51
|
DeLuca VJ, Saleh T. Insights into the role of senescence in tumor dormancy: mechanisms and applications. Cancer Metastasis Rev 2023; 42:19-35. [PMID: 36681750 DOI: 10.1007/s10555-023-10082-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/12/2023] [Indexed: 01/23/2023]
Abstract
One of the most formidable challenges in oncology and tumor biology research is to provide an accurate understanding of tumor dormancy mechanisms. Dormancy refers to the ability of tumor cells to go undetected in the body for a prolonged period, followed by "spontaneous" escape. Various models of dormancy have been postulated, including angiogenic, immune-mediated, and cellular dormancy. While the former two propose mechanisms by which tumor growth may remain static at a population level, cellular dormancy refers to molecular processes that restrict proliferation at the cell level. Senescence is a form of growth arrest, during which cells undergo distinct phenotypic, epigenetic, and metabolic changes. Senescence is also associated with the development of a robust secretome, comprised of various chemokines and cytokines that interact with the surrounding microenvironment, including other tumor cells, stromal cells, endothelial cells, and immune cells. Both tumor and non-tumor cells can undergo senescence following various stressors, many of which are present during tumorigenesis and therapy. As such, senescent cells are present within forming tumors and in residual tumors post-treatment and therefore play a major role in tumor biology. However, the contributions of senescence to dormancy are largely understudied. Here, we provide an overview of multiple processes that have been well established as being involved in tumor dormancy, and we speculate on how senescence may contribute to these mechanisms.
Collapse
Affiliation(s)
- Valerie J DeLuca
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
52
|
Sauriol SA, Carmona E, Udaskin ML, Radulovich N, Leclerc-Desaulniers K, Rottapel R, Oza AM, Lheureux S, Provencher DM, Mes-Masson AM. Inhibition of nicotinamide dinucleotide salvage pathway counters acquired and intrinsic poly(ADP-ribose) polymerase inhibitor resistance in high-grade serous ovarian cancer. Sci Rep 2023; 13:3334. [PMID: 36849518 PMCID: PMC9970983 DOI: 10.1038/s41598-023-30081-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Epithelial ovarian cancer is the most lethal gynecological malignancy, owing notably to its high rate of therapy-resistant recurrence in spite of good initial response to chemotherapy. Although poly(ADP-ribose) polymerase inhibitors (PARPi) have shown promise for ovarian cancer treatment, extended therapy usually leads to acquired PARPi resistance. Here we explored a novel therapeutic option to counter this phenomenon, combining PARPi and inhibitors of nicotinamide phosphoribosyltransferase (NAMPT). Cell-based models of acquired PARPi resistance were created through an in vitro selection procedure. Using resistant cells, xenograft tumors were grown in immunodeficient mice, while organoid models were generated from primary patient tumor samples. Intrinsically PARPi-resistant cell lines were also selected for analysis. Our results show that treatment with NAMPT inhibitors effectively sensitized all in vitro models to PARPi. Adding nicotinamide mononucleotide, the resulting NAMPT metabolite, abrogated the therapy-induced cell growth inhibition, demonstrating the specificity of the synergy. Treatment with olaparib (PARPi) and daporinad (NAMPT inhibitor) depleted intracellular NAD+ , induced double-strand DNA breaks, and promoted apoptosis as monitored by caspase-3 cleavage. The two drugs were also synergistic in mouse xenograft models and clinically relevant patient-derived organoids. Therefore, in the context of PARPi resistance, NAMPT inhibition could offer a promising new option for ovarian cancer patients.
Collapse
Affiliation(s)
- Skye Alexandre Sauriol
- Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, QC, H2X 0A9, Canada
- Institut du Cancer de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Euridice Carmona
- Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, QC, H2X 0A9, Canada
- Institut du Cancer de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Molly L Udaskin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Kim Leclerc-Desaulniers
- Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, QC, H2X 0A9, Canada
- Institut du Cancer de Montréal, Montreal, QC, H2X 0A9, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Stephanie Lheureux
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Diane M Provencher
- Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, QC, H2X 0A9, Canada
- Institut du Cancer de Montréal, Montreal, QC, H2X 0A9, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montreal, QC, H2X 0A9, Canada.
- Institut du Cancer de Montréal, Montreal, QC, H2X 0A9, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
53
|
Zhao Y, Li H, Guo Q, Hui H. Multiple characteristic alterations and available therapeutic strategies of cellular senescence. J Zhejiang Univ Sci B 2023; 24:101-114. [PMID: 36751697 PMCID: PMC9936135 DOI: 10.1631/jzus.b2200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Given its state of stable proliferative inhibition, cellular senescence is primarily depicted as a critical mechanism by which organisms delay the progression of carcinogenesis. Cells undergoing senescence are often associated with the alteration of a series of specific features and functions, such as metabolic shifts, stemness induction, and microenvironment remodeling. However, recent research has revealed more complexity associated with senescence, including adverse effects on both physiological and pathological processes. How organisms evade these harmful consequences and survive has become an urgent research issue. Several therapeutic strategies targeting senescence, including senolytics, senomorphics, immunotherapy, and function restoration, have achieved initial success in certain scenarios. In this review, we describe in detail the characteristic changes associated with cellular senescence and summarize currently available countermeasures.
Collapse
Affiliation(s)
- Yunzi Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
54
|
Fluorescent and theranostic probes for imaging nicotinamide phosphoribosyl transferase (NAMPT). Eur J Med Chem 2023; 248:115080. [PMID: 36608458 DOI: 10.1016/j.ejmech.2022.115080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/20/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) has been regarded as an attractive target for cancer therapy. However, there is a lack of chemical tools for real-time visualization and detection of NAMPT. Herein, the first fluorescent and theranostic probes were designed for imaging NAMPT, which had dual functions of diagnosis and treatment. The designed probes possessed good affinity and environmental sensitivity to NAMPT with a turn-on mechanism and were successfully applied in fluorescence detecting and imaging of NAMPT at the level of living cells and tissue sections. They also effectively inhibited tumor cell proliferation and arrested cell cycle at the G2 phase. These fluorescent probes enabled detection and visualization of NAMPT, representing effective chemical tools for the pathological diagnosis and treatment of cancer.
Collapse
|
55
|
Wang K, Ye K, Zhang X, Wang T, Qi Z, Wang Y, Jiang S, Zhang K. Dual Nicotinamide Phosphoribosyltransferase (NAMPT) and Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors for the Treatment of Drug-Resistant Nonsmall-Cell Lung Cancer. J Med Chem 2023; 66:1027-1047. [PMID: 36595482 DOI: 10.1021/acs.jmedchem.2c01954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Depleting NAD+ by blocking its biosynthesis has emerged as an attractive anticancer strategy. Simultaneous blockade of NAD+ production from the salvage and de novo synthesis pathways by targeting NAMPT and IDO1 could achieve more effective NAD+ reduction and, subsequently, more robust antitumor efficacy. Herein, we report the discovery of the first series of dual NAMPT and IDO1 inhibitors according to multitarget drug rationales. Compound 10e has good and balanced inhibitory potencies against NAMPT and IDO1, and significantly inhibits both proliferation and migration of a NSCLC cell line resistant to taxol and FK866 (A549/R cells). Compound 10e also displays potent antitumor efficacy in A549/R xenograft mouse models with no significant toxicity. Moreover, this compound enhances the susceptibility of A549/R cells to taxol in vitro and in vivo. This work provides an efficient approach to targeting NAD+ metabolism in the area of cancer therapy, especially in the context of drug resistance.
Collapse
Affiliation(s)
- Kaizhen Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Ye
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Qi
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youjun Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
56
|
Redrado M, Fernández‐Moreira V. The Role of Metallodrugs in Cellular Senescence. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marta Redrado
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Vanesa Fernández‐Moreira
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
57
|
Mazumder S, Mitra Ghosh T, Mukherjee UK, Chakravarti S, Amiri F, Waliagha RS, Hemmati F, Mistriotis P, Ahmed S, Elhussin I, Salam AB, Dean-Colomb W, Yates C, Arnold RD, Mitra AK. Integrating Pharmacogenomics Data-Driven Computational Drug Prediction with Single-Cell RNAseq to Demonstrate the Efficacy of a NAMPT Inhibitor against Aggressive, Taxane-Resistant, and Stem-like Cells in Lethal Prostate Cancer. Cancers (Basel) 2022; 14:6009. [PMID: 36497496 PMCID: PMC9738762 DOI: 10.3390/cancers14236009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metastatic prostate cancer/PCa is the second leading cause of cancer deaths in US men. Most early-stage PCa are dependent on overexpression of the androgen receptor (AR) and, therefore, androgen deprivation therapies/ADT-sensitive. However, eventual resistance to standard medical castration (AR-inhibitors) and secondary chemotherapies (taxanes) is nearly universal. Further, the presence of cancer stem-like cells (EMT/epithelial-to-mesenchymal transdifferentiation) and neuroendocrine PCa (NEPC) subtypes significantly contribute to aggressive/lethal/advanced variants of PCa (AVPC). In this study, we introduced a pharmacogenomics data-driven optimization-regularization-based computational prediction algorithm ("secDrugs") to predict novel drugs against lethal PCa. Integrating secDrug with single-cell RNA-sequencing/scRNAseq as a 'Double-Hit' drug screening tool, we demonstrated that single-cells representing drug-resistant and stem-cell-like cells showed high expression of the NAMPT pathway genes, indicating potential efficacy of the secDrug FK866 which targets NAMPT. Next, using several cell-based assays, we showed substantial impact of FK866 on clinically advanced PCa as a single agent and in combination with taxanes or AR-inhibitors. Bulk-RNAseq and scRNAseq revealed that, in addition to NAMPT inhibition, FK866 regulates tumor metastasis, cell migration, invasion, DNA repair machinery, redox homeostasis, autophagy, as well as cancer stemness-related genes, HES1 and CD44. Further, we combined a microfluidic chip-based cell migration assay with a traditional cell migration/'scratch' assay and demonstrated that FK866 reduces cancer cell invasion and motility, indicating abrogation of metastasis. Finally, using PCa patient datasets, we showed that FK866 is potentially capable of reversing the expression of several genes associated with biochemical recurrence, including IFITM3 and LTB4R. Thus, using FK866 as a proof-of-concept candidate for drug repurposing, we introduced a novel, universally applicable preclinical drug development pipeline to circumvent subclonal aggressiveness, drug resistance, and stemness in lethal PCa.
