51
|
Curto J, Del Valle-Pérez B, Villarroel A, Fuertes G, Vinyoles M, Peña R, García de Herreros A, Duñach M. CK1ε and p120-catenin control Ror2 function in noncanonical Wnt signaling. Mol Oncol 2018; 12:611-629. [PMID: 29465811 PMCID: PMC5928365 DOI: 10.1002/1878-0261.12184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical and noncanonical Wnt pathways share some common elements but differ in the responses they evoke. Similar to Wnt ligands acting through the canonical pathway, Wnts that activate the noncanonical signaling, such as Wnt5a, promote Disheveled (Dvl) phosphorylation and its binding to the Frizzled (Fz) Wnt receptor complex. The protein kinase CK1ε is required for Dvl/Fz association in both canonical and noncanonical signaling. Here we show that differently to its binding to canonical Wnt receptor complex, CK1ε does not require p120‐catenin for the association with the Wnt5a co‐receptor Ror2. Wnt5a promotes the formation of the Ror2–Fz complex and enables the activation of Ror2‐bound CK1ε by Fz‐associated protein phosphatase 2A. Moreover, CK1ε also regulates Ror2 protein levels; CK1ε association stabilizes Ror2, which undergoes lysosomal‐dependent degradation in the absence of this kinase. Although p120‐catenin is not required for CK1ε association with Ror2, it also participates in this signaling pathway as p120‐catenin binds and maintains Ror2 at the plasma membrane; in p120‐depleted cells, Ror2 is rapidly internalized through a clathrin‐dependent mechanism. Accordingly, downregulation of p120‐catenin or CK1ε affects late responses to Wnt5a that are also sensitive to Ror2, such as SIAH2 transcription, cell invasion, or cortical actin polarization. Our results explain how CK1ε is activated by noncanonical Wnt and identify p120‐catenin and CK1ε as two critical factors controlling Ror2 function.
Collapse
Affiliation(s)
- Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aida Villarroel
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Guillem Fuertes
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Meritxell Vinyoles
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
52
|
Cui D, Zhao Y, Xu J. Activated CXCL5-CXCR2 axis promotes the migration, invasion and EMT of papillary thyroid carcinoma cells via modulation of β-catenin pathway. Biochimie 2018; 148:1-11. [PMID: 29471001 DOI: 10.1016/j.biochi.2018.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/16/2018] [Indexed: 01/08/2023]
Abstract
Initiation of epithelial-to-mesenchymal transition (EMT) is common in papillary thyroid carcinoma (PTC) and may contribute to its metastasis. Aims of the present study are to investigate whether and how the C-X-C motif chemokine ligand (CXCL)-5/C-X-C motif receptor 2 (CXCR2) axis affects PTC metastasis, with a focus on the EMT process. Herein, two PTC cell lines, KTC-1 and B-CPAP cells, identified as CXCR2-positive cells were used as the cell model. We found that a 24-h stimulation of 1 or 10 nM recombinant human CXCL5 (rhCXCL5) enhanced the migration and invasion of both KTC-1 and B-CPAP cells without affecting their proliferation. The migration- and invasion-promoting effects of rhCXCL5 were attenuated if CXCR2 was silenced by its specific short hairpin RNAs (shRNAs). EMT initiation is defined as downregulation of epithelial-cadherin (E-cadherin) and upregulation of N-cadherin, Vimentin and Snail. Our data showed that rhCXCL5-induced EMT in PTC cells was suppressed by CXCR2 shRNA. Furthermore, the active CXCL5-CXCR2 axis enhanced the phosphorylation of Akt at Ser 473 residue and that of glycogen synthase kinase-3 (GSK-3β) at Ser 9 residue, and accelerated the nuclear accumulation of β-catenin in PTC cells. Re-expression of the active form of β-catenin in PTC cells rescued their impaired invasiveness caused by the blockade of CXCL5-CXCR2 axis. In addition, CXCL5 and CXCR2 were overexpressed in the metastatic lymph nodes obtained from 18 patients with PTC. In summary, our study demonstrates that the activated CXCL5-CXCR2 axis contributes to the metastatic phenotype of PTC cells by modulating Akt/GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Dong Cui
- Department of Thyroid Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People's Republic of China.
