51
|
Nikolaou S, Qiu S, Fiorentino F, Simillis C, Rasheed S, Tekkis P, Kontovounisios C. The role of Neurotensin and its receptors in non-gastrointestinal cancers: a review. Cell Commun Signal 2020; 18:68. [PMID: 32336282 PMCID: PMC7183616 DOI: 10.1186/s12964-020-00569-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neurotensin, originally isolated in 1973 has both endocrine and neuromodulator activity and acts through its three main receptors. Their role in promoting tumour cell proliferation, migration, DNA synthesis has been studied in a wide range of cancers. Expression of Neurotensin and its receptors has also been correlated to prognosis and prediction to treatment. Main body The effects of NT are mediated through mitogen-activated protein kinases, epidermal growth factor receptors and phosphatidylinositol-3 kinases amongst others. This review is a comprehensive summary of the molecular pathways by which Neurotensin and its receptors act in cancer cells. Conclusion Identifying the role of Neurotensin in the underlying molecular mechanisms in various cancers can give way to developing new agnostic drugs and personalizing treatment according to the genomic structure of various cancers. Video abstract
Collapse
Affiliation(s)
- Stella Nikolaou
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Shengyang Qiu
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Francesca Fiorentino
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Constantinos Simillis
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK
| | - Shahnawaz Rasheed
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Paris Tekkis
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK. .,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK. .,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK.
| |
Collapse
|
52
|
The oncogene BCL6 is up-regulated in glioblastoma in response to DNA damage, and drives survival after therapy. PLoS One 2020; 15:e0231470. [PMID: 32320427 PMCID: PMC7176076 DOI: 10.1371/journal.pone.0231470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/24/2020] [Indexed: 12/26/2022] Open
Abstract
The prognosis for people with the high-grade brain tumor glioblastoma is very poor, due largely to low cell death in response to genotoxic therapy. The transcription factor BCL6, a protein that normally suppresses the DNA damage response during immune cell maturation, and a known driver of B-cell lymphoma, was shown to mediate the survival of glioblastoma cells. Expression was observed in glioblastoma tumor specimens and cell lines. When BCL6 expression or activity was reduced in these lines, increased apoptosis and a profound loss of proliferation was observed, consistent with gene expression signatures suggestive of anti-apoptotic and pro-survival signaling role for BCL6 in glioblastoma. Further, treatment with the standard therapies for glioblastoma—ionizing radiation and temozolomide—both induced BCL6 expression in vitro, and an in vivo orthotopic animal model of glioblastoma. Importantly, inhibition of BCL6 in combination with genotoxic therapies enhanced the therapeutic effect. Together these data demonstrate that BCL6 is an active transcription factor in glioblastoma, that it drives survival of cells, and that it increased with DNA damage, which increased the survival rate of therapy-treated cells. This makes BCL6 an excellent therapeutic target in glioblastoma—by increasing sensitivity to standard DNA damaging therapy, BCL6 inhibitors have real potential to improve the outcome for people with this disease.
Collapse
|
53
|
Silvia N, Dai G. CEREBRAL ORGANOIDS AS A MODEL FOR GLIOBLASTOMA MULTIFORME. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 13:152-159. [PMID: 32355905 DOI: 10.1016/j.cobme.2020.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly lethal and elusive cancer. While many in vitro and in vivo models have been developed to recapitulate the factors that contribute to its invasive behavior, they suffer from drawbacks related to genetic variability, expense and scope. Technologies utilizing human pluripotent stem cells can now generate organoids which can recapitulate the relative complexity the cytoarchitecture and microenvironment of human brain tissue. In conjunction with protocols which effectively induce GBM tumors within these "cerebral organoids", such approaches represent an unprecedented model to investigate GBM invasion and its effect on the brain ECM. This review focuses on methods of brain organoid development, protocols for inducing GBM, the relevant findings on invasion and microenvironmental changes, and discusses their limitations and potential future direction.
Collapse
Affiliation(s)
- Nathaniel Silvia
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
54
|
Hübner M, Effinger D, Wu T, Strauß G, Pogoda K, Kreth FW, Kreth S. The IL-1 Antagonist Anakinra Attenuates Glioblastoma Aggressiveness by Dampening Tumor-Associated Inflammation. Cancers (Basel) 2020; 12:E433. [PMID: 32069807 PMCID: PMC7072290 DOI: 10.3390/cancers12020433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The recombinant IL-1 receptor antagonist anakinra-currently approved for the treatment of autoinflammatory diseases-blocks IL-1β-mediated inflammatory signaling. As inflammation is a major driver of cancer, we hypothesized that anakinra might be able to mitigate glioblastoma (GBM) aggressiveness. METHODS Primary GBM or T98G cells were incubated alone or with peripheral blood mononuclear cells (PBMCs) and were subsequently treated with IL-1β and/or anakinra. T cells were obtained by magnetic bead isolation. Protein and mRNA expression were quantified by SDS-PAGE, qRT-PCR, and ELISA, respectively. Cell proliferation and apoptosis were analyzed via flow cytometry. Chemotaxis was studied via time-lapse microscopy. RESULTS Upon IL-1β stimulation, anakinra attenuated proinflammatory gene expression in both GBM cells and PBMCs, and mitigated tumor migration and proliferation. In a more lifelike model replacing IL-1β stimulation by GBM-PBMC co-culture, sole presence of PBMCs proved sufficient to induce a proinflammatory phenotype in GBM cells with enhanced proliferation and migration rates and attenuated apoptosis. Anakinra antagonized these pro-tumorigenic effects and, moreover, reduced inflammatory signaling in T cells without compromising anti-tumor effector molecules. CONCLUSION By dampening the inflammatory crosstalk between GBM and immune cells, anakinra mitigated GBM aggressiveness. Hence, counteracting IL-1β-mediated inflammation might be a promising strategy to pursue.
Collapse
Affiliation(s)
- Max Hübner
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - David Effinger
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Tingting Wu
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Gabriele Strauß
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| | - Kristin Pogoda
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
- Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg, Germany
| | | | - Simone Kreth
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany; (M.H.); (D.E.); (T.W.); (G.S.)
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany;
| |
Collapse
|
55
|
Tsunedomi R, Yoshimura K, Suzuki N, Hazama S, Nagano H. Clinical implications of cancer stem cells in digestive cancers: acquisition of stemness and prognostic impact. Surg Today 2020; 50:1560-1577. [PMID: 32025858 DOI: 10.1007/s00595-020-01968-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Digestive system cancers are the most frequent cancers worldwide and often associated with poor prognosis because of their invasive and metastatic characteristics. Recent studies have found that the plasticity of cancer cells can impart cancer stem-like properties via the epithelial-mesenchymal transition (EMT). Cancer stem-like properties such as tumor initiation are integral to the formation of metastasis, which is the main cause of poor prognosis. Numerous markers of cancer stem cells (CSCs) have been identified in many types of cancer. Therefore, CSCs, via their stem cell-like functions, may play an important role in prognosis after surgery. While several reports have described prognostic analysis using CSC markers, few reviews have summarized CSCs and their association with prognosis. Herein, we review the prognostic potential of eight CSC markers, CD133, CD44, CD90, ALDH1A1, EPCAM, SOX2, SOX9, and LGR5, in digestive cancers including those of the pancreas, colon, liver, gastric, and esophagus.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Kiyoshi Yoshimura
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Faculty of Medicine, Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
56
|
Riboni L, Abdel Hadi L, Navone SE, Guarnaccia L, Campanella R, Marfia G. Sphingosine-1-Phosphate in the Tumor Microenvironment: A Signaling Hub Regulating Cancer Hallmarks. Cells 2020; 9:E337. [PMID: 32024090 PMCID: PMC7072483 DOI: 10.3390/cells9020337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
As a key hub of malignant properties, the cancer microenvironment plays a crucial role intimately connected to tumor properties. Accumulating evidence supports that the lysophospholipid sphingosine-1-phosphate acts as a key signal in the cancer extracellular milieu. In this review, we have a particular focus on glioblastoma, representative of a highly aggressive and deleterious neoplasm in humans. First, we highlight recent advances and emerging concepts for how tumor cells and different recruited normal cells contribute to the sphingosine-1-phosphate enrichment in the cancer microenvironment. Then, we describe and discuss how sphingosine-1-phosphate signaling contributes to favor cancer hallmarks including enhancement of proliferation, stemness, invasion, death resistance, angiogenesis, immune evasion and, possibly, aberrant metabolism. We also discuss the potential of how sphingosine-1-phosphate control mechanisms are coordinated across distinct cancer microenvironments. Further progress in understanding the role of S1P signaling in cancer will depend crucially on increasing knowledge of its participation in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Loubna Abdel Hadi
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| |
Collapse
|
57
|
He F, Springer NL, Whitman MA, Pathi SP, Lee Y, Mohanan S, Marcott S, Chiou AE, Blank BS, Iyengar N, Morris PG, Jochelson M, Hudis CA, Shah P, Kunitake JAMR, Estroff LA, Lammerding J, Fischbach C. Hydroxyapatite mineral enhances malignant potential in a tissue-engineered model of ductal carcinoma in situ (DCIS). Biomaterials 2019; 224:119489. [PMID: 31546097 PMCID: PMC6878891 DOI: 10.1016/j.biomaterials.2019.119489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 01/21/2023]
Abstract
While ductal carcinoma in situ (DCIS) is known as a precursor lesion to most invasive breast carcinomas, the mechanisms underlying this transition remain enigmatic. DCIS is typically diagnosed by the mammographic detection of microcalcifications (MC). MCs consisting of non-stoichiometric hydroxyapatite (HA) mineral are frequently associated with malignant disease, yet it is unclear whether HA can actively promote malignancy. To investigate this outstanding question, we compared phenotypic outcomes of breast cancer cells cultured in control or HA-containing poly(lactide-co-glycolide) (PLG) scaffolds. Exposure to HA mineral in scaffolds increased the expression of pro-tumorigenic interleukin-8 (IL-8) among transformed but not benign cells. Notably, MCF10DCIS.com cells cultured in HA scaffolds adopted morphological changes associated with increased invasiveness and exhibited increased motility that were dependent on IL-8 signaling. Moreover, MCF10DCIS.com xenografts in HA scaffolds displayed evidence of enhanced malignant progression relative to xenografts in control scaffolds. These experimental findings were supported by a pathological analysis of clinical DCIS specimens, which correlated the presence of MCs with increased IL-8 staining and ductal proliferation. Collectively, our work suggests that HA mineral may stimulate malignancy in preinvasive DCIS cells and validate PLG scaffolds as useful tools to study cell-mineral interactions.