Collapse
Affiliation(s)
- Suman Mazumder
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Taraswi Mitra Ghosh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Department of Urology Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ujjal K. Mukherjee
- Department of Business Administration, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Sayak Chakravarti
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Farshad Amiri
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Razan S. Waliagha
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Farnaz Hemmati
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Salsabil Ahmed
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Isra Elhussin
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ahmad-Bin Salam
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Windy Dean-Colomb
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Piedmont Hospital, Newnan, GA 30309, USA
| | - Clayton Yates
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Amit K. Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| |
Collapse
|
58
|
Wang N, Pan D, Wang X, Su M, Wang X, Yan Q, Sun G, Wang S. NAPRT, but Not NAMPT, Provides Additional Support for NAD Synthesis in Esophageal Precancerous Lesions. Nutrients 2022; 14:4916. [PMID: 36432602 PMCID: PMC9695206 DOI: 10.3390/nu14224916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
It is hypothesized that esophageal precancerous lesions (EPLs) have a surge requirement for coenzyme I (NAD). The purpose of this study is to clarify the key control points of NAD synthesis in developing EPL by detecting related markers and the gene polymorphism of NAD synthesis and metabolism. This case-control study was conducted in Huai'an, China. In total, 100 healthy controls and 100 EPL cases matched by villages, gender, and age (±2 years) were included. The levels of plasma niacin and nicotinamide, and the protein concentration of NAMPT, NAPRT, and PARP-1 were quantitatively analyzed. PARP-1 gene polymorphism was detected to determine if the cases differed genetically in NAD synthesis. The levels of plasma niacin and nicotinamide and the concentrations of NAMPT were not related to the risk of EPL, but the over-expressions of NAPRT (p = 0.014, 0.001, and 0.016, respectively) and PARP-1 (p for trend = 0.021) were associated with the increased EPL risk. The frequency distribution of APRP-1 genotypes was found to not differ between the two groups, while the EPL group showed an increased frequency of the variant C allele. NAPRT, but not NAMPT, was found to be responsible for the stress of excess NAD synthesis in EPL. Focusing on the development of NAPRT inhibitors may be beneficial to prevent and control ESCC.
Collapse
Affiliation(s)
- Niannian Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Da Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xuemei Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ming Su
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Xin Wang
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Qingyang Yan
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shaokang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712000, China
| |
Collapse
|
59
|
Pouliquen DL, Malloci M, Boissard A, Henry C, Guette C. Proteomes of Residual Tumors in Curcumin-Treated Rats Reveal Changes in Microenvironment/Malignant Cell Crosstalk in a Highly Invasive Model of Mesothelioma. Int J Mol Sci 2022; 23:ijms232213732. [PMID: 36430209 PMCID: PMC9691155 DOI: 10.3390/ijms232213732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Curcumin exhibits both immunomodulatory properties and anticarcinogenic effects which have been investigated in different experimental tumor models and cancer types. Its interactions with multiple signaling pathways have been documented through proteomic studies on malignant cells in culture; however, in vivo approaches are scarce. In this study, we used a rat model of highly invasive peritoneal mesothelioma to analyze the residual tumor proteomes of curcumin-treated rats in comparison with untreated tumor-bearing rats (G1) and provide insights into the modifications in the tumor microenvironment/malignant cell crosstalk. The cross-comparing analyses of the histological sections of residual tumors from two groups of rats given curcumin twice on days 21 and 26 after the tumor challenge (G2) or four times on days 7, 9, 11 and 14 (G3), in comparison with G1, identified a common increase in caveolin-1 which linked with significant abundance changes affecting 115 other proteins. The comparison of G3 vs. G2 revealed additional features for 65 main proteins, including an increase in histidine-rich glycoprotein and highly significant abundance changes for 22 other proteins regulating the tumor microenvironment, linked with the presence of numerous activated T cells. These results highlight new features in the multiple actions of curcumin on tumor microenvironment components and cancer cell invasiveness.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Université d’Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
- Correspondence: ; Tel.: +33-2-41352854
| | - Marine Malloci
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, F-44000 Nantes, France
| | - Alice Boissard
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Cécile Henry
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Catherine Guette
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| |
Collapse
|
60
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
61
|
Piskorz WM, Cechowska-Pasko M. Senescence of Tumor Cells in Anticancer Therapy—Beneficial and Detrimental Effects. Int J Mol Sci 2022; 23:ijms231911082. [PMID: 36232388 PMCID: PMC9570404 DOI: 10.3390/ijms231911082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence process results in stable cell cycle arrest, which prevents cell proliferation. It can be induced by a variety of stimuli including metabolic stress, DNA damage, telomeres shortening, and oncogenes activation. Senescence is generally considered as a process of tumor suppression, both by preventing cancer cells proliferation and inhibiting cancer progression. It can also be a key effector mechanism for many types of anticancer therapies such as chemotherapy and radiotherapy, both directly and through bioactive molecules released by senescent cells that can stimulate an immune response. Senescence is characterized by a senescence-associated secretory phenotype (SASP) that can have both beneficial and detrimental impact on cancer progression. Despite the negatives, attempts are still being made to use senescence to fight cancer, especially when it comes to senolytics. There is a possibility that a combination of prosenescence therapy—which targets tumor cells and causes their senescence—with senotherapy—which targets senescent cells, can be promising in cancer treatment. This review provides information on cellular senescence, its connection with carcinogenesis and therapeutic possibilities linked to this process.
Collapse
|
62
|
Bai JF, Majjigapu SR, Sordat B, Poty S, Vogel P, Elías-Rodríguez P, Moreno-Vargas AJ, Carmona AT, Caffa I, Ghanem M, Khalifa A, Monacelli F, Cea M, Robina I, Gajate C, Mollinedo F, Bellotti A, Nahimana A, Duchosal M, Nencioni A. Identification of new FK866 analogues with potent anticancer activity against pancreatic cancer. Eur J Med Chem 2022; 239:114504. [PMID: 35724566 DOI: 10.1016/j.ejmech.2022.114504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases for which chemotherapy has not been very successful yet. FK866 ((E)-N-(4-(1-benzoylpiperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) is a well-known NAMPT (nicotinamide phosphoribosyltransferase) inhibitor with anti-cancer activities, but it failed in phase II clinical trials. We found that FK866 shows anti-proliferative activity in three PDAC cell lines, as well as in Jurkat T-cell leukemia cells. More than 50 FK866 analogues were synthesized that introduce substituents on the phenyl ring of the piperidine benzamide group of FK866 and exchange its buta-1,4-diyl tether for 1-oxyprop-3-yl, (E)-but-2-en-1,4-diyl and 2- and 3-carbon tethers. The pyridin-3-yl moiety of FK866 was exchanged for chlorinated and fluorinated analogues and for pyrazin-2-yl and pyridazin-4-yl groups. Several compounds showed low nanomolar or sub-nanomolar cell growth inhibitory activity. Our best cell anti-proliferative compounds were the 2,4,6-trimethoxybenzamide analogue of FK866 ((E)-N-(4-(1-(2,4,6-trimethoxybenzoyl)piperidin-4-yl)butyl)-3-(pyridin-3-yl)acrylamide) (9), the 2,6-dimethoxybenzamide (8) and 2-methoxybenzamide (4), which exhibited an IC50 of 0.16 nM, 0.004 nM and 0.08 nM toward PDAC cells, respectively.
