1+ cells in the ST, FOXP3+ lymphocytes in both areas, and CD163+monocytes in the ST was lower than that in the other two groups, and a correlation with the histological therapeutic effect was observed. CONCLUSIONS In advanced colorectal cancer, VEGF inhibitors may decrease the number of PD-1+ cells and inhibit the infiltration of FOXP3+ lymphocytes and CD163+monocytes into the tumor environment.
Collapse
Affiliation(s)
- Yuki Hamada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kiyonori Tanoue
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kan Tanabe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kentaro Hokonohara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hideyuki Oi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chieri Nakayama
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michiyo Higashi
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
77
|
Alessandrini L, Astolfi L, Daloiso A, Sbaraglia M, Mondello T, Zanoletti E, Franz L, Marioni G. Diagnostic, Prognostic, and Therapeutic Role for Angiogenesis Markers in Head and Neck Squamous Cell Carcinoma: A Narrative Review. Int J Mol Sci 2023; 24:10733. [PMID: 37445908 DOI: 10.3390/ijms241310733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Despite refinements to diagnostic and therapeutic approaches over the last two decades, the outcome of patients with head and neck squamous cell carcinoma (HNSCC) has not shown substantial improvements, especially regarding those with advanced-stage disease. Angiogenesis is believed to be a turning point in the development of solid tumors, being a premise for mass growth and potential distant dissemination. Cancer-induced angiogenesis is a result of increased expression of angiogenic factors, decreased expression of anti-angiogenic factors, or a combination of both. The assessment of angiogenesis has also emerged as a potentially useful biological prognostic and predictive factor in HNSCC. The aim of this review is to assess the level of current knowledge on the neo-angiogenesis markers involved in the biology, behavior, and prognosis of HNSCC. A search (between 1 January 2012 and 10 October 2022) was run in PubMed, Scopus, and Web of Science electronic databases. After full-text screening and application of inclusion/exclusion criteria, 84 articles are included. The current knowledge and debate on angiogenesis in HNSCC presented in the eligible articles are stratified as follows: (i) diagnostic markers; (ii) prognostic markers; (iii) predictive markers; and (iv) markers with a potential therapeutic role. Angiogenesis is a biological and pathological indicator of malignancies progression and has negative implications in prognosis of some solid tumors; several signals capable of tripping the "angiogenic switch" have also been identified in HNSCC. Although several studies suggested that antiangiogenic agents might be a valuable adjunct to conventional chemo-radiation of HNSCC, their long-term therapeutic value remains uncertain. Further investigations are required on combinations of antiangiogenic agents with conventional chemotherapeutic ones, immunotherapeutic and molecularly targeted agents in HNSCC. Additional data are necessary to pinpoint which patients could benefit most from these treatments.
Collapse
Affiliation(s)
- Lara Alessandrini
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Laura Astolfi
- Bioacustic Research Laboratory, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Antonio Daloiso
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Marta Sbaraglia
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Tiziana Mondello
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Elisabetta Zanoletti
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Leonardo Franz
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy
| | - Gino Marioni
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
| |
Collapse
|
78
|
Park HR, Shiva A, Cummings P, Kim S, Kim S, Lee E, Leong A, Chowdhury S, Shawber C, Carvajal R, Thurston G, An JY, Lund AW, Yang HW, Kim M. Angiopoietin-2-Dependent Spatial Vascular Destabilization Promotes T-cell Exclusion and Limits Immunotherapy in Melanoma. Cancer Res 2023; 83:1968-1983. [PMID: 37093870 PMCID: PMC10267677 DOI: 10.1158/0008-5472.can-22-2838] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
T-cell position in the tumor microenvironment determines the probability of target encounter and tumor killing. CD8+ T-cell exclusion from the tumor parenchyma is associated with poor response to immunotherapy, and yet the biology that underpins this distinct pattern remains unclear. Here we show that the vascular destabilizing factor angiopoietin-2 (ANGPT2) causes compromised vascular integrity in the tumor periphery, leading to impaired T-cell infiltration to the tumor core. The spatial regulation of ANGPT2 in whole tumor cross-sections was analyzed in conjunction with T-cell distribution, vascular integrity, and response to immunotherapy in syngeneic murine melanoma models. T-cell exclusion was associated with ANGPT2 upregulation and elevated vascular leakage at the periphery of human and murine melanomas. Both pharmacologic and genetic blockade of ANGPT2 promoted CD8+ T-cell infiltration into the tumor core, exerting antitumor effects. Importantly, the reversal of T-cell exclusion following ANGPT2 blockade not only enhanced response to anti-PD-1 immune checkpoint blockade therapy in immunogenic, therapy-responsive mouse melanomas, but it also rendered nonresponsive tumors susceptible to immunotherapy. Therapeutic response after ANGPT2 blockade, driven by improved CD8+ T-cell infiltration to the tumor core, coincided with spatial TIE2 signaling activation and increased vascular integrity at the tumor periphery where endothelial expression of adhesion molecules was reduced. These data highlight ANGPT2/TIE2 signaling as a key mediator of T-cell exclusion and a promising target to potentiate immune checkpoint blockade efficacy in melanoma. SIGNIFICANCE ANGPT2 limits the efficacy of immunotherapy by inducing vascular destabilization at the tumor periphery to promote T-cell exclusion.
Collapse
Affiliation(s)
- Ha-Ram Park
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Anahita Shiva
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Portia Cummings
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Seoyeon Kim
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Eunhyeong Lee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Alessandra Leong
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Subrata Chowdhury
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Carrie Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Richard Carvajal
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Joon-Yong An
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
79
|
Sammarco E, Manfredi F, Nuzzo A, Ferrari M, Bonato A, Salfi A, Serafin D, Zatteri L, Antonuzzo A, Galli L. Immune Checkpoint Inhibitor Rechallenge in Renal Cell Carcinoma: Current Evidence and Future Directions. Cancers (Basel) 2023; 15:3172. [PMID: 37370782 DOI: 10.3390/cancers15123172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Immune checkpoint inhibitor-based therapies represent the current standard of care in the first-line treatment of advanced renal cell carcinoma. Despite a clear benefit in survival outcomes, a considerable proportion of patients experience disease progression; prospective data about second-line therapy after first-line treatment with immune checkpoint inhibitors are limited to small phase II studies. As with other solid tumors (such as melanoma and non-small cell lung cancer), preliminary data about the clinical efficacy of rechallenge of immunotherapy (alone or in combination with other drugs) in renal cell carcinoma are beginning to emerge. Nevertheless, the role of rechallenge in immunotherapy in this setting of disease remains unclear and cannot be considered a standard of care; currently some randomized trials are exploring this approach in patients with metastatic renal cell carcinoma. The aim of our review is to summarize main evidence available in the literature concerning immunotherapy rechallenge in renal carcinoma, especially focusing on biological rationale of resistance to immune checkpoint inhibitors, on the published data of clinical efficacy and on future perspectives.