Collapse
Affiliation(s)
- Frank He
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nora L Springer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, 66506, USA
| | - Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Siddharth P Pathi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yeonkyung Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sunish Mohanan
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Stephen Marcott
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Aaron E Chiou
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Bryant S Blank
- Cornell Center for Animal Resources and Education, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Neil Iyengar
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Patrick G Morris
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Maxine Jochelson
- Department of Radiology, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Clifford A Hudis
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Pragya Shah
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
58
|
Vessel co-option in glioblastoma: emerging insights and opportunities. Angiogenesis 2019; 23:9-16. [PMID: 31679081 PMCID: PMC7012982 DOI: 10.1007/s10456-019-09691-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022]
Abstract
Vessel co-option is the movement of cancer cells towards and along the pre-existing vasculature and is an alternative to angiogenesis to gain access to nutrients. Vessel co-option has been shown as a strategy employed by some glioblastoma (GBM) cells to invade further into the brain, leading to one of the greatest challenges in treating GBM. In GBM, vessel co-option may be an intrinsic feature or an acquired mechanism of resistance to anti-angiogenic treatment. Here, we describe the histological features and the dynamics visualized through intravital microscopy of vessel co-option in GBM, as well as the molecular players discovered until now. We also highlight key unanswered questions, as answering these is critical to improve understanding of GBM progression and for developing more effective approaches for GBM treatment.
Collapse
|
59
|
Luo X, Xu S, Zhong Y, Tu T, Xu Y, Li X, Wang B, Yang F. High gene expression levels of VEGFA and CXCL8 in the peritumoral brain zone are associated with the recurrence of glioblastoma: A bioinformatics analysis. Oncol Lett 2019; 18:6171-6179. [PMID: 31788092 PMCID: PMC6865749 DOI: 10.3892/ol.2019.10988] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to identify differentially regulated genes between the peritumoral brain zone (PBZ) and tumor core (TC) of glioblastoma (GBM), to elucidate the underlying molecular mechanisms and provide a target for the treatment of tumors. The GSE13276 and GSE116520 datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) for the PBZ and TC were obtained using the GEO2R tool. The bioinformatics and evolutionary genomics online tool Venn was used to identify common DEGs between the two datasets. The Database for Annotation, Visualization, and Integrated Discovery online tool was used to analyze enriched pathways of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The Search Tool for the Retrieval of Interacting Genes/Proteins online tool was used to construct a protein-protein interaction (PPI) network of DEGs. Hub genes were identified using Cytohubba, a plug-in for Cytoscape. The Gene Expression Profiling Interactive Analysis (GEPIA) database was utilized to perform survival analysis. In total, 75 DEGs, including 12 upregulated and 63 downregulated genes, were identified. In the GO term analysis, these DEGs were mainly enriched in ‘regulation of angiogenesis’ and ‘central nervous system development’. Furthermore, in the KEGG pathway analysis, the DEGs were mainly enriched in ‘bladder cancer’ and ‘endocytosis’. When filtering the results of the PPI network analysis using Cytohubba, a total of 10 hub genes, including proteolipid protein 1, myelin associated oligodendrocyte basic protein, contactin 2, myelin oligodendrocyte glycoprotein, myelin basic protein, myelin associated glycoprotein, SRY-box transcription factor 10, C-X-C motif chemokine ligand 8 (CXCL8), vascular endothelial growth factor A (VEGFA) and plasmolipin, were identified. These hub genes were further subjected to GO term and KEGG pathway analysis, and were revealed to be enriched in ‘central nervous system development’, ‘bladder cancer’ and ‘rheumatoid arthritis’. These hub genes were used to perform survival analysis using the GEPIA database, and it was determined that VEGFA and CXCL8 were significantly associated with a reduction in the overall survival of patients with GBM. In conclusion, the results suggest that the recurrence of GBM is associated with high gene expression levels VEGFA and CXCL8, and the development of the central nervous system.
Collapse
Affiliation(s)
- Xiaobin Luo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shangyi Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yali Zhong
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, P.R. China
| | - Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Youlin Xu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xianglong Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bin Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fubing Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
60
|
Stine CA, Munson JM. Convection-Enhanced Delivery: Connection to and Impact of Interstitial Fluid Flow. Front Oncol 2019; 9:966. [PMID: 31632905 PMCID: PMC6783516 DOI: 10.3389/fonc.2019.00966] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Convection-enhanced delivery (CED) is a method used to increase transport of therapeutics in and around brain tumors. CED works through locally applying a pressure differential to drive fluid flow throughout the tumor, such that convective forces dominate over diffusive transport. This allows therapies to bypass the blood brain barrier that would otherwise be too large or solely rely on passive diffusion. However, this also drives fluid flow out through the tumor bulk into surrounding brain parenchyma, which results in increased interstitial fluid (IF) flow, or fluid flow within extracellular spaces in the tissue. IF flow has been associated with altered transport of molecules, extracellular matrix rearrangement, and triggering of cellular motility through a number of mechanisms. Thus, the results of a simple method to increase drug delivery may have unintended consequences on tissue morphology. Clinically, prediction of dispersal of agents via CED is important to catheter design, placement, and implementation to optimize contact of tumor cells with therapeutic agent. Prediction software can aid in this problem, yet we wonder if there is a better way to predict therapeutic distribution based simply on IF flow pathways as determined from pre-intervention imaging. Overall, CED based therapy has seen limited success and we posit that integration and appreciation of altered IF flow may enhance outcomes. Thus, in this manuscript we both review the current state of the art in CED and IF flow mechanistic understanding and relate these two elements to each other in a clinical context.
Collapse
Affiliation(s)
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
61
|
Wolf KJ, Chen J, Coombes J, Aghi MK, Kumar S. Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. NATURE REVIEWS. MATERIALS 2019; 4:651-668. [PMID: 32647587 PMCID: PMC7347297 DOI: 10.1038/s41578-019-0135-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 05/15/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and common form of primary brain cancer. Several decades of research have provided great insight into GBM progression; however, the prognosis remains poor with a median patient survival time of ~ 15 months. The tumour microenvironment (TME) of GBM plays a crucial role in mediating tumour progression and thus is being explored as a therapeutic target. Progress in the development of treatments targeting the TME is currently limited by a lack of model systems that can accurately recreate the distinct extracellular matrix composition and anatomic features of the brain, such as the blood-brain barrier and axonal tracts. Biomaterials can be applied to develop synthetic models of the GBM TME to mimic physiological and pathophysiological features of the brain, including cellular and ECM composition, mechanical properties, and topography. In this Review, we summarize key features of the GBM microenvironment and discuss different strategies for the engineering of GBM TME models, including 2D and 3D models featuring chemical and mechanical gradients, interfaces and fluid flow. Finally, we highlight the potential of engineered TME models as platforms for mechanistic discovery and drug screening as well as preclinical testing and precision medicine.
Collapse
Affiliation(s)
- Kayla J. Wolf
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Joseph Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Jason Coombes
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Manish K. Aghi
- Department of Neurosurgery, University of California San Francisco (UCSF), San Francisco, California, 94158
| | - Sanjay Kumar
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
62
|
Matarredona ER, Pastor AM. Neural Stem Cells of the Subventricular Zone as the Origin of Human Glioblastoma Stem Cells. Therapeutic Implications. Front Oncol 2019; 9:779. [PMID: 31482066 PMCID: PMC6710355 DOI: 10.3389/fonc.2019.00779] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Human glioblastoma is the most aggressive type of primary malignant brain tumors. Standard treatment includes surgical resection followed by radiation and chemotherapy but it only provides short-term benefits and the prognosis of these brain tumors is still very poor. Glioblastomas contain a population of glioma stem cells (GSCs), with self-renewal ability, which are partly responsible for the tumor resistance to therapy and for the tumor recurrence after treatment. The human adult subventricular zone contains astrocyte-like neural stem cells (NSCs) that are probably reminiscent of the radial glia present in embryonic brain development. There are numerous molecules involved in the biology of subventricular zone NSCs that are also instrumental in glioblastoma development. These include cytoskeletal proteins, telomerase, tumor suppressor proteins, transcription factors, and growth factors. Interestingly, genes encoding these molecules are frequently mutated in glioblastoma cells. Indeed, it has been recently shown that NSCs in the subventricular zone are a potential cell of origin that contains the driver mutations of human glioblastoma. In this review we will describe common features between GSCs and subventricular zone NSCs, and we will discuss the relevance of this important finding in terms of possible future therapeutic strategies.
