51
|
Mallick AM, Tripathi A, Mishra S, Mukherjee A, Dutta C, Chatterjee A, Sinha Roy R. Emerging Approaches for Enabling RNAi Therapeutics. Chem Asian J 2022; 17:e202200451. [PMID: 35689534 DOI: 10.1002/asia.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) is a primitive evolutionary mechanism developed to escape incorporation of foreign genetic material. siRNA has been instrumental in achieving the therapeutic potential of RNAi by theoretically silencing any gene of interest in a reversible and sequence-specific manner. Extrinsically administered siRNA generally needs a delivery vehicle to span across different physiological barriers and load into the RISC complex in the cytoplasm in its functional form to show its efficacy. This review discusses the designing principles and examples of different classes of delivery vehicles that have proved to be efficient in RNAi therapeutics. We also briefly discuss the role of RNAi therapeutics in genetic and rare diseases, epigenetic modifications, immunomodulation and combination modality to inch closer in creating a personalized therapy for metastatic cancer. At the end, we present, strategies and look into the opportunities to develop efficient delivery vehicles for RNAi which can be translated into clinics.
Collapse
Affiliation(s)
- Argha M Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Archana Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Sukumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Asmita Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Chiranjit Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Present address:Department of Biological Sciences, NUS Environmental Research Institute (NERI), National University of Singapore (NUS), Block S2 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Ananya Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rituparna Sinha Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India.,Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
52
|
The Targeting of Noncoding RNAs by Quercetin in Cancer Prevention and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4330681. [PMID: 35656022 PMCID: PMC9155922 DOI: 10.1155/2022/4330681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/11/2022] [Indexed: 12/14/2022]
Abstract
The dietary flavonoid quercetin is ubiquitously distributed in fruits, vegetables, and medicinal herbs. Quercetin has been a focal point in recent years due to its versatile health-promoting benefits and high pharmacological values. It has well documented that quercetin exerts anticancer actions by inhibiting cell proliferation, inducing apoptosis, and retarding the invasion and metastasis of cancer cells. However, the exact mechanism of quercetin-mediated cancer chemoprevention is still not fully understood. With the advances in high-throughput sequencing technologies, the intricate oncogenic signaling networks have been gradually characterized. Increasing evidence on the close association between noncoding RNA (ncRNAs) and cancer etiopathogenesis emphasizes the potential of ncRNAs as promising molecular targets for cancer treatment. Available experimental studies indicate that quercetin can dominate multiple cancer-associated ncRNAs, hence repressing carcinogenesis and cancer development. Thus, modulation of ncRNAs serves as a key mechanism responsible for the anticancer effects of quercetin. In this review, we focus on the chemopreventive effects of quercetin on cancer pathogenesis by targeting cancer-relevant ncRNAs, supporting the viewpoint that quercetin holds promise as a drug candidate for cancer chemoprevention and chemotherapy. An in-depth comprehension of the interplay between quercetin and ncRNAs in the inhibition of cancer development and progression will raise the possibility of developing this bioactive compound as an anticancer agent that could be highly efficacious and safe in clinical practice.
Collapse
|
53
|
Tang PCT, Zhang YY, Li JSF, Chan MKK, Chen J, Tang Y, Zhou Y, Zhang D, Leung KT, To KF, Tang SCW, Lan HY, Tang PMK. LncRNA-Dependent Mechanisms of Transforming Growth Factor-β: From Tissue Fibrosis to Cancer Progression. Noncoding RNA 2022; 8:ncrna8030036. [PMID: 35736633 PMCID: PMC9227532 DOI: 10.3390/ncrna8030036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a crucial pathogenic mediator of inflammatory diseases. In tissue fibrosis, TGF-β regulates the pathogenic activity of infiltrated immunocytes and promotes extracellular matrix production via de novo myofibroblast generation and kidney cell activation. In cancer, TGF-β promotes cancer invasion and metastasis by enhancing the stemness and epithelial mesenchymal transition of cancer cells. However, TGF-β is highly pleiotropic in both tissue fibrosis and cancers, and thus, direct targeting of TGF-β may also block its protective anti-inflammatory and tumor-suppressive effects, resulting in undesirable outcomes. Increasing evidence suggests the involvement of long non-coding RNAs (lncRNAs) in TGF-β-driven tissue fibrosis and cancer progression with a high cell-type and disease specificity, serving as an ideal target for therapeutic development. In this review, the mechanism and translational potential of TGF-β-associated lncRNAs in tissue fibrosis and cancer will be discussed.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji University School of Medicine, Shanghai 200065, China;
| | - Jane Siu-Fan Li
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Jiaoyi Chen
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong 999077, China; (J.C.); (S.C.-W.T.)
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510080, China;
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China;
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Sydney Chi-Wai Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong 999077, China; (J.C.); (S.C.-W.T.)
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
- Correspondence:
| |
Collapse
|
54
|
Wang L, Xie Y, Wang J, Zhang Y, Liu S, Zhan Y, Zhao Y, Li J, Li P, Wang C. Characterization of a Novel LUCAT1/miR-4316/VEGF-A Axis in Metastasis and Glycolysis of Lung Adenocarcinoma. Front Cell Dev Biol 2022; 10:833579. [PMID: 35646922 PMCID: PMC9136330 DOI: 10.3389/fcell.2022.833579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Objective: Accumulating literatures suggested that long non-coding RNAs (lncRNAs) were involved in tumorigenesis and cancer progression in lung adenocarcinoma (LUAD). However, the precise regulatory mechanism of lncRNA Lung cancer-associated transcript 1 (LUCAT1) in LUAD is not well defined. In this study, we aimed to investigate the biological function and mechanism of lncRNA LUCAT1 in regulating tumor migration and glycolysis of LUAD. Methods: High throughput sequencing was performed to identify differentially expressed lncRNAs between LUAD patients and healthy controls. The expression levels of LUCAT1 in LUAD clinical specimens or cell lines were evaluated by In situ hybridization (ISH) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Functional experiments, including wound-healing, transwell invasion assays, glucose absorption, lactate metabolism and tumor xenograft experiments were conducted to identify the biological functions of LUCAT1 in LUAD. Silencing of LUCAT1, over-expression of LUCAT1 and miR-4316 were generated in LUAD cell lines to verify the regulatory mode of LUCAT1-mir-4316-VEGFA axis. Results: Our findings revealed that lncRNA LUCAT1 was significantly up-regulated in LUAD serum exosomes, tumor tissues, and LUAD cells in comparison with corresponding controls. Receiver operating characteristic curve (ROC) analysis indicated that the area under the curve (AUC) value of serum exosomal LUCAT1 reached 0.852 in distinguishing LUAD patients from healthy individuals. High expression of LUCAT1 in LUAD patient tissues was associated with enhanced Lymph Node Metastasis (LNM), advanced Tumor Node Metastasis (TNM) stage and poorer clinical outcome in LUAD patients. Knockdown of LUCAT1 inhibited LUAD cell metastasis and glycolysis in vitro as well as tumor metastasis in vivo, while overexpression of LUCAT1 induced a promoted LUAD metastasis and glycolysis. Furthermore, mechanistic investigations revealed that LUCAT1 elevated LUAD cell metastasis and glycolysis by sponging miR-4316, which further led to the upregulation of VEGFA. Finally, the regulatory axis LUCAT1-miR-4316-VEGFA was verified in LUAD. Conclusion: Our present research suggested that LUCAT1 facilitate LUAD cell metastasis and glycolysis via serving as a competing endogenous RNA to regulate miR-4316/VEGFA axis, which provided a novel diagnostic marker and therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Lishui Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Xie
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shibiao Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yao Zhan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
- Shandong Technology Innovation Center for Big Data and Precision Medicine of Cancer, Jinan, China
| |
Collapse
|
55
|
Choi HI, An GY, Yoo E, Baek M, Binas B, Chai JC, Lee YS, Jung KH, Chai YG. The bromodomain inhibitor JQ1 up-regulates the long non-coding RNA MALAT1 in cultured human hepatic carcinoma cells. Sci Rep 2022; 12:7779. [PMID: 35546353 PMCID: PMC9095596 DOI: 10.1038/s41598-022-11868-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022] Open
Abstract
The epigenetic reader, bromodomain-containing 4 (BRD4), is overexpressed in hepatocellular carcinoma (HCC), and BRD4 inhibition is considered as a new therapeutic approach. The BRD inhibitor JQ1 is known to inhibit the enrichment of BRD4 at enhancer sites. Gene network analyses have implicated long non-coding RNAs (lncRNAs) in the effects of JQ1, but the precise molecular events remain unexplored. Here, we report that in HepG2 cells, JQ1 significantly reduced various proliferation-related lncRNAs, but up-regulated the known liver tumor marker, MALAT1. Using ChIP-sequencing data, ChIP-qPCR, luciferase reporter assays, and chromatin conformation capture (3C), we characterized the MALAT1 gene locus. We found that JQ1 elicited a rearrangement of its chromatin looping conformation, which involved the putative enhancers E1, E2, E3, the gene body, and the promoter. We further found that the forkhead box protein A2 (FOXA2) binds to E2 and the promoter; suppression of FOXA2 expression resulted in MALAT1 up-regulation and increased cell proliferation. These results suggest that the inhibition of MALAT1 may improve the effect of BET inhibitors as an anti-cancer therapy and that FOXA2 would be a suitable target for that approach.
Collapse
Affiliation(s)
- Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Ga Yeong An
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Eunyoung Yoo
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Mina Baek
- Department of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
- Institute of Natural Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Bert Binas
- Department of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Jin Choul Chai
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Seek Lee
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung Hwa Jung
- Convergence Technology Campus of Korea Polytechnic II, Incheon, 21417, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea.
- Department of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
56
|
Long Non-Coding RNAs in Pancreatic Cancer: Biologic Functions, Mechanisms, and Clinical Significance. Cancers (Basel) 2022; 14:cancers14092115. [PMID: 35565245 PMCID: PMC9100048 DOI: 10.3390/cancers14092115] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Despite tremendous efforts devoted to research in pancreatic cancer (PC), the mechanism underlying the tumorigenesis and progression of PC is still not completely clear. Additionally, ideal biomarkers and satisfactory therapeutic strategies for clinical application in PC are still lacking. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) might participate in the pathogenesis of diverse cancers, including PC. The abnormal expression of lncRNAs in PC is considered a vital factor during tumorigenesis that affects tumor cell proliferation, migration, invasion, apoptosis, angiogenesis, and drug resistance. With this review of relevant articles published in recent years, we aimed to summarize the biogenesis mechanism, classifications, and modes of action of lncRNAs and to review the functions and mechanisms of lncRNAs in PC. Additionally, the clinical significance of lncRNAs in PC was discussed. Finally, we pointed out the questions remaining from recent studies and anticipated that further investigations would address these gaps in knowledge in this field.