Collapse
Affiliation(s)
- Jian-Fei Bai
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Bernard Sordat
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Sophie Poty
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Swiss Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Pilar Elías-Rodríguez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Ana T Carmona
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy
| | - Moustafa Ghanem
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy
| | - Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Consuelo Gajate
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Axel Bellotti
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Michel Duchosal
- Central Laboratory of Hematology, Medical Laboratory and Pathology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland; Service of Hematology, Oncology Department, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132, Genoa, Italy; Ospedale Policlinico San Martino IRCCS, Genoa, Italy.
| |
Collapse
|
63
|
Takikawa T, Hamada S, Matsumoto R, Tanaka Y, Kataoka F, Sasaki A, Masamune A. Senescent Human Pancreatic Stellate Cells Secrete CXCR2 Agonist CXCLs to Promote Proliferation and Migration of Human Pancreatic Cancer AsPC-1 and MIAPaCa-2 Cell Lines. Int J Mol Sci 2022; 23:ijms23169275. [PMID: 36012531 PMCID: PMC9409091 DOI: 10.3390/ijms23169275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Interactions between pancreatic cancer cells and pancreatic stellate cells (PSCs) play an important role in the progression of pancreatic cancer. Recent studies have shown that cellular senescence and senescence-associated secretory phenotype factors play roles in the progression of cancer. This study aimed to clarify the effects of senescence-induced PSCs on pancreatic cancer cells. Senescence was induced in primary-cultured human PSCs (hPSCs) through treatment with hydrogen peroxide or gemcitabine. Microarray and Gene Ontology analyses showed the alterations in genes and pathways related to cellular senescence and senescence-associated secretory phenotype factors, including the upregulation of C-X-C motif chemokine ligand (CXCL)-1, CXCL2, and CXCL3 through the induction of senescence in hPSCs. Conditioned media of senescent hPSCs increased the proliferation—as found in an assessment with a BrdU incorporation assay—and migration—as found in an assessment with wound-healing and two-chamber assays—of pancreatic cancer AsPC-1 and MIAPaca-2 cell lines. SB225002, a selective CXCR2 antagonist, and SCH-527123, a CXCR1/CXCR2 antagonist, attenuated the effects of conditioned media of senescent hPSCs on the proliferation and migration of pancreatic cancer cells. These results suggest a role of CXCLs as senescence-associated secretory phenotype factors in the interaction between senescent hPSCs and pancreatic cancer cells. Senescent PSCs might be novel therapeutic targets for pancreatic cancer.
Collapse
|
64
|
Sun F, Wei Y, Liu Z, Jie Q, Yang X, Long P, Wang J, Xiong Y, Li Q, Quan S, Ma Y. Acylglycerol kinase promotes ovarian cancer progression and regulates mitochondria function by interacting with ribosomal protein L39. J Exp Clin Cancer Res 2022; 41:238. [PMID: 35934718 PMCID: PMC9358817 DOI: 10.1186/s13046-022-02448-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 02/03/2023] Open
Abstract
Background Epithelial ovarian cancer (EOC) is the leading cause of deaths among patients with gynecologic malignancies. In recent years, cancer stem cells (CSCs) have attracted great attention, which have been regarded as new biomarkers and targets in cancer diagnoses as well as therapies. However, therapeutic failure caused by chemotherapy resistance in late-stage EOC occurs frequently. The 5-year survival rate of patients with EOC remains at about 30%. Methods In this study, the expression of acylglycerol kinase (AGK) was analyzed among patients with EOC. The effect of AGK on EOC cell proliferation and tumorigenicity was studied using Western blotting, flow cytometry, EdU assay and in vivo xenotransplantation assays. Furthermore, AGK induced CSC-like properties and was resistant to cisplatin chemotherapy in the EOC cells, which were investigated through sphere formation assays and the in vivo model of chemoresistance. Finally, the relationship between AGK and RPL39 (Ribosomal protein L39) in mitochondria as well as their effect on the mitochondrial function was analyzed through methods including transmission electron microscopy, microarray, biotin identification and immunoprecipitation. Results AGK showed a markedly upregulated expression in EOC, which was significantly associated with the poor survival of patients with EOC, the expression of AGK-promoted EOC cell proliferation and tumorigenicity. AGK also induced CSC-like properties in the EOC cells and was resistant to cisplatin chemotherapy. Furthermore, the results indicated that AGK not only maintained mitochondrial cristae morphogenesis, but also increased the production of reactive oxygen species and Δψm of EOC cells in a kinase-independent manner. Finally, our results revealed that AGK played its biological function by directly interacting with RPL39. Conclusions We demonstrated that AGK was a novel CSC biomarker for EOC, which the stemness of EOC was promoted and chemotherapy resistance was developed through physical as well as functional interaction with RPL39. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02448-5.
Collapse
|
65
|
Muralikrishnan V, Fang F, Given TC, Podicheti R, Chtcherbinine M, Metcalfe TX, Sriramkumar S, O’Hagan HM, Hurley TD, Nephew KP. A Novel ALDH1A1 Inhibitor Blocks Platinum-Induced Senescence and Stemness in Ovarian Cancer. Cancers (Basel) 2022; 14:3437. [PMID: 35884498 PMCID: PMC9318275 DOI: 10.3390/cancers14143437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is a deadly disease attributed to late-stage detection as well as recurrence and the development of chemoresistance. Ovarian cancer stem cells (OCSCs) are hypothesized to be largely responsible for the emergence of chemoresistant tumors. Although chemotherapy may initially succeed at decreasing the size and number of tumors, it leaves behind residual malignant OCSCs. In this study, we demonstrate that aldehyde dehydrogenase 1A1 (ALDH1A1) is essential for the survival of OCSCs. We identified a first-in-class ALDH1A1 inhibitor, compound 974, and used 974 as a tool to decipher the mechanism of stemness regulation by ALDH1A1. The treatment of OCSCs with 974 significantly inhibited ALDH activity, the expression of stemness genes, and spheroid and colony formation. An in vivo limiting dilution assay demonstrated that 974 significantly inhibited CSC frequency. A transcriptomic sequencing of cells treated with 974 revealed a significant downregulation of genes related to stemness and chemoresistance as well as senescence and the senescence-associated secretory phenotype (SASP). We confirmed that 974 inhibited the senescence and stemness induced by platinum-based chemotherapy in functional assays. Overall, these data establish that ALDH1A1 is essential for OCSC survival and that ALDH1A1 inhibition suppresses chemotherapy-induced senescence and stemness. Targeting ALDH1A1 using small-molecule inhibitors in combination with chemotherapy therefore presents a promising strategy to prevent ovarian cancer recurrence and has the potential for clinical translation.
Collapse
Affiliation(s)
- Vaishnavi Muralikrishnan
- Cell, Molecular and Cancer Biology Graduate Program, Medical Sciences Department, Indiana University School of Medicine, Bloomington, IN 47405, USA; (V.M.); (T.C.G.); (T.X.M.); (S.S.); (H.M.O.)
| | - Fang Fang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tyler C. Given
- Cell, Molecular and Cancer Biology Graduate Program, Medical Sciences Department, Indiana University School of Medicine, Bloomington, IN 47405, USA; (V.M.); (T.C.G.); (T.X.M.); (S.S.); (H.M.O.)
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 46202, USA;
| | - Mikhail Chtcherbinine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tara X. Metcalfe
- Cell, Molecular and Cancer Biology Graduate Program, Medical Sciences Department, Indiana University School of Medicine, Bloomington, IN 47405, USA; (V.M.); (T.C.G.); (T.X.M.); (S.S.); (H.M.O.)
| | - Shruthi Sriramkumar
- Cell, Molecular and Cancer Biology Graduate Program, Medical Sciences Department, Indiana University School of Medicine, Bloomington, IN 47405, USA; (V.M.); (T.C.G.); (T.X.M.); (S.S.); (H.M.O.)
| | - Heather M. O’Hagan
- Cell, Molecular and Cancer Biology Graduate Program, Medical Sciences Department, Indiana University School of Medicine, Bloomington, IN 47405, USA; (V.M.); (T.C.G.); (T.X.M.); (S.S.); (H.M.O.)
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Thomas D. Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Kenneth P. Nephew
- Cell, Molecular and Cancer Biology Graduate Program, Medical Sciences Department, Indiana University School of Medicine, Bloomington, IN 47405, USA; (V.M.); (T.C.G.); (T.X.M.); (S.S.); (H.M.O.)
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Anatomy, Cell Biology and Physiology, Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
66
|
Veenstra JP, Bittencourt LFF, Aird KM. The senescence-associated secretory phenotype in ovarian cancer dissemination. Am J Physiol Cell Physiol 2022; 323:C125-C132. [PMID: 35584328 PMCID: PMC9273281 DOI: 10.1152/ajpcell.00049.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is a highly aggressive disease with poor survival rates in part due to diagnosis after dissemination throughout the peritoneal cavity. It is well-known that inflammatory signals affect ovarian cancer dissemination. Inflammation is a hallmark of cellular senescence, a stable cell cycle arrest induced by a variety of stimuli including many of the therapies used to treat patients with ovarian cancer. Indeed, recent work has illustrated that ovarian cancer cells in vitro, mouse models, and patient tumors undergo senescence in response to platinum-based or poly(ADP-ribose) polymerase (PARP) inhibitor therapies, standard-of-care therapies for ovarian cancer. This inflammatory response, termed the senescence-associated secretory phenotype (SASP), is highly dynamic and has pleiotropic roles that can be both beneficial and detrimental in cell-intrinsic and cell-extrinsic ways. Recent data on other cancer types suggest that the SASP promotes metastasis. Here, we outline what is known about the SASP in ovarian cancer and discuss both how the SASP may promote ovarian cancer dissemination and strategies to mitigate the effects of the SASP.