Collapse
|
63
|
Li D, Tian Y, Hu Y, Qi Y, Tian N, Li S, Hu P, Wu F, Wei Q, Wei Z, Wang S, Yin B, Jiang T, Yuan J, Qiang B, Han W, Peng X. Glioma-associated human endothelial cell-derived extracellular vesicles specifically promote the tumourigenicity of glioma stem cells via CD9. Oncogene 2019; 38:6898-6912. [DOI: 10.1038/s41388-019-0903-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 10/07/2018] [Accepted: 05/01/2019] [Indexed: 11/09/2022]
|
64
|
McCoy MG, Nyanyo D, Hung CK, Goerger JP, R Zipfel W, Williams RM, Nishimura N, Fischbach C. Endothelial cells promote 3D invasion of GBM by IL-8-dependent induction of cancer stem cell properties. Sci Rep 2019; 9:9069. [PMID: 31227783 PMCID: PMC6588602 DOI: 10.1038/s41598-019-45535-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Rapid growth and perivascular invasion are hallmarks of glioblastoma (GBM) that have been attributed to the presence of cancer stem-like cells (CSCs) and their association with the perivascular niche. However, the mechanisms by which the perivascular niche regulates GBM invasion and CSCs remain poorly understood due in part to a lack of relevant model systems. To simulate perivascular niche conditions and analyze consequential changes of GBM growth and invasion, patient-derived GBM spheroids were co-cultured with brain endothelial cells (ECs) in microfabricated collagen gels. Integrating these systems with 3D imaging and biochemical assays revealed that ECs increase GBM invasiveness and growth through interleukin-8 (IL-8)-mediated enrichment of CSCs. Blockade of IL-8 inhibited these effects in GBM-EC co-cultures, while IL-8 supplementation increased CSC-mediated growth and invasion in GBM-monocultures. Experiments in mice confirmed that ECs and IL-8 stimulate intracranial tumor growth and invasion in vivo. Collectively, perivascular niche conditions promote GBM growth and invasion by increasing CSC frequency, and IL-8 may be explored clinically to inhibit these interactions.
Collapse
Affiliation(s)
- Michael G McCoy
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Dennis Nyanyo
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Carol K Hung
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Julian Palacios Goerger
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Warren R Zipfel
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Rebecca M Williams
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Nozomi Nishimura
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
65
|
Sung PJ, Rama N, Imbach J, Fiore S, Ducarouge B, Neves D, Chen HW, Bernard D, Yang PC, Bernet A, Depil S, Mehlen P. Cancer-Associated Fibroblasts Produce Netrin-1 to Control Cancer Cell Plasticity. Cancer Res 2019; 79:3651-3661. [DOI: 10.1158/0008-5472.can-18-2952] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/06/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022]
|
66
|
Koper-Lenkiewicz OM, Kamińska J, Milewska A, Sawicki K, Jadeszko M, Mariak Z, Reszeć J, Dymicka-Piekarska V, Matowicka-Karna J. Serum and cerebrospinal fluid Neudesin concentration and Neudesin Quotient as potential circulating biomarkers of a primary brain tumor. BMC Cancer 2019; 19:319. [PMID: 30953468 PMCID: PMC6451205 DOI: 10.1186/s12885-019-5525-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Background Despite the previously suggested role of Neudesin in tumorigenesis and its potential as a novel target for the treatment of cancers, its prognostic value has never been examined. Thus, the aim of the study was to evaluate Neudesin concentrations in primary brain tumor patients and make a comparison with non-tumoral individuals. Methods Cerebrospinal fluid (CSF) and serum Neudesin concentration was evaluated by means of the ELISA method. Results The total group of brain tumor patients had statistically lower serum Neudesin concentrations compared to the non-tumoral group (P = 0.037). The meningeal tumor subgroup also had statistically lower serum Neudesin concentrations compared to the non-tumoral group (P = 0.012). The Astrocytic brain tumor subgroup had significantly higher CSF Neudesin concentrations compared to the non-tumoral group (P = 0.046). Neudesin Quotient (CSF concentration divided by serum concentration) in the astrocytic brain tumor subgroup was statistically higher compared to the non-tumoral group (P = 0.023). Males had statistically lower concentrations of the serum Neudesin compared to females (P = 0.047). Univariate linear regression analysis revealed that for women the serum Neudesin concentration was 1.53 times higher than for men. In the model of multivariate linear regression analysis, predictor variables influencing serum Neudesin concentrations included CSF Neudesin concentration and the Neudesin Quotient, if other model parameters are fixed. The developed model explains 82% of the variance in serum Neudesin concentration. Both linear regression models, univariate and multivariate, pointed to fewer factors with a potential to influence the Neudesin Quotient compared to serum Neudesin concentration. Conclusions In astrocytic brain tumor patients Neudesin concentrations within the cerebrospinal fluid are higher compared with non-tumoral individuals. Serum Neudesin concentration strongly correlates with its CSF level. In primary brain tumor patients serum Neudesin concentration is clearly gender-dependent. Linear regression models pointed to fewer factors that may influence the Neudesin Quotient value, which suggests it is a better biomarker of astrocytic brain tumors than serum and CSF Neudesin concentrations alone.
Collapse
Affiliation(s)
- Olga M Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland.
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland
| | - Anna Milewska
- Department of Statistics and Medical Informatics, Medical University of Bialystok, ul. Szpitalna 37, 15-295, Białystok, Poland
| | - Karol Sawicki
- Department of Neurosurgery, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Marek Jadeszko
- Department of Neurosurgery, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Białystok, Poland
| | - Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland
| |
Collapse
|
67
|
Pathological and Molecular Features of Glioblastoma and Its Peritumoral Tissue. Cancers (Basel) 2019; 11:cancers11040469. [PMID: 30987226 PMCID: PMC6521241 DOI: 10.3390/cancers11040469] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal human brain tumors. At present, GBMs are divided in primary and secondary on the basis of the mutational status of the isocitrate dehydrogenase (IDH) genes. In addition, IDH1 and IDH2 mutations are considered crucial to better define the prognosis. Although primary and secondary GBMs are histologically indistinguishable, they retain distinct genetic alterations that account for different evolution of the tumor. The high invasiveness, the propensity to disperse throughout the brain parenchyma, and the elevated vascularity make these tumors extremely recidivist, resulting in a short patient median survival even after surgical resection and chemoradiotherapy. Furthermore, GBM is considered an immunologically cold tumor. Several studies highlight a highly immunosuppressive tumor microenvironment that promotes recurrence and poor prognosis. Deeper insight into the tumor immune microenvironment, together with the recent discovery of a conventional lymphatic system in the central nervous system (CNS), led to new immunotherapeutic strategies. In the last two decades, experimental evidence from different groups proved the existence of cancer stem cells (CSCs), also known as tumor-initiating cells, that may play an active role in tumor development and progression. Recent findings also indicated the presence of highly infiltrative CSCs in the peritumoral region of GBM. This region appears to play a key role in tumor growing and recurrence. However, until recently, few studies investigated the biomolecular characteristics of the peritumoral tissue. The aim of this review is to recapitulate the pathological features of GBM and of the peritumoral region associated with progression and recurrence.
Collapse
|
68
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
69
|
Interleukin-8/CXCR2 signaling regulates therapy-induced plasticity and enhances tumorigenicity in glioblastoma. Cell Death Dis 2019; 10:292. [PMID: 30926789 PMCID: PMC6441047 DOI: 10.1038/s41419-019-1387-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 02/01/2023]
Abstract
Emerging evidence reveals enrichment of glioma-initiating cells (GICs) following therapeutic intervention. One factor known to contribute to this enrichment is cellular plasticity-the ability of glioma cells to attain multiple phenotypes. To elucidate the molecular mechanisms governing therapy-induced cellular plasticity, we performed genome-wide chromatin immunoprecipitation sequencing (ChIP-Seq) and gene expression analysis (gene microarray analysis) during treatment with standard of care temozolomide (TMZ) chemotherapy. Analysis revealed significant enhancement of open-chromatin marks in known astrocytic enhancers for interleukin-8 (IL-8) loci as well as elevated expression during anti-glioma chemotherapy. The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project data demonstrated that IL-8 transcript expression is negatively correlated with GBM patient survival (p = 0.001) and positively correlated with that of genes associated with the GIC phenotypes, such as KLF4, c-Myc, and HIF2α (p < 0.001). Immunohistochemical analysis of patient samples demonstrated elevated IL-8 expression in about 60% of recurrent GBM tumors relative to matched primary tumors and this expression also positively correlates with time to recurrence. Exposure to IL-8 significantly enhanced the self-renewing capacity of PDX GBM (average threefold, p < 0.0005), as well as increasing the expression of GIC markers in the CXCR2 population. Furthermore, IL-8 knockdown significantly delayed PDX GBM tumor growth in vivo (p < 0.0005). Finally, guided by in silico analysis of TCGA data, we examined the effect of therapy-induced IL-8 expression on the epigenomic landscape of GBM cells and observed increased trimethylation of H3K9 and H3K27. Our results show that autocrine IL-8 alters cellular plasticity and mediates alterations in histone status. These findings suggest that IL-8 signaling participates in regulating GBM adaptation to therapeutic stress and therefore represents a promising target for combination with conventional chemotherapy in order to limit GBM recurrence.