Collapse
Affiliation(s)
- Enrico Sammarco
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Fiorella Manfredi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Amedeo Nuzzo
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Marco Ferrari
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Adele Bonato
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Alessia Salfi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Debora Serafin
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Luca Zatteri
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Andrea Antonuzzo
- Unit of Medical Oncology 1, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| | - Luca Galli
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Santa Chiara Hospital, 56126 Pisa, Italy
| |
Collapse
|
80
|
Xu D, Luo Y, Wang P, Li J, Ma L, Huang J, Zhang H, Yang X, Li L, Zheng Y, Fang G, Yan P. Clinical progress of anti-angiogenic targeted therapy and combination therapy for gastric cancer. Front Oncol 2023; 13:1148131. [PMID: 37384288 PMCID: PMC10295723 DOI: 10.3389/fonc.2023.1148131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The incidence of gastric cancer is increasing year by year. Most gastric cancers are already in the advanced stage with poor prognosis when diagnosed, which means the current treatment is not satisfactory. Angiogenesis is an important link in the occurrence and development of tumors, and there are multiple anti-angiogenesis targeted therapies. To comprehensively evaluate the efficacy and safety of anti-angiogenic targeted drugs alone and in combination against gastric cancer, we systematically searched and sorted out relevant literature. In this review, we summarized the efficacy and safety of Ramucirumab, Bevacizumab, Apatinib, Fruquintinib, Sorafenib, Sunitinib, Pazopanib on gastric cancer when used alone or in combination based on prospective clinical trials reported in the literature, and sorted response biomarkers. We also summarized the challenges faced by anti-angiogenesis therapy for gastric cancer and available solutions. Finally, the characteristics of the current clinical research are summarized and suggestions and prospects are raised. This review will serve as a good reference for the clinical research of anti-angiogenic targeted drugs in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Donghan Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yehao Luo
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jiaxin Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Linrui Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jie Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hao Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Xiaoman Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Liqi Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yuhong Zheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Gang Fang
- Guangxi Key Laboratory of Applied Fundamental Research of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
81
|
He Y, Zhan L, Shi J, Xiao M, Zuo R, Wang C, Liu Z, Gong W, Chen L, Luo Y, Zhang S, Wang Y, Chen L, Guo H. The Combination of R848 with Sorafenib Enhances Antitumor Effects by Reprogramming the Tumor Immune Microenvironment and Facilitating Vascular Normalization in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207650. [PMID: 37083239 PMCID: PMC10288281 DOI: 10.1002/advs.202207650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Novel promising strategies for combination with sorafenib are urgently needed to enhance its clinical benefit and overcome toxicity in hepatocellular carcinoma (HCC). the molecular and immunomodulatory antitumor effects of sorafenib alone and in combination with the new immunotherapeutic agent R848 are presented. Syngeneic HCC mouse model is presented to explore the antitumor effect and safety of three sorafenib doses alone, R848 alone, or their combination in vivo. R848 significantly enhances the sorafenib antitumor activity at a low subclinical dose with no obvious toxic side effects. Furthermore, the combination therapy reprograms the tumor immune microenvironment by increasing antitumor macrophages and neutrophils and preventing immunosuppressive signaling. Combination treatment promotes classical M1 macrophage-to-FTH1high M1 macrophage transition. The close interaction between neutrophils/classical M1 macrophages and dendritic cells promotes tumor antigen presentation to T cells, inducing cytotoxic CD8+ T cell-mediated antitumor immunity. Additionally, low-dose sorafenib, alone or combined with R848, normalizes the tumor vasculature, generating a positive feedback loop to support the antitumor immune environment. Therefore, the combination therapy reprograms the HCC immune microenvironment and normalizes the vasculature, improving the therapeutic benefit of low-dose sorafenib and minimizing toxicity, suggesting a promising novel immunotherapy (R848) and targeted therapy (tyrosine kinase inhibitors) combination strategy for HCC treatment.
Collapse
Affiliation(s)
- Yuchao He
- Department of Tumor Cell BiologyTianjin Medical University Cancer Institute and HospitalTianjin300060China
- National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjin300060China
| | - Linlin Zhan
- Department of Tumor Cell BiologyTianjin Medical University Cancer Institute and HospitalTianjin300060China
- National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjin300060China
| | - Jian Shi
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Manyu Xiao
- School of PharmacyMinzu University of ChinaBeijing10081China
| | - Ran Zuo
- Department of Tumor Cell BiologyTianjin Medical University Cancer Institute and HospitalTianjin300060China
- National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjin300060China
| | - Chengmeng Wang
- Department of Tumor Cell BiologyTianjin Medical University Cancer Institute and HospitalTianjin300060China
- National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjin300060China
| | - Zhiyong Liu
- Department of Tumor Cell BiologyTianjin Medical University Cancer Institute and HospitalTianjin300060China
- National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjin300060China
| | - Wenchen Gong
- National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjin300060China
- Department of PathologyTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Liwei Chen
- Department of Tumor Cell BiologyTianjin Medical University Cancer Institute and HospitalTianjin300060China
- National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjin300060China
| | - Yi Luo
- Department of Tumor Cell BiologyTianjin Medical University Cancer Institute and HospitalTianjin300060China
- National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjin300060China
| | - Shaojun Zhang
- Medical Research InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Youwei Wang
- Institute of Medical Engineering & Translational MedicineTianjin UniversityTianjin300072China
| | - Lu Chen
- National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjin300060China
- Department of Hepatobiliary CancerLiver Cancer Research CenterTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Hua Guo
- Department of Tumor Cell BiologyTianjin Medical University Cancer Institute and HospitalTianjin300060China
- National Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin's Clinical Research Center for CancerTianjin300060China
| |
Collapse
|
82
|