Collapse
Affiliation(s)
- Jacob P. Veenstra
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lucas Felipe Fernandes Bittencourt
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Katherine M. Aird
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
67
|
Pacifico F, Mellone S, D'Incalci M, Stornaiuolo M, Leonardi A, Crescenzi E. Trabectedin suppresses escape from therapy-induced senescence in tumor cells by interfering with glutamine metabolism. Biochem Pharmacol 2022; 202:115159. [PMID: 35780827 DOI: 10.1016/j.bcp.2022.115159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023]
Abstract
Conventional and targeted cancer therapies may induce a cellular senescence program termed therapy-induced senescence. However, unlike normal cells, cancer cells are able to evade the senescence cell cycle arrest and to resume proliferation, driving tumor recurrence after treatments. Cells that escape from therapy-induced senescence are characterized by a plastic, cancer stem cell-like phenotype, and recent studies are beginning to define their unique metabolic features, such as glutamine dependence. Here, we show that the antineoplastic drug trabectedin suppresses escape from therapy-induced senescence in all cell lines studied, and reduces breast cancer stem-like cells, at concentrations that do not affect the viability of senescent tumor cells. We demonstrate that trabectedin downregulates both the glutamine transporter SLC1A5 and glutamine synthetase, thereby interfering with glutamine metabolism. On the whole, our results indicate that trabectedin targets a glutamine-dependent cancer stem-like cell population involved in evasion from therapy-induced senescence and suggest a therapeutic potential for trabectedin combined with pro-senescence chemotherapy in tumor treatment.
Collapse
Affiliation(s)
- Francesco Pacifico
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, IRCCS Humanitas Research Hospital, 20072 Pieve Emanuele, Milan, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, 80149 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, 80131 Naples, Italy.
| | - Elvira Crescenzi
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy.
| |
Collapse
|
68
|
He Y, Alejo S, Venkata PP, Johnson JD, Loeffel I, Pratap UP, Zou Y, Lai Z, Tekmal RR, Kost ER, Sareddy GR. Therapeutic Targeting of Ovarian Cancer Stem Cells Using Estrogen Receptor Beta Agonist. Int J Mol Sci 2022; 23:7159. [PMID: 35806169 PMCID: PMC9266546 DOI: 10.3390/ijms23137159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Ovarian cancer (OCa) is the deadliest gynecologic cancer. Emerging studies suggest ovarian cancer stem cells (OCSCs) contribute to chemotherapy resistance and tumor relapse. Recent studies demonstrated estrogen receptor beta (ERβ) exerts tumor suppressor functions in OCa. However, the status of ERβ expression in OCSCs and the therapeutic utility of the ERβ agonist LY500307 for targeting OCSCs remain unknown. OCSCs were enriched from ES2, OV90, SKOV3, OVSAHO, and A2780 cells using ALDEFLUOR kit. RT-qPCR results showed ERβ, particularly ERβ isoform 1, is highly expressed in OCSCs and that ERβ agonist LY500307 significantly reduced the viability of OCSCs. Treatment of OCSCs with LY500307 significantly reduced sphere formation, self-renewal, and invasion, while also promoting apoptosis and G2/M cell cycle arrest. Mechanistic studies using RNA-seq analysis demonstrated that LY500307 treatment resulted in modulation of pathways related to cell cycle and apoptosis. Western blot and RT-qPCR assays demonstrated the upregulation of apoptosis and cell cycle arrest genes such as FDXR, p21/CDKN1A, cleaved PARP, and caspase 3, and the downregulation of stemness markers SOX2, Oct4, and Nanog. Importantly, treatment of LY500307 significantly attenuated the tumor-initiating capacity of OCSCs in orthotopic OCa murine xenograft models. Our results demonstrate that ERβ agonist LY500307 is highly efficacious in reducing the stemness and promoting apoptosis of OCSCs and shows significant promise as a novel therapeutic agent in treating OCa.
Collapse
Affiliation(s)
- Yi He
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Jessica D. Johnson
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Ilanna Loeffel
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.L.)
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (Z.L.)
| | - Rajeshwar R. Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Edward R. Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Y.H.); (S.A.); (P.P.V.); (J.D.J.); (I.L.); (U.P.P.); (R.R.T.); (E.R.K.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
69
|
Wang Z, Gao J, Xu C. Tackling cellular senescence by targeting miRNAs. Biogerontology 2022; 23:387-400. [PMID: 35727469 DOI: 10.1007/s10522-022-09972-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Cellular senescence, which is characterized by permanent proliferation arrest, has become an important target for the amelioration of various human diseases. The activity of senescent cells is mainly related to the senescence-associated secretory phenotype (SASP). The SASP can cause chronic inflammation in local tissues and organs through autocrine and paracrine mechanisms, and a series of factors secreted by senescent cells can deteriorate the cellular microenvironment, promoting tumor formation and exacerbating aging-related diseases. Therefore, avoiding the promotion of cancer is an urgent problem. In recent years, increased attention has been given to the mechanistic study of microRNAs in senescence. As important posttranscriptional regulators, microRNAs possess unique tissue-specific expression in senescence. MicroRNAs can regulate the SASP by regulating proteins in the senescence signaling pathway, the reverse transcriptase activity of telomerase, the generation of reactive oxygen species and oxidative damage to mitochondria. Numerous studies have confirmed that removing senescent cells does not cause significant side effects, which also opens the door to the development of treatment modalities against senescent cells. Herein, this review discusses the double-edged sword of cellular senescence in tumors and aging-related diseases and emphasizes the roles of microRNAs in regulating the SASP, especially the potential of microRNAs to be used as therapeutic targets to inhibit senescence, giving rise to novel therapeutic approaches for the treatment of aging-associated diseases.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jianwen Gao
- School of Medical Engineering, Ma'anshan University, No. 8, Huangchi Road, Gushu Town, Dangtu County, Ma'anshan, 243100, Anhui, China. .,Major of Biotechnological Pharmaceutics, Shanghai Pharmaceutical School, Shanghai, 200135, China.
| | - Congjian Xu
- Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China
| |
Collapse
|
70
|
Lin L, Chen L, Xie Z, Chen J, Li L, Lin A. Identification of NAD+ Metabolism-Derived Gene Signatures in Ovarian Cancer Prognosis and Immunotherapy. Front Genet 2022; 13:905238. [PMID: 35783253 PMCID: PMC9243463 DOI: 10.3389/fgene.2022.905238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Nicotinamide adenine dinucleotide (NAD+) has emerged as a critical regulator of cell signaling and survival pathways, affecting tumor initiation and progression. In this study it was investigated whether circulating NAD+ metabolism-related genes (NMRGs) could be used to predict immunotherapy response in ovarian cancer (OC) patients. Method: In this study, NMRGs were comprehensively examined in OC patients, three distinct NMRGs subtypes were identified through unsupervised clustering, and an NAD+-related prognostic model was generated based on LASSO Cox regression analysis and generated a risk score (RS). ROC curves and an independent validation cohort were used to assess the model’s accuracy. A GSEA enrichment analysis was performed to investigate possible functional pathways. Furthermore, the role of RS in the tumor microenvironment, immunotherapy, and chemotherapy was also investigated. Result: We found three different subgroups based on NMRGs expression patterns. Twelve genes were selected by LASSO regression to create a prognostic risk signature. High-RS was founded to be linked to a worse prognosis. In Ovarian Cancer Patients, RS is an independent prognostic marker. Immune infiltrating cells were considerably overexpressed in the low-RS group, as immune-related functional pathways were significantly enriched. Furthermore, immunotherapy prediction reveal that patients with low-RS are more sensitive to immunotherapy. Conclusion: For a patient with OC, NMRGs are promising biomarkers. Our prognostic signature has potential predictive value for OC prognosis and immunotherapy response. The results of this study may help improve our understanding of NMRG in OCs.