Collapse
|
70
|
The Role of Brain Vasculature in Glioblastoma. Mol Neurobiol 2019; 56:6645-6653. [DOI: 10.1007/s12035-019-1561-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/13/2019] [Indexed: 01/16/2023]
|
71
|
Peng S, Chen Y, Gong Y, Li Z, Xie R, Lin Y, Zou B, Li J, Zeng L. Predictive value of intratumour inflammatory cytokine mRNA levels of hepatocellular carcinoma patients and activation of two distinct pathways govern IL-8 induced epithelial-mesenchymal transition in human hepatic cancer cell lines. Cytokine 2019; 119:81-89. [PMID: 30903867 DOI: 10.1016/j.cyto.2019.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/05/2019] [Accepted: 03/16/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is always accompanied by persistent inflammation of liver tissues, which is considered to exert protumourigenic effects by promoting cancer growth, progression, and metastasis. However, the tumour-promoting roles and predictive value of intratumoural inflammatory cytokines remain unclear. In the present study, we used database analysis, clinical pathological studies, and in vitro biological experiments on human hepatic cancer cell lines to assess the prognostic potential of the primary tumour cytokine mRNA levels and underlying mechanisms in HCC. First, we assessed the prognostic value of several cytokines from the TCGA database and found that IL-8 is a unique cytokine that is associated with poor overall survival of HCC patients. Then, we collected 87 HCC tumour and adjacent non-tumour specimens from patients and confirmed that patients with low IL-8 expression exhibited less intrahepatic invasion or distant metastasis, a lower recurrence rate and longer overall survival time compared to patients with high IL-8 expression. Wound healing, transwell, and western blotting assay results showed that IL-8 promotes the migration and invasion of Huh-7 and HepG2 cells, and the underlying mechanism is that IL-8 induces the EMT of HCC cells via the IL-8/ERK1/2/SNAI1 and IL-8/STAT3/TWIST1 signalling pathways. These results provide valuable biological IL-8 information which needs to be further investigated in liver cancer target therapy research. Furthermore, the intratumoural cytokine expression at the mRNA level may provide insight into hepatocarcinoma prognosis.
Collapse
Affiliation(s)
- Siqi Peng
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yutong Chen
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yihang Gong
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zizi Li
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Rongzhi Xie
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yujing Lin
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Linjuan Zeng
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| |
Collapse
|
72
|
Ward C, Meehan J, Gray M, Kunkler IH, Langdon SP, Murray A, Argyle D. Preclinical Organotypic Models for the Assessment of Novel Cancer Therapeutics and Treatment. Curr Top Microbiol Immunol 2019. [PMID: 30859401 DOI: 10.1007/82_2019_159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The immense costs in both financial terms and preclinical research effort that occur in the development of anticancer drugs are unfortunately not matched by a substantial increase in improved clinical therapies due to the high rate of failure during clinical trials. This may be due to issues with toxicity or lack of clinical effectiveness when the drug is evaluated in patients. Currently, much cancer research is driven by the need to develop therapies that can exploit cancer cell adaptations to conditions in the tumor microenvironment such as acidosis and hypoxia, the requirement for more-specific, targeted treatments, or the exploitation of 'precision medicine' that can target known genomic changes in patient DNA. The high attrition rate for novel anticancer therapies suggests that the preclinical methods used in screening anticancer drugs need improvement. This chapter considers the advantages and disadvantages of 3D organotypic models in both cancer research and cancer drug screening, particularly in the areas of targeted drugs and the exploitation of genomic changes that can be used for therapeutic advantage in precision medicine.
Collapse
Affiliation(s)
- Carol Ward
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Edinburgh, UK.
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK.
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
- School of Engineering and Physical Sciences, Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS, Edinburgh, UK
| | - Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Edinburgh, UK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Ian H Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Alan Murray
- School of Engineering, Faraday Building, The King's Buildings, Mayfield Road, EH9 3JL, Edinburgh, UK
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Edinburgh, UK
| |
Collapse
|
73
|
Jeon HY, Ham SW, Kim JK, Jin X, Lee SY, Shin YJ, Choi CY, Sa JK, Kim SH, Chun T, Jin X, Nam DH, Kim H. Ly6G + inflammatory cells enable the conversion of cancer cells to cancer stem cells in an irradiated glioblastoma model. Cell Death Differ 2019; 26:2139-2156. [PMID: 30804471 PMCID: PMC6748155 DOI: 10.1038/s41418-019-0282-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/08/2023] Open
Abstract
Most glioblastomas frequently recur at sites of radiotherapy, but it is unclear if changes in the tumor microenvironment due to radiotherapy influence glioblastoma recurrence. Here, we demonstrate that radiation-induced senescent glioblastoma cells exhibit a senescence-associated secretory phenotype that functions through NFκB signaling to influence changes in the tumor microenvironment, such as recruitment of Ly6G+ inflammatory cells and vessel formation. In particular, Ly6G+ cells promote conversion of glioblastoma cells to glioblastoma stem cells (GSCs) through the NOS2-NO-ID4 regulatory axis. Specific inhibition of NFκB signaling in irradiated glioma cells using the IκBα super repressor prevents changes in the tumor microenvironment and dedifferentiation of glioblastoma cells. Treatment with Ly6G-neutralizing antibodies also reduces the number of GSCs and prolongs survival in tumor-bearing mice after radiotherapy. Clinically, a positive correlation exists between Ly6G+ cells and the NOS2-NO-ID4 regulatory axis in patients diagnosed with recurrent glioblastoma. Together, our results illustrate important roles for Ly6G+ inflammatory cells recruited by radiation-induced SASP in cancer cell dedifferentiation and tumor recurrence.
Collapse
Affiliation(s)
- Hee-Young Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seok Won Ham
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jun-Kyum Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Xiong Jin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong Jae Shin
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Institute for Refractory Cancer Research, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Chang-Yong Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jason K Sa
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Xun Jin
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Institute for Refractory Cancer Research, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea. .,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea. .,Department of Medical Engineering, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
74
|
Chumakova AP, Hitomi M, Sulman EP, Lathia JD. High-Throughput Automated Single-Cell Imaging Analysis Reveals Dynamics of Glioblastoma Stem Cell Population During State Transition. Cytometry A 2019; 95:290-301. [PMID: 30729665 DOI: 10.1002/cyto.a.23728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are a heterogeneous and dynamic self-renewing population that stands at the top of tumor cellular hierarchy and contribute to tumor recurrence and therapeutic resistance. As methods of CSC isolation and functional interrogation advance, there is a need for a reliable and accessible quantitative approach to assess heterogeneity and state transition dynamics in CSCs. We developed a high-throughput automated single cell imaging analysis (HASCIA) approach for the quantitative assessment of protein expression with single-cell resolution and applied the method to investigate spatiotemporal factors that influence CSC state transition using glioblastoma (GBM) CSCs (GSCs) as a model system. We were able to validate the quantitative nature of this approach through comparison of the protein expression levels determined by HASCIA to those determined by immunoblotting. A virtue of HASCIA was exemplified by detection of a subpopulation of SOX2-low cells, which expanded in fraction size during state transition. HASCIA also revealed that GSCs were committed to loose stem cell state at an earlier time point than the average SOX2 level decreased. Functional assessment of stem cell frequency in combination with the quantification of SOX2 expression by HASCIA defined a stable cutoff of SOX2 expression level for stem cell state. We also developed an approach to assess local cell density and found that denser monolayer areas possess higher average levels of SOX2, higher cell diversity, and a presence of a sub-population of slowly proliferating SOX2-low GSCs. HASCIA is an open source software that facilitates understanding the dynamics of heterogeneous cell population such as that of GSCs and their progeny. It is a powerful and easy-to-use image analysis and statistical analysis tool available at https://hascia.lerner.ccf.org. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Anastasia P Chumakova
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Masahiro Hitomi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland, Ohio, USA
| |
Collapse
|
75
|
Wang ZY, Li W, Gong Z, Sun PR, Zhou T, Cao XW. Detection of IL-8 in human serum using surface-enhanced Raman scattering coupled with highly-branched gold nanoparticles and gold nanocages. NEW J CHEM 2019. [DOI: 10.1039/c8nj05353g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-enhanced Raman scattering (SERS) based on the double antibody sandwich format was used for the determination of IL-8.
Collapse
Affiliation(s)
- Zhen-yu Wang
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University
- Yangzhou 225009
| | - Wei Li
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
| | - Zheng Gong
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Medical College, Yangzhou University
- Yangzhou 225001
| | - Pei-rong Sun
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Medical College, Yangzhou University
- Yangzhou 225001
| | - Tong Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
| | - Xiao-wei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University
- Yangzhou 225001
- China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University
- Yangzhou 225009
| |
Collapse
|
76
|
Gulaia V, Kumeiko V, Shved N, Cicinskas E, Rybtsov S, Ruzov A, Kagansky A. Molecular Mechanisms Governing the Stem Cell's Fate in Brain Cancer: Factors of Stemness and Quiescence. Front Cell Neurosci 2018; 12:388. [PMID: 30510501 PMCID: PMC6252330 DOI: 10.3389/fncel.2018.00388] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Cellular quiescence is a reversible, non-cycling state controlled by epigenetic, transcriptional and niche-associated molecular factors. Quiescence is a condition where molecular signaling pathways maintain the poised cell-cycle state whilst enabling rapid cell cycle re-entry. To achieve therapeutic breakthroughs in oncology it is crucial to decipher these molecular mechanisms employed by the cancerous milieu to control, maintain and gear stem cells towards re-activation. Cancer stem-like cells (CSCs) have been extensively studied in most malignancies, including glioma. Here, the aberrant niche activities skew the quiescence/activation equilibrium, leading to rapid tumor relapse after surgery and/or chemotherapy. Unraveling quiescence mechanisms promises to afford prevention of (often multiple) relapses, a key problem in current glioma treatment. This review article covers the current knowledge regarding normal and aberrant cellular quiescence control whilst also exploring how different molecular mechanisms and properties of the neighboring cells can influence the molecular processes behind glioma stem cell quiescence.