Wang Y, Cui C, Deng L, Wang L, Ren X. Cardiovascular toxicity profiles of immune checkpoint inhibitors with or without angiogenesis inhibitors: a real-world pharmacovigilance analysis based on the FAERS database from 2014 to 2022. Front Immunol 2023; 14:1127128. [PMID: 37292205 PMCID: PMC10244526 DOI: 10.3389/fimmu.2023.1127128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) combined with angiogenesis inhibitors (AGIs) have become increasingly available for multiple types of cancers, although the cardiovascular safety profiles of this combination therapy in real-world settings have not been elucidated to date. Therefore, we aimed to comprehensively investigate the cardiovascular toxicity profiles of ICIs combined with AGIs in comparison with ICIs alone. Methods The Food and Drug Administration Adverse Event Reporting System (FAERS) database from the 1st quarter of 2014 to the 1st quarter of 2022 was retrospectively queried to extract reports of cardiovascular adverse events (AEs) associated with ICIs alone, AGIs alone and combination therapy. To perform disproportionality analysis, the reporting odds ratios (RORs) and information components (ICs) were calculated with statistical shrinkage transformation formulas and a lower limit of the 95% confidence interval (CI) for ROR (ROR025) > 1 or IC (IC025) > 0 with at least 3 reports was considered statistically significant. Results A total of 18 854 cardiovascular AE cases/26 059 reports for ICIs alone, 47 168 cases/67 595 reports for AGIs alone, and 3 978 cases/5 263 reports for combination therapy were extracted. Compared to the entire database of patients without AGIs or ICIs, cardiovascular AEs were overreported in patients with combination therapy (IC025/ROR025 = 0.559/1.478), showing stronger signal strength than those taking ICIs alone (IC025/ROR025 = 0.118/1.086) or AGIs alone (IC025/ROR025 = 0.323/1.252). Importantly, compared with ICIs alone, combination therapy showed a decrease in signal strength for noninfectious myocarditis/pericarditis (IC025/ROR025 = 1.142/2.216 vs. IC025/ROR025 = 0.673/1.614), while an increase in signal value for embolic and thrombotic events (IC025/ROR025 = 0.147/1.111 vs. IC025/ROR025 = 0.591/1.519). For outcomes of cardiovascular AEs, the frequency of death and life-threatening AEs was lower for combination therapy than ICIs alone in noninfectious myocarditis/pericarditis (37.7% vs. 49.2%) as well as in embolic and thrombotic events (29.9% vs. 39.6%). Analysis among indications of cancer showed similar findings. Conclusion Overall, ICIs combined with AGIs showed a greater risk of cardiovascular AEs than ICIs alone, mainly due to an increase in embolic and thrombotic events while a decrease in noninfectious myocarditis/pericarditis. In addition, compared with ICIs alone, combination therapy presented a lower frequency of death and life-threatening in noninfectious myocarditis/pericarditis and embolic and thrombotic events.
Collapse
Affiliation(s)
- Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chanjuan Cui
- Department of Laboratory Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiayang Ren
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
83
|
Wang-Bishop L, Kimmel BR, Ngwa VM, Madden MZ, Baljon JJ, Florian DC, Hanna A, Pastora LE, Sheehy TL, Kwiatkowski AJ, Wehbe M, Wen X, Becker KW, Garland KM, Schulman JA, Shae D, Edwards D, Wolf MM, Delapp R, Christov PP, Beckermann KE, Balko JM, Rathmell WK, Rathmell JC, Chen J, Wilson JT. STING-activating nanoparticles normalize the vascular-immune interface to potentiate cancer immunotherapy. Sci Immunol 2023; 8:eadd1153. [PMID: 37146128 PMCID: PMC10226150 DOI: 10.1126/sciimmunol.add1153] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
The tumor-associated vasculature imposes major structural and biochemical barriers to the infiltration of effector T cells and effective tumor control. Correlations between stimulator of interferon genes (STING) pathway activation and spontaneous T cell infiltration in human cancers led us to evaluate the effect of STING-activating nanoparticles (STANs), which are a polymersome-based platform for the delivery of a cyclic dinucleotide STING agonist, on the tumor vasculature and attendant effects on T cell infiltration and antitumor function. In multiple mouse tumor models, intravenous administration of STANs promoted vascular normalization, evidenced by improved vascular integrity, reduced tumor hypoxia, and increased endothelial cell expression of T cell adhesion molecules. STAN-mediated vascular reprogramming enhanced the infiltration, proliferation, and function of antitumor T cells and potentiated the response to immune checkpoint inhibitors and adoptive T cell therapy. We present STANs as a multimodal platform that activates and normalizes the tumor microenvironment to enhance T cell infiltration and function and augments responses to immunotherapy.
Collapse
Affiliation(s)
- Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Blaise R. Kimmel
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Verra M. Ngwa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jessalyn J. Baljon
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - David C. Florian
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Lucinda E. Pastora
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Taylor L. Sheehy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Alexander J. Kwiatkowski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Mohamed Wehbe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Xiaona Wen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Kyle W. Becker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Kyle M. Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Jacob A. Schulman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Daniel Shae
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Deanna Edwards
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Melissa M. Wolf
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Rossane Delapp
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Plamen P. Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States
| | - Kathryn E. Beckermann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jin Chen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37232, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
84
|
Wang Z, Shi X, Zhao Y, Zhou J, Zhang S, Wang J, Yu W, Zhang X, Ren X, Zhao H. DC101, an anti-VEGFR2 agent, promotes high-endothelial venule formation and immune infiltration versus SAR131675 and fruquintinib. Biochem Biophys Res Commun 2023; 661:10-20. [PMID: 37084488 DOI: 10.1016/j.bbrc.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
There is an increasing interest in combining immune checkpoint inhibitors (ICIs) with anti-angiogenic drugs to enhance their anti-tumor effects. In this study, three anti-angiogenic agents, DC101 (acting on VEGFR2), SAR131675 (acting on VEGFR3), and fruquintinib (a small-molecule inhibitor acting on multiple targets) were administered to B16F1-OVA-loaded C57BL/6 mice. Immune cells infiltration in the tumor tissues, vascular normalization, and high-endothelial venule (HEV) formation were assessed to provide evidence for drug combination. Both DC101 and fruquintinib significantly slowed the melanoma growth and increased the proportion of CD3+ and CD8+ T cells infiltration compared with SAR131675, of note, the effect of DC101 was more pronounced. Moreover, DC101 and fruquintinib increased the interferon-γ and perforin levels, meanwhile, DC101 increased the granzyme B levels, whereas fruquintinib and SAR131675 did not. Only the fruquintinib-treated group showed decreased regulatory T cells infiltration. We found upregulation of PD-L1 expression in tumor cells and CD45+ immune cells in DC101-treated group as well as upregulation of PD-1 expression on CD3+ T cells. However, fruquintinib only increased PD-L1 expression in tumors. Both DC101 and fruquintinib reduced the proportion of CD31+ vessels, while DC101 increased the ratio of α-SMA +/CD31+ cells and reduced the expression of HIF-1α more than fruquintinib. Moreover, DC101 enhanced the infiltration of dendritic cells and B cells, and local HEV formation. In conclusion, our data indicate that DC101 may be a better choice for the combined clinical application of ICIs and anti-angiogenic agents.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Xiuhuan Shi
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Yu Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Jian Zhou
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Siyuan Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Jiahui Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Xiying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China; Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Hua Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; National Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China.