Collapse
|
57
|
Abdi E, Latifi-Navid S. LncRNA polymorphisms and urologic cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:190-203. [PMID: 35178782 DOI: 10.1002/em.22472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Urologic cancers involve nearly one-quarter of all cancers and include the prostate, bladder, and kidney cancers. Long non-coding RNAs (LncRNAs) are expressed in a tissue-specific manner and affect cell proliferation, apoptosis, and differentiation. LncRNAs expression is misregulated in urologic cancers, as their aberrant expression may make them capable of being utilized in the diagnosis, prognosis, and treatment of cancers. LncRNAs polymorphisms can affect their structure, expression, and function by interfering with the associated target mRNAs. As a result, lncRNA polymorphisms may be linked to the mechanism driving cancer susceptibility. Therefore, SNPs in lncRNAs may be a beneficial biomarker for early diagnosis and prognosis of cancers, as they affect lncRNA role in tumorigenesis and cancer progression. Moreover, the genetic heredity of lncRNA SNPs affects the personal therapeutic response to drugs. In this study, the lncRNAs polymorphism is summarized in relation to urologic cancers. It is proposed that lncRNA-related polymorphisms, as an individual or combined genotypes, can predict urologic cancer risk, even clinical and prognostic outcomes. However, large-scale population-based prospective studies and comprehensive meta-analyses should be conducted to validate and use these lncRNAs SNPs as the indicators of urologic cancers. Future research should examine the function of these SNPs to explain their associations with urologic cancers.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
58
|
Zheng ZJ, Li YS, Zhu JD, Zou HY, Fang WK, Cui YY, Xie JJ. Construction of the Six-lncRNA Prognosis Signature as a Novel Biomarker in Esophageal Squamous Cell Carcinoma. Front Genet 2022; 13:839589. [PMID: 35432441 PMCID: PMC9008717 DOI: 10.3389/fgene.2022.839589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant gastrointestinal tumor threatening global human health. For patients diagnosed with ESCC, determining the prognosis is a huge challenge. Due to their important role in tumor progression, long non-coding RNAs (lncRNAs) may be putative molecular candidates in the survival prediction of ESCC patients. Here, we obtained three datasets of ESCC lncRNA expression profiles (GSE53624, GSE53622, and GSE53625) from the Gene Expression Omnibus (GEO) database. The method of statistics and machine learning including survival analysis and LASSO regression analysis were applied. We identified a six-lncRNA signature composed of AL445524.1, AC109439.2, LINC01273, AC015922.3, LINC00547, and PSPC1-AS2. Kaplan-Meier and Cox analyses were conducted, and the prognostic ability and predictive independence of the lncRNA signature were found in three ESCC datasets. In the entire set, time-dependent ROC curve analysis showed that the prediction accuracy of the lncRNA signature was remarkably greater than that of TNM stage. ROC and stratified analysis indicated that the combination of six-lncRNA signature with the TNM stage has the highest accuracy in subgrouping ESCC patients. Furthermore, experiments subsequently confirmed that one of the lncRNAs LINC01273 may play an oncogenic role in ESCC. This study suggested the six-lncRNA signature could be a valuable survival predictor for patients with ESCC and have potential to be an auxiliary biomarker of TNM stage to subdivide ESCC patients more accurately, which has important clinical significance.
Collapse
Affiliation(s)
- Ze-Jun Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Yan-Shang Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
- Department of Pathology, Medical College of Jiaying University, Meizhou, China
| | - Jun-De Zhu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Yi-Yao Cui
- Department of Thoracic Surgery, Beijing Friendship Hospital, Affiliated to the Capital University of Medical Sciences, Beijing, China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| |
Collapse
|
59
|
Shen D, Ding L, Lu Z, Wang R, Yu C, Wang H, Zheng Q, Wang X, Xu W, Yu H, Xu L, Wang M, Yu S, Zhu S, Qian J, Xia L, Li G. METTL14-mediated Lnc-LSG1 m6A modification inhibits clear cell renal cell carcinoma metastasis via regulating ESRP2 ubiquitination. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:547-561. [PMID: 35036065 PMCID: PMC8738955 DOI: 10.1016/j.omtn.2021.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most lethal urological cancer and is characterized by a high rate of metastasis and relapse. N6-Methyladenosine (m6A) is implicated in various stages of cancer development. However, a thorough understanding of m6A-modified lncRNAs in ccRCC is lacking. The results showed that METTL14 had decreased expression in ccRCC tissues. In addition, the expression of METTL14 was negatively correlated to the prognosis, stage, and ccRCC tumor grade. The silencing of METTL14 was shown to significantly increase metastasis in vitro and in vivo. High-throughput methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed that the m6A levels of Lnc-LSG1 could be regulated by METTL14. Lnc-LSG1 can directly bind to ESRP2 protein and promote ESRP2 degradation via facilitating ESRP2 ubiquitination. However, m6A modification on Lnc-LSG1 can block the interaction between Lnc-LSG1 and ESRP2 via the m6A reader, YTHDC1. Taken together, our findings unraveled the novel mechanism of METTL14 inhibiting ccRCC progression, and explored the correlation between m6A and lncRNA in ccRCC for the first time.
Collapse
Affiliation(s)
- Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.,Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chenhao Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xuliang Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wanjiang Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Haifeng Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liwei Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shicheng Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shibin Zhu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
60
|
Li Z, Wang D, Liao H, Zhang S, Guo W, Chen L, Lu L, Huang T, Cai YD. Exploring the Genomic Patterns in Human and Mouse Cerebellums Via Single-Cell Sequencing and Machine Learning Method. Front Genet 2022; 13:857851. [PMID: 35309141 PMCID: PMC8930846 DOI: 10.3389/fgene.2022.857851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
In mammals, the cerebellum plays an important role in movement control. Cellular research reveals that the cerebellum involves a variety of sub-cell types, including Golgi, granule, interneuron, and unipolar brush cells. The functional characteristics of cerebellar cells exhibit considerable differences among diverse mammalian species, reflecting a potential development and evolution of nervous system. In this study, we aimed to recognize the transcriptional differences between human and mouse cerebellum in four cerebellar sub-cell types by using single-cell sequencing data and machine learning methods. A total of 321,387 single-cell sequencing data were used. The 321,387 cells included 4 cell types, i.e., Golgi (5,048, 1.57%), granule (250,307, 77.88%), interneuron (60,526, 18.83%), and unipolar brush (5,506, 1.72%) cells. Our results showed that by using gene expression profiles as features, the optimal classification model could achieve very high even perfect performance for Golgi, granule, interneuron, and unipolar brush cells, respectively, suggesting a remarkable difference between the genomic profiles of human and mouse. Furthermore, a group of related genes and rules contributing to the classification was identified, which might provide helpful information for deepening the understanding of cerebellar cell heterogeneity and evolution.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Deling Wang
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - HuiPing Liao
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ShiQi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
61
|
Ding Y, Zhen Z, Nisar MA, Ali F, Din RU, Khan M, Mughal TA, Alam G, Liu L, Saleem MZ. Sesquiterpene Lactones Attenuate Paclitaxel Resistance Via Inhibiting MALAT1/STAT3/ FUT4 Axis and P-Glycoprotein Transporters in Lung Cancer Cells. Front Pharmacol 2022; 13:795613. [PMID: 35281907 PMCID: PMC8909900 DOI: 10.3389/fphar.2022.795613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Paclitaxel resistance is a challenging factor in chemotherapy resulting in poor prognosis and cancer recurrence. Signal transducer and activator of transcription factor 3 (STAT3), a key transcription factor, performs a critical role in cancer development, cell survival and chemoresistance, while its inactivation overwhelms drug resistance in numerous cancer types including lung cancer. Additionally, the fucosyltransferase 4 (FUT4) is a crucial enzyme in post-translational modification of cell-surface proteins involved in various pathological conditions such as tumor multidrug resistance (MDR). The P-glycoprotein (P-GP) is the well-known ABC transporter member that imparts drug resistance in different cancer types, most notably paclitaxel resistance in lung cancer cells. LncRNA-MALAT1 exerts a functional role in the cancer development as well as the drug resistance and is linked with STAT3 activation and activity of FUT4. Moreover, STAT3-mediated induction of P-GP is well-documented. Natural compounds of Sesquiterpene Lactone (SL) family are well-known for their anticancer properties with particular emphasis over STAT3 inhibitory capabilities. In this study, we explored the positive correlation of MALAT1 with STAT3 and FUT4 activity in paclitaxel resistant A549 (A549/T) lung cancer cells. Additionally, we investigated the anticancer activity of two well-known members of SLs, alantolactone (ALT) and Brevilin A (Brv-A), in A549/T lung cancer cells. ALT and Brv-A induced apoptosis in A549/T cells. Furthermore, these two natural SLs suppressed MALAT1 expression, STAT3 activation, and FUT4 and P-GP expression which are the hallmarks for paclitaxel resistance in A549 lung cancer cells. The inhibition of MALAT1 enhanced the competence of these SLs members significantly, which accounted for the growth inhibition as well as anti-migratory and anti-invasive effects of ALT and Brv-A. These findings suggest SLs to be the promising agents for overcoming paclitaxel resistance in A549 lung cancer cells.
Collapse
Affiliation(s)
- Yaming Ding
- The Second Hospital of Jilin University, Changchun, China
| | - Zhang Zhen
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | - Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Riaz Ud Din
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Muhammad Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Tafail Akbar Mughal
- Medical Toxicology Laboratory, Department of Zoology, Women University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Gulzar Alam
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Linlin Liu
- The Second Hospital of Jilin University, Changchun, China
| | - Muhammad Zubair Saleem
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
62
|
Tao H, Zhang Y, Yuan T, Li J, Liu J, Xiong Y, Zhu J, Huang Z, Wang P, Liang H, Zhang E. Identification of an EMT-related lncRNA signature and LINC01116 as an immune-related oncogene in hepatocellular carcinoma. Aging (Albany NY) 2022; 14:1473-1491. [PMID: 35148283 PMCID: PMC8876905 DOI: 10.18632/aging.203888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Background: Epithelial–mesenchymal transition (EMT) plays a critical role in the recurrence and metastasis of hepatocellular carcinoma (HCC). Some long noncoding (lnc)RNAs are involved in this process through the regulation of EMT-related transcription factors. Methods: In this study, we established a novel EMT-related lncRNA signature in HCC and identified hub lncRNAs that can serve as potential therapeutic targets. Differentially expressed lncRNAs were identified by screening HCC patient data from The Cancer Genome Atlas, and a correlation analysis was performed to identify those associated with EMT. The EMT-related lncRNA signature was established by univariate, least absolute shrinkage and selection operator, and multivariate Cox regression analyses. After verifying the prognostic accuracy of the signature, its relationships to immune cell infiltration and immune checkpoint targets were explored. LINC01116 was identified as a hub lncRNA and its role in HCC was investigated in vitro and in vivo. Results: A 5-lncRNA signature was developed for HCC and its prognostic accuracy was assessed by survival, time-dependent receiver operating characteristic curve, clinical correlation, and Cox regression analyses. The correlation analysis showed that the lncRNA signature was closely related to immune cell infiltration and 10 immune checkpoint targets and also predicted the prognosis of HCC patients with high accuracy. In vitro and in vivo experiments revealed that LINC01116 stimulated cell proliferation, cell cycle progression, and tumor metastasis. We also found that LINC01116 was closely related to immune regulation. Conclusions: These results demonstrate that LINC01116 is an immune-related oncogene that is associated with both EMT and immune regulation in HCC. Moreover, the EMT-related lncRNA signature that includes LINC01116 can guide risk stratification and clinical decision-making in HCC management.
Collapse
Affiliation(s)
- Haisu Tao
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jiang Li
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Junjie Liu
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yixiao Xiong
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| |
Collapse
|
63
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
64
|
Zhou Z, Wang W, Deng J, Ni T, Chu Z, Lv M, Liu Y, Zhou Y. A long noncoding RNA, LncRNA-LOC100127888, is associated with poor prognosis in colorectal cancer patients. Bull Cancer 2022; 109:258-267. [PMID: 34991861 DOI: 10.1016/j.bulcan.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant tumors in the world. Despite great advances in medical technology, the survival rate of CRC patients is still extremely low, mainly due to recurrence and chemotherapy resistance. Therefore, it is particularly important to find valuable biomarkers to predict the prognosis of CRC. METHODS Immunohistochemistry was performed to test the expression of LncA in a CRC tissue microarray containing 470 tumor and corresponding normal tissues. Kaplan-Meier survival curves and a Cox proportional hazard model were used to evaluate the correlation between lncRNA-LOC100127888 (LncA) expression and CRC prognosis. Cell proliferation, migration and invasion were detected by CCK-8 and Transwell assays. RESULTS The expression of LncA was significantly upregulated in CRC cancer tissues compared with the corresponding noncancer tissues. High LncA expression in cancer tissues was associated with pathological classification, depth of invasion, lymph node metastasis, TNM stage and distant metastasis. LncA expression was an unfavorable prognostic factor for CRC patients. Furthermore, LncA combined with clinical variables exhibited synergistic potential for the prediction of CRC prognosis. Low expression of LncA in HT 29 and HCT116 cells could decrease cell proliferation, and the migration and invasion of these cells was inhibited by knockdown of LncA. CONCLUSION LncA could be used as an effective biomarker to predict the prognosis of CRC patients. We could predict the prognosis of CRC patients more effectively by combining LncA with clinical indicators.