Collapse
Affiliation(s)
- Valeriia Gulaia
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Nikita Shved
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Eduardas Cicinskas
- Department of Cellular Biology and Genetics, School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Pharmacology and Bioassays, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Stanislav Rybtsov
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, Scotland, United Kingdom
| | - Alexey Ruzov
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
77
|
Almiron Bonnin DA, Havrda MC, Israel MA. Glioma Cell Secretion: A Driver of Tumor Progression and a Potential Therapeutic Target. Cancer Res 2018; 78:6031-6039. [PMID: 30333116 DOI: 10.1158/0008-5472.can-18-0345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/30/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022]
Abstract
Cellular secretion is an important mediator of cancer progression. Secreted molecules in glioma are key components of complex autocrine and paracrine pathways that mediate multiple oncogenic pathologies. In this review, we describe tumor cell secretion in high-grade glioma and highlight potential novel therapeutic opportunities. Cancer Res; 78(21); 6031-9. ©2018 AACR.
Collapse
Affiliation(s)
- Damian A Almiron Bonnin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Mark A Israel
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Departments of Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
78
|
Testa U, Castelli G, Pelosi E. Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Med Sci (Basel) 2018; 6:E85. [PMID: 30279357 PMCID: PMC6313628 DOI: 10.3390/medsci6040085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Brain tumors are highly heterogeneous and have been classified by the World Health Organization in various histological and molecular subtypes. Gliomas have been classified as ranging from low-grade astrocytomas and oligodendrogliomas to high-grade astrocytomas or glioblastomas. These tumors are characterized by a peculiar pattern of genetic alterations. Pediatric high-grade gliomas are histologically indistinguishable from adult glioblastomas, but they are considered distinct from adult glioblastomas because they possess a different spectrum of driver mutations (genes encoding histones H3.3 and H3.1). Medulloblastomas, the most frequent pediatric brain tumors, are considered to be of embryonic derivation and are currently subdivided into distinct subgroups depending on histological features and genetic profiling. There is emerging evidence that brain tumors are maintained by a special neural or glial stem cell-like population that self-renews and gives rise to differentiated progeny. In many instances, the prognosis of the majority of brain tumors remains negative and there is hope that the new acquisition of information on the molecular and cellular bases of these tumors will be translated in the development of new, more active treatments.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
79
|
Lee NH, Nikfarjam M, He H. Functions of the CXC ligand family in the pancreatic tumor microenvironment. Pancreatology 2018; 18:705-716. [PMID: 30078614 DOI: 10.1016/j.pan.2018.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance is the major contributor to the poor prognosis of and low survival from pancreatic cancer (PC). Cancer progression is a complex process reliant on interactions between the tumor and the tumor microenvironment (TME). Members of the CXCL family of chemokines are present in the pancreatic TME and seem to play a vital role in regulating PC progression. As pancreatic tumors interact with the TME and with PC stem cells (CSCs), determining the roles of specific members of the CXCL family is vital to the development of improved therapies. This review highlights the roles of selected CXCLs in the interactions between pancreatic tumor and its stroma, and in CSC phenotypes, which can be used to identify potential treatment targets.
Collapse
Affiliation(s)
- Nien-Hung Lee
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.
| |
Collapse
|
80
|
Bouwens van der Vlis TAM, Kros JM, Mustafa DAM, van Wijck RTA, Ackermans L, van Hagen PM, van der Spek PJ. The complement system in glioblastoma multiforme. Acta Neuropathol Commun 2018; 6:91. [PMID: 30208949 PMCID: PMC6134703 DOI: 10.1186/s40478-018-0591-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
The human complement system is represents the main effector arm of innate immunity and its ambivalent function in cancer has been subject of ongoing dispute. Glioma stem-like cells (GSC) residing in specific niches within glioblastomas (GBM) are capable of self-renewal and tumor proliferation. Recent data are indicative of the influence of the complement system on the maintenance of these cells. It appears that the role of the complement system in glial tumorigenesis, particularly its influence on GSC niches and GSC maintenance, is significant and warrants further exploration for therapeutic interventions.
Collapse
|
81
|
Zhang YY, Kong LQ, Zhu XD, Cai H, Wang CH, Shi WK, Cao MQ, Li XL, Li KS, Zhang SZ, Chai ZT, Ao JY, Ye BG, Sun HC. CD31 regulates metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma via the ITGB1-FAK-Akt signaling pathway. Cancer Lett 2018; 429:29-40. [PMID: 29746931 DOI: 10.1016/j.canlet.2018.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) is a well-known marker of endothelial cells and a key factor for adhesion and accumulation of platelets. CD31 plays roles in cell proliferation, apoptosis, migration, and cellular immunity. CD31 is also expressed on tumor cells, such as breast cancer cells and non-Hodgkin's lymphomas, and contributes to tumor cell invasion. Here, our experiments show that CD31 promotes metastasis by inducing the epithelial-mesenchymal transition in hepatocellular carcinoma by up-regulating integrin β1 via the FAK/Akt signaling pathway.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, The Key Laboratory for Carcinogenesis and Cancer Invasion, The Ministry of Education of China, Shanghai, 200032, China
| | - Ling-Qun Kong
- Department of Hepatobiliary Surgery, Binzhou Medical College Affiliated Hospital, Binzhou, Shandong, 256603, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, The Key Laboratory for Carcinogenesis and Cancer Invasion, The Ministry of Education of China, Shanghai, 200032, China
| | - Hao Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, The Key Laboratory for Carcinogenesis and Cancer Invasion, The Ministry of Education of China, Shanghai, 200032, China
| | - Cheng-Hao Wang
- Department of Liver Surgery, Fudan University Cancer Center, Cancer Hospital, Shanghai, 200032, China
| | - Wen-Kai Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, The Key Laboratory for Carcinogenesis and Cancer Invasion, The Ministry of Education of China, Shanghai, 200032, China
| | - Man-Qing Cao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, The Key Laboratory for Carcinogenesis and Cancer Invasion, The Ministry of Education of China, Shanghai, 200032, China
| | - Xiao-Long Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, The Key Laboratory for Carcinogenesis and Cancer Invasion, The Ministry of Education of China, Shanghai, 200032, China
| | - Kang-Shuai Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, The Key Laboratory for Carcinogenesis and Cancer Invasion, The Ministry of Education of China, Shanghai, 200032, China
| | - Shi-Zhe Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, The Key Laboratory for Carcinogenesis and Cancer Invasion, The Ministry of Education of China, Shanghai, 200032, China
| | - Zong-Tao Chai
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Jian-Yang Ao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bo-Gen Ye
- Department of Hepatobiliary Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, The Key Laboratory for Carcinogenesis and Cancer Invasion, The Ministry of Education of China, Shanghai, 200032, China.
| |
Collapse
|
82
|
Sharma I, Singh A, Siraj F, Saxena S. IL-8/CXCR1/2 signalling promotes tumor cell proliferation, invasion and vascular mimicry in glioblastoma. J Biomed Sci 2018; 25:62. [PMID: 30086759 PMCID: PMC6081798 DOI: 10.1186/s12929-018-0464-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the lethal malignant tumors of the central nervous system. Despite advances made in understanding this complex disease, little has been achieved in improving clinical efficacy towards it. Factors such as chemokines play important role in shaping the tumor microenvironment which in turn plays a significant role in deciding course of tumor progression. In this study, we investigated the role of chemokine IL-8 in glioblastoma progression with particular emphasis on immunomodulation, cellular proliferation, invasion and vascular mimicry. METHODS Role of IL-8 in GBM immunology was determined by correlating the expression of IL-8 by immunohistochemistry with other immune cell markers such as CD3 and CD68. Effect of high IL-8 expression on overall survival, the difference in expression level between different GBM subgroups and anatomic structures were analyzed using other databases. Two GBM cell lines -U-87MG and LN-18 were used to study the impact of targeting IL-8-CXCR1/2 signalling using neutralizing antibodies and pharmacological antagonist. Reverse transcriptase-polymerase chain reaction and immunocytochemistry were used to determine the expression of these axes. Impact on cell viability and proliferation was assessed by MTT, proliferation marker-ki-67 and clonogenic survival assays. Multicellular tumor spheroids generated from GBM cell lines were used to study invasion in matrigel. RESULTS Weak Positive correlation was observed between IL-8 and CD3 as well as between IL-8 and CD68. High IL-8 expression in GBM patients was found to be associated with dismal survival. No significant difference in IL-8 expression between different molecular subgroups of GBM was observed. In vitro targeting of IL-8-CXCR1/2 signalling displayed a significant reduction in cell viability and proliferation, and spheroid invasion. Furthermore, the presence of CD34-/CXCR1+ vessels in GBM tissues showed the involvement of IL-8/CXCR1 in vascular mimicry structure formation. CONCLUSION These results suggest a direct involvement of IL-8-CXCR1/2 axes in GBM progression by promoting both cell proliferation and invasion and indirectly by promoting neovascularization in the form of vascular mimicry.