| |
Collapse
|
85
|
Xie L, Meng Z. Immunomodulatory effect of locoregional therapy in the tumor microenvironment. Mol Ther 2023; 31:951-969. [PMID: 36694462 PMCID: PMC10124087 DOI: 10.1016/j.ymthe.2023.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Cancer immunotherapy appears to be a promising treatment option; however, only a subset of patients with cancer responds favorably to treatment. Locoregional therapy initiates a local antitumor immune response by disrupting immunosuppressive components, releasing immunostimulatory damage-associated molecular patterns, recruiting immune effectors, and remodeling the tumor microenvironment. Many studies have shown that locoregional therapy can produce specific antitumor immunity alone; nevertheless, the effect is relatively weak and transient. Furthermore, increasing research efforts have explored the potential synergy between locoregional therapy and immunotherapy to enhance the long-term systemic antitumor immune effect and improve survival. Therefore, further research is needed into the immunomodulatory effects of locoregional therapy and immunotherapy to augment antitumor effects. This review article summarizes the key components of the tumor microenvironment, discusses the immunomodulatory role of locoregional therapy in the tumor microenvironment, and emphasizes the therapeutic potential of locoregional therapy in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lin Xie
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhiqiang Meng
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China.
| |
Collapse
|
86
|
Metformin enhances T lymphocyte anti-tumor immunity by increasing the infiltration via vessel normalization. Eur J Pharmacol 2023; 944:175592. [PMID: 36804835 DOI: 10.1016/j.ejphar.2023.175592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Abnormal tumor vasculature blocks the extravasation of T lymphocytes into the tumor, thereby suppressing anti-tumor immunity. Recently, metformin has been shown to affect tumor vasculature and enhance T lymphocyte anti-tumor immunity. However, whether or how metformin affects T lymphocyte anti-tumor immunity via a vascular mechanism remains poorly understood. Herein, we show that a large number of CD8+ lymphocytes gathered in the peri-tumoral region, while very few infiltrated the tumor. Metformin administration increased the expression of anti-tumor immunity-associated genes and the number of tumor-infiltrating CD8+ lymphocytes. Injection of CD8 but not CD4 neutralization antibody into tumor-bearing mice significantly abrogated the anti-tumor effect of metformin. Critically, CD8+ lymphocytes were found to pass through the wall of perfused vessel. Further results of immunofluorescent staining showed that metformin greatly elevated tumor perfusion, which was accompanied by increased vascular maturity in the intratumoral region (ITR) but not peritumoral region (PTR). These findings provide evidence for the vascular mechanism involved in metformin-induced enhancement of T lymphocyte anti-tumor immunity. By remodeling the abnormal tumor vasculature, also called vessel normalization metformin increases vascular maturity and tumor perfusion, thus allowing more CD8+ lymphocytes to infiltrate the tumor.
Collapse
|
87
|
Liu Y, Song Y, Zuo S, Zhang X, Liu H, Wang J, Wang J, Tang Y, Zheng W, Ying Z, Ping L, Zhang C, Wu M, Zhu J, Xie Y. Antitumor activity and safety of camrelizumab combined with apatinib in patients with relapsed or refractory peripheral T-cell lymphoma: An open-label, multicenter, phase II study. Front Immunol 2023; 14:1128172. [PMID: 37081867 PMCID: PMC10111014 DOI: 10.3389/fimmu.2023.1128172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
IntroductionThe treatment for relapsed/refractory peripheral T-cell lymphoma (r/r PTCL) is suboptimal. This open-label, multicenter, single-arm study aimed to investigate the antitumor activity and safety of camrelizumab (a PD-1 blockade) plus apatinib (an antiangiogenic agent) for patients with r/r PTCL.MethodsEligible patients with r/r PTCL were enrolled and received camrelizumab 200 mg intravenously every 2 weeks and apatinib 500 or 250 mg orally once daily, 4 weeks as a cycle. The primary endpoint was overall response rate (ORR).ResultsA total of 20 patients were enrolled and received study medications in the study, with a median number of prior treatment line of 3 (range 1-6). At the cutoff date of March 4, 2022, the median follow-up was 27.2 months (range: 0.5-39.9), and three patients remained on treatment. Six patients had early discontinuation without tumor response evaluation. For all patients, the ORR was 30% (6/20) (95% confidence interval [CI], 11.9% to 54.3%), with two patients (10%) achieving complete response. The median progression-free survival (PFS) and median overall survival for all patients were 5.6 months (95% CI, 1.8 to not reached) and 16.7 months (95% CI, 2.8 to not reached), respectively. Patients with PD-L1 expression ≥50% (3 patients) had a numerically higher ORR and longer median PFS than those with PD-L1 expression < 50% (5 patients). The most commonly reported grade 3 or higher adverse events were hyperlipidemia (15%), hypokalemia (15%) and anemia (15%). No treatment-related deaths occurred.DiscussionIn this study, PD-1 inhibitors plus low-dose antiangiogenic drugs presented preliminary antitumor activity and manageable toxicity in patients with r/r PTCL.