Collapse
Affiliation(s)
| | | | | | | | - Ling Li
- *Correspondence: Ling Li, ; An Lin,
| | - An Lin
- *Correspondence: Ling Li, ; An Lin,
| |
Collapse
|
71
|
Senotherapy Protects against Cisplatin-Induced Ovarian Injury by Removing Senescent Cells and Alleviating DNA Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9144644. [PMID: 35693700 PMCID: PMC9187433 DOI: 10.1155/2022/9144644] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Ovarian damage induced by platinum-based chemotherapy seriously affects young women with cancer, manifesting as infertility, early menopause, and premature ovarian insufficiency. However, effective prevention strategies for such damage are lacking. Senescent cells may be induced by chemotherapeutic agents. We hypothesized that cisplatin can lead to senescence in ovarian cells during the therapeutic process, and senolytic drugs can protect animals against cisplatin-induced ovarian injury. Here, we demonstrated the existence of senescent cells in cisplatin-treated ovaries, identified the senescence-associated secretory phenotype, and observed significant improvement of ovarian function by treatment with metformin or dasatinib and quercetin (DQ) independently or in combination. These senotherapies improved both oocyte quality and fertility, increased the ovarian reserve, and enhanced hormone secretion in cisplatin-exposed mice. Additionally, attenuated fibrosis, reorganized subcellular structure, and mitigated DNA damage were observed in the ovaries of senotherapeutic mice. Moreover, RNA sequencing analysis revealed upregulation of the proliferation-related genes Ki, Prrx2, Sfrp4, and Megfl0; and the antioxidative gene H2-Q10 after metformin plus DQ treatment. Gene ontology analysis further revealed that combining senotherapies enhanced ovarian cell differentiation, development, and communication. In this study, we demonstrated that metformin plus DQ recovered ovarian function to a greater extent compared to metformin or DQ independently, with more follicular reserve, increased pups per litter, and reduced DNA damage. Collectively, our work indicates that senotherapies might prevent cisplatin-induced ovarian injury by removing senescent cells and reducing DNA damage, which represent a promising therapeutic avenue to prevent chemotherapy-induced ovarian damage.
Collapse
|
72
|
Yang T, Liang N, Li J, Hu P, Huang Q, Zhao Z, Wang Q, Zhang H. MDSCs might be "Achilles heel" for eradicating CSCs. Cytokine Growth Factor Rev 2022; 65:39-50. [PMID: 35595600 DOI: 10.1016/j.cytogfr.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/03/2022]
Abstract
During tumor initiation and progression, the complicated role of immune cells in the tumor immune microenvironment remains a concern. Myeloid-derived suppressor cells (MDSCs) are a group of immune cells that originate from the bone marrow and have immunosuppressive potency in various diseases, including cancer. In recent years, the key role of cancer stemness has received increasing attention in cancer development and therapy. Several studies have demonstrated the important regulatory relationship between MDSCs and cancer stem cells (CSCs). However, there is still no clear understanding regarding the complex interacting regulation of tumor malignancy, and current research progress is limited. In this review, we summarize the complicated role of MDSCs in the modulation of cancer stemness, evaluate the mechanism of the relationship between CSCs and MDSCs, and discuss potential strategies for eradicating CSCs with respect to MDSCs.
Collapse
Affiliation(s)
- Tao Yang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali 671000, China
| | - Jing Li
- Department of Stomatology, Shaanxi Provincial Hospital, Xi'an, Shaanxi 710038, China
| | - Pan Hu
- Department of Anesthesiology, the 920 Hospital of Joint Logistic Support Force of Chinese PLA, Kunming, Yunnan, China
| | - Qian Huang
- Department of Gynaecology and Obstetrics, The 75th Group Army Hospital, Dali 671000, China
| | - Zifeng Zhao
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Qian Wang
- Department of Anorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, China; Department of Intervention Therapy, The Second Affiliated Hospital, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
73
|
Targeting tumor cell senescence and polyploidy as potential therapeutic strategies. Semin Cancer Biol 2022; 81:37-47. [PMID: 33358748 PMCID: PMC8214633 DOI: 10.1016/j.semcancer.2020.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023]
Abstract
Senescence is a unique state of growth arrest that develops in response to a plethora of cellular stresses, including replicative exhaustion, oxidative injury, and genotoxic insults. Senescence has been implicated in the pathogenesis of multiple aging-related pathologies, including cancer. In cancer, senescence plays a dual role, initially acting as a barrier against tumor progression by enforcing a durable growth arrest in premalignant cells, but potentially promoting malignant transformation in neighboring cells through the secretion of pro-tumorigenic drivers. Moreover, senescence is induced in tumor cells upon exposure to a wide variety of conventional and targeted anticancer drugs (termed Therapy-Induced Senescence-TIS), representing a critical contributing factor to therapeutic outcomes. As with replicative or oxidative senescence, TIS manifests as a complex phenotype of macromolecular damage, energetic dysregulation, and altered gene expression. Senescent cells are also frequently polyploid. In vitro studies have suggested that polyploidy may confer upon senescent tumor cells the ability to escape from growth arrest, thereby providing an additional avenue whereby tumor cells escape the lethality of anticancer treatment. Polyploidy in tumor cells is also associated with persistent energy production, chromatin remodeling, self-renewal, stemness and drug resistance - features that are also associated with escape from senescence and conversion to a more malignant phenotype. However, senescent cells are highly heterogenous and can present with variable phenotypes, where polyploidy is one component of a complex reversion process. Lastly, emerging efforts to pharmacologically target polyploid tumor cells might pave the way towards the identification of novel targets for the elimination of senescent tumor cells by the incorporation of senolytic agents into cancer therapeutic strategies.
Collapse
|
74
|
Zhang K, Wang K, Zhang X, Qian Z, Zhang W, Zheng X, Wang J, Jiang Y, Zhang W, Lu Z, Hao H, Jiang S. Discovery of Small Molecules Simultaneously Targeting NAD(P)H:Quinone Oxidoreductase 1 and Nicotinamide Phosphoribosyltransferase: Treatment of Drug-Resistant Non-small-Cell Lung Cancer. J Med Chem 2022; 65:7746-7769. [PMID: 35640078 DOI: 10.1021/acs.jmedchem.2c00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeting NAD+ metabolism has emerged as an effective anticancer strategy. Inspired by the synergistic antitumor effect between NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates increasing the NAD consumption and nicotinamide phosphoribosyltransferase (NAMPT) inhibitors hampering the NAD synthesis, first-in-class small molecules simultaneously targeting NQO1 and NAMPT were identified through structure-based design. In particular, compound 10d is an excellent NQO1 substrate that is processed faster than TSA by NQO1 and exhibited a slightly decreased NAMPT inhibitory potency than that of FK866. It can selectively inhibit the proliferation of NQO1-overexpressing A549 cells and taxol-resistant A549/taxol cells and also induce cell apoptosis and inhibit cell migration in an NQO1- and NAMPT-dependent manner in A549/taxol cells. Significantly, compound 10d demonstrated excellent in vivo antitumor efficacy in the A549/taxol xenograft models with no significant toxicity. This proof-of-concept study affirms the feasibility of discovering small molecules that target NQO1 and NAMPT simultaneously, and it also provides a novel, effective, and selective anticancer strategy.
Collapse
Affiliation(s)
- Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenlong Qian
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenbo Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaying Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yin Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wanheng Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyu Lu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
75
|
Sriramkumar S, Sood R, Huntington TD, Ghobashi AH, Vuong TT, Metcalfe TX, Wang W, Nephew KP, O'Hagan HM. Platinum-induced mitochondrial OXPHOS contributes to cancer stem cell enrichment in ovarian cancer. J Transl Med 2022; 20:246. [PMID: 35641987 PMCID: PMC9153190 DOI: 10.1186/s12967-022-03447-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/18/2022] [Indexed: 01/06/2023] Open
Abstract
Background Platinum based agents—cisplatin and carboplatin in combination with taxanes are used for the treatment of ovarian cancer (OC) patients. However, the majority of OC patients develop recurrent, platinum resistant disease that is uniformly fatal. Platinum treatment enriches for chemoresistant aldehyde dehydrogenase (ALDH) + ovarian cancer stem cells (OCSCs), which contribute to tumor recurrence and disease relapse. Acquired platinum resistance also includes metabolic reprograming and switching to oxidative phosphorylation (OXPHOS). Chemosensitive cells rely on glycolysis while chemoresistant cells have the ability to switch between glycolysis and OXPHOS, depending on which pathway drives a selective advantage for growth and chemoresistance. High expression of genes involved in OXPHOS and high production of mitochondrial ROS are characteristics of OCSCs, suggesting that OCSCs favor OXPHOS over glycolysis. Based on connections between OCSCs, chemoresistance and OXPHOS, we hypothesize that platinum treatment induces changes in metabolism that contribute to platinum-induced enrichment of OCSCs. Methods The effect of cisplatin on mitochondrial activity was assessed by JC1 staining and expression of OXPHOS genes by RT-qPCR. Cisplatin-induced changes in Sirtuin 1 (SIRT1) levels and activity were assessed by western blot. Small molecule inhibitors of mitochondrial complex I and SIRT1 were used to determine if their enzymatic activity contributes to the platinum-induced enrichment of OCSCs. The percentage of ALDH + OCSCs in OC cells and tumor tissue from xenograft models across different treatment conditions was analyzed using ALDEFLUOR assay and flow cytometry. Results We demonstrate that platinum treatment increases mitochondrial activity. Combined treatment of platinum agents and OXPHOS inhibitors blocks the platinum-induced enrichment of ALDH + OCSCs in vitro and in vivo. Furthermore, platinum treatment increases SIRT1 levels and subsequent deacetylase activity, which likely contributes to the increase in platinum-induced mitochondrial activity. Conclusions These findings on metabolic pathways altered by platinum-based chemotherapy have uncovered key targets that can be exploited therapeutically to block the platinum-induced enrichment of OCSCs, ultimately improving the survival of OC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03447-y.