Collapse
Affiliation(s)
- Ira Sharma
- National Institute of Pathology, Safdarjung Hospital Campus, Room No. 610, 6th floor, Ansari Nagar, New Delhi, 110029 India
- Symbiosis International University, Pune, India
| | - Avninder Singh
- National Institute of Pathology, Safdarjung Hospital Campus, Room No. 610, 6th floor, Ansari Nagar, New Delhi, 110029 India
| | - Fouzia Siraj
- National Institute of Pathology, Safdarjung Hospital Campus, Room No. 610, 6th floor, Ansari Nagar, New Delhi, 110029 India
| | - Sunita Saxena
- National Institute of Pathology, Safdarjung Hospital Campus, Room No. 610, 6th floor, Ansari Nagar, New Delhi, 110029 India
| |
Collapse
|
83
|
A three-dimensional (3D) organotypic microfluidic model for glioma stem cells - Vascular interactions. Biomaterials 2018; 198:63-77. [PMID: 30098794 DOI: 10.1016/j.biomaterials.2018.07.048] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest forms of cancer. Despite many treatment options, prognosis of GBM remains dismal with a 5-year survival rate of 4.7%. Even then, tumors often recur after treatment. Tumor recurrence is hypothesized to be driven by glioma stem cell (GSC) populations which are highly tumorigenic, invasive, and resistant to several forms of therapy. GSCs are often concentrated around the tumor vasculature, referred to as the vascular niche, which are known to provide microenvironmental cues to maintain GSC stemness, promote invasion, and resistance to therapies. In this work, we developed a 3D organotypic microfluidic platform, integrated with hydrogel-based biomaterials, to mimic the GSC vascular niche and study the influence of endothelial cells (ECs) on patient-derived GSC behavior and identify signaling cues that mediate their invasion and phenotype. The established microvascular network enhanced GSC migration within a 3D hydrogel, promoted invasive morphology as well as maintained GSC proliferation rates and phenotype (Nestin, SOX2, CD44). Notably, we compared migration behavior to in vivo mice model and found similar invasive morphology suggesting that our microfluidic system could represent a physiologically relevant in vivo microenvironment. Moreover, we confirmed that CXCL12-CXCR4 signaling is involved in promoting GSC invasion in a 3D vascular microenvironment by utilizing a CXCR4 antagonist (AMD3100), while also demonstrating the effectiveness of the microfluidic as a drug screening assay. Our model presents a potential ex vivo platform for studying the interplay of GSCs with its surrounding microenvironment as well as development of future therapeutic strategies tailored toward disrupting key molecular pathways involved in GSC regulatory mechanisms.
Collapse
|
84
|
Chonan Y, Taki S, Sampetrean O, Saya H, Sudo R. Endothelium-induced three-dimensional invasion of heterogeneous glioma initiating cells in a microfluidic coculture platform. Integr Biol (Camb) 2018; 9:762-773. [PMID: 28752870 DOI: 10.1039/c7ib00091j] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is a highly invasive primary brain tumor that displays cellular heterogeneity, which is composed of glioma initiating cells (GICs) and their differentiated progeny. GICs play an important role in driving aggressive invasion. In particular, the interaction between GICs and blood vessels is critical because blood vessels are known to serve as routes for the invasion of GICs. However, the effect of endothelial cells on the three-dimensional (3D) invasion process of GICs as well as the spatial relationship between GICs and their differentiated progeny remains unclear. Here, we utilized a microfluidic device to recapitulate the 3D brain tumor microenvironments constituted by human umbilical vein endothelial cells (HUVECs) and type I collagen. Using the device, we found that HUVECs promoted the 3D invasion of heterogeneous glioma cell populations into type I collagen gel. The invasion induced by HUVECs was predominantly preceded by cells positive for nestin, a neural stem cell marker. In contrast, cells positive for tubulin β3 (TUBB3), a differentiated cell marker, rarely preceded invasion. In addition, HUVECs induced the upregulation of TUBB3 in GICs. Finally, we found that the genes associated with invasion, such as integrins α2 and β3, were significantly upregulated in the presence of HUVECs. These results as well as the experimental approach provide valuable knowledge for the development of effective therapeutic strategies targeting the aggressive invasion of GBM.
Collapse
Affiliation(s)
- Yuta Chonan
- Department of System Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | | | | | | | | |
Collapse
|
85
|
Nakod PS, Kim Y, Rao SS. Biomimetic models to examine microenvironmental regulation of glioblastoma stem cells. Cancer Lett 2018; 429:41-53. [PMID: 29746930 DOI: 10.1016/j.canlet.2018.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM), a malignant brain tumor, is the deadliest form of human cancer with low survival rates because of its highly invasive nature. In recent years, there has been a growing appreciation for the role that glioblastoma stem cells (GSCs) play during tumorigenesis and tumor recurrence of GBM. GSCs are a specialized subset of GBM cells with stem cell-like features that contribute to tumor initiation and therapeutic resistance. Thus, to enhance therapeutic efficiency and improve survival, targeting GSCs and their microenvironmental niche appears to be a promising approach. To develop this approach, understanding GSC-microenvironment interactions is crucial. This review discusses various biomimetic model systems to understand the impact of biophysical, biochemical, and cellular microenvironmental cues on GSC behaviors. These models include two-dimensional or matrix-free environment models, engineered biomaterial-based three-dimensional models, co-culture models, and mouse and rat in vivo models. These systems have been used to study the effects of biophysical factors, modulation of signaling pathways, extracellular matrix components, and culture conditions on the GSC phenotype. The advantages and disadvantages of these model systems and their impact in the field of GSC research are discussed.
Collapse
Affiliation(s)
- Pinaki S Nakod
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Yonghyun Kim
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Shreyas S Rao
- Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
86
|
Sanmamed MF, Perez-Gracia JL, Schalper KA, Fusco JP, Gonzalez A, Rodriguez-Ruiz ME, Oñate C, Perez G, Alfaro C, Martín-Algarra S, Andueza MP, Gurpide A, Morgado M, Wang J, Bacchiocchi A, Halaban R, Kluger H, Chen L, Sznol M, Melero I. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann Oncol 2018; 28:1988-1995. [PMID: 28595336 DOI: 10.1093/annonc/mdx190] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Surrogate biomarkers of efficacy are needed for anti-PD1/PD-L1 therapy, given the existence of delayed responses and pseudo-progressions. We evaluated changes in serum IL-8 levels as a biomarker of response to anti-PD-1 blockade in melanoma and non-small-cell lung cancer (NSCLC) patients. Patients and methods Metastatic melanoma and NSCLC patients treated with nivolumab or pembrolizumab alone or nivolumab plus ipilimumab were studied. Serum was collected at baseline; at 2-4 weeks after the first dose; and at the time-points of response evaluation. Serum IL-8 levels were determined by sandwich ELISA. Changes in serum IL-8 levels were compared with the Wilcoxon test and their strength of association with response was assessed with the Mann-Whitney test. Accuracy of changes in IL-8 levels to predict response was estimated using receiver operation characteristics curves. Results Twenty-nine melanoma patients treated with nivolumab or pembrolizumab were studied. In responding patients, serum IL-8 levels significantly decreased between baseline and best response (P <0.001), and significantly increased upon progression (P = 0.004). In non-responders, IL-8 levels significantly increased between baseline and progression (P = 0.013). Early changes in serum IL-8 levels (2-4 weeks after treatment initiation) were strongly associated with response (P <0.001). These observations were validated in 19 NSCLC patients treated with nivolumab or pembrolizumab (P = 0.001), and in 15 melanoma patients treated with nivolumab plus ipilimumab (P <0.001). Early decreases in serum IL-8 levels were associated with longer overall survival in melanoma (P = 0.001) and NSCLC (P = 0.015) patients. Serum IL-8 levels also correctly reflected true response in three cancer patients presenting pseudoprogression. Conclusions Changes in serum IL-8 levels could be used to monitor and predict clinical benefit from immune checkpoint blockade in melanoma and NSCLC patients.
Collapse
Affiliation(s)
- M F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, USA
| | - J L Perez-Gracia
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,CIBERONC (Centro de Investigación Biomedica en Red de Cáncer)
| | - K A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Comprehensive Cancer Center Section of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - J P Fusco
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - A Gonzalez
- CIBERONC (Centro de Investigación Biomedica en Red de Cáncer).,Department of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - M E Rodriguez-Ruiz
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Spain
| | - C Oñate
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - G Perez
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - C Alfaro
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,CIBERONC (Centro de Investigación Biomedica en Red de Cáncer)
| | - S Martín-Algarra
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - M P Andueza
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - A Gurpide
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - M Morgado
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - J Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, USA
| | - A Bacchiocchi
- Department of Dermatology, Yale University School of Medicine, New Haven, USA
| | - R Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, USA
| | - H Kluger
- Comprehensive Cancer Center Section of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - L Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, USA
| | - M Sznol
- Comprehensive Cancer Center Section of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - I Melero
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Department of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Spain
| |
Collapse
|
87
|
Differential regulation of the pro-inflammatory biomarker, YKL-40/CHI3L1, by PTEN/Phosphoinositide 3-kinase and JAK2/STAT3 pathways in glioblastoma. Cancer Lett 2018; 429:54-65. [PMID: 29729901 DOI: 10.1016/j.canlet.2018.04.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
Constitutive activation of the phosphoinositide 3-kinase/AKT signaling pathway is frequently observed in high-grade gliomas with high frequency of losing PTEN tumor suppressor. To identify transcriptomic profiles associated with a hyperactivated PI3K pathway, RNA-sequencing analysis was performed in a glioblastoma cell line stably expressing PTEN. RNA-sequencing revealed enriched transcripts of pro-inflammatory mediators, and among the genes that displayed high differential expression was the secreted glycoprotein YKL-40. Treatment with chemical inhibitors that target the PI3K/AKT pathway elicited differential effects on YKL-40 expression in selected GBM cell lines, indicating that its expression displayed tumor cell-specific variations. This variability appeared to be correlated with the ability to transactivate the immune signaling molecules JAK2 and STAT3. In summary, the differential expression of the immunomodulatory molecule YKL-40 may affect the treatment efficacy of PI3K/AKT-based pathway inhibitors in glioblastoma.