Collapse
Affiliation(s)
- Yanfei Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuqin Song
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shubo Zuo
- Department of Lymphoma, Jilin Guowen Hospital, Siping, China
| | - Xian Zhang
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, Beijing, China
| | - Jingwen Wang
- Department of Hematology, Beijing Tongren Hospital, Beijing, China
| | - Jingbo Wang
- Department of Hematology, Aerospace Central Hospital, Beijing, China
| | - Yongjing Tang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wen Zheng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhitao Ying
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lingyan Ping
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chen Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Jun Zhu, ; Yan Xie,
| | - Yan Xie
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, China
- *Correspondence: Jun Zhu, ; Yan Xie,
| |
Collapse
|
88
|
Ruan R, Li L, Li X, Huang C, Zhang Z, Zhong H, Zeng S, Shi Q, Xia Y, Zeng Q, Wen Q, Chen J, Dai X, Xiong J, Xiang X, Lei W, Deng J. Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment. Mol Cancer 2023; 22:60. [PMID: 36966334 PMCID: PMC10039534 DOI: 10.1186/s12943-023-01761-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Fibroblast growth factors (FGFs) and their receptors (FGFRs) play a crucial role in cell fate and angiogenesis, with dysregulation of the signaling axis driving tumorigenesis. Therefore, many studies have targeted FGF/FGFR signaling for cancer therapy and several FGFR inhibitors have promising results in different tumors but treatment efficiency may still be improved. The clinical use of immune checkpoint blockade (ICB) has resulted in sustained remission for patients. MAIN: Although there is limited data linking FGFR inhibitors and immunotherapy, preclinical research suggest that FGF/FGFR signaling is involved in regulating the tumor microenvironment (TME) including immune cells, vasculogenesis, and epithelial-mesenchymal transition (EMT). This raises the possibility that ICB in combination with FGFR-tyrosine kinase inhibitors (FGFR-TKIs) may be feasible for treatment option for patients with dysregulated FGF/FGFR signaling. CONCLUSION Here, we review the role of FGF/FGFR signaling in TME regulation and the potential mechanisms of FGFR-TKI in combination with ICB. In addition, we review clinical data surrounding ICB alone or in combination with FGFR-TKI for the treatment of FGFR-dysregulated tumors, highlighting that FGFR inhibitors may sensitize the response to ICB by impacting various stages of the "cancer-immune cycle".
Collapse
Affiliation(s)
- Ruiwen Ruan
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Li Li
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xuan Li
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Chunye Huang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Zhanmin Zhang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Hongguang Zhong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Shaocheng Zeng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qianqian Shi
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yang Xia
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qinru Zeng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qin Wen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jingyi Chen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xiaofeng Dai
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jianping Xiong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xiaojun Xiang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Wan Lei
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Jun Deng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
89
|
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y, Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:58. [PMID: 36941614 PMCID: PMC10029244 DOI: 10.1186/s12943-023-01725-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023] Open
Abstract
In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summarized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission rate of solid cancers.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
90
|
Zhan J, Zhang M, Zhou L, He C. Combination of immune checkpoint blockade and targeted gene regulation of angiogenesis for facilitating antitumor immunotherapy. Front Bioeng Biotechnol 2023; 11:1065773. [PMID: 36994358 PMCID: PMC10040836 DOI: 10.3389/fbioe.2023.1065773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The rapid development of tumor immunotherapy has improved the management of patients with cancer. However, several key problems of tumor immunotherapy, including the insufficient activation of effector T cells, poor tumor invasion, and poor immune killing ability, lead to a low response rate. In the present study, a synergistic strategy was developed by combining in situ tumor vaccines, gene-mediated downregulation of tumor angiogenesis, and anti-PD-L1 therapy. In situ tumor vaccines and antitumor angiogenesis were achieved by codelivering unmethylated cytosine-phosphate-guanine (CpG) and vascular endothelial growth factor (VEGF)-silencing gene (shVEGF) via a hyaluronic acid (HA)-modified HA/PEI/shVEGF/CpG system. Necrotic tumor cells and CpG adjuvants formed in situ tumor vaccines and activated the host immune response. Moreover, VEGF silencing reduced tumor angiogenesis and prompted the homogeneous distribution of tumor blood vessels to facilitate immune cell infiltration. Meanwhile, anti-angiogenesis also improved the immunosuppressive tumor microenvironment. To further improve the specific tumor-killing effect, an anti-PD-L1 antibody was introduced for immune checkpoint blockade, thereby boosting antitumor immune responses. The combination therapy strategy presented in the present study could act in the multiple stages of the tumor immunotherapy cycle, which is expected to offer a new avenue for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Zhan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Manli Zhang
- Department of Hepatology and Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Lili Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Chuan He
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Chuan He,
| |
Collapse
|
91
|
Ultrasound-targeted microbubble destruction remodels tumour microenvironment to improve immunotherapeutic effect. Br J Cancer 2023; 128:715-725. [PMID: 36463323 PMCID: PMC9977958 DOI: 10.1038/s41416-022-02076-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer immunotherapy (CIT) has gained increasing attention and made promising progress in recent years, especially immune checkpoint inhibitors such as antibodies blocking programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). However, its therapeutic efficacy is only 10-30% in solid tumours and treatment sensitivity needs to be improved. The complex tissue environment in which cancers originate is known as the tumour microenvironment (TME) and the complicated and dynamic TME is correlated with the efficacy of immunotherapy. Ultrasound-targeted microbubble destruction (UTMD) is an emerging technology that integrates diagnosis and therapy, which has garnered much traction due to non-invasive, targeted drug delivery and gene transfection characteristics. UTMD has also been studied to remodel TME and improve the efficacy of CIT. In this review, we analyse the effects of UTMD on various components of TME, including CD8+ T cells, tumour-infiltrating myeloid cells, regulatory T cells, natural killer cells and tumour vasculature. Moreover, UTMD enhances the permeability of the blood-brain barrier to facilitate drug delivery, thus improving CIT efficacy in vivo animal experiments. Based on this, we highlight the potential of immunotherapy against various cancer species and the clinical application prospects of UTMD.
