51
|
Lin L, Liu D, Liang H, Xue L, Su C, Liu M. MiR-1228 promotes breast cancer cell growth and metastasis through targeting SCAI protein. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:6646-6655. [PMID: 26261546 PMCID: PMC4525880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Breast cancer is the most common cancer in women around the world. However, the molecular mechanisms underlying breast cancer pathogenesis are only partially understood. Here, in this study, we found that miR-1228 was up-regulated in breast cancer cell lines and tissues. Ectopic expression of miR-1228 mimics leads to promoted cell growth, invasion and migration. Using bioinfomatic analysis and 3'UTR luciferase reporter assay, we determined SCAI can be directly targeted by miR-1228, which can down-regulate endogenous SCAI protein level. Furthermore, our findings demonstrate that SCAI was down-regulated in breast cancer cell lines and tissues. Rescue experiment demonstrated that miR-1228 promoted cell growth is attenuated by over-expression of MOAP1 and miR-1228 promoted cell invasion and migration can be attenuated by over-expression of SCAI. Taken together, this study provides evidences that miR-1228 serves as an oncogene to promote breast cancer proliferation, invasion and migration, which may become a critical therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Luoqiang Lin
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150010, China
| | - Dan Liu
- Department of 7th Oncology, The Third Affiliated Hospital of Harbin Medical UniversityHarbin 150086, China
| | - Hongyan Liang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150010, China
| | - Li Xue
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150010, China
| | - Changlei Su
- Department of The Third General Surgery, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, China
| | - Ming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical UniversityHarbin 150010, China
| |
Collapse
|
53
|
Petrelli A, Carollo R, Cargnelutti M, Iovino F, Callari M, Cimino D, Todaro M, Mangiapane LR, Giammona A, Cordova A, Montemurro F, Taverna D, Daidone MG, Stassi G, Giordano S. By promoting cell differentiation, miR-100 sensitizes basal-like breast cancer stem cells to hormonal therapy. Oncotarget 2015; 6:2315-30. [PMID: 25537513 PMCID: PMC4385854 DOI: 10.18632/oncotarget.2962] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/10/2015] [Indexed: 12/19/2022] Open
Abstract
Basal-like breast cancer is an aggressive tumor subtype with a poor response to conventional therapies. Tumor formation and relapse are sustained by a cell subset of Breast Cancer Stem Cells (BrCSCs). Here we show that miR-100 inhibits maintenance and expansion of BrCSCs in basal-like cancer through Polo-like kinase1 (Plk1) down-regulation. Moreover, miR-100 favors BrCSC differentiation, converting a basal like phenotype into luminal. It induces the expression of a functional estrogen receptor (ER) and renders basal-like BrCSCs responsive to hormonal therapy. The key role played by miR-100 in breast cancer free-survival is confirmed by the analysis of a cohort of patients' tumors, which shows that low expression of miR-100 is a negative prognostic factor and is associated with gene signatures of high grade undifferentiated tumors. Our findings indicate a new possible therapeutic strategy, which could make aggressive breast cancers responsive to standard treatments.