Collapse
|
88
|
A dual-functional microfluidic chip for on-line detection of interleukin-8 based on rolling circle amplification. Biosens Bioelectron 2018; 102:652-660. [DOI: 10.1016/j.bios.2017.12.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
|
89
|
Integrin αvβ6 Promotes Lung Cancer Proliferation and Metastasis through Upregulation of IL-8-Mediated MAPK/ERK Signaling. Transl Oncol 2018; 11:619-627. [PMID: 29573639 PMCID: PMC6002349 DOI: 10.1016/j.tranon.2018.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is notorious for high morbidity and mortality around the world. Interleukin (IL)-8, a proinflammatory chemokine with tumorigenic and proangiogenic effects, promotes lung cancer cells growth and migration and contributes to cell aggressive phenotypes. Integrin αvβ6 is a receptor of transmembrane heterodimeric cell surface adhesion, and its overexpression correlates with poor survival from non–small cell lung cancer. However, the cross talk between αvβ6 and IL-8 in lung cancer has not been characterized so far. Herein, human lung cancer samples were analyzed, and it revealed that the immunohistochemical and mRNA expression of integrin αvβ6 was significantly correlated with the expression of IL-8. Furthermore, in vitro, integrin αvβ6 increased cell proliferation, migration, and invasion by impairing the expressions of MMP-2 and MMP-9 and inhibited cell apoptosis in human lung cancer cells A549 and H460. In addition, integrin αvβ6 upregulated IL-8 expression through activating MAPK/ERK signaling. The in vivo experiment showed that integrin αvβ6 promoted tumor growth in xenograft model mice by accelerating tumor volume and reducing apoptosis. Meanwhile, lung metastasis model experiment suggested that integrin αvβ6 stimulated tumor metastasis with the increase of lung/total weight and tumor nodules. Simultaneously, integrin αvβ6 upregulated IL-8 expression detected by both Western blots and immunohistochemistry, along with the activation of MAPK/ERK signaling. Overall, these data suggested that, in vitro and in vivo, integrin αvβ6 promoted lung cancer proliferation and metastasis, at least in part, through upregulation of IL-8–mediated MAPK/ERK signaling. Thus, the inhibition of integrin αvβ6 and IL-8 may be the key for the treatment of lung cancer.
Collapse
|
90
|
HIF1α regulates single differentiated glioma cell dedifferentiation to stem-like cell phenotypes with high tumorigenic potential under hypoxia. Oncotarget 2018; 8:28074-28092. [PMID: 28427209 PMCID: PMC5438632 DOI: 10.18632/oncotarget.15888] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 02/20/2017] [Indexed: 01/24/2023] Open
Abstract
The standard treatment for Glioblastoma multiforme (GBM) is surgical resection and subsequent radiotherapy and chemotherapy. Surgical resection of GBM is typically restricted because of its invasive growth, which results in residual tumor cells including glioma stem cells (GSCs) and differentiated cells. Recurrence has been previously thought to occur as a result of these GSCs, and hypoxic microenvironment maintains the GSCs stemness also plays an important role. Summarizing traditional studies and we find many researchers ignored the influence of hypoxia on differentiated cells. We hypothesized that the residual differentiated cells may be dedifferentiated to GSC-like cells under hypoxia and play a crucial role in the rapid, high-frequency recurrence of GBM. Therefore, isolated CD133-CD15-NESTIN- cells were prepared as single-cell culture and treated with hypoxia. More than 95% of the surviving single differentiated CD133-CD15-NESTIN- cell dedifferentiated into tumorigenic CD133+CD15+NESTIN+ GSCs, and this process was regulated by hypoxia inducible factor-1α. Moreover, the serum also played an important role in this dedifferentiation. These findings challenge the traditional glioma cell heterogeneity model, cell division model and glioma malignancy development model. Our study also highlights the mechanism of GBM recurrence and the importance of anti-hypoxia therapy. In addition to GSCs, residual differentiated tumor cells also substantially contribute to treatment resistance and the rapid, high recurrence of GBM.
Collapse
|
91
|
Conroy S, Kruyt FAE, Wagemakers M, Bhat KPL, den Dunnen WFA. IL-8 associates with a pro-angiogenic and mesenchymal subtype in glioblastoma. Oncotarget 2018; 9:15721-15731. [PMID: 29644004 PMCID: PMC5884659 DOI: 10.18632/oncotarget.24595] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/10/2018] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by a high rate of vascularization. However, therapeutic targeting of the vasculature through anti-vascular endothelial growth factor (VEGF) treatment has been disappointing, for which Angiopoietin-2 (Ang-2) upregulation has partly been held accountable. In this study we therefore explored the interplay of Ang-2 and VEGFA and their effect on angiogenesis in GBM, especially in the context of molecular subclasses. In a large patient cohort we identified that especially combined high expression of Ang-2 and VEGFA predicted poor overall survival of GBM patients. The high expression of both factors was also associated with increased IL-8 expression in GBM tissues, but in vitro stimulation with Ang-2 and/or VEGFA did not indicate tumor or endothelial cell-specific IL-8 responses. Glioblastoma stem cells (GSCs) of the mesenchymal (MES) subtype showed dramatically higher expression of IL8 when compared to proneural (PN) GSCs. Secreted IL-8 derived from MES GSCs induced endothelial proliferation and tube formation, and the MES GBMs had increased counts of proliferating endothelial cells. Our results highlight a critical pro-angiogenic role of IL-8 in MES GBMs.
Collapse
Affiliation(s)
- Siobhan Conroy
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Frank A E Kruyt
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel Wagemakers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
92
|
Abstract
Resistance to chemotherapy and cancer relapse are major clinical challenges attributed to a sub population of cancer stem cells (CSCs). The concept of CSCs has been the subject of intense research by the oncology community since evidence for their existence was first published over twenty years ago. Emerging data indicates that they are also able to evade novel therapies such as targeted agents, immunotherapies and anti-angiogenics. The inability to appropriately identify and isolate CSCs is a major hindrance to the field and novel technologies are now being utilized. Agents that target CSC-associated cell surface receptors and signaling pathways have generated promising pre-clinical results and are now entering clinical trial. Here we discuss and evaluate current therapeutic strategies to target CSCs.
Collapse
Affiliation(s)
- Stephanie Annett
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland
| | - Tracy Robson
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland.
| |
Collapse
|
93
|
Ubiquitin specific peptidase 21 regulates interleukin-8 expression, stem-cell like property of human renal cell carcinoma. Oncotarget 2018; 7:42007-42016. [PMID: 27259257 PMCID: PMC5173112 DOI: 10.18632/oncotarget.9751] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/20/2016] [Indexed: 01/09/2023] Open
Abstract
USP family proteins play essential roles in cancer cell proliferation and apoptosis and represent as candidate targets for cancer therapeutics. However, the effects and underlying mechanism of USP21 on renal cell carcinomas (RCC) remain unclear. In the present study, we investigate the effects of USP21 on proliferation, invasion and cancer stem cells (CSCs) property of RCC cell lines. As a result, siRNA-mediated depletion of USP21 inhibits cell proliferation, invasion ability and decreases the CSCs percentage of RCC cell lines. Complementarily, forced expression of USP21 leads to increase of tumorigenic properties. In addition, CSCs properties assessed by sphere formation assays demonstrated that depletion of USP21 impair the self-renewal capability of CSCs. Furthermore, decrease USP21 levels is associated with repression of interleukin 8 (IL-8), a chemokine that regulates CSCs characteristics in RCC. Mechanistically, USP21 binds to the promoter region of IL-8 and mediates transcriptional initiation. These data suggest that USP21/IL-8 could be a pair of the critical molecular targets for the development of therapeutic strategies for RCC.
Collapse
|
94
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
95
|
He J, Xiong L, Li Q, Lin L, Miao X, Yan S, Hong Z, Yang L, Wen Y, Deng X. 3D modeling of cancer stem cell niche. Oncotarget 2018; 9:1326-1345. [PMID: 29416698 PMCID: PMC5787442 DOI: 10.18632/oncotarget.19847] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells reside in a distinct microenvironment called niche. The reciprocal interactions between cancer stem cells and niche contribute to the maintenance and enrichment of cancer stem cells. In order to simulate the interactions between cancer stem cells and niche, three-dimensional models have been developed. These in vitro culture systems recapitulate the spatial dimension, cellular heterogeneity, and the molecular networks of the tumor microenvironment and show great promise in elucidating the pathophysiology of cancer stem cells and designing more clinically relavant treatment modalites.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinglong Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liangwu Lin
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shichao Yan
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Leping Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiyun Deng
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| |
Collapse
|
96
|
Begicevic RR, Falasca M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int J Mol Sci 2017; 18:E2362. [PMID: 29117122 PMCID: PMC5713331 DOI: 10.3390/ijms18112362] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
The efficacy of chemotherapy is one of the main challenges in cancer treatment and one of the major obstacles to overcome in achieving lasting remission and a definitive cure in patients with cancer is the emergence of cancer resistance. Indeed, drug resistance is ultimately accountable for poor treatment outcomes and tumour relapse. There are various molecular mechanisms involved in multidrug resistance, such as the change in the activity of membrane transporters primarily belonging to the ATP binding cassette (ABC) transporter family. In addition, it has been proposed that this common feature could be attributed to a subpopulation of slow-cycling cancer stem cells (CSCs), endowed with enhanced tumorigenic potential and multidrug resistance. CSCs are characterized by the overexpression of specific surface markers that vary in different cancer cell types. Overexpression of ABC transporters has been reported in several cancers and more predominantly in CSCs. While the major focus on the role played by ABC transporters in cancer is polarized by their involvement in chemoresistance, emerging evidence supports a more active role of these proteins, in which they release specific bioactive molecules in the extracellular milieu. This review will outline our current understanding of the role played by ABC transporters in CSCs, how their expression is regulated and how they support the malignant metabolic phenotype. To summarize, we suggest that the increased expression of ABC transporters in CSCs may have precise functional roles and provide the opportunity to target, particularly these cells, by using specific ABC transporter inhibitors.