Collapse
Affiliation(s)
- Zhen Zhou
- Yangzhou University, Medical College, Institute of Translational Medicine, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Weimin Wang
- Yangzhou University, Medical College, Institute of Translational Medicine, Yangzhou 225001, PR China; Yixing Hospital Affiliated to Medical College of Yangzhou University, Department of Oncology, Yixing, Jiangsu 214200, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Jianliang Deng
- Yixing Hospital Affiliated to Medical College of Yangzhou University, Department of Oncology, Yixing, Jiangsu 214200, PR China
| | - Tengyang Ni
- Yangzhou University, Medical College, Institute of Translational Medicine, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Zewen Chu
- Yangzhou University, Medical College, Institute of Translational Medicine, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Mengying Lv
- Yangzhou University, Medical College, Institute of Translational Medicine, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Yanqing Liu
- Yangzhou University, Medical College, Institute of Translational Medicine, Yangzhou 225001, PR China; Yixing Hospital Affiliated to Medical College of Yangzhou University, Department of Oncology, Yixing, Jiangsu 214200, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China.
| | - Yan Zhou
- Yangzhou University, Medical College, Institute of Translational Medicine, Yangzhou 225001, PR China; Yixing Hospital Affiliated to Medical College of Yangzhou University, Department of Oncology, Yixing, Jiangsu 214200, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| |
Collapse
|
65
|
Dey S, Misra A, Selvi Bharathavikru R. Long Non-coding RNAs, Lnc (ing) RNA Metabolism to Cancer Biology. Subcell Biochem 2022; 100:175-199. [PMID: 36301495 DOI: 10.1007/978-3-031-07634-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The eukaryotic genome is represented by a vast proportion of non-coding regions, which in recent years have been attributed to have important functional roles in gene regulation through a myriad of processes, ranging from proper localization, correct folding and, most importantly, spatial and temporally regulated expression of genes. One of the major contributing factors in these processes is ribonucleic acid (RNA) metabolism, which comprises the RNA-nucleoprotein (RNP) complexes that interact with and instruct the genome to function. Long non-coding RNAs are an integral component of several RNPs, and herein we provide an overview of the understanding of the long non-coding RNAs, their characteristics, their function and their balancing act as dual modulators in cancer manifestation and progression.
Collapse
Affiliation(s)
- Sourav Dey
- RNP Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Berhampur, Transit Campus, Govt ITI Building, Engineering School Junction, Berhampur, Ganjam, Odisha, India
| | - Arushi Misra
- RNP Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Berhampur, Transit Campus, Govt ITI Building, Engineering School Junction, Berhampur, Ganjam, Odisha, India
| | - R Selvi Bharathavikru
- RNP Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Berhampur, Transit Campus, Govt ITI Building, Engineering School Junction, Berhampur, Ganjam, Odisha, India.
| |
Collapse
|
66
|
Chen J, Liao X, Cheng J, Su G, Yuan F, Zhang Z, Wu J, Mei H, Tan W. Targeted Methylation of the LncRNA NEAT1 Suppresses Malignancy of Renal Cell Carcinoma. Front Cell Dev Biol 2021; 9:777349. [PMID: 34957107 PMCID: PMC8696001 DOI: 10.3389/fcell.2021.777349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Long-chain non-coding RNA (LncRNA) has been found to play an important role in the regulation of the occurrence and progression of renal cell carcinoma (RCC). In this study, we demonstrated that LncRNA NEAT1 expression and m6A methylation level was decreased in RCC tissues. Further, the downregulated expression level of LncRNA NEAT1 was associated with poor prognosis for RCC patients. Then we used CRIPSR/dCas13b-METTL3 to methylate LncRNA NEAT1 in RCC cells. The results showed that the expression level of LncRNA NEAT1 was upregulated after methylated by dCas13b-METTL3 in RCC cells. And the proliferation and migration ability of RCC cells was decreased after methylated LncRNA NEAT1. Finally, we examined the effect of LncRNA NEAT1 hypermethylation on the transcriptome. We found differentially expressed genes in RCC cells were associated with “cGMP-PKG signaling pathway”, “Cell adhesion molecules” and “Pathways in cancer”. In conclusion, CRISPR/Cas13b-METTL3 targeting LncRNA NEAT1 m6A methylation activates LncRNA NEAT1 expression and provides a new target for treatment of RCC.
Collapse
Affiliation(s)
- Jieqing Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinhui Liao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianli Cheng
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ganglin Su
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fen Yuan
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhongfu Zhang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianting Wu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongbing Mei
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
67
|
The long non-coding RNA landscape of Candida yeast pathogens. Nat Commun 2021; 12:7317. [PMID: 34916523 PMCID: PMC8677757 DOI: 10.1038/s41467-021-27635-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute a poorly studied class of transcripts with emerging roles in key cellular processes. Despite efforts to characterize lncRNAs across a wide range of species, these molecules remain largely unexplored in most eukaryotic microbes, including yeast pathogens of the Candida clade. Here, we analyze thousands of publicly available sequencing datasets to infer and characterize the lncRNA repertoires of five major Candida pathogens: Candida albicans, Candida tropicalis, Candida parapsilosis, Candida auris and Candida glabrata. Our results indicate that genomes of these species encode hundreds of lncRNAs that show levels of evolutionary constraint intermediate between those of intergenic genomic regions and protein-coding genes. Despite their low sequence conservation across the studied species, some lncRNAs are syntenic and are enriched in shared sequence motifs. We find co-expression of lncRNAs with certain protein-coding transcripts, hinting at potential functional associations. Finally, we identify lncRNAs that are differentially expressed during infection of human epithelial cells for four of the studied species. Our comprehensive bioinformatic analyses of Candida lncRNAs pave the way for future functional characterization of these transcripts. Long non-coding RNAs (lncRNAs) play roles in key cellular processes, but remain largely unexplored in fungal pathogens such as Candida. Here, Hovhannisyan and Gabaldón analyze thousands of sequencing datasets to infer and characterize the lncRNA repertoires of five Candida species, paving the way for their future functional characterization.
Collapse
|
68
|
Hazan J, Bester AC. CRISPR-Based Approaches for the High-Throughput Characterization of Long Non-Coding RNAs. Noncoding RNA 2021; 7:79. [PMID: 34940760 PMCID: PMC8704461 DOI: 10.3390/ncrna7040079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, tens of thousands of new long non-coding RNAs (lncRNAs) have been identified in the human genome. Nevertheless, except for a handful of genes, the genetic characteristics and functions of most of these lncRNAs remain elusive; this is partially due to their relatively low expression, high tissue specificity, and low conservation across species. A major limitation for determining the function of lncRNAs was the lack of methodologies suitable for studying these genes. The recent development of CRISPR/Cas9 technology has opened unprecedented opportunities to uncover the genetic and functional characteristics of the non-coding genome via targeted and high-throughput approaches. Specific CRISPR/Cas9-based approaches were developed to target lncRNA loci. Some of these approaches involve modifying the sequence, but others were developed to study lncRNAs by inducing transcriptional and epigenetic changes. The discovery of other programable Cas proteins broaden our possibilities to target RNA molecules with greater precision and accuracy. These approaches allow for the knock-down and characterization of lncRNAs. Here, we review how various CRISPR-based strategies have been used to characterize lncRNAs with important functions in different biological contexts and how these approaches can be further utilized to improve our understanding of the non-coding genome.
Collapse
|
69
|
Park EG, Pyo SJ, Cui Y, Yoon SH, Nam JW. Tumor immune microenvironment lncRNAs. Brief Bioinform 2021; 23:6458113. [PMID: 34891154 PMCID: PMC8769899 DOI: 10.1093/bib/bbab504] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
Long non-coding ribonucleic acids (RNAs) (lncRNAs) are key players in tumorigenesis and immune responses. The nature of their cell type-specific gene expression and other functional evidence support the idea that lncRNAs have distinct cellular functions in the tumor immune microenvironment (TIME). To date, the majority of lncRNA studies have heavily relied on bulk RNA-sequencing data in which various cell types contribute to an averaged signal, limiting the discovery of cell type-specific lncRNA functions. Single-cell RNA-sequencing (scRNA-seq) is a potential solution for tackling this limitation despite the lack of annotations for low abundance yet cell type-specific lncRNAs. Hence, updated annotations and further understanding of the cellular expression of lncRNAs will be necessary for characterizing cell type-specific functions of lncRNA genes in the TIME. In this review, we discuss lncRNAs that are specifically expressed in tumor and immune cells, summarize the regulatory functions of the lncRNAs at the cell type level and highlight how a scRNA-seq approach can help to study the cell type-specific functions of TIME lncRNAs.
Collapse
Affiliation(s)
- Eun-Gyeong Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung-Jin Pyo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Youxi Cui
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang-Ho Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
70
|
Xu R, Yu SS, Yao RR, Tang RC, Liang JW, Pang X, Zhang J. Interferon-Inducible LINC02605 Promotes Antiviral Innate Responses by Strengthening IRF3 Nuclear Translocation. Front Immunol 2021; 12:755512. [PMID: 34804040 PMCID: PMC8602795 DOI: 10.3389/fimmu.2021.755512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022] Open
Abstract
Non-coding RNAs represent a class of important regulators in immune response. Previously, LINC02605 was identified as a candidate regulator in innate immune response by lncRNA microarray assays. In this study, we systematically analyzed the functions and the acting mechanisms of LINC02605 in antiviral innate immune response. LINC02605 was up-regulated by RNA virus, DNA virus, and type I IFNs in NF-κB and Jak-stat dependent manner. Overexpression of LINC02605 promotes RNA virus-induced type I interferon production and inhibited viral replication. Consistently, knockdown of LINC02605 resulted in reduced antiviral immune response and increased viral replication. Mechanistically, LINC02605 released the inhibition of hsa-miR-107 on the expression of phosphatase and tensin homolog (PTEN). By microRNA mimics and inhibitors, hsa-miR-107 was demonstrated to not only inhibit PTEN’s expression but also negatively regulate the antiviral immune response. Knockdown of LINC02605 led to the reduction of PTEN expression both in mRNA and protein levels. Overexpression of LINC02605 had an opposite impact. Moreover, LINC02605 attenuated the serine 97 phosphorylation level of interferon regulatory factor 3 (IRF3) by promoting PTEN expression. Nucleoplasmic fragmentation assay showed that knocking down LINC02605 inhibited the nuclear translocation of IRF3, rendering the host cells more susceptible to viral invasion, while overexpression showed opposite effects. Therefore, LINC02605 is an induced lncRNA by viral infection and plays a positive feedback in antiviral immune response through modulating the nuclear translocation of IRF3.