| | - Yongfu Zhao
- Department of Thyroid Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People's Republic of China
| | - Jingchao Xu
- Department of Thyroid Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, People's Republic of China
| |
Collapse
|
53
|
Snail1-expressing cancer-associated fibroblasts induce lung cancer cell epithelial-mesenchymal transition through miR-33b. Oncotarget 2017; 8:114769-114786. [PMID: 29383119 PMCID: PMC5777731 DOI: 10.18632/oncotarget.23082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
Lung cancer has a high propensity for metastasis. Cancer-associated fibroblasts (CAFs) are the main type of stromal cells in cancer tissue, are activated by tumor cells, and play a significant role in tumor development. However, whether CAFs induce lung cancer cell metastasis, as well as pathway involved in CAF-induced lung cancer cell metastasis, is uncertain. Snail1 is a transcriptional factor whose expression in the stroma is associated with lower survival rates in patients with cancer. However, how Snail1 regulates the crosstalk between stromal cells and tumor cells when it is expressed in the stroma has not been determined. Altered microRNA (miRNA) expression is correlated with lung cancer metastasis. Our previous study of microRNAs showed that miR-33b levels were clearly reduced in lung cancer cell lines and lung cancer tissues, and miR-33b suppressed tumor cell epithelial-mesenchymal transition (EMT) when its expression was elevated. In this study, we found that co-culturing CAFs with lung cancer cells induced miR-33b downregulation and promoted epithelial cells EMT. Moreover, we found that miR-33b overexpression in lung cancer cells counteracted CAF-induced EMT. Interestingly, Snail1 expression in fibroblasts activate the inductive effects of CAFs on lung cancer cell EMT. Hence, understanding the molecular mechanism underlying the communication between stromal cells and tumor cells mediated by miR-33b may lead to the identification of novel targets for the treatment of lung cancer. Additionally, understanding the role of Snail1 driving CAFs to induce lung cancer cell EMT may provide with a new perspective on the treatment of lung cancer.
Collapse
|
54
|
Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017; 117:13566-13638. [DOI: 10.1021/acs.chemrev.7b00258] [Citation(s) in RCA: 1059] [Impact Index Per Article: 132.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenpei Fan
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Huang
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
55
|
Growth-induced stress enhances epithelial-mesenchymal transition induced by IL-6 in clear cell renal cell carcinoma via the Akt/GSK-3β/β-catenin signaling pathway. Oncogenesis 2017; 6:e375. [PMID: 28846080 PMCID: PMC5608922 DOI: 10.1038/oncsis.2017.74] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Stromal cell populations in the tumor microenvironment (TME) play a critical role in the oncogenesis and metastasis of renal cell carcinoma. In this study, we found that there are α-smooth muscle actin positive (α-SMA (+)) cells in the stroma of clear cell renal cell carcinoma (ccRCC) tissues, and their numbers are significantly associated with poor survival in ccRCC patients. Interleukin 6 (IL-6) is a critical diver that induces α-SMA (+) cells in ccRCC tissues via promotion of epithelial to mesenchymal transition (EMT) and stimulates migration and invasion in ccRCC. Peritumoral CD4+ T cells are the main source of IL-6 in ccRCC tissues. In addition to biochemical factors, mechanical compression within tumors affects tumor cell behavior. Tumors grown in a confined space exhibit intratumoral compressive stress and, with sufficient pressure, stress-stimulated migration of cancer cells. Moreover, a combination of IL-6 secreted by CD4+ T cells and growth-induced solid stress further contributes to the regulation of cancer cell morphogenesis, EMT and acquisition of a stemness phenotype. The effects in the combination group were driven by the Akt/GSK-3β/β-catenin signaling pathway, and deregulation of β-catenin expression was predictive of poor outcome in ccRCC patients. Notably, the expression of a cancer stem cell marker, CD44, was correlated with T stage, high Fuhrman grade and metastasis in ccRCC. These data provide evidence for new stress-reducing and IL-6 targeting strategies in cancer therapy.