Collapse
Affiliation(s)
- Romana-Rea Begicevic
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| |
Collapse
|
97
|
Koper OM, Kamińska J, Sawicki K, Reszeć J, Rutkowski R, Jadeszko M, Mariak Z, Dymicka-Piekarska V, Kemona H. Cerebrospinal fluid and serum IL-8, CCL2, and ICAM-1 concentrations in astrocytic brain tumor patients. Ir J Med Sci 2017; 187:767-775. [PMID: 29086194 DOI: 10.1007/s11845-017-1695-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND The aim of the study was the evaluation of serum and CSF concentrations of CCL2, IL-8, and sICAM-1 in patients with astrocytic tumors as compared to a group of non-tumoral patients. METHODS Chemokine concentrations were measured using the ELISA method. RESULTS Regardless of the parameter tested and the patient group (brain tumor or non-tumoral patients), statistical differences (P < 0.05) were found between concentrations obtained in CSF compared to values obtained in serum for all proteins tested. CSF IL-8 concentrations were significantly elevated in CNS tumor patients as compared to non-tumoral individuals (P = 0.000); serum CCL2 and sICAM-1 concentrations were significantly decreased in CNS tumors in comparison with the comparative group (P = 0.002 and P = 0.026, respectively). Among proteins tested in the serum, a higher area under the ROC curve (AUC) revealed CCL2 compared to sICAM-1 in differentiating subjects with CNS brain tumors from non-tumoral subjects. AUC for CSF IL-8 was higher than for its index (CSF IL-8/serum IL-8). CONCLUSIONS For individual biomarkers (IL-8 and CCL2, sICAM-1), measured in CNS brain tumor patients, the appropriate material, respectively CSF or serum, should be chosen and quantitatively tested. Increased cerebrospinal fluid IL-8 with decreased serum CCL2 create a pattern of biomarkers, which may be helpful in the management of CNS astrocytic brain tumors.
Collapse
Affiliation(s)
- O M Koper
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland.
| | - J Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland
| | - K Sawicki
- Department of Neurosurgery, Clinical Hospital of the Medical University of Bialystok, Białystok, Poland
| | - J Reszeć
- Department of Pathomorphology, Medical University of Bialystok, Białystok, Poland
| | - R Rutkowski
- Department of Neurosurgery, Clinical Hospital of the Medical University of Bialystok, Białystok, Poland
| | - M Jadeszko
- Department of Neurosurgery, Clinical Hospital of the Medical University of Bialystok, Białystok, Poland
| | - Z Mariak
- Department of Neurosurgery, Clinical Hospital of the Medical University of Bialystok, Białystok, Poland
| | - V Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland
| | - H Kemona
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-269, Białystok, Poland
| |
Collapse
|
98
|
Zhao X, Chen R, Liu M, Feng J, Chen J, Hu K. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharm Sin B 2017; 7:541-553. [PMID: 28924548 PMCID: PMC5595291 DOI: 10.1016/j.apsb.2017.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%-30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system (CNS) damage which endangers the patients' lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood-brain barrier (BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix (ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.
Collapse
Affiliation(s)
- Xiao Zhao
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei Liu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfang Feng
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
99
|
Kwon SJ, Kwon OS, Kim KT, Go YH, Yu SI, Lee BH, Miyoshi H, Oh E, Cho SJ, Cha HJ. Role of MEK partner-1 in cancer stemness through MEK/ERK pathway in cancerous neural stem cells, expressing EGFRviii. Mol Cancer 2017; 16:140. [PMID: 28830458 PMCID: PMC5567886 DOI: 10.1186/s12943-017-0703-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background Glioma stem cells (GSCs) are a major cause of the frequent relapse observed in glioma, due to their high drug resistance and their differentiation potential. Therefore, understanding the molecular mechanisms governing the ‘cancer stemness’ of GSCs will be particularly important for improving the prognosis of glioma patients. Methods We previously established cancerous neural stem cells (CNSCs) from immortalized human neural stem cells (F3 cells), using the H-Ras oncogene. In this study, we utilized the EGFRviii mutation, which frequently occurs in brain cancers, to establish another CNSC line (F3.EGFRviii), and characterized its stemness under spheroid culture. Results The F3.EGFRviii cell line was highly tumorigenic in vitro and showed high ERK1/2 activity as well as expression of a variety of genes associated with cancer stemness, such as SOX2 and NANOG, under spheroid culture conditions. Through meta-analysis, PCR super-array, and subsequent biochemical assays, the induction of MEK partner-1 (MP1, encoded by the LAMTOR3 gene) was shown to play an important role in maintaining ERK1/2 activity during the acquisition of cancer stemness under spheroid culture conditions. High expression of this gene was also closely associated with poor prognosis in brain cancer. Conclusion These data suggest that MP1 contributes to cancer stemness in EGFRviii-expressing glioma cells by driving ERK activity. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0703-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soo-Jung Kwon
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Ok-Seon Kwon
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Keun-Tae Kim
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Young-Hyun Go
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Si-In Yu
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Byeong-Ha Lee
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Hiroyuki Miyoshi
- Subteam for manipulation of cell fate, RIKEN BioResource Center, Wako, Japan
| | - Eunsel Oh
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, South Korea
| | - Seung-Ju Cho
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Hyuk-Jin Cha
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea.
| |
Collapse
|
100
|
Gonçalves DPN, Rodriguez RD, Kurth T, Bray LJ, Binner M, Jungnickel C, Gür FN, Poser SW, Schmidt TL, Zahn DRT, Androutsellis-Theotokis A, Schlierf M, Werner C. Enhanced targeting of invasive glioblastoma cells by peptide-functionalized gold nanorods in hydrogel-based 3D cultures. Acta Biomater 2017; 58:12-25. [PMID: 28576716 DOI: 10.1016/j.actbio.2017.05.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) are responsible for drug resistance, tumor recurrence, and metastasis in several cancer types, making their eradication a primary objective in cancer therapy. Glioblastoma Multiforme (GBM) tumors are usually composed of a highly infiltrating CSC subpopulation, which has Nestin as a putative marker. Since the majority of these infiltrating cells are able to elude conventional therapies, we have developed gold nanorods (AuNRs) functionalized with an engineered peptide capable of specific recognition and selective eradication of Nestin positive infiltrating GBM-CSCs. These AuNRs generate heat when irradiated by a near-infrared laser, and cause localized cell damage. Nanoparticle internalization assays performed with GBM-CSCs or Nestin negative cells cultured as two-dimensional (2D) monolayers or embedded in three-dimensional (3D) biodegradable-hydrogels of tunable mechanical properties, revealed that the AuNRs were mainly internalized by GBM-CSCs, and not by Nestin negative cells. The AuNRs were taken up via energy-dependent and caveolae-mediated endocytic mechanisms, and were localized inside endosomes. Photothermal treatments resulted in the selective elimination of GBM-CSCs through cell apoptosis, while Nestin negative cells remained viable. Results also indicated that GBM-CSCs embedded in hydrogels were more resistant to AuNR photothermal treatments than when cultured as 2D monolayers. In summary, the combination of our engineered AuNRs with our tunable hydrogel system has shown the potential to provide an in vitro platform for the evaluation and screening of AuNR-based cancer therapeutics, leading to a substantial advancement in the application of AuNRs for targeted GBM-CSC therapy. STATEMENT OF SIGNIFICANCE There is an urgent need for reliable and efficient therapies for the treatment of Glioblastoma Multiforme (GBM), which is currently an untreatable brain tumor form with a very poor patient survival rate. GBM tumors are mostly comprised of cancer stem cells (CSCs), which are responsible for tumor reoccurrence and therapy resistance. We have developed gold nanorods functionalized with an engineered peptide capable of selective recognition and eradication of GBM-CSCs via heat generation by nanorods upon NIR irradiation. An in vitro evaluation of nanorod therapeutic activities was performed in 3D synthetic-biodegradable hydrogel models with distinct biomechanical cues, and compared to 2D cultures. Results indicated that cells cultured in 3D were more resistant to photothermolysis than in 2D systems.
Collapse
Affiliation(s)
- Diana P N Gonçalves
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Raul D Rodriguez
- Institute of Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Thomas Kurth
- Electron Microscopy Facility, DFG-Center of Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Laura J Bray
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany; Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Marcus Binner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Christiane Jungnickel
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany; B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Fatih N Gür
- Cluster of Excellence Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Steve W Poser
- University Clinic Carl-Gustav Carus, Technische Universität Dresden, 01062 Dresden, Germany
| | - Thorsten L Schmidt
- Cluster of Excellence Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Dietrich R T Zahn
- Institute of Physics, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | | | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| |
Collapse
|