Collapse
|
92
|
Miyata Y, Ogo E, Abe T, Hirata H, Tsuda N, Ushijima K, Kawahara A, Akiba J, Obara H, Kakuma T. Dynamics in the expression of programmed death ligand 1 and cluster of differentiation 163 in the tumor microenvironment of uterine cervical cancer: a single-center retrospective study. Radiat Oncol 2023; 18:40. [PMID: 36823665 PMCID: PMC9948417 DOI: 10.1186/s13014-023-02230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Radiotherapy (RT) destroys cancer cells and activates the immune system while suppressing the immunity of tumor-associated tissues, including the tumor microenvironment (TME). However, to date, no anti-tumor therapeutic strategy that uses these immune mechanisms has been established. This study investigated changes in the immunity of the TME during standard radical RT for cervical cancer combined with external beam RT and brachytherapy and determined whether these changes affect prognosis. METHODS Twenty-six patients who had completed radical RT for cervical cancer were categorized into the following two groups according to whether the cancer recurred and/or metastasized within 2 years after the start of treatment: treatment failure (n = 14) and treatment success (n = 12). We assessed the expression of programmed death 1, programmed death ligand 1 (PD-L1), cluster of differentiation (CD) 8, CD68, CD163, Forkhead box protein P3, and hypoxia-inducible factor-1α in the TME of cervical tissues collected periodically during treatment and evaluated the difference in expression rates of each marker between the success and failure groups and assessed its effect on prognosis. RESULTS The expression levels of PD-L1 and CD163 in the TME in the treatment success group were lower than those in the treatment failure group at the midpoint during brachytherapy (p < 0.01 and p = 0.08, respectively), and the 2-year progression-free-survival (PFS) rate depended on the expression levels of PD-L1 and CD163 (p = 0.04 and p = 0.02, respectively). CONCLUSIONS The expression rates of CD163 and PD-L1 in the TME during brachytherapy were related to treatment response and the 2-year PFS. This study may increase our understanding of tumor-associated immunity in the TME and aid in the development of therapies targeting PD-L1 or M2 macrophages in the TME in conjunction with RT, especially brachytherapy, for cervical cancer patients.
Collapse
Affiliation(s)
- Yusaku Miyata
- Department of Radiology, School of Medicine, Kurume University, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan.
| | - Etsuyo Ogo
- grid.410781.b0000 0001 0706 0776Department of Radiology, School of Medicine, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011 Japan
| | - Toshi Abe
- grid.410781.b0000 0001 0706 0776Department of Radiology, School of Medicine, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011 Japan
| | - Hideki Hirata
- grid.416532.70000 0004 0569 9156Department of Radiotherapy, St. Mary’s Hospital, 422 Tsubukuhonmachi, Kurume, Fukuoka 830-8543 Japan
| | - Naotake Tsuda
- grid.410781.b0000 0001 0706 0776Department of Obstetrics and Gynecology, School of Medicine, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011 Japan
| | - Kimio Ushijima
- grid.410781.b0000 0001 0706 0776Department of Obstetrics and Gynecology, School of Medicine, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011 Japan
| | - Akihiko Kawahara
- grid.470127.70000 0004 1760 3449Department of Diagnostic Pathology, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka 830-0011 Japan
| | - Jun Akiba
- grid.470127.70000 0004 1760 3449Department of Diagnostic Pathology, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka 830-0011 Japan
| | - Hitoshi Obara
- grid.410781.b0000 0001 0706 0776Biostatistics Center, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011 Japan
| | - Tatsuyuki Kakuma
- grid.410781.b0000 0001 0706 0776Biostatistics Center, Kurume University, 67 Asahimachi, Kurume, Fukuoka 830-0011 Japan
| |
Collapse
|
93
|
Tumor Vasculature as an Emerging Pharmacological Target to Promote Anti-Tumor Immunity. Int J Mol Sci 2023; 24:ijms24054422. [PMID: 36901858 PMCID: PMC10002465 DOI: 10.3390/ijms24054422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Tumor vasculature abnormality creates a microenvironment that is not suitable for anti-tumor immune response and thereby induces resistance to immunotherapy. Remodeling of dysfunctional tumor blood vessels by anti-angiogenic approaches, known as vascular normalization, reshapes the tumor microenvironment toward an immune-favorable one and improves the effectiveness of immunotherapy. The tumor vasculature serves as a potential pharmacological target with the capacity of promoting an anti-tumor immune response. In this review, the molecular mechanisms involved in tumor vascular microenvironment-modulated immune reactions are summarized. In addition, the evidence of pre-clinical and clinical studies for the combined targeting of pro-angiogenic signaling and immune checkpoint molecules with therapeutic potential are highlighted. The heterogeneity of endothelial cells in tumors that regulate tissue-specific immune responses is also discussed. The crosstalk between tumor endothelial cells and immune cells in individual tissues is postulated to have a unique molecular signature and may be considered as a potential target for the development of new immunotherapeutic approaches.
Collapse
|
94
|
Gao X, Jiang P, Wei X, Zhang W, Zheng J, Sun S, Yao H, Liu X, Zhang Q. Novel fusion protein PK5-RL-Gal-3C inhibits hepatocellular carcinoma via anti-angiogenesis and cytotoxicity. BMC Cancer 2023; 23:154. [PMID: 36793021 PMCID: PMC9930235 DOI: 10.1186/s12885-023-10608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Galectin-3 (Gal-3), the only chimeric β-galactosides-binding lectin, consists of Gal-3N (N-terminal regulatory peptide) and Gal-3C (C-terminal carbohydrate-recognition domain). Interestingly, Gal-3C could specifically inhibit endogenous full-length Gal-3 to exhibit anti-tumor activity. Here, we aimed to further improve the anti-tumor activity of Gal-3C via developing novel fusion proteins. METHODS PK5 (the fifth kringle domain of plasminogen) was introduced to the N-terminus of Gal-3C via rigid linker (RL) to generate novel fusion protein PK5-RL-Gal-3C. Then, we investigated the anti-tumor activity of PK5-RL-Gal-3C in vivo and in vitro by using several experiments, and figured out their molecular mechanisms in anti-angiogenesis and cytotoxicity to hepatocellular carcinoma (HCC). RESULTS Our results show that PK5-RL-Gal-3C can inhibit HCC both in vivo and in vitro without obvious toxicity, and also significantly prolong the survival time of tumor-bearing mice. Mechanically, we find that PK5-RL-Gal-3C inhibits angiogenesis and show cytotoxicity to HCC. In detail, HUVEC-related and matrigel plug assays indicate that PK5-RL-Gal-3C plays an important role in inhibiting angiogenesis by regulating HIF1α/VEGF and Ang-2 both in vivo and in vitro. Moreover, PK5-RL-Gal-3C induces cell cycle arrest at G1 phase and apoptosis with inhibition of Cyclin D1, Cyclin D3, CDK4, and Bcl-2, but activation of p27, p21, caspase-3, -8 and -9. CONCLUSION Novel fusion protein PK5-RL-Gal-3C is potent therapeutic agent by inhibiting tumor angiogenesis in HCC and potential antagonist of Gal-3, which provides new strategy for exploring novel antagonist of Gal-3 and promotes their application in clinical treatment.