Collapse
Affiliation(s)
- Rui Xu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Shuang-Shuang Yu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Ran-Ran Yao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Rong-Chun Tang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jia-Wei Liang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
71
|
Homayoonfal M, Asemi Z, Yousefi B. Targeting long non coding RNA by natural products: Implications for cancer therapy. Crit Rev Food Sci Nutr 2021:1-29. [PMID: 34783279 DOI: 10.1080/10408398.2021.2001785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In spite of achieving substantial progress in its therapeutic strategies, cancer-associated prevalence and mortality are persistently rising globally. However, most malignant cancers either cannot be adequately diagnosed at the primary phase or resist against multiple treatments such as chemotherapy, surgery, radiotherapy as well as targeting therapy. In recent decades, overwhelming evidences have provided more convincing words on the undeniable roles of long non-coding RNAs (lncRNAs) in incidence and development of various cancer types. Recently, phytochemical and nutraceutical compounds have received a great deal of attention due to their inhibitory and stimulatory effects on oncogenic and tumor suppressor lncRNAs respectively that finally may lead to attenuate various processes of cancer cells such as growth, proliferation, metastasis and invasion. Therefore, application of phytochemicals with anticancer characteristics can be considered as an innovative approach for treating cancer and increasing the sensitivity of cancer cells to standard prevailing therapies. The purpose of this review was to investigate the effect of various phytochemicals on regulation of lncRNAs in different human cancer and evaluate their capabilities for cancer treatment and prevention.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
72
|
Lee HW, Jose CC, Cuddapah S. Epithelial-mesenchymal transition: Insights into nickel-induced lung diseases. Semin Cancer Biol 2021; 76:99-109. [PMID: 34058338 PMCID: PMC8627926 DOI: 10.1016/j.semcancer.2021.05.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Nickel compounds are environmental toxicants, prevalent in the atmosphere due to their widespread use in several industrial processes, extensive consumption of nickel containing products, as well as burning of fossil fuels. Exposure to nickel is associated with a multitude of chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis. In addition, nickel exposure is implicated in the development of nasal and lung cancers. Interestingly, a common pathogenic mechanism underlying the development of diseases associated with nickel exposure is epithelial-mesenchymal transition (EMT). EMT is a process by which the epithelial cells lose their junctions and polarity and acquire mesenchymal traits, including increased ability to migrate and invade. EMT is a normal and essential physiological process involved in differentiation, development and wound healing. However, EMT also contributes to a number of pathological conditions, including fibrosis, cancer and metastasis. Growing evidence suggest that EMT induction could be an important outcome of nickel exposure. In this review, we discuss the role of EMT in nickel-induced lung diseases and the mechanisms associated with EMT induction by nickel exposure.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA.
| |
Collapse
|
73
|
LncRNAs in the Regulation of Genes and Signaling Pathways through miRNA-Mediated and Other Mechanisms in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2021; 22:ijms222011193. [PMID: 34681854 PMCID: PMC8539140 DOI: 10.3390/ijms222011193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
The fundamental novelty in the pathogenesis of renal cell carcinoma (RCC) was discovered as a result of the recent identification of the role of long non-coding RNAs (lncRNAs). Here, we discuss several mechanisms for the dysregulation of the expression of protein-coding genes initiated by lncRNAs in the most common and aggressive type of kidney cancer-clear cell RCC (ccRCC). A model of competitive endogenous RNA (ceRNA) is considered, in which lncRNA acts on genes through the lncRNA/miRNA/mRNA axis. For the most studied oncogenic lncRNAs, such as HOTAIR, MALAT1, and TUG1, several regulatory axes were identified in ccRCC, demonstrating a number of sites for various miRNAs. Interestingly, the LINC00973/miR-7109/Siglec-15 axis represents a novel agent that can suppress the immune response in patients with ccRCC, serving as a valuable target in addition to the PD1/PD-L1 pathway. Other mechanisms of action of lncRNAs in ccRCC, involving direct binding with proteins, mRNAs, and genes/DNA, are also considered. Our review briefly highlights methods by which various mechanisms of action of lncRNAs were verified. We pay special attention to protein targets and signaling pathways with which lncRNAs are associated in ccRCC. Thus, these new data on the different mechanisms of lncRNA functioning provide a novel basis for understanding the pathogenesis of ccRCC and the identification of new prognostic markers and targets for therapy.
Collapse
|
74
|
Chao X, Wang P, Ma X, Li Z, Xia Y, Guo Y, Ge L, Tian L, Zheng H, Du Y, Li J, Zuo Z, Xie L, Guo X. Comprehensive analysis of lncRNAs as biomarkers for diagnosis, prognosis, and treatment response in clear cell renal cell carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:209-218. [PMID: 34514100 PMCID: PMC8424129 DOI: 10.1016/j.omto.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/12/2021] [Indexed: 10/27/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological type of renal carcinoma and has a high recurrence rate and poor outcome. Accurate patient risk stratification based on genetic markers can help to identify the high-risk patient for early and further treatments and would promote patient survival. Long non-coding RNAs (lncRNAs) have attracted widespread attention as biomarkers for early diagnosis, treatment, and prognosis because of their high specificity and sensitivity. Here, we performed a systematic search in NCBI PubMed and found 44 lncRNAs as oncogenes, 18 lncRNAs as tumor suppressors, 199 lncRNAs as diagnostic biomarkers, 62 lncRNAs as prognostic biomarkers, and 3 lncRNAs as predictive biomarkers for ccRCC. We also comprehensively discuss the biological functions and molecular regulatory mechanisms of lncRNAs in ccRCC. Overall, the present study is a systemic analysis to assess the expression and clinical value of lncRNAs in ccRCC, and lncRNAs hold promise to be diagnostic, prognostic, and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaoyu Chao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Pei Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiaoyu Ma
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Zhenfen Li
- Kaifeng Tumor Hospital, Kaifeng 475004, China
| | - Yubing Xia
- Kaifeng Tumor Hospital, Kaifeng 475004, China
| | - Ying Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Linna Ge
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Linzhu Tian
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Hong Zheng
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yaowu Du
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou 450000, China
| | - Zhanjie Zuo
- Thoracic Cancer Treatment Center, Armed police Beijing Corps Hospital, Beijing 100027, China
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
75
|
LncRNA MALAT1 Facilitates Ovarian Cancer Progression through Promoting Chemoresistance and Invasiveness in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms221910201. [PMID: 34638541 PMCID: PMC8508663 DOI: 10.3390/ijms221910201] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 01/06/2023] Open
Abstract
Upregulation of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1, also known as nuclear-enriched abundant transcript 2 (NEAT2) or LINC00047) was found in various solid tumors, including epithelial ovarian cancer (EOC). MALAT1 is a long noncoding (lnc)RNA that regulates many functional signaling pathways, including tumorigenesis. Herein, we observed the consistent upregulation of MALAT1 in MYST4-overexpressing cell lines, while MALAT1 was frequently found to be upregulated in various types of clinical carcinoma tissues, especially EOC. To further investigate the lncRNA MALAT1 in EOC progression, the transduced overexpression of MALAT1 in EOC cell lines and cancer-associated fibroblasts (CAFs) was employed. We found that MALAT1 overexpression in EOC cell lines significantly increased drug resistance, cell migration, and invasion. Furthermore, the concomitant overexpression of MALAT1 in EOC cells and CAFs dramatically increased EOC cell invasion. Accordingly, a mechanistic investigation of MALAT1 overexpression in EOC cells showed that expressions of the cytokines interleukin (IL)-1β and p-P38/p-NFκB/Cox2/prostaglandin E2 (PGE2) signaling were significantly increased, which stimulated inflammatory responses, whereas cell apoptosis was inhibited due to increased Bcl-2 levels and reduced Caspase3 levels. After MALAT1 was overexpressed in EOC cells, and the cyclin D1, p-PI3K, and p-Akt expressions increased, suggesting the promotion of tumor cell proliferation, while increased zinc finger E-box-binding homeobox-2 (ZEB2), yes-associated protein (YAP), and vimentin expression with E-cadherin downregulation indicated the enhancement of the epithelial-to-mesenchymal transition (EMT) in terms of metastasis, thereby triggering EOC progression. Together, our findings demonstrate how MALAT1 overexpression facilitates an oncogenic function through inhibiting tumor cell apoptosis, combined with increasing tumor cell inflammation, proliferation, and invasion in the EOC tumor microenvironment. MALAT1 is thus a potential diagnostic marker and therapeutic for this malignancy.
Collapse
|
76
|
Hao A, Wang Y, Stovall DB, Wang Y, Sui G. Emerging Roles of LncRNAs in the EZH2-regulated Oncogenic Network. Int J Biol Sci 2021; 17:3268-3280. [PMID: 34512145 PMCID: PMC8416728 DOI: 10.7150/ijbs.63488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is a life-threatening disease, but cancer therapies based on epigenetic mechanisms have made great progress. Enhancer of zeste homolog 2 (EZH2) is the key catalytic component of Polycomb repressive complex 2 (PRC2) that mediates the tri-methylation of lysine 27 on histone 3 (H3K27me3), a well-recognized marker of transcriptional repression. Mounting evidence indicates that EZH2 is elevated in various cancers and associates with poor prognosis. In addition, many studies revealed that EZH2 is also involved in transcriptional repression dependent or independent of PRC2. Meanwhile, long non-coding RNAs (lncRNAs) have been reported to regulate numerous and diverse signaling pathways in oncogenesis. In this review, we firstly discuss functional interactions between EZH2 and lncRNAs that determine PRC2-dependent and -independent roles of EZH2. Secondly, we summarize the lncRNAs regulating EZH2 expression at transcription, post-transcription and post-translation levels. Thirdly, we review several oncogenic pathways cooperatively regulated by lncRNAs and EZH2, including the Wnt/β-catenin and p53 pathways. In conclusion, lncRNAs play a key role in the EZH2-regulated oncogenic network with many fertile directions to be explored.
Collapse
Affiliation(s)
- Aixin Hao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yunxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, the United States
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
77
|
Kuai L, Jiang JS, Li W, Li B, Yin SY. Long non-coding RNAs in diabetic wound healing: Current research and clinical relevance. Int Wound J 2021; 19:583-600. [PMID: 34337861 PMCID: PMC8874090 DOI: 10.1111/iwj.13655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/15/2021] [Accepted: 06/21/2021] [Indexed: 01/23/2023] Open
Abstract
Diabetic wounds are a protracted complication of diabetes mainly characterised by chronic inflammation, obstruction of epithelialization, damaged blood vessels and collagen production (maturation), as well as neuropathy. As a non‐coding RNA (ncRNA) that lack coding potential, long non‐coding RNAs (lncRNAs) have recently been reported to play a salient role in diabetic wound healing. Here, this review summarises the roles of lncRNAs in the pathology and treatments of diabetic wounds, providing references for its potential clinical diagnostic criteria or therapeutic targets in the future.
Collapse
Affiliation(s)
- Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Si Jiang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
78
|
Jin C, Shi L, Li K, Liu W, Qiu Y, Zhao Y, Zhao B, Li Z, Li Y, Zhu Q. Mechanism of tumor‑derived extracellular vesicles in regulating renal cell carcinoma progression by the delivery of MALAT1. Oncol Rep 2021; 46:187. [PMID: 34278501 PMCID: PMC8298989 DOI: 10.3892/or.2021.8138] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinoma (RCC) is a major healthcare burden globally. Tumor-derived extracellular vesicles (EVs) contribute to the formation of a pro-metastatic microenvironment. In the present study, we explored the role and mechanism of RCC cell 786-O-derived EVs (786-O-EVs) in RCC. First, 786-O-EVs were extracted and identified, and EV internalization of RCC cells was observed. RCC cell malignant behaviors and long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression patterns were detected before and after 786-O-EV treatment. MALAT1 was intervened to evaluate RCC cell behaviors. The downstream mechanism involving MALAT1 was predicted. In addition, the relationship among MALAT1, transcription factor CP2 like 1 (TFCP2L1) and ETS proto-oncogene 1, transcription factor (ETS1) was analyzed. TFCP2L1 expression patterns were measured after 786-O-EV exposure. Tumor xenograft formation assay and lung metastasis model were adopted to verify the role of 786-O-EVs in vivo in RCC. It was found that 786-O-EVs could be internalized by RCC cells. 786-O-EVs promoted RCC cell malignant behaviors, accompanied by elevated MALAT1 expression levels. The 786-O-EVs with MALAT1 knockdown attenuated the promotive effect of sole 786-O-EVs on RCC cells. MALAT1 located ETS1 in the TFCP2L1 promoter and negatively regulated TFCP2L1, and ETS1 protein could specifically bind to MALAT1. 786-O-EVs enhanced the binding of ETS1 and the TFCP2L1 promoter and decreased TFCP2L1 expression. In vivo, 786-O-EVs promoted tumor growth and RCC lung metastasis, which was suppressed following inhibition of MALAT1. Our findings indicated that 786-O-EVs promoted RCC invasion and metastasis by transporting MALAT1 to promote the binding of transcription factor ETS1 and TFCP2L1 promoter.