Collapse
|
56
|
Jiang C, Zhang Q, Shanti RM, Shi S, Chang TH, Carrasco L, Alawi F, Le AD. Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells. Stem Cells 2017; 35:2083-2094. [PMID: 28699252 DOI: 10.1002/stem.2666] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/21/2017] [Accepted: 06/29/2017] [Indexed: 01/05/2023]
Abstract
Epithelial-mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083-2094.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology.,Key Laboratory of Oral Clinical Medicine, College of Stomatology.,Department of Orthodontics, the Affiliated Hospital of Medical College, Qingdao University, Shandong, People's Republic of China
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology
| | - Rabie M Shanti
- Department of Oral and Maxillofacial Surgery and Pharmacology.,Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, USA.,Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shihong Shi
- Department of Oral and Maxillofacial Surgery and Pharmacology
| | - Ting-Han Chang
- Department of Oral and Maxillofacial Surgery and Pharmacology
| | - Lee Carrasco
- Department of Oral and Maxillofacial Surgery and Pharmacology.,Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, USA
| | - Faizan Alawi
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania, USA
| | - Anh D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology.,Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
57
|
Brachelente C, Cappelli K, Capomaccio S, Porcellato I, Silvestri S, Bongiovanni L, De Maria R, Verini Supplizi A, Mechelli L, Sforna M. Transcriptome Analysis of Canine Cutaneous Melanoma and Melanocytoma Reveals a Modulation of Genes Regulating Extracellular Matrix Metabolism and Cell Cycle. Sci Rep 2017; 7:6386. [PMID: 28743863 PMCID: PMC5526991 DOI: 10.1038/s41598-017-06281-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Interactions between tumor cells and tumor microenvironment are considered critical in carcinogenesis, tumor invasion and metastasis. To examine transcriptome changes and to explore the relationship with tumor microenvironment in canine cutaneous melanocytoma and melanoma, we extracted RNA from formalin-fixed, paraffin-embedded (FFPE) specimens and analyzed them by means of RNA-seq for transcriptional analysis. Melanocytoma and melanoma samples were compared to detect differential gene expressions and significant enriched pathways were explored to reveal functional relations between differentially expressed genes. The study demonstrated a differential expression of 60 genes in melanomas compared to melanocytomas. The differentially expressed genes cluster in the extracellular matrix-receptor interaction, protein digestion and absorption, focal adhesion and PI3K-Akt (phosphoinositide 3-kinase/protein kinase B) signaling pathways. Genes encoding for several collagen proteins were more commonly differentially expressed. Results of the RNA-seq were validated by qRT-PCR and protein expression of some target molecules was investigated by means of immunohistochemistry. We hypothesize that the developing melanoma actively promotes collagen metabolism and extracellular matrix remodeling as well as enhancing cell proliferation and survival contributing to disease progression and metastasis. In this study, we also detected unidentified genes in human melanoma expression studies and uncover new candidate drug targets for further testing in canine melanoma.
Collapse
Affiliation(s)
| | - Katia Cappelli
- Department of Veterinary Medicine, 06126, Perugia, Italy
| | | | | | | | - Laura Bongiovanni
- Faculty of Veterinary Medicine, 64100, Teramo, Italy
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | - Luca Mechelli
- Department of Veterinary Medicine, 06126, Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, 06126, Perugia, Italy
| |
Collapse
|
58
|
Santamaria PG, Moreno‐Bueno G, Portillo F, Cano A. EMT: Present and future in clinical oncology. Mol Oncol 2017; 11:718-738. [PMID: 28590039 PMCID: PMC5496494 DOI: 10.1002/1878-0261.12091] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Epithelial/mesenchymal transition (EMT) has emerged as a key regulator of metastasis by facilitating tumor cell invasion and dissemination to distant organs. Recent evidences support that the reverse mesenchymal/epithelial transition (MET) is required for metastatic outgrowth; moreover, the existence of hybrid epithelial/mesenchymal (E/M) phenotypes is increasingly being reported in different tumor contexts. The accumulated data strongly support that plasticity between epithelial and mesenchymal states underlies the dissemination and metastatic potential of carcinoma cells. However, the translation into the clinics of EMT and epithelial plasticity processes presents enormous challenges and still remains a controversial issue. In this review, we will evaluate current evidences for translational applicability of EMT and depict an overview of the most recent EMT in vivo models, EMT marker analyses in human samples as well as potential EMT therapeutic approaches and ongoing clinical trials. We foresee that standardized analyses of EMT markers in solid and liquid tumor biopsies in addition to innovative tools targeting the E/M states will become promising strategies for future translation to the clinical setting.