Collapse
Affiliation(s)
- Xiaoge Gao
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Pin Jiang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Medical Oncology of Huangmei People’s Hospital, Huanggang, Hubei Province 435500 People’s Republic of China
| | - Xiaohuan Wei
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Wei Zhang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Jiwei Zheng
- grid.417303.20000 0000 9927 0537Department of Oral Medicine, School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004 People’s Republic of China
| | - Shishuo Sun
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004 People’s Republic of China ,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province 210000 People’s Republic of China
| | - Hong Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650118, People's Republic of China.
| | - Xiangye Liu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China.
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China. .,Nanjing International Hospital Co., Ltd., Nanjing, Jiangsu Province, 210000, People's Republic of China.
| |
Collapse
|
95
|
Lalani AR, Fakhari F, Radgoudarzi S, Rastegar-Pouyani N, Moloudi K, Khodamoradi E, Taeb S, Najafi M. Immunoregulation by resveratrol; implications for normal tissue protection and tumour suppression. Clin Exp Pharmacol Physiol 2023; 50:353-368. [PMID: 36786378 DOI: 10.1111/1440-1681.13760] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Immune reactions are involved in both tumour and normal tissue in response to therapy. Elevated secretion of certain chemokines, exosomes and cytokines triggers inflammation, pain, fibrosis and ulceration among other normal tissue side effects. On the other hand, secretion of tumour-promoting molecules suppresses activity of anticancer immune cells and facilitates the proliferation of malignant cells. Novel anticancer drugs such as immune checkpoint inhibitors (ICIs) boost anticancer immunity via inducing the proliferation of anticancer cells such as natural killer (NK) cells and CD8+ T lymphocytes. Certain chemotherapy drugs and radiotherapy may induce anticancer immunity in the tumour, however, both have severe side effects for normal tissues through stimulation of several immune responses. Thus, administration of natural products with low side effects may be a promising approach to modulate the immune system in both tumour and normal organs. Resveratrol is a well-known phenol with diverse effects on normal tissues and tumours. To date, a large number of experiments have confirmed the potential of resveratrol as an anticancer adjuvant. This review focuses on ensuing stimulation or suppression of immune responses in both tumour and normal tissue after radiotherapy or anticancer drugs. Later on, the immunoregulatory effects of resveratrol in both tumour and normal tissue following exposure to anticancer agents will be discussed.
Collapse
Affiliation(s)
- Armineh Rezagholi Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shakila Radgoudarzi
- I.M. Sechenov First Moscow State Medical University (Первый МГМУ им), Moscow, Russia
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kave Moloudi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
96
|
Wu Y, Xie H, Li Y, Bao X, Lu GL, Wen J, Gao Y, Li Y, Zhang Z. Nitric Oxide-Loaded Bioinspired Lipoprotein Normalizes Tumor Vessels To Improve Intratumor Delivery and Chemotherapy of Albumin-Bound Paclitaxel Nanoparticles. NANO LETTERS 2023; 23:939-947. [PMID: 36701555 DOI: 10.1021/acs.nanolett.2c04312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The disorganized vasculatures in tumors represent a substantial challenge of intratumor nanomedicine delivery to exert the anticancer effects. Herein, we rationally designed a glutathione (GSH)-activated nitric oxide (NO) donor loaded bioinspired lipoprotein system (NO-BLP) to normalize tumor vessels and then promote the delivery efficiency of sequential albumin-bound paclitaxel nanoparticles (PAN) in tumors. NO-BLP exhibited higher tumor accumulation and deeper penetration versus the counterpart liposomal formulation (NO-Lipo) in 4T1 breast cancer tumors, thus producing notable vascular normalization efficacy and causing a 2.33-fold increase of PAN accumulation. The sequential strategy of NO-BLP plus PAN resulted in an 81.03% inhibition of tumor growth in 4T1 tumors, which was better than the NO-BLP monotherapy, PAN monotherapy, and the counterpart NO-Lipo plus PAN treatment. Therefore, the bioinspired lipoprotein of NO-BLP provides an encouraging platform to normalize tumor vessels and promote intratumor delivery of nanomedicines for effective cancer treatment.
Collapse
Affiliation(s)
- Yao Wu
- School of Pharmacy, Fudan University, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honglei Xie
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, Shandong, China
| | - Yongping Li
- Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xinyue Bao
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Guo-Liang Lu
- The University of Auckland, Auckland 1142, New Zealand
| | - Jingyuan Wen
- The University of Auckland, Auckland 1142, New Zealand
| | - Yuan Gao
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwen Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, Shandong, China
| |
Collapse
|
97
|
Stehle D, Barresi M, Schulz J, Feil R. Heterogeneity of cGMP signalling in tumour cells and the tumour microenvironment: Challenges and chances for cancer pharmacology and therapeutics. Pharmacol Ther 2023; 242:108337. [PMID: 36623589 DOI: 10.1016/j.pharmthera.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is an important regulator of human (patho-)physiology and has emerged as an attractive drug target. Currently, cGMP-elevating drugs are mainly used to treat cardiovascular diseases, but there is also increasing interest in exploring their potential for cancer prevention and therapy. In this review article, we summarise recent findings in cancer-related cGMP research, with a focus on melanoma, breast cancer, colorectal cancer, prostate cancer, glioma, and ovarian cancer. These studies indicate tremendous heterogeneity of cGMP signalling in tumour tissue. It appears that different tumour and stroma cells, and perhaps different sexes, express different cGMP generators, effectors, and degraders. Therefore, the same cGMP-elevating drug can lead to different outcomes in different tumour settings, ranging from inhibition to promotion of tumourigenesis or therapy resistance. These findings, together with recent evidence that increased cGMP signalling is associated with worse prognosis in several human cancers, challenge the traditional view that cGMP elevation generally has an anti-cancer effect. As cGMP pathways appear to be more stable in the stroma than in tumour cells, we suggest that cGMP-modulating drugs should preferentially target the tumour microenvironment. Indeed, there is evidence that phosphodiesterase 5 inhibitors like sildenafil enhance anti-tumour immunity by acting on immune cells. Moreover, many in vivo results obtained with cGMP-modulating drugs could be explained by effects on the tumour vasculature rather than on the tumour cells themselves. We therefore propose a model that incorporates the NO/cGMP signalling pathway in tumour vessels as a key target for cancer therapy. Deciphering the multifaceted roles of cGMP in cancer is not only a challenge for basic research, but also provides a chance to predict potential adverse effects of cGMP-modulating drugs in cancer patients and to develop novel anti-tumour therapies by precision targeting of the relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Daniel Stehle
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Mariagiovanna Barresi
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Jennifer Schulz
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
98
|
Yuan S, Peng L, Liu Y, Till BG, Yan X, Zhang J, Zhu L, Wang H, Zhang S, Li H, Gao Q, Wang Z. Low-dose anlotinib confers improved survival in combination with immune checkpoint inhibitor in advanced non-small cell lung cancer patients. Cancer Immunol Immunother 2023; 72:437-448. [PMID: 35931835 PMCID: PMC10991614 DOI: 10.1007/s00262-022-03259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/11/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Anti-angiogenic drugs increase anti-tumor efficacy of immune checkpoint inhibitors (ICIs). However, the optimal dose of anti-angiogenic drugs remains unclear. METHODS We retrospectively analyzed efficacy and safety data from patients diagnosed with advanced or metastatic non-small cell lung cancer (NSCLC) that received PD-1 blockade with low-doses of anlotinib, a highly selective receptor tyrosine kinase inhibitor mainly targeting vascular endothelial growth factor receptors, as second or later line therapy. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), overall response rate (ORR), disease control rate (DCR), and safety profile. Univariate and multivariate analyses were used to identify prognostic factors. RESULTS A total of 40 eligible patients were included. The median PFS was 11.4 months. The median OS of the entire cohort was 27.0 months. ORR was achieved in 16 patients (40.0%) and DCR was maintained in 33 patients (82.5%). The overall incidence of adverse events (AEs) was 52.5%, and the most common all grade AE was gastrointestinal reactions, which occurred in four patients (10.0%). Treatment-related grade 3/4 toxicity was observed in one patient (2.5%). Conclusions Low-dose anlotinib may be an effective and well-tolerated anti-angiogenesis partner for combination therapy with ICIs in second-line and later settings for advanced NSCLC.