Collapse
Affiliation(s)
- Shruthi Sriramkumar
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Riddhi Sood
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA.,Genome, Cell and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Thomas D Huntington
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Ahmed H Ghobashi
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA.,Genome, Cell and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Truc T Vuong
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Tara X Metcalfe
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Weini Wang
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA.,Genome, Cell and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology and Physiology, Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather M O'Hagan
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA. .,Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, 47405, USA. .,Genome, Cell and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA. .,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA. .,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
76
|
Li B, Shi Y, Liu M, Wu F, Hu X, Yu F, Wang C, Ye L. Attenuates of NAD + impair BMSC osteogenesis and fracture repair through OXPHOS. Stem Cell Res Ther 2022; 13:77. [PMID: 35193674 PMCID: PMC8864833 DOI: 10.1186/s13287-022-02748-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Controlling the adipo-osteogenic lineage commitment of bone marrow mesenchymal stem cell (BMSC) in favor of osteogenesis is considered a promising approach for bone regeneration and repair. Accumulating evidence indicates that oxidative phosphorylation (OXPHOS) is involved in regulating cell fate decisions. As an essential cofactor for OXPHOS, nicotinamide adenine dinucleotide (NAD) has been shown to correlate with the differentiation of stem cells. However, whether NAD manipulates BMSC lineage commitment through OXPHOS remains elusive. Therefore, it is critical to investigate the potential role of NAD on energy metabolism in mediating BMSC lineage commitment. METHODS In this study, the mitochondrial respiration and intracellular NAD+ level were firstly compared between osteogenic and adipogenic cells. For validating the role of NAD in mitochondrial OXPHOS, the inhibitor of NAD+ salvage pathway FK866 and activator P7C3 were used to manipulate the NAD+ level during osteogenesis. Furthermore, a murine femur fracture model was established to evaluate the effect of FK866 on bone fracture repair. RESULTS We elucidated that osteogenic committed BMSCs exhibited increased OXPHOS activity and a decreased glycolysis accompanied by an elevated intracellular NAD+ level. In contrast, adipogenic committed BMSCs showed little change in OXPHOS but an upregulated activity in glycolysis and a decline in intracellular NAD+ level in vitro. Moreover, attenuates of NAD+ via salvage pathway in BMSCs diminished osteogenic commitment due to mitochondria dysfunction and reduced activity of OXPHOS. The cells were rescued by supplementing with nicotinamide mononucleotide. In addition, treatment with NAD+ inhibitor FK866 impaired bone fracture healing in vivo. CONCLUSION Our data reveals NAD+-mediated mitochondrial OXPHOS is indispensable for osteogenic commitment in BMSCs and bone repair, which might provide a potential therapeutic target for bone repair and regeneration.
Collapse
Affiliation(s)
- Boer Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyu Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuchen Hu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
77
|
Lou J, Wei L, Wang H. SCNN1A Overexpression Correlates with Poor Prognosis and Immune Infiltrates in Ovarian Cancer. Int J Gen Med 2022; 15:1743-1763. [PMID: 35221714 PMCID: PMC8865762 DOI: 10.2147/ijgm.s351976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Ovarian cancer (OV) is a common malignancy affecting women globally; recognizing useful biomarkers has been one of the key priorities. Since SCNN1A was reported to be relevant to tumor progression in a variety of cancers, but rarely in ovarian cancer, we explored the roles of SCNN1A in OV. Methods RNA sequencing data from TCGA and GEO were utilized to analyze the expression of SCNN1A and related differentially expressed genes (DEGs) in ovarian cancer. We performed GO, GSEA and immune cell infiltration analysis on SCNN1A-associated DEGs. Correlation of SCNN1A methylation levels and its mRNA expression was analyzed by cBioPortal and UCSC Xena databases. To assess the prognostic impact of SCNN1A, Kaplan–Meier plot analysis and Cox regression analysis were performed; ROC curves and nomogram were also plotted. Results Compared to normal tissues, SCNN1A was highly expressed in ovarian cancer. The methylation level of SCNN1A negatively correlated with the SCNN1A expression. Moreover, high expression of SCNN1A was correlated with poor prognosis in OV patients and associated with immune infiltrates. Conclusion High SCNN1A expression could be a promising biomarker for poor outcomes in OV and correlated with tumor immune cells infiltration. The findings might help illuminate the function of SCNN1A in tumorigenesis and lay a foundation for further research.
Collapse
Affiliation(s)
- Jiayan Lou
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Lingjia Wei
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - He Wang
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Correspondence: He Wang, Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, 71 He Di Road, Nanning, Guangxi, 530021, People’s Republic of China, Tel +86 13481138393, Email
| |
Collapse
|
78
|
Liu R, Gao D, Lv Y, Zhai M, He A. Importance of circulating adipocytokines in multiple myeloma: a systematic review and meta-analysis based on case-control studies. BMC Endocr Disord 2022; 22:29. [PMID: 35073877 PMCID: PMC8787905 DOI: 10.1186/s12902-022-00939-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adipocytes and their products, adipocytokines, play important roles in the generation and development of multiple myeloma (MM). Studies have demonstrated some adipocytokines to be associated with MM, although those results are controversial. Therefore, we conducted a meta-analysis to verify the association of adipocytokines with MM. METHODS We performed a systematic retrieval of literature published prior to 26 October 2021. Standardized mean difference (SMD) with a 95% confidence interval (CI) was calculated to evaluate pooled effects. Subgroup analysis and meta-regression analysis were conducted to detect sources of heterogeneity. Sensitivity analysis was performed to evaluate the stability of the study. Publication bias was assessed by funnel plots and Egger's linear regression test. RESULTS Ten eligible studies with 1269 MM patients and 2158 controls were included. The pooled analyses indicated that circulating leptin levels of MM patients were significantly higher than control levels (SMD= 0.87, 95%CI: 0.33 to 1.41), while the circulating adiponectin levels in MM patients were significantly lower than controls with a pooled SMD of -0.49 (95%CI: -0.78 to -0.20). The difference of circulating resistin levels were not significant between MM patients and controls (SMD= -0.08, 95%CI: -0.55 to 0.39). Subgroup analysis and meta-regression analysis found that sample size, age, and sex were possible sources of heterogeneity. Sensitivity analysis demonstrated our pooled results to be stable. CONCLUSION Decreased circulating adiponectin and increased leptin levels were associated with the occurrence and development of MM. Adiponectin and leptin may be potential biomarkers and therapeutic targets for MM.
Collapse
Affiliation(s)
- Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, Xi'an, 710004, Shaanxi, China
| | - Dandan Gao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, Xi'an, 710004, Shaanxi, China
| | - Yang Lv
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, Xi'an, 710004, Shaanxi, China
| | - Meng Zhai
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, Xi'an, 710004, Shaanxi, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, Xi'an, 710004, Shaanxi, China.
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
79
|
Arend RC, Scalise CB, Gordon ER, Davis AM, Foxall ME, Johnston BE, Crossman DK, Cooper SJ. Metabolic alterations and WNT signaling impact immune response in HGSOC. Clin Cancer Res 2022; 28:1433-1445. [PMID: 35031546 DOI: 10.1158/1078-0432.ccr-21-2984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Our study used transcriptomic and metabolomic strategies to determine the molecular profiles of HGSOC patient samples derived from primary tumor and ascites cells. These data identified clinically relevant heterogeneity among and within patients and highlighted global and patient-specific cellular responses to neoadjuvant chemotherapy (NACT). EXPERIMENTAL DESIGN Tissue from 61 treatment naïve patients with HGSOC were collected. In addition, 11 benign, 32 ascites, and 18 post-NACT samples (matched to the individual patient's pre-NACT sample) were collected. RNA-sequencing (RNA-seq) was performed on all samples collected. Two-dimensional spatial proteomic data was collected for two pairs of pre-and post-NACT. Untargeted metabolomics data using GCxGC-MS was generated for 30 treatment-naive tissues. Consensus clustering, analysis of differential expression, pathway enrichment, and survival analyses were performed. RESULTS Treatment-naïve HGSOC tissues had distinct transcriptomic and metabolomic profiles. The mesenchymal subtype harbored a metabolomic profile distinct from the other subtypes. Compared to primary tumor tissue, ascites showed significant changes in immune response and signaling pathways. NACT caused significant alterations in gene expression and WNT activity, and this corresponded to altered immune response. Overall, WNT signaling levels were inversely correlated with immune cell infiltration in HGSOC tissues and WNT signaling post-NACT was inversely correlated with progression-free survival. CONCLUSIONS Our study concluded that HGSOC is a heterogenous disease at baseline and growing molecular differences can be observed between primary tumor and ascites cells or within tumors in response to treatment. Our data reveal potential exploratory biomarkers relevant for treatment selection and predicting patient outcomes that warrant further research.