Collapse
Affiliation(s)
- Patricia G. Santamaria
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| | - Gema Moreno‐Bueno
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
- Fundación MD Anderson InternationalMadridSpain
| | - Francisco Portillo
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| | - Amparo Cano
- Departamento de BioquímicaInstituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC‐UAM)Universidad Autónoma de Madrid (UAM)IdiPAZCIBERONCMadridSpain
| |
Collapse
|
59
|
Dalla Pozza E, Forciniti S, Palmieri M, Dando I. Secreted molecules inducing epithelial-to-mesenchymal transition in cancer development. Semin Cell Dev Biol 2017; 78:62-72. [PMID: 28673679 DOI: 10.1016/j.semcdb.2017.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a biologic process that allows a polarized epithelial cell to undergo multiple biochemical changes that enable it to assume a mesenchymal cell phenotype. EMT is involved in embryo development, wound healing, tissue regeneration, organ fibrosis and has also been proposed as the critical mechanism for the acquisition of malignant phenotypes by epithelial cancer cells. These cells have been shown to acquire a mesenchymal phenotype when localized at the invasive front of primary tumours increasing aggressiveness, invasiveness, metastatic potential and resistance to chemotherapy. There is now increasing evidence demonstrating that a crucial role in the development of this process is played by factors secreted by cells of the tumour microenvironment or by the tumour cells themselves. This review summarises the current knowledge of EMT induction in cancer by paracrine or autocrine mechanisms, by exosomes or free proteins and miRNAs.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Stefania Forciniti
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Marta Palmieri
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
60
|
Baulida J. Epithelial-to-mesenchymal transition transcription factors in cancer-associated fibroblasts. Mol Oncol 2017; 11:847-859. [PMID: 28544627 PMCID: PMC5496490 DOI: 10.1002/1878-0261.12080] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/03/2023] Open
Abstract
Beyond inducing epithelial‐to‐mesenchymal transcription (EMT), transcriptional factors of the Snail, ZEB and Twist families (EMT‐TFs) control global plasticity programmes affecting cell stemness and fate. Literature addressing the reactivation of these factors in adult tumour cells is very extensive, as they enable cancer cell plasticity and fuel both tumour initiation and metastatic spread. Incipient data reveal that EMT‐TFs are also expressed in fibroblasts, providing these with additional properties. Here, I will review recent reports on the expression of EMT‐TFs in cancer‐associated fibroblasts (CAFs). The new model suggests that EMT‐TFs can be envisioned as essential metastasis and chemoresistance‐promoting molecules, thereby enabling coordinated plasticity programmes in parenchyma and stroma–tumour compartments.
Collapse
Affiliation(s)
- Josep Baulida
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| |
Collapse
|
61
|
Han L, Xu J, Xu Q, Zhang B, Lam EWF, Sun Y. Extracellular vesicles in the tumor microenvironment: Therapeutic resistance, clinical biomarkers, and targeting strategies. Med Res Rev 2017; 37:1318-1349. [PMID: 28586517 DOI: 10.1002/med.21453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022]
Abstract
Numerous studies have proved that cell-nonautonomous regulation of neoplastic cells is a distinctive and essential characteristic of tumorigenesis. Two way communications between the tumor and the stroma, or within the tumor significantly influence disease progression and modify treatment responses. In the tumor microenvironment (TME), malignant cells utilize paracrine signaling initiated by adjacent stromal cells to acquire resistance against multiple types of anticancer therapies, wherein extracellular vesicles (EVs) substantially promote such events. EVs are nanoscaled particles enclosed by phospholipid bilayers, and can mediate intercellular communications between cancerous cells and the adjacent microenvironment to accelerate pathological proceeding. Here we review the most recent studies of EV biology and focus on key cell lineages of the TME and their EV cargoes that are biologically active and responsible for cancer resistance, including proteins, RNAs, and other potentially essential components. Since EVs are emerging as novel but critical elements in establishing and maintaining hallmarks of human cancer, timely and insightful understanding of their molecular properties and functional mechanisms would pave the road for clinical diagnosis, prognosis, and effective targeting in the global landscape of precision medicine. Further, we address the potential of EVs as promising biomarkers in cancer clinics and summarize the technical improvements in EV preparation, analysis, and imaging. We highlight the practical issues that should be exercised with caution to guide the development of targeting agents and therapeutic methodologies to minimize cancer resistance driven by EVs, thereby allowing to effectively control the early steps of disease exacerbation.