Collapse
Affiliation(s)
- Shumin Yuan
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yuqing Liu
- Department of Medical Oncology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Brian G Till
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Xiang Yan
- Medical Oncology Department, The Chinese PLA General Hospital, Beijing, China
| | - Jie Zhang
- Medical Oncology Department, The Chinese PLA General Hospital, Beijing, China
| | - Liping Zhu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Huijuan Wang
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Shaokai Zhang
- Department of Cancer Epidemiology, Henan Office for Cancer Control and Research, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hongle Li
- Molecular Pathology Department, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Quanli Gao
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Zibing Wang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
99
|
Lu G, Han Z, Hu M. Optical imaging technology realizes early tumor diagnosis by detecting angiogenesis. Microsc Res Tech 2023; 86:232-241. [PMID: 36412215 DOI: 10.1002/jemt.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/23/2022]
Abstract
The occurrence and development of blood vessels play a key role in different stages of tumor growth, while current imaging techniques are difficult to detect early tumor angiogenesis because of their low sensitivity. Therefore, this article introduces high-sensitivity optical imaging technology to achieve early tumor diagnosis by detecting tumor angiogenesis. Liver and pancreatic tumor models in nude mice were respectively established to represent tumors with a rich or poor blood supply. The two optical imaging methods, in vivo confocal fluorescence imaging and photoacoustic imaging, were used to detect tumor angiogenesis at different stages. Finally, the changes in blood vessels were verified by immunostaining. Both autoluminescence imaging and pathological staining confirmed that these two tumor models were successfully established. In vivo confocal fluorescence imaging found that the early tumor blood vessel structure had obvious characteristics: disorder, tortuous deformation, thin diameter, which were significantly different from the normal tissues. Photoacoustic imaging could effectively identify blood vessels inside early tumors, which were small and disordered and might be used as one of the predictors of early tumor development. CD31 immunostaining was used to evaluate the vascular status of tumors at different stages and under different blood supply conditions. The vascular structures observed under the microscope in the two tumor models were consistent with the results observed by optical imaging methods. The optical imaging methods could monitor the characteristics of angiogenesis in the rich or poor blood supply tumors, especially the early diagnosis of tumors.
Collapse
Affiliation(s)
- Guanhua Lu
- Department of Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ziyu Han
- Department of Ultrasonic Diagnosis, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Min Hu
- Department of Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
100
|
Jeong JH, Ojha U, Jang H, Kang S, Lee S, Lee YM. Dual anti-angiogenic and anti-metastatic activity of myriocin synergistically enhances the anti-tumor activity of cisplatin. Cell Oncol (Dordr) 2023; 46:117-132. [PMID: 36329364 DOI: 10.1007/s13402-022-00737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Tumor microenvironment consists of various kind of cells, forming complex interactions and signal transductions for tumor growth. Due to this complexity, targeting multiple kinases could yield improved clinical outcomes. In this study, we aimed to investigate the potential of myriocin, from Mycelia sterilia, as a novel dual-kinase inhibitor and suggest myriocin as a candidate for combined chemotherapy. METHODS We initially evaluated the anti-tumor and anti-metastatic effect of myriocin in mouse allograft tumor models. We examined the effects of myriocin on angiogenesis and tumor vasculature using in vitro, in vivo, and ex vivo models, and also tested the anti-migration effect of myriocin in in vitro models. Next, we explored the effects of myriocin alone and in combination with cisplatin on tumor growth and vascular normalization in mouse models. RESULTS We found that myriocin inhibited tumor growth and lung metastasis in mouse allograft tumor models. Myriocin induced normalization of the tumor vasculature in the mouse models. We also found that myriocin suppressed angiogenesis through the VEGFR2/PI3K/AKT pathway in endothelial cells (ECs), as well as cancer cell migration by blocking the IκBα/NF-κB(p65)/MMP-9 pathway. Finally, we found that myriocin enhanced the drug delivery efficacy of cisplatin by increasing the integrity of tumor vasculature in the mouse models, which synergistically increased the anti-tumor activity of cisplatin. CONCLUSION We suggest that myriocin is a novel potent anti-cancer agent that dually targets both VEGFR2 in ECs and IκBα in cancer cells, and exerts more pronounced anti-tumor effects than with either kinase being inhibited alone.
Collapse
Affiliation(s)
- Ji-Hak Jeong
- Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
- National Basic Research Lab. of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Uttam Ojha
- Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
- National Basic Research Lab. of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Hyeonha Jang
- Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
- National Basic Research Lab. of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Soohyun Kang
- National Basic Research Lab. of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Sunhee Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
- National Basic Research Lab. of Vascular Homeostasis Regulation, College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|