Collapse
Affiliation(s)
- Chengluo Jin
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Linmei Shi
- School of Health Management, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Kunlun Li
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Wei Liu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Yu Qiu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Yakun Zhao
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Bai Zhao
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Zhexun Li
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Yifei Li
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| | - Qingguo Zhu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Nangang, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
79
|
Comprehensive Characterization of Common and Cancer-Specific Differently Expressed lncRNAs in Urologic Cancers. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5515218. [PMID: 34335862 PMCID: PMC8286197 DOI: 10.1155/2021/5515218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023]
Abstract
Urologic cancers, comprising prostate carcinoma (PCa), renal cell carcinoma (RCC), and bladder carcinoma (BCa), were the commonly occurred carcinoma amid males. Long noncoding RNAs (lncRNAs) with the length of more than 200 nt functioned importantly in physiological and pathological advancement. Nevertheless, further investigation regarding lncRNA expression feature and function in urologic cancers should be essential. This study is aimed at uncovering the roles of the differently expressed lncRNAs in urologic cancers. The data of gene expression levels was downloaded from lncRNAtor datasets. The lncRNA expression pattern existing in different urologic cancers was assessed by hierarchical clustering analysis. Gene Ontology (GO) analysis and KEGG pathway analysis were separately applied to evaluate the biological function and process and the biological pathways involving differently expressed lncRNAs. Our results indicated that 18 lncRNA expressions were increased, and 16 lncRNA expressions were reduced in urologic cancers after comparison with that in normal tissues. Moreover, our results demonstrated 61, 422, 137, and 281 lncRNAs were specifically dysregulated in bladder cancer (BLCA), kidney renal clear cell cancer (KIRC), kidney renal papillary cell cancer (KIRP), and prostate adenocarcinoma (PRAD), respectively. Bioinformatics analysis showed that differently expressed lncRNAs displayed crucially in urologic cancers. The prognostic value of common and cancer-specific differently expressed lncRNAs, such as PVT1, in cancer outcomes, was emphasized here. Our research has deeply unearthed the mechanism of differently expressed lncRNAs in urologic cancers development.
Collapse
|
80
|
Chen C, Zheng H. LncRNA LINC00944 Promotes Tumorigenesis but Suppresses Akt Phosphorylation in Renal Cell Carcinoma. Front Mol Biosci 2021; 8:697962. [PMID: 34291088 PMCID: PMC8287069 DOI: 10.3389/fmolb.2021.697962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a kind of RNA that possesses longer than 200 nucleotides and lacks protein coding function. It was recognized as a junk sequence for a long time. Recent studies have found that lncRNAs are actively functioning in almost every aspect of cell biology and involved in a variety of biological functions. LncRNAs are closely related to a variety of human diseases, especially tumors. Recently, lncRNAs are being increasingly reported in renal cancer. In our study, we identified the expression of lncRNA LINC00944 is significantly elevated in renal cell carcinoma (RCC) tissues and cell lines and high LINC00944 expression is significantly correlated with the tumor stage and prognosis of RCC. The knockdown of LINC00944 by CRISPR/dCas9-KRAB in higher expressing 786-O and 769-P RCC cells could significantly decrease proliferation and migration and also promote phosphorylation of Akt compared with the control group. Our study is the first to report the function of lncRNA LINC00944 in RCC. And we provide clinicopathological and experimental evidence that lncRNA LINC00944 acts as an oncogene in RCC, suggesting that targeting lncRNA LINC00944 expression might be a promising therapeutic strategy for the treatment of RCC.
Collapse
Affiliation(s)
- Chiheng Chen
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hanxiong Zheng
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
81
|
Yu Y, Zhao Y, Wang C, Zhang X, Liu X. Long noncoding RNAs as diagnostic biomarkers for the early detection of digestive tract cancers: a systematic review and meta-analysis. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 112:797-804. [PMID: 32338027 DOI: 10.17235/reed.2020.5450/2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND long noncoding RNAs (lncRNAs) have attracted attention recently. However, many inconsistencies frequently appeared for the early diagnosis of digestive tract cancers (DTCs). We performed this meta-analysis to describe the diagnostic performance of lncRNAs in the discrimination of DTCs. METHODS data were extracted from PubMed, Web of Science, Embase, and Cochrane Library. Their quality was evaluated using the revised Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). Such parameters as sensitivity and specificity were included for pooled analyses. The STATA 12.0 and Meta-Disc 1.4 software packages were used to perform the statistical analysis. RESULTS sixty-nine papers were included in this meta-analysis. The pooled analysis of DTCs showed that lncRNAs had a sensitivity of 0.78 and a specificity of 0.80. The area under the summary ROC curve (AUC) was 0.86. For gastric cancer (GC), the pooled sensitivity and specificity were 0.77 (95 % CI: 0.72-0.81) and 0.75 (95 % CI: 0.71-0.79), respectively, and the AUC was 0.83. For colorectal cancer (CRC), these three parameters were 0.82 (95 % CI: 0.76-0.86), 0.84 (95 % CI: 0.79-0.88), and 0.90, respectively. For esophageal cancer (EC) sensitivity was 0.74 (95 % CI: 0.67-0.80) and specificity reached 0.86 (95 % CI: 0.72-0.93), with an AUC of 0.82. CONCLUSIONS LncRNAs show potential diagnostic value for discrimination between DTCs.
Collapse
Affiliation(s)
- Yinghui Yu
- School of Public Health, Jilin University, China
| | - Yinlong Zhao
- Department of Nuclear Medicine, the 2nd Hospital of Jilin University, China
| | - Chunpeng Wang
- School of Mathematics and Statistics, Northeast Normal University, China
| | | | - Xin Liu
- School of Public Health, Jilin University,
| |
Collapse
|
82
|
Uthman YA, Ibrahim KG, Abubakar B, Bello MB, Malami I, Imam MU, Qusty N, Cruz-Martins N, Batiha GES, Abubakar MB. MALAT1: A Promising Therapeutic Target for the Treatment of Metastatic Colorectal Cancer. Biochem Pharmacol 2021; 190:114657. [PMID: 34144008 DOI: 10.1016/j.bcp.2021.114657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022]
Abstract
Cancer metastasis research has emerged in recent years as one of the most important topics of debate in the discovery and development of novel anticancer therapies. Colorectal cancer (CRC), the third most common cancer worldwide, has a high mortality rate due to recurrence and distant metastasis to the liver. Several non-coding RNAs (ncRNAs) have been linked to metastatic CRC (mCRC), including the long non-coding RNA (lncRNA) Metastasis-Associated Lung-Adenocarcinoma Transcript 1 (MALAT1). MALAT1 is an RNA that has been linked to tumor cell proliferation, progression, epithelial-mesenchymal transition (EMT), cell migration and invasion, metastasis, and survival in mammalian species. Previously, there was no convincing evidence linking MALAT1 to mCRC. Studies have shown that MALAT1 functions as a competitive endogenous RNA (ceRNA) with microRNAs (miRNAs) and interacts directly with oncogenes and proteins. This RNA also activates several signaling pathways, including Wnt/β-catenin, PI3K/Akt/mTOR, and EMT. Meanwhile, standard chemotherapy and immunotherapy are the current treatment options for mCRC patients. However, evidence-based studies have recently demonstrated that inhibiting the MALAT1 RNA transcript can be considered as a treatment option for mCRC, highlighting the need to investigate its roles as a therapeutic target in mCRC. Thus, in this review, we looked at studies that linked MALAT1 to multiple signaling pathways implicated in mCRC, as well as its potential as a therapeutic target for the treatment of mCRC.
Collapse
Affiliation(s)
- Yaaqub Abiodun Uthman
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Kasimu Ghandi Ibrahim
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Naeem Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Portugal.
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria; Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria.
| |
Collapse
|
83
|
Chang L, Li J, Ding J, Lian Y, Huangfu C, Wang K. Roles of long noncoding RNAs on tumor immune escape by regulating immune cells differentiation and function. Am J Cancer Res 2021; 11:2369-2385. [PMID: 34249405 PMCID: PMC8263655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/20/2021] [Indexed: 06/13/2023] Open
Abstract
A long noncoding RNA (lncRNA) transcript is generally more than 200 nucleotides in length and rarely codes for any protein. Currently, many lncRNAs have been identified among mammalian genomes, and their known functions are associated with various physiological activities or pathological processes. Some lncRNAs are dysregulated in a variety of malignant tumors, while increasing evidence indicates that abnormal expression can contribute to the regulation of immune cells in tumors and to shaping the immune response. More specifically, lncRNAs participate in regulating the differentiation of immune cells, also known as myeloid and lymphoid cells, as well as recruiting various immunosuppressive factors to influence the tumor microenvironment, thereby promoting tumor cell immune escape. However, we still know very little about the specific mechanism of lncRNAs in immune escape of cancer. Nonetheless, although unprecedented achievements have allowed the development of a new generation of anti-tumor immune therapies to be applied in clinical trials, the drug resistance caused by immune escape has become a major clinical challenge. The focus of this review is to describe the relationship among lncRNAs, immune cells, and tumor immune escape, in order to identify novel diagnostic and therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| | - Juan Li
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| | - Yifan Lian
- Department of Gastroenterology, Zhongshan Hospital, Xiamen UniversityXiamen, Fujian, People’s Republic of China
| | - Chaonan Huangfu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
84
|
Yao C, Wang Q, Wang Y, Wu J, Cao X, Lu Y, Chen Y, Feng W, Gu X, Dun XP, Yu B. Loc680254 regulates Schwann cell proliferation through Psrc1 and Ska1 as a microRNA sponge following sciatic nerve injury. Glia 2021; 69:2391-2403. [PMID: 34115425 DOI: 10.1002/glia.24045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injury triggers sequential phenotype alterations in Schwann cells, which are critical for axonal regeneration. Long noncoding RNAs (lncRNAs) are long transcripts without obvious coding potential. It has been reported that lncRNAs participate in diverse biological processes and diseases. However, the role of lncRNA in Schwann cells and peripheral nerve regeneration is unclear. Here, we identified an lncRNA, loc680254, which is upregulated in rat sciatic nerve after peripheral nerve injury. The loc680254 knockdown inhibits Schwann cell proliferation, enhances apoptosis, and hinders cell cycle, while loc680254 overexpression has the opposite effect. Mechanically, we found that loc680254 might act as a microRNA sponge to regulate the expression of mitosis-related gene, spindle and kinetochore associated complex subunit 1 (Ska1) and proline/serine-rich coiled-coil 1 (Psrc1). Silencing of Psrc1 or Ska1 attenuates the effect of loc680254 overexpression on Schwann cell proliferation. Finally, we repaired the rat sciatic nerve gap with chitosan scaffolds loaded with loc680254-overexpressing Schwann cells and evaluated axon regeneration and functional recovery. Our results indicated that loc680254 is a new potential modulator for Schwann cell proliferation, which could be targeted to develop novel therapeutic strategies for peripheral nerve repair.