Collapse
Affiliation(s)
- Rebecca C Arend
- Obstetrics and Gynecology, University of Alabama at Birmingham
| | | | | | - Allison M Davis
- Obstetrics and Gynecology, University of Alabama at Birmingham
| | | | | | | | - Sara J Cooper
- S. Cooper Lab, HudsonAlpha Institute for Biotechnology
| |
Collapse
|
80
|
Lai X, Huang S, Lin S, Pu L, Wang Y, Lin Y, Huang W, Wang Z. Mesenchymal stromal cells attenuate alveolar type 2 cells senescence through regulating NAMPT-mediated NAD metabolism. Stem Cell Res Ther 2022; 13:12. [PMID: 35012648 PMCID: PMC8751376 DOI: 10.1186/s13287-021-02688-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive deadly fibrotic lung disease with high prevalence and mortality worldwide. The therapeutic potential of mesenchymal stem cells (MSCs) in pulmonary fibrosis may be attributed to the strong paracrine, anti-inflammatory, anti-apoptosis and immunoregulatory effects. However, the mechanisms underlying the therapeutic effects of MSCs in IPF, especially in terms of alveolar type 2 (AT2) cells senescence, are not well understood. The purpose of this study was to evaluate the role of MSCs in NAD metabolism and senescence of AT2 cells in vitro and in vivo. Methods MSCs were isolated from human bone marrow. The protective effects of MSCs injection in pulmonary fibrosis were assessed via bleomycin mouse models. The senescence of AT2 cells co-cultured with MSCs was evaluated by SA-β-galactosidase assay, immunofluorescence staining and Western blotting. NAD+ level and NAMPT expression in AT2 cells affected by MSCs were determined in vitro and in vivo. FK866 and NAMPT shRNA vectors were used to determine the role of NAMPT in MSCs inhibiting AT2 cells senescence. Results We proved that MSCs attenuate bleomycin-induced pulmonary fibrosis in mice. Senescence of AT2 cells was alleviated in MSCs-treated pulmonary fibrosis mice and when co-cultured with MSCs in vitro. Mechanistic studies showed that NAD+ and NAMPT levels were rescued in AT2 cells co-cultured with MSCs and MSCs could suppress AT2 cells senescence mainly via suppressing lysosome-mediated NAMPT degradation. Conclusions MSCs attenuate AT2 cells senescence by upregulating NAMPT expression and NAD+ levels, thus exerting protective effects in pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02688-w.
Collapse
Affiliation(s)
- Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaojie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sijia Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lvya Pu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingying Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
81
|
Chromatin basis of the senescence-associated secretory phenotype. Trends Cell Biol 2022; 32:513-526. [PMID: 35012849 DOI: 10.1016/j.tcb.2021.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023]
Abstract
Cellular senescence is a stable cell growth arrest. Senescent cells are metabolically active, as exemplified by the secretion of inflammatory cytokines, chemokines, and growth factors, which is termed senescence-associated secretory phenotype (SASP). The SASP exerts a range of functions in both normal health and pathology, which is possibly best characterized in cancers and physical aging. Recent studies demonstrated that chromatin is instrumental in regulating the SASP both through nuclear transcription and via the innate immune cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in the cytoplasm. Here, we will review these regulatory mechanisms, with an emphasis on most recent developments in the field. We will highlight the challenges and opportunities in developing intervention approaches, such as targeting chromatin regulatory mechanisms, to alter the SASP as an emerging approach to combat cancers and achieve healthy aging.
Collapse
|
82
|
Payne KK. Cellular stress responses and metabolic reprogramming in cancer progression and dormancy. Semin Cancer Biol 2022; 78:45-48. [PMID: 34098105 PMCID: PMC8642459 DOI: 10.1016/j.semcancer.2021.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023]
Abstract
Recurrent disease after prolonged cancer dormancy is a major cause of cancer associated mortality, yet many of the mechanisms that are engaged to initiate dormancy as well as later recurrence remain incompletely understood. It is known that cancer cells initiate adaptation mechanisms to adapt tightly regulated cellular processes to non-optimal growth environments; Recent investigations have begun to elucidate the contribution of these mechanisms to malignant progression, with intriguing studies now defining cellular stress as a key contributor to the development and maintenance of cancer dormancy. This review will focus on our current understanding of stress responses facilitating malignant cell adaptation and metabolic reprogramming to establish cancer dormancy.
Collapse
|
83
|
Biegała Ł, Gajek A, Marczak A, Rogalska A. PARP inhibitor resistance in ovarian cancer: Underlying mechanisms and therapeutic approaches targeting the ATR/CHK1 pathway. Biochim Biophys Acta Rev Cancer 2021; 1876:188633. [PMID: 34619333 DOI: 10.1016/j.bbcan.2021.188633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Ovarian cancer (OC) constitutes the most common cause of gynecologic cancer-related death in women worldwide. Despite consistent developments in treatment strategies for OC, the management of advanced-stage disease remains a significant challenge. Recent improvements in targeted treatments based on poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) have provided invaluable benefits to patients with OC. Unfortunately, numerous patients do not respond to PARPi due to intrinsic resistance or acquisition of resistance. Here, we discuss mechanisms of resistance to PARPi that have specifically emerged in OC including increased drug efflux, restoration of HR repair, re-establishment of replication fork stability, reduced PARP1 trapping, abnormalities in PARP signaling, and less common pathways associated with alternative DNA sensing and repair pathways. Elucidation of the precise mechanisms is essential for the development of novel strategies to re-sensitize OC cells to PARPi agents. Additionally, novel potential concepts for preventing and combating resistance to PARPi under development and relevant clinical reports on treatment strategies have been reviewed, with emphasis on the exploitation of the ATR/CHK1 kinase pathway in sensitization to PARPi to overcome resistance-induced vulnerability in ovarian cancer.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
84
|
Yang J, Liu M, Hong D, Zeng M, Zhang X. The Paradoxical Role of Cellular Senescence in Cancer. Front Cell Dev Biol 2021; 9:722205. [PMID: 34458273 PMCID: PMC8388842 DOI: 10.3389/fcell.2021.722205] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence occurs in proliferating cells as a consequence of various triggers including telomere shortening, DNA damage, and inappropriate expression of oncogenes. The senescent state is accompanied by failure to reenter the cell cycle under mitotic stimulation, resistance to cell death and enhanced secretory phenotype. A growing number of studies have convincingly demonstrated a paradoxical role for spontaneous senescence and therapy-induced senescence (TIS), that senescence may involve both cancer prevention and cancer aggressiveness. Cellular senescence was initially described as a physiological suppressor mechanism of tumor cells, because cancer development requires cell proliferation. However, there is growing evidence that senescent cells may contribute to oncogenesis, partly in a senescence-associated secretory phenotype (SASP)-dependent manner. On the one hand, SASP prevents cell division and promotes immune clearance of damaged cells, thereby avoiding tumor development. On the other hand, SASP contributes to tumor progression and relapse through creating an immunosuppressive environment. In this review, we performed a review to summarize both bright and dark sides of senescence in cancer, and the strategies to handle senescence in cancer therapy were also discussed.
Collapse
Affiliation(s)
- Jing Yang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongchun Hong
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
85
|
Sun X, Liu Q, Huang J, Diao G, Liang Z. Transcriptome-based stemness indices analysis reveals platinum-based chemo-theraputic response indicators in advanced-stage serous ovarian cancer. Bioengineered 2021; 12:3753-3771. [PMID: 34266348 PMCID: PMC8806806 DOI: 10.1080/21655979.2021.1939514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Serous ovarian cancer (SOC) is a main histological subtype of ovarian cancer, in which cancer stem cells (CSC) are responsible for its chemoresistance. However, the underlying modulation mechanisms of chemoresistance led by cancer stemness are still undefined. We aimed to investigate potential drug-response indicators among stemness-associated biomarkers in advanced SOC samples. The mRNA expression-based stemness index (mRNAsi) of The Cancer Genome Atlas (TCGA) was evaluated and corrected by tumor purity. Weighted gene co-expression network analysis (WGCNA) was utilized to explore the gene modules and key genes involved in stemness characteristics. We found that mRNAsi and corrected mRNAsi scores were both greater in tumors of Grade 3 and 4 than that of Grade 1 and 2. Forty-two key genes were obtained from the most significant mRNAsi-related gene module. Functional annotation revealed that these key genes were mainly involved in the mitotic division. Thirteen potential platinum-response indicators were selected from the genes enriched to platinum-response associated pathways. Among them, we identified 11 genes with prognostic value of progression-free survival (PFS) in advanced SOC patients treated with platinum and 7 prognostic genes in patients treated with a combination of platinum and taxol. The expressions of the 13 key genes were also validated between platinum-resistant and -sensitive SOC samples of advanced stages in two Gene Expression Omnibus (GEO) datasets. The results revealed that CDC20 was a potential platinum-sensitivity indicator in advanced SOC. These findings may provide a new insight for chemotherapies in advanced SOC patients clinically.