Collapse
Affiliation(s)
- L Han
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - J Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Q Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - B Zhang
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - E W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Y Sun
- Key Lab of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China.,Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA
| |
Collapse
|
62
|
Sistigu A, Di Modugno F, Manic G, Nisticò P. Deciphering the loop of epithelial-mesenchymal transition, inflammatory cytokines and cancer immunoediting. Cytokine Growth Factor Rev 2017; 36:67-77. [PMID: 28595838 DOI: 10.1016/j.cytogfr.2017.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Tumorigenesis and tumor progression relies on the dialectics between tumor cells, the extracellular matrix and its remodelling enzymes, neighbouring cells and soluble cues. The host immune response is crucial in eliminating or promoting tumor growth and the reciprocal coevolution of tumor and immune cells, during disease progression and in response to therapy, shapes tumor fate by activating innate and adaptive mechanisms. The phenotypic plasticity is a common feature of epithelial and immune cells and epithelial-mesenchymal transition (EMT) is a dynamic process, governed by microenvironmental stimuli, critical in tumor cell shaping, increased tumor cell heterogeneity and stemness. In this review we will outline how the dysregulation of microenvironmental signaling is crucial in determining tumor plasticity and EMT, arguing how therapy resistance hinges on these dynamics.
Collapse
Affiliation(s)
- Antonella Sistigu
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy; Department of General Pathology and Physiopathology, Università Cattolica del Sacro Cuore, largo Francesco Vito 1, 00168, Rome, Italy.
| | - Francesca Di Modugno
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00173, Rome, Italy
| | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
63
|
Zhao Z, Wang S, Lin Y, Miao Y, Zeng Y, Nie Y, Guo P, Jiang G, Wu J. Epithelial-mesenchymal transition in cancer: Role of the IL-8/IL-8R axis. Oncol Lett 2017; 13:4577-4584. [PMID: 28599458 DOI: 10.3892/ol.2017.6034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process that is associated with cancer metastasis and invasion. In cancer, EMT promotes cell motility, invasion and distant metastasis. Interleukin (IL)-8 is highly expressed in tumors and may induce EMT. The IL-8/IL-8R axis has a vital role in EMT in carcinoma, which is regulated by several signaling pathways, including the transforming growth factor β-spleen associated tyrosine kinase/Src-AKT/extracellular signal-regulated kinase, p38/Jun N-terminal kinase-activating transcription factor-2, phosphoinositide 3-kinase/AKT, nuclear factor-κB and Wnt signaling pathways. Blocking the IL-8/IL-8R signaling pathway may be a novel strategy to reduce metastasis and improve patient survival rates. This review will cover IL-8-IL-8R signaling pathway in tumor epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhiwei Zhao
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shichao Wang
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, Cancer Centre Karolinska, SE-171 76 Stockholm, Sweden
| | - Yali Miao
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ye Zeng
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongmei Nie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Peng Guo
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guangyao Jiang
- Outpatient Building, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
64
|
Pan Q, Meng L, Ye J, Wei X, Shang Y, Tian Y, He Y, Peng Z, Chen L, Chen W, Bian X, Wang R. Transcriptional repression of miR-200 family members by Nanog in colon cancer cells induces epithelial-mesenchymal transition (EMT). Cancer Lett 2017; 392:26-38. [PMID: 28163188 DOI: 10.1016/j.canlet.2017.01.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/20/2023]
Abstract
Nanog is an important embryonic stem cell (ESC) gene that does not function as a classical oncogene, but needs to cooperate with other molecules to potentiate tumorigenic activity. The question addressed by the present study was whether a miRNA link exists between Nanog and epithelial-mesenchymal transition (EMT)-mesenchymal-epithelial transition (MET) plasticity. Here, we found that Nanog mRNA expression level was inversely correlated with miR-200c and miR-200b expression levels in colon cancer cell lines and human colorectal cancer tissues. Forced Nanog expression in low-Nanog colon cancer cells inhibited miR-200c and miR-200b expression, and interfered Nanog expression in high-Nanog colon cancer cells promoted miR-200c and miR-200b expression. Furthermore, we confirmed that Nanog directly repressed transcription of the miR-200c and miR-200b genes, and miR-200c and miR-200b mediated Nanog-induced EMT occurrence. Luciferase and ChIP assays determined that Nanog bound directly to the potential Nanog binding sites in the miR-200c and miR-200b promoters and repressed their transcription. In conclusion, our findings suggest that Nanog modulates EMT-MET plasticity by regulating miR-200 clusters via a direct transcriptional mechanism, and the Nanog-miR-200 axis may be a good therapeutic target for CRC control.
Collapse
Affiliation(s)
- Qiong Pan
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Linkun Meng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jun Ye
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xiaolong Wei
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yangyang Shang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yin Tian
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yonghong He
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Zhihong Peng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Lei Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xiuwu Bian
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| | - Rongquan Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|