Collapse
Affiliation(s)
- Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qihui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiancheng Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuemin Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yanping Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Xin-Peng Dun
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, Devon, UK
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
85
|
Tan S, Chen J. si-MALAT1 attenuates thymic cancer cell proliferation and promotes apoptosis via the miR-145-5p/HMGA2 pathway. Oncol Lett 2021; 22:585. [PMID: 34122636 PMCID: PMC8190774 DOI: 10.3892/ol.2021.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/15/2021] [Indexed: 11/05/2022] Open
Abstract
Metastasis-associated-lung-adenocarcinoma-transcript-1 (MALAT1) is a long non-coding RNA that is considered a potential tumor marker. The present study aimed to investigate the effect and mechanism of MALAT1 on cell proliferation and apoptosis in thymic cancer cells. IU-TAB-1, A549, HCT-116 and 293T cells were screened by reverse transcription-quantitative PCR to assess high-mobility group AT-hook 2 (HMGA2) expression in various types of cancer cells and were transfected with small interfering (si)RNA targeting MALAT1 (si-MALAT1). Cell proliferation was evaluated by Cell Counting Kit-8 assay. Cell apoptosis and cell cycle were examined using flow cytometry. The protein expression of cyclin D1, cyclin E, Bax, Bcl-2 and HMGA2 was determined by western blot analysis, while the associations between MALAT1 and microRNA (miR)-145-5p and between HMGA2 and miR-145-5p were determined by luciferase reporter assay. Among the four cell lines evaluated, IU-TAB-1 showed the highest expression of MALAT1; thus, IU-TAB-1 cells were selected for subsequent experiments. Compared with the findings in the control group, si-MALAT1 significantly decreased the cell proliferation of IU-TAB-1 cells, whereas the apoptosis levels and number of cells in G2 phase were increased. The protein expression levels of cyclin D1, cyclin E, Bcl-2 and HMGA2 were significantly decreased in the si-MALAT1 group compared with those in the control group, while Bax levels were significantly increased. After treatment with si-MALAT1 in combination with miR-145-5p mimics or inhibitors, cell proliferation and apoptosis were respectively enhanced and inhibited in IU-TAB-1 cells. miR-145-5p inhibited the luciferase activity of IU-TAB-1 cells transfected with the MALAT1 or HMGA2 3' untranslated region. In conclusion, si-MALAT1 significantly attenuated cell proliferation and apoptosis via the miR-145-5p/HMGA2 pathway in thymic cancer cells.
Collapse
Affiliation(s)
- Sheng Tan
- Department of Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Jili Chen
- Department of Ophthalmology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
86
|
Ramya Devi KT, Karthik D, Mahendran T, Jaganathan MK, Hemdev SP. Long noncoding RNAs: role and contribution in pancreatic cancer. Transcription 2021; 12:12-27. [PMID: 34036896 DOI: 10.1080/21541264.2021.1922071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Noncoding RNAs are proclaimed to be expressed in various cancer types and one such type is found to be pancreatic ductal adenocarcinoma (PDAC). The long noncoding RNAs (LncRNAs) affect the migration, invasion, and growth of tumor cells by playing important roles in the process of epigenesis, post-transcription, and transcriptional regulation along with the maintenance of apoptosis and cell cycle. It is quite subtle whether the alterations in lncRNAs would impact PDAC progression and development. This review throws a spotlight on the lncRNAs associated with tumor functions: MALAT-1, HOTAIR, HOXA13, H19, LINC01559, LINC00460, SNHG14, SNHG16, DLX6-AS1, MSC-AS1, ABHD11-AS1, DUXAP8, DANCR, XIST, DLEU2, etc. are upregulated lncRNAs whereas GAS5, HMlincRNA717, MIAT, LINC01111, lncRNA KCNK15-AS1, etc. are downregulated lncRNAs inhibiting the invasion and progression of PDAC. These data provided helps in the assessment of lncRNAs in the development, metastasis, and occurrence of PDAC and also play a vital role in the evolution of biomarkers and therapeutic agents for the treatment of PDAC.
Collapse
Affiliation(s)
- K T Ramya Devi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Dharshene Karthik
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India.,Department of Industrial Biotechnology, Sri Venkateswara College of Engineering, Chennai, India
| | - TharunSelvam Mahendran
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Sanjana Prakash Hemdev
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
87
|
Wang X, Ou H, Zhou L, Liu H, Liu X, Zhang H. Long non-coding RNA LUCAT1 promotes the progression of clear cell renal cell carcinoma via the microRNA-375/YAP1 axis. Exp Ther Med 2021; 22:754. [PMID: 34035851 PMCID: PMC8135135 DOI: 10.3892/etm.2021.10186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common renal cell carcinoma with a high mortality rate. Lung cancer-associated transcript 1 (LUCAT1) has been reported to be a potential biomarker of prognosis in human ccRCC. However, the underlying mechanism of the function of LUCAT1 in ccRCC remains poorly understood. The present study aimed to investigate the role and underlying mechanism of LUCAT1 in ccRCC. The expression level of LUCAT1, microRNA-375 (miR-375) and yes-associated protein 1 (YAP1) in ccRCC tissues and cells was detected by reverse transcription-quantitative PCR, and the protein level of YAP1 was detected by western blotting. The effects of LUCAT1 on cell proliferation, migration and invasion were analyzed using Cell Counting Kit-8 and Transwell assays. The association between miR-375 and LUCAT1 or miR-375 and YAP1 was predicted by lncBase Predicted v.2 or TargetScan and verified using dual-luciferase reporter assay. The effect of LUCAT1 on ccRCC progression in vivo was evaluated using a xenograft tumor model. The results revealed that LUCAT1 and YAP1 were upregulated and miR-375 was downregulated in ccRCC tissues and cells. LUCAT1 knockdown suppressed cell proliferation, migration and invasion, which were reversed by the inhibition of miR-375. In addition, YAP1 overexpression attenuated the inhibitory effects of miR-375 overexpression on cell proliferation, migration and invasion. Subsequent experiments suggested that LUCAT1 regulated YAP1 expression by sponging miR-375. Therefore, LUCAT1 exerted its role by regulating the miR-375/YAP1 axis in vitro. Moreover, LUCAT1 knockdown suppressed the growth of ccRCC xenograft tumors in vivo. These results collectively revealed that LUCAT1 promoted the proliferation, migration and invasion of ccRCC by the upregulation of YAP1 via sponging miR-375, which may be used as a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Oncology, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Hui Ou
- Department of Oncology, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Liangfen Zhou
- Department of Neonatology, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Hengyu Liu
- Department of Oncology, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| | - Xiaobao Liu
- Department of Oncology, The Second People's Hospital of Chenzhou, Chenzhou, Hunan 423000, P.R. China
| | - Huiyun Zhang
- Department of Oncology, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan 423000, P.R. China
| |
Collapse
|
88
|
Qiao EQ, Yang HJ, Zhang XP. Screening of miRNAs associated with lymph node metastasis in Her-2-positive breast cancer and their relationship with prognosis. J Zhejiang Univ Sci B 2021; 21:495-508. [PMID: 32478495 DOI: 10.1631/jzus.b1900584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to identify some biomarkers for predicting lymph node metastasis and prognosis of human epidermal growth factor receptor 2 (Her-2)-positive breast cancer (BC). We analyzed correlations between microRNAs (miRNAs) and the prognosis of patients with BC based on data collected from The Cancer Genome Atlas (TCGA) database. The expression levels of miR-455, miR-143, and miR-99a were measured in clinical samples of Her-2-positive BC patients with different degrees of lymph node metastasis. We investigated the impacts of overexpressed miR-455 on the proliferation and invasiveness of MDA-MB-453 cells and measured its effects on the expression of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of miR-455 was significantly and positively correlated to the prognosis and overall survival (OS) of the BC (P=0.028), according to TCGA information. The expression level of miR-455 was positively correlated with OS and relapse-free survival (RFS) of patients with Her-2-positive BC, and was negatively correlated with the number of metastatic lymph nodes (P<0.05). Transwell assay suggested that MDA-MB-453 cells became much less invasive (P<0.01) after being transfected with miR-455 mimics. During the qRT-PCR, the expression level of MALAT1 declined significantly after transfection (P<0.01). Overexpressed miR-455 significantly inhibited the proliferation and migration of MDA-MB-453 cells and the expression of MALAT1. We conclude that miR-455 may be a useful potential biomarker for forecasting lymph node metastasis and the prognosis of Her-2-positive BC patients. miR-455 may play an important role in lymph node metastasis of BC by interacting with MALAT1.
Collapse
Affiliation(s)
- En-Qi Qiao
- Department of Breast Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Hong-Jian Yang
- Department of Breast Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Xi-Ping Zhang
- Department of Breast Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| |
Collapse
|
89
|
Zhang C, Gu H, Liu D, Fang J, Yang Y. The Role of MRPL23 Antisense RNA 1 (MRPL23-AS1) in the Pre-Metastatic Microenvironment of Malignancy During the Process of Epithelial-Mesenchymal Transition. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We aimed to explore MRPL23-AS1’s role in the pre-metastatic microenvironment of malignancy during epithelial-mesenchymal transition (EMT). Identification and verification of lncRNA-interacting proteins in salivary adenoid cystic carcinoma (SACC) cells were conducted via RNA-pulldown,
silver staining, and Western blotting. RIP and RIP-seq were sequentially administered to verify the binding partners of lncRNA. CHIRP was performed to detect the promoter DNA in the downstream of lncRNA-protein complex. Ultimately CHIP-qPCR detected the effects of lncRNA on the binding degree
of its interacting protein to the promoter DNA in the downstream genes and the methyla-tion level of histones in the promoter region. The exosomes secreted by different SACC cells were extracted from culture supernatant to measure lncRNA expression via qPCR. MRPL23-AS1 interacted with EZH2
protein and promoted EZH2 binding to E-cadherin gene promoter region along with the H3K27 methylation. MRPL23-AS1 could promote EMT of SACC cells and increase pulmonary vascular endothelial cells permeability via exosomes secretion. MRPL23-AS1 up-regulated VEGFA, while down-regulated E-cadherin
and VE-cadherin in endothelial cells. Exosomes rich in MRPL23-AS1 could boost lung metastasis in vivo. MRPL23-AS1 inhibits E-cadherin level and promotes EMT of SACC cells, suggesting that it might be a biomarker and therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Pathology, Fuling Central Hospital of Chongqing, Chongqing, 408099, China
| | - Huxia Gu
- Department of Network Information, Fuling Central Hospital of Chongqing, Chongqing, 408099, China
| | - Dingrong Liu
- Department of Pathology, Fuling Central Hospital of Chongqing, Chongqing, 408099, China
| | - Jing Fang
- Department of Pathology, Fuling Central Hospital of Chongqing, Chongqing, 408099, China
| | - Yan Yang
- Department of Pathology, Fuling Central Hospital of Chongqing, Chongqing, 408099, China
| |
Collapse
|
90
|
Meng X, Wang ZF, Lou QY, Rankine AN, Zheng WX, Zhang ZH, Zhang L, Gu H. Long non-coding RNAs in head and neck squamous cell carcinoma: Diagnostic biomarkers, targeted therapies, and prognostic roles. Eur J Pharmacol 2021; 902:174114. [PMID: 33901464 DOI: 10.1016/j.ejphar.2021.174114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
At present, emerging evidence shows that non-coding RNAs (ncRNAs) play crucial roles for development of multiple tumors. Amongst these ncRNAs, long non-coding RNAs (lncRNAs) play prominent roles in physiological and pathological processes. LncRNAs are RNA transcripts larger than 200 nucleotides and have been shown to serve important regulatory roles in different types of cancer via interactions with DNA, RNA and proteins. Head and neck squamous cell carcinoma (HNSCC) is one of the most malignant tumors with low survival rates in advanced stages. Recently, lncRNAs have been demonstrated to be involved in a wide range of biological processes, including proliferation, metastasis, and prognosis of HNSCC. Therefore, this review describes molecular mechanisms of up- or down-regulation of lncRNAs and expounds their functions in pathology and clinical practices in HNSCC. It also highlights their potential clinical applications as biomarkers for the diagnosis, prognosis, and treatment of HNSCC. However, studies on lncRNAs are still not comprehensive, and more investigations are needed in the future.