Collapse
Affiliation(s)
- Annalisa Petrelli
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, Str. Provinciale, Candiolo, Torino, Italy
| | - Rosachiara Carollo
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy
| | - Marilisa Cargnelutti
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, Str. Provinciale, Candiolo, Torino, Italy
| | - Flora Iovino
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy
| | | | - Daniela Cimino
- Molecular Biotechnology Center (MBC), Department of Oncological Sciences, Center for Molecular Systems Biology, Via Nizza, University of Torino, Torino, Italy
| | - Matilde Todaro
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy
| | - Alessandro Giammona
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy
| | - Adriana Cordova
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy
| | - Filippo Montemurro
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, Str. Provinciale, Candiolo, Torino, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), Department of Oncological Sciences, Center for Molecular Systems Biology, Via Nizza, University of Torino, Torino, Italy
| | | | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy
| | - Silvia Giordano
- University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, Str. Provinciale, Candiolo, Torino, Italy
| |
Collapse
|
54
|
Shen J, Xiao Z, Wu WKK, Wang MH, To KF, Chen Y, Yang W, Li MSM, Shin VY, Tong JH, Kang W, Zhang L, Li M, Wang L, Lu L, Chan RLY, Wong SH, Yu J, Chan MTV, Chan FKL, Sung JJY, Cheng ASL, Cho CH. Epigenetic silencing of miR-490-3p reactivates the chromatin remodeler SMARCD1 to promote Helicobacter pylori-induced gastric carcinogenesis. Cancer Res 2014; 75:754-65. [PMID: 25503559 DOI: 10.1158/0008-5472.can-14-1301] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin remodeling has emerged as a hallmark of gastric cancer, but the regulation of chromatin regulators other than genetic change is unknown. Helicobacter pylori causes epigenetic dysregulation to promote gastric carcinogenesis, but the roles and functions of microRNAs (miRNA) in this multistage cascade are not fully explored. In this study, miRNA expression in preneoplastic and neoplastic lesions in murine stomachs induced by H. pylori and N-methyl-N-nitrosourea (MNU) was profiled by miRNA expression array. miR-490-3p exhibited progressive downregulation in gastritis, intestinal metaplasia, and adenocarcinoma during H. pylori and MNU-induced gastric carcinogenesis. Significant downregulation of miR-490-3p was confirmed in human gastric cancer tissues in which its regulatory region was found to be hypermethylated. miR-490-3p exerted growth- and metastasis-suppressive effects on gastric cancer cells through directly targeting SMARCD1, a SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex subunit. Knockdown of SMARCD1 significantly attenuated the protumorigenic effects of miR-490-3p inhibitor, whereas enforced expression of SMARCD1 promoted in vitro and in vivo oncogenic phenotypes of gastric cancer cells. SMARCD1 was markedly upregulated in gastric cancer in which its high expression was associated with shortened patients' survival independent of TNM staging. In conclusion, hypermethylation-mediated silencing of miR-490-3p reactivates SMARCD1 to confer malignant phenotypes, mechanistically linking H. pylori, chromatin remodeling, and gastric carcinogenesis.
Collapse
Affiliation(s)
- Jing Shen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong. Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Zhangang Xiao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong. Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong. CUHK Shenzhen Research Institute, Shenzhen, China.
| | - Maggie H Wang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Ka F To
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong. Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong. Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Weiqin Yang
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - May S M Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Vivian Y Shin
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Joanna H Tong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Lin Zhang
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Minxing Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Lin Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Lan Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ruby L Y Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Sunny H Wong
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong. CUHK Shenzhen Research Institute, Shenzhen, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong
| | - Francis K L Chan
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Joseph J Y Sung
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong. Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong.
| | - Chi H Cho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong. Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
55
|
Zhu Y, Luo M, Brooks M, Clouthier SG, Wicha MS. Biological and clinical significance of cancer stem cell plasticity. Clin Transl Med 2014; 3:32. [PMID: 26932376 PMCID: PMC4883980 DOI: 10.1186/s40169-014-0032-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/08/2014] [Indexed: 12/19/2022] Open
Abstract
In the past decade, the traditional view of cancers as a homogeneous collection of malignant cells is being replaced by a model of ever increasing complexity suggesting that cancers are complex tissues composed of multiple cell types. This complex model of tumorigenesis has been well supported by a growing body of evidence indicating that most cancers including those derived from blood and solid tissues display a hierarchical organization of tumor cells with phenotypic and functional heterogeneity and at the apex of this hierarchy are cells capable of self-renewal. These "tumor imitating cells" or "cancer stem cells" drive tumorigenesis and contribute to metastasis, treatment resistance and tumor relapse. Although tumor stem cells themselves may display both genetic and phenotypic heterogeneity, recent studies have demonstrated that cancer stem cells maintain plasticity to transition between mesenchymal-like (EMT) and epithelial-like (MET) states, which may be regulated by the tumor microenvironment. These stem cell state transitions may play a fundamental role in tumor progression and treatment resistance. In this review, we discuss the emerging knowledge regarding the plasticity of cancer stem cells with an emphasis on the signaling pathways and noncoding RNAs including microRNAs (miRNA) and long non-coding RNAs (lncRNAs) in regulation of this plasticity during tumor growth and metastasis. Lastly, we point out the importance of targeting both the EMT and MET states of CSCs in order to eliminate these lethal seeds of cancers.
Collapse
Affiliation(s)
- Yongyou Zhu
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Ming Luo
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Michael Brooks
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Shawn G Clouthier
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Max S Wicha
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| |
Collapse
|