Collapse
Affiliation(s)
- Xiang Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Zi-Fei Wang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Qiu-Yue Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Abigail N Rankine
- Clinical Medicine in Chinese (MBBS), Anhui Medical University, Hefei, 230032, China.
| | - Wan-Xin Zheng
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Zi-Hao Zhang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China; Periodontal Department, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
91
|
Wang C, Liu G, Yang H, Guo S, Wang H, Dong Z, Li X, Bai Y, Cheng Y. MALAT1-mediated recruitment of the histone methyltransferase EZH2 to the microRNA-22 promoter leads to cardiomyocyte apoptosis in diabetic cardiomyopathy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142191. [PMID: 33097254 DOI: 10.1016/j.scitotenv.2020.142191] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Diabetic patients often have a heightened risk of cardiomyopathy, even in the absence of traditional risk factors such as hypertension and atherosclerotic coronary artery disease. Diabetic cardiomyopathy is characterized by a typical cardiomyopathy specific to diabetes, the pathogenesis of which has yet to be fully elucidated. As a well-documented oncogenic long noncoding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been implicated in a variety of pathological processes, including diabetic complications. This study aimed to evaluate the functional roles of MALAT1 in the pathogenesis of diabetic cardiomyopathy. Spontaneously diabetic (db/db) C57BL/Ks mice were employed to establish diabetic cardiomyopathy models in vivo and high glucose (HG)-cultured mouse cardiomyocytes for myocardial damage models in vitro. Mouse left ventricular volume and function were evaluated by echocardiography, while the myocyte cross-sectional area was calculated to evaluate the degree of myocardial hypertrophy. TUNEL staining and flow cytometric analysis were performed to evaluate myocardial damage and cardiomyocyte apoptosis. Silencing of MALAT1 was found to attenuate cardiac dysfunction and inhibit cardiomyocyte apoptosis in db/db mice and HG-cultured mouse cardiomyocytes. MALAT1 recruited the histone methyltransferase EZH2 to the miR-22 promoter region and inhibited its expression. EZH2 induced an increased in the expression of ATP-binding cassette transporter A1 (ABCA1), which was identified to be a target gene of miR-22. Silencing of EZH2 was found to improve cardiac function and prevent cardiomyocyte apoptosis in db/db mice and HG-cultured mouse cardiomyocytes in the presence of MALAT1, suggesting that MALAT1 mediated myocardial damage by recruiting EZH2 to the miR-22 promoter. Taken together, this study's findings provide evidence confirming our hypothesis, suggesting the involvement of MALAT1 in the processes of cardiac function and cardiomyocyte apoptosis via the EZH2/miR-22/ABCA1 signaling cascade, which has potential therapeutic implications for the understanding of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Chong Wang
- Pathology Diagnosis Center, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157011, PR China
| | - Guibo Liu
- Department of Anatomy, School of Basic Medical Sciences, Mudanjiang Medical College, Mudanjiang 157011, PR China
| | - Heran Yang
- Department of Laboratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157011, PR China
| | - Sufen Guo
- Pathology Diagnosis Center, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157011, PR China
| | - Hongwei Wang
- Pathology Diagnosis Center, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157011, PR China
| | - Zhihui Dong
- Department of Imaging Division, Second Hospital of Mudanjiang Medical College, Mudanjiang 157011, PR China
| | - Xinxin Li
- Pathology Diagnosis Center, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157011, PR China
| | - Yuxin Bai
- Pathology Diagnosis Center, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157011, PR China
| | - Yongxia Cheng
- Pathology Diagnosis Center, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157011, PR China.
| |
Collapse
|
92
|
Galuppini F, Censi S, Moro M, Carraro S, Sbaraglia M, Iacobone M, Fassan M, Mian C, Pennelli G. MicroRNAs in Medullary Thyroid Carcinoma: A State of the Art Review of the Regulatory Mechanisms and Future Perspectives. Cells 2021; 10:955. [PMID: 33924120 PMCID: PMC8074316 DOI: 10.3390/cells10040955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare malignant neoplasia with a variable clinical course, with complete remission often difficult to achieve. Genetic alterations lead to fundamental changes not only in hereditary MTC but also in the sporadic form, with close correlations between mutational status and prognosis. In recent years, microRNAs (miRNAs) have become highly relevant as crucial players in MTC etiology. Current research has focused on their roles in disease carcinogenesis and development, but recent studies have expounded their potential as biomarkers and response predictors to novel biological drugs for advanced MTC. One such element which requires greater investigation is their mechanism of action and the molecular pathways involved in the regulation of gene expression. A more thorough understanding of these mechanisms will help realize the promising potential of miRNAs for MTC therapy and management.
Collapse
Affiliation(s)
- Francesca Galuppini
- Pathology Unit, Department of Medicine, University of Padua, Via Gabelli 61, 35121 Padua, Italy; (F.G.); (M.M.); (S.C.); (M.S.); (M.F.)
| | - Simona Censi
- Endocrinology Unit, Department of Medicine, University of Padua, Via Ospedale Civile 105, 35121 Padua, Italy; (S.C.); (C.M.)
| | - Margherita Moro
- Pathology Unit, Department of Medicine, University of Padua, Via Gabelli 61, 35121 Padua, Italy; (F.G.); (M.M.); (S.C.); (M.S.); (M.F.)
| | - Stefano Carraro
- Pathology Unit, Department of Medicine, University of Padua, Via Gabelli 61, 35121 Padua, Italy; (F.G.); (M.M.); (S.C.); (M.S.); (M.F.)
| | - Marta Sbaraglia
- Pathology Unit, Department of Medicine, University of Padua, Via Gabelli 61, 35121 Padua, Italy; (F.G.); (M.M.); (S.C.); (M.S.); (M.F.)
| | - Maurizio Iacobone
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128 Padua, Italy;
| | - Matteo Fassan
- Pathology Unit, Department of Medicine, University of Padua, Via Gabelli 61, 35121 Padua, Italy; (F.G.); (M.M.); (S.C.); (M.S.); (M.F.)
- Istituto Oncologico del Veneto, IOV-IRCCS, 35128 Padova, Italy
| | - Caterina Mian
- Endocrinology Unit, Department of Medicine, University of Padua, Via Ospedale Civile 105, 35121 Padua, Italy; (S.C.); (C.M.)
| | - Gianmaria Pennelli
- Pathology Unit, Department of Medicine, University of Padua, Via Gabelli 61, 35121 Padua, Italy; (F.G.); (M.M.); (S.C.); (M.S.); (M.F.)
| |
Collapse
|
93
|
Liang T, Xu F, Wan P, Zhang L, Huang S, Yang N, Wang Y. Malat-1 expression in bladder carcinoma tissues and its clinical significance. Am J Transl Res 2021; 13:3555-3560. [PMID: 34017536 PMCID: PMC8129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the expression of metastasis-associated lung adenocarcinoma transcript 1 (Malat-1) in bladder carcinoma and its relationship with clinicopathological characteristics and prognosis. METHODS Specimens were collected from 90 patients with bladder carcinoma who underwent urological surgery in our hospital. Twenty patients diagnosed with benign prostatic hyperplasia were selected as the negative control. The expression of Malat-1 was detected by real-time reverse transcription PCR, and its relationship with clinicopathological factors and prognosis was analyzed. RESULTS The expression of Malat-1 in bladder carcinoma tissues (2.55±0.31) was higher than that in adjacent tissues (1.62±0.42) and normal bladder mucosa tissues (0.84±0.06); the differences were statistically significant (t=13.647 and 27.302, both P<0.001). The high expression rate of Malat-1 in bladder carcinoma tissues (86.67%) was significantly higher than that in adjacent tissues (22.22%) and normal bladder mucosa tissues (5.00%; P=0.000 and 0.000). The high expression rate of Malat-1 was correlated with age, tumor staging, degree of differentiation and lymph node metastasis (P=0.018, 0.000, 0.000, and 0.000). The median survival time and the 1-year, 3-year and 5-year survival rates of patients with high Malat-1 expression were lower than those with low expression of Malat-1 (P=0.006, 0.011, 0.000 and 0.002). High expression of Malat-1 is an independent risk factor for poor overall survival (OS) in bladder cancer patients. CONCLUSION Overexpression of Malat-1 in bladder carcinoma tissues is associated with malignant biological characteristics and poor prognosis of patients.
Collapse
Affiliation(s)
- Tiejun Liang
- Department of Urology, The People’s Hospital of XinchangXinchang, Zhejiang Province, China
| | - Faren Xu
- Department of Urology, The People’s Hospital of XinchangXinchang, Zhejiang Province, China
| | - Peng Wan
- Department of Urology, The People’s Hospital of XinchangXinchang, Zhejiang Province, China
| | - Li Zhang
- Department of Pathology, The People’s Hospital of XinchangXinchang, Zhejiang Province, China
| | - Shaojun Huang
- Department of Urology, The People’s Hospital of XinchangXinchang, Zhejiang Province, China
| | - Nannan Yang
- Department of Urology, The People’s Hospital of XinchangXinchang, Zhejiang Province, China
| | - Yueyue Wang
- VIP Ward, The People’s Hospital of XinchangXinchang, Zhejiang Province, China
| |
Collapse
|
94
|
Zhang J, Jin S, Xiao W, Zhu X, Jia C, Lin Z. Long noncoding RNA LINC00641 promotes renal cell carcinoma progression via sponging microRNA-340-5p. Cancer Cell Int 2021; 21:210. [PMID: 33853611 PMCID: PMC8048250 DOI: 10.1186/s12935-021-01895-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging evidences have revealed that long non-coding RNAs (lncRNAs) have played critical roles in tumor occurrence and progression. LINC00641 has been reported to be involved in the initiation and development of several cancers in the recent years. However, the detailed biological role of LINC00641 in renal cell carcinoma (RCC) remains largely unclear. METHODS In this study, the expression and biological function of LINC00641 were assessed in renal carcinoma both in vitro and in vivo. Cell proliferation, migration and colony formation assay were performed to explore the effect of LINC00641on growth, progression and invasion of RCC cell. qRT-PCR, flow cytometry and luciferase reporter assay and in vivo tumorigenicity assay were also carried out. RESULTS The expression of LINC00641 was overexpressed in RCC tissues and cell lines, and high LINC00641 expression was correlated with tumor-node-metastasis stage. Furthermore, Silencing of LINC00641 remarkably inhibited the ability of cell proliferation, colony formation, and invasive capacities, as well as increasing the apoptotic rates of RCC cells in vitro. Mechanistically, miR-340-5p was validated to be targeted by LINC00641 and knockdown of miR-340-5p counteracted LINC00641 silencing-mediated inhibition of RCC progression. In addition, in vivo experiment confirmed the findings discovered in vitro. CONCLUSIONS These results suggested that LINC00641 promoted the progression of RCC by sponging miR-340-5p.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Xiao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuchao Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongming Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
95
|
Long non-conding RNA LOXL1-AS1 sponges miR-589-5p to up-regulate CBX5 expression in renal cell carcinoma. Biosci Rep 2021; 40:226653. [PMID: 33185692 PMCID: PMC7670581 DOI: 10.1042/bsr20200212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/27/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a common malignant tumor that seriously endangers people's health. In recent years, long non-coding RNAs (lncRNAs) have been discovered to play vital roles in diverse cancers, including RCC. LncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) has been found to exert carcinogenic functions in several cancers, but its role and mechanism in RCC have not been investigated. METHODS qRT-PCR was utilized for testing RNA expression and Western blot for protein expression in RCC tissues or cells. Then, we assessed cell function by conducting a series of functional experiments, such as 5-ethynyl-2'-deoxyuridine staining, colony formation, flow cytometry, JC-1, Western blot and transwell migration experiments. Following, RNA immunoprecipitation, pull down and luciferase reporter experiments were carried out to explore the regulatory mechanisms of LOXL1-AS1 in RCC. RESULTS LOXL1-AS1 was highly expressed in RCC tissues and cells. Moreover, knockdown of LOXL1-AS1 hampered RCC cell proliferation and migration. Importantly, miR-589-5p that was lowly expressed and worked as a tumor-inhibitor in RCC was found to bind with LOXL1-AS1. Furthermore, chromobox 5 (CBX5) targeted by miR-589-5p could expedite cell proliferation and migration in RCC. Finally, overexpressed CBX5 or inhibited miR-589-5p reversed the repressive impacts of silenced LOXL1-AS1 on RCC malignant phenotypes. CONCLUSIONS LncRNA LOXL1-AS1 sequestered miR-589-5p to augment CBX5 expression in RCC cells, opening a new way for potential development in RCC treatment.
Collapse
|
96
|
Rudzinska M, Czarnecka-Chrebelska KH, Kuznetsova EB, Maryanchik SV, Parodi A, Korolev DO, Potoldykova N, Svetikova Y, Vinarov AZ, Nemtsova MV, Zamyatnin AA. Long Non-Coding PROX1-AS1 Expression Correlates with Renal Cell Carcinoma Metastasis and Aggressiveness. Noncoding RNA 2021; 7:25. [PMID: 33920185 PMCID: PMC8167775 DOI: 10.3390/ncrna7020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can be specifically expressed in different tissues and cancers. By controlling the gene expression at the transcriptional and translational levels, lncRNAs have been reported to be involved in tumor growth and metastasis. Recent data demonstrated that multiple lncRNAs have a crucial role in renal cell carcinoma (RCC) progression-the most common malignant urogenital tumor. In the present study, we found a trend towards increased PROX1 antisense RNA 1 (PROX1-AS1) expression in RCC specimens compared to non-tumoral margins. Next, we found a positive correlation between PROX1-AS1 expression and the occurrence of distant and lymph node metastasis, higher tumor stage (pT1 vs. pT2 vs. pT3-T4) and high-grade (G1/G2 vs. G3/G4) clear RCC. Furthermore, global demethylation in RCC-derived cell lines (769-P and A498) and human embryonic kidney 293 (HEK293) cells induced a significant increase of PROX1-AS1 expression level, with the most remarkable change in HEK293 cells. In line with this evidence, bisulfite sequencing analysis confirmed the specific demethylation of bioinformatically selected CpG islands on the PROX1-AS1 promoter sequence in the HEK293 cell line but not in the tumor cells. Additionally, the human specimen analysis showed the hemimethylated state of CG dinucleotides in non-tumor kidney tissues, whereas the tumor samples presented the complete, partial, or no demethylation of CpG-islands. In conclusion, our study indicated that PROX1-AS1 could be associated with RCC progression, and further investigations may define its role as a new diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Magdalena Rudzinska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
| | | | - Ekaterina B. Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia
| | - Sofya V. Maryanchik
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
| | - Dmitry O. Korolev
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.P.); (Y.S.); (A.Z.V.)
| | - Nataliya Potoldykova
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.P.); (Y.S.); (A.Z.V.)
| | - Yulia Svetikova
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.P.); (Y.S.); (A.Z.V.)
| | - Andrey Z. Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.P.); (Y.S.); (A.Z.V.)
| | - Marina V. Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.B.K.); (S.V.M.); (A.P.); (M.V.N.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| |
Collapse
|
97
|
Wang H, Li J, Wang S, Lu X, Zhang G, Zhuang Y, Li L, Wang W, Lin P, Chen C, Wang H, Chen Q, Jiang Y, Qu J, Xu L. Contribution of structural accessibility to the cooperative relationship of TF-lncRNA in myopia. Brief Bioinform 2021; 22:6217725. [PMID: 33834194 DOI: 10.1093/bib/bbab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/12/2022] Open
Abstract
Transcriptional regulation is associated with complicated mechanisms including multiple molecular interactions and collaborative drive. Long noncoding RNAs (lncRNAs) have highly structured characteristics and play vital roles in the regulation of transcription in organisms. However, the specific contributions of conformation feature and underlying molecular mechanisms are still unclear. In the present paper, a hypothesis regarding molecular structure effect is presented, which proposes that lncRNAs fold into a complex spatial architecture and act as a skeleton to recruit transcription factors (TF) targeted binding, and which is involved in cooperative regulation. A candidate set of TF-lncRNA coregulation was constructed, and it was found that structural accessibility affected molecular binding force. In addition, transcription factor binding site (TFBS) regions of myopia-related lncRNA transcripts were disturbed, and it was discovered that base mutations affected the occurrence of significant molecular allosteric changes in important elements and variable splicing regions, mediating the onset and development of myopia. The results originated from structureomics and interactionomics and created conditions for systematic research on the mechanisms of structure-mediated TF-lncRNA coregulation in transcriptional regulation. Finally, these findings will help further the understanding of key regulatory roles of molecular allostery in cell physiological and pathological processes.
Collapse
Affiliation(s)
- Hong Wang
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University and cooperates with College of Bioinformatics Science and Technology at Harbin Medical University, Wenzhou 325027, P. R. China
| | - Jing Li
- College of Bioinformatics Science and Technology at Harbin Medical University, Wenzhou 325027, P. R. China
| | - Siyu Wang
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Xiaoyan Lu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Guosi Zhang
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Youyuan Zhuang
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Liansheng Li
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Wencan Wang
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Peng Lin
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Chong Chen
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Hao Wang
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Qi Chen
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology at Harbin Medical University, Wenzhou 325027, P. R. China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Liangde Xu
- School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering at Wenzhou Medical University, Wenzhou 325027, P. R. China
| |
Collapse
|
98
|
Han X, Yuan Z, Jing Y, Zhou W, Sun Y, Xing J. Knockdown of lncRNA TapSAKI alleviates LPS-induced injury in HK-2 cells through the miR-205/IRF3 pathway. Open Med (Wars) 2021; 16:581-590. [PMID: 33869780 PMCID: PMC8034242 DOI: 10.1515/med-2021-0204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/24/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
Sepsis is a common and lethal syndrome. Long non-coding RNA (lncRNA) transcript predicting survival in AKI (TapSAKI) has recently been found to serve as an important regulator in sepsis. However, the underlying mechanism of TapSAKI in sepsis pathogenesis remains largely unknown. Our data demonstrated that lipopolysaccharide (LPS)-induced HK-2 cell injury by weakening cell viability and enhancing cell apoptosis and inflammation. TapSAKI was upregulated and miR-205 was downregulated in LPS-induced HK-2 cells. TapSAKI knockdown or miR-205 overexpression alleviated LPS-induced cytotoxicity in HK-2 cells. TapSAKI sequestered miR-205 via acting as a miR-205 sponge. Moreover, the mitigating effect of TapSAKI silencing on LPS-induced HK-2 cell injury was mediated by miR-205. Additionally, the interferon regulatory factor 3 (IRF3) signaling was involved in the regulation of the TapSAKI/miR-205 axis on LPS-induced HK-2 cell damage. Our current study suggested that TapSAKI silencing relieved LPS-induced injury in HK-2 cells at least in part by sponging miR-205 and regulating the IRF3 signaling pathway, highlighting a novel understanding for sepsis pathogenesis and a promising target for this disease treatment.
Collapse
Affiliation(s)
- Xiaoning Han
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| | - Zhiyong Yuan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| | - Yajun Jing
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| | - Weigui Zhou
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| | - Yunbo Sun
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| | - Jinyan Xing
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao 266003, Shandong, China
| |
Collapse
|
99
|
Huang Y, Ling A, Pareek S, Huang RS. Oncogene or tumor suppressor? Long noncoding RNAs role in patient's prognosis varies depending on disease type. Transl Res 2021; 230:98-110. [PMID: 33152534 PMCID: PMC7936950 DOI: 10.1016/j.trsl.2020.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Functional studies of long noncoding RNAs (lncRNAs) are often performed in the context of only a single cancer type. However, the tissue-specific expression patterns of lncRNAs raise the question of whether lncRNA associations identified in one cancer type are relevant to other cancer types. Here, we examine the relationships between the expression levels of 50 cancer-related lncRNAs and survival data from 24 types of cancer in The Cancer Genome Atlas (TCGA) with the goal of identifying prognosis related lncRNAs. Our results suggest that high expression levels of certain lncRNAs are consistently associated with worse/better survival in a number of cancers, while other lncRNAs have different prognostic roles in different types of cancer. Our analysis also identifies 20 novel unadjusted associations that have not been reported before. In addition, in low-grade glioma (LGG), prognostic-related lncRNAs are identified after conditioning on known clinical biomarker and common therapy, revealing that 2 lncRNAs, FOXP4-AS1, and NEAT1, are associated with temozolomide response-a standard-of-care in LGG. Pathway analysis suggests NF-kB/STAT3 signaling pathway enrichment in LGG patients with high NEAT1 expression and DNA repair/myc gene set enrichment in LGG patients with high expression of FOXP4-AS1. Our work demonstrates the context dependency of lncRNAs across cancer types and highlights a number of lncRNAs as potential novel cancer prognosis markers.
Collapse
Affiliation(s)
- Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Alexander Ling
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Siddhika Pareek
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota; Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - R Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
100
|
He X, Miao Q, Yi Y, Hu W, Wu M, Wu Y, Zhang Q. Analysis of the regulation of metastasis-associated lung adenocarcinoma transcript 1 on the biological behavior of breast cancer. Transl Cancer Res 2021; 10:1609-1619. [PMID: 35116487 PMCID: PMC8799144 DOI: 10.21037/tcr-20-3221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/05/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a class of long non-coding RNA (lncRNA) that has been proved to be closely related to many cancers. METHODS The relevant research on MALAT1 in cancers published in recent years were collected and integrated. CiteSpace was employed to draw a knowledge map of MALAT1 in breast cancer, to evaluate the research front-burner issues. Then, multiple microarray data sets were searched from online data for meta-analysis to evaluate the relationship between MALAT1 and breast cancer survival rate. RESULTS The results showed that MALAT1 had been widely studied in the proliferation and differentiation of cancer cells, and MALAT1 might regulate breast cancer through the PI3K/AKT/mTOR signaling pathway. In addition, high expression of MALAT1 had a significant correlation with relapse-free survival (HR: 1.51, 95% CI: 0.79-2.29), while there was no significant correlation between MALAT1 expression and overall survival (HR: 1.09, 95% CI: 0.63-1.72). CONCLUSIONS The expression level of lncRNA MALAT1 was closely related to cancer progression and prognosis of cancer patients. Moreover, the expression of MALAT1 was strongly associated with the survival rate of recurrence-free breast cancer. However, since the present study only adopted the existing literature for visual analysis, subsequent experiments are needed to be done to verify this conclusion. It is hoped that this work could provide a theoretical foundation for promoting the clinical adoption of MALAT1 in the prediction, diagnosis, and treatment of breast cancer, and point out a new direction for the in-depth exploration of the function of MALAT1.
Collapse
Affiliation(s)
- Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinfang Miao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|