Collapse
Affiliation(s)
- Xinwei Sun
- Department of Gynecology and Obstetrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qingyu Liu
- Orthopedic Department, The 964th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, Changchun, China
| | - Jie Huang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ge Diao
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiqing Liang
- Department of Gynecology and Obstetrics, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
86
|
Subedi A, Liu Q, Ayyathan DM, Sharon D, Cathelin S, Hosseini M, Xu C, Voisin V, Bader GD, D'Alessandro A, Lechman ER, Dick JE, Minden MD, Wang JCY, Chan SM. Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis. Cell Stem Cell 2021; 28:1851-1867.e8. [PMID: 34293334 DOI: 10.1016/j.stem.2021.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Current treatments for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), which perpetuate the disease. Here, we performed a metabolic drug screen to identify LSC-specific vulnerabilities and found that nicotinamide phosphoribosyltransferase (NAMPT) inhibitors selectively killed LSCs, while sparing normal hematopoietic stem and progenitor cells. Treatment with KPT-9274, a NAMPT inhibitor, suppressed the conversion of saturated fatty acids to monounsaturated fatty acids, a reaction catalyzed by the stearoyl-CoA desaturase (SCD) enzyme, resulting in apoptosis of AML cells. Transcriptomic analysis of LSCs treated with KPT-9274 revealed an upregulation of sterol regulatory-element binding protein (SREBP)-regulated genes, including SCD, which conferred partial protection against NAMPT inhibitors. Inhibition of SREBP signaling with dipyridamole enhanced the cytotoxicity of KPT-9274 on LSCs in vivo. Our work demonstrates that altered lipid homeostasis plays a key role in NAMPT inhibitor-induced apoptosis and identifies NAMPT inhibition as a therapeutic strategy for targeting LSCs in AML.
Collapse
Affiliation(s)
- Amit Subedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Qiang Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dhanoop M Ayyathan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David Sharon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Severine Cathelin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mohsen Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Changjiang Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Veronique Voisin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada; Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Jean C Y Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada; Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada; Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
87
|
Zhang JW, Zhang D, Yu BP. Senescent cells in cancer therapy: why and how to remove them. Cancer Lett 2021; 520:68-79. [PMID: 34237406 DOI: 10.1016/j.canlet.2021.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stress response that imposes a growth arrest on cancer and nonmalignant cells during cancer therapy. By secreting a plethora of proinflammatory factors collectively termed the senescence-associated secretory phenotype (SASP), therapy-induced senescent cells can promote tumorigenesis. Moreover, the SASP from senescent cells is also able to drive therapy resistance and mediate many adverse effects of cancer therapy. Because senescent cell production often occurs during cancer therapy, it is important to carefully consider these potential detrimental effects. Senotherapy, which refers to selective removal of senescent cells, has been proposed as a promising adjuvant approach to eliminate the adverse effects of senescent cells. Thus, in this review we summarize in detail the mechanisms by which senescent cells contribute to tumorigenesis and therapeutic resistance. Also, we thoroughly discuss the potential strategies regarding how to effectively circumvent the undesirable effects of therapy-induced senescent cells.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, People's Republic of China
| | - Dan Zhang
- Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Bao-Ping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
88
|
Ren A, Prassas I, Sugumar V, Soosaipillai A, Bernardini M, Diamandis EP, Kulasingam V. Comparison of two multiplexed technologies for profiling >1,000 serum proteins that may associate with tumor burden. F1000Res 2021; 10:509. [PMID: 34868557 PMCID: PMC8609392 DOI: 10.12688/f1000research.53364.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background: In this pilot study, we perform a preliminary comparison of two targeted multiplex proteomics technologies for discerning serum protein concentration changes that may correlate to tumor burden in ovarian cancer (OC) patients. Methods: Using the proximity extension assay (PEA) and Quantibody® Kiloplex Array (QKA), we measured >1,000 proteins in the pre-surgical and post-surgical serum from nine OC patients (N=18 samples). We expect that proteins that have decreased significantly in the post-surgical serum concentration may correlate to tumor burden in each patient. Duplicate sera from two healthy individuals were used as controls (N=4 samples). We employed in-house ELISAs to measure five proteins with large serum concentration changes in pre- and post-surgical sera, from four of the original nine patients and the two original controls. Results: Both platforms showed a weak correlation with clinical cancer antigen 125 (CA125) data. The two multiplexed platforms showed a significant correlation with each other for >400 overlapping proteins. PEA uncovered 15 proteins, while QKA revealed 11 proteins, with more than a two-fold post-surgical decrease in at least six of the nine patients. Validation using single enzyme-linked immunosorbent assays (ELISAs) showed at least a two-fold post-surgical decrease in serum concentration of the same patients, as indicated by the two multiplex assays. Conclusion: Both methods identified proteins that had significantly decreased in post-surgical serum concentration, as well as recognizing proteins that had been implicated in OC patients. Our findings from a limited sample size suggest that novel targeted proteomics platforms are promising tools for identifying candidate serological tumor-related proteins. However further studies are essential for the improvement of accuracy and avoidance of false results.
Collapse
Affiliation(s)
- Annie Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Vijithan Sugumar
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Marcus Bernardini
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of Gynecologic Oncology, University Health Network, Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
89
|
Chambers CR, Ritchie S, Pereira BA, Timpson P. Overcoming the senescence-associated secretory phenotype (SASP): a complex mechanism of resistance in the treatment of cancer. Mol Oncol 2021; 15:3242-3255. [PMID: 34137158 PMCID: PMC8637570 DOI: 10.1002/1878-0261.13042] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
Senescence is a cellular state in which cells undergo persistent cell cycle arrest in response to nonlethal stress. In the treatment of cancer, senescence induction is a potent method of suppressing tumour cell proliferation. In spite of this, senescent cancer cells and adjacent nontransformed cells of the tumour microenvironment can remain metabolically active, resulting in paradoxical secretion of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP). The SASP plays a critical role in tumorigenesis, affecting numerous processes including invasion, metastasis, epithelial-to-mesenchymal transition (EMT) induction, therapy resistance and immunosuppression. With increasing evidence, it is becoming clear that cell type, tissue of origin and the primary cellular stressor are key determinants in how the SASP will influence tumour development and progression, including whether it will be pro- or antitumorigenic. In this review, we will focus on recent evidence regarding therapy-induced senescence (TIS) from anticancer agents, including chemotherapy, radiation, immunotherapy, and targeted therapies, and how each therapy can trigger the SASP, which in turn influences treatment efficacy. We will also discuss novel pharmacological manipulation of senescent cancer cells and the SASP, which offers an exciting and contemporary approach to cancer therapeutics. With future research, these adjuvant options may help to mitigate many of the negative side effects and protumorigenic roles that are currently associated with TIS in cancer.
Collapse
Affiliation(s)
- Cecilia R Chambers
- Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Shona Ritchie
- Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Brooke A Pereira
- Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Paul Timpson
- Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
90
|
Groth B, Venkatakrishnan P, Lin SJ. NAD + Metabolism, Metabolic Stress, and Infection. Front Mol Biosci 2021; 8:686412. [PMID: 34095234 PMCID: PMC8171187 DOI: 10.3389/fmolb.2021.686412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite with wide-ranging and significant roles in the cell. Defects in NAD+ metabolism have been associated with many human disorders; it is therefore an emerging therapeutic target. Moreover, NAD+ metabolism is perturbed during colonization by a variety of pathogens, either due to the molecular mechanisms employed by these infectious agents or by the host immune response they trigger. Three main biosynthetic pathways, including the de novo and salvage pathways, contribute to the production of NAD+ with a high degree of conservation from bacteria to humans. De novo biosynthesis, which begins with l-tryptophan in eukaryotes, is also known as the kynurenine pathway. Intermediates of this pathway have various beneficial and deleterious effects on cellular health in different contexts. For example, dysregulation of this pathway is linked to neurotoxicity and oxidative stress. Activation of the de novo pathway is also implicated in various infections and inflammatory signaling. Given the dynamic flexibility and multiple roles of NAD+ intermediates, it is important to understand the interconnections and cross-regulations of NAD+ precursors and associated signaling pathways to understand how cells regulate NAD+ homeostasis in response to various growth conditions. Although regulation of NAD+ homeostasis remains incompletely understood, studies in the genetically tractable budding yeast Saccharomyces cerevisiae may help provide some molecular basis for how NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function and how they are regulated by various nutritional and stress signals. Here we present a brief overview of recent insights and discoveries made with respect to the relationship between NAD+ metabolism and selected human disorders and infections, with a particular focus on the de novo pathway. We also discuss how studies in budding yeast may help elucidate the regulation of NAD+ homeostasis.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Padmaja Venkatakrishnan
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
91
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
92
|
Wang W, Fang F, Ozes A, Nephew KP. Targeting Ovarian Cancer Stem Cells by Dual Inhibition of HOTAIR and DNA Methylation. Mol Cancer Ther 2021; 20:1092-1101. [PMID: 33785648 DOI: 10.1158/1535-7163.mct-20-0826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is a chemoresponsive tumor with very high initial response rates to standard therapy consisting of platinum/paclitaxel. However, most women eventually develop recurrence, which rapidly evolves into chemoresistant disease. Persistence of ovarian cancer stem cells (OCSCs) at the end of therapy has been shown to contribute to resistant tumors. In this study, we demonstrate that the long noncoding RNA HOTAIR is overexpressed in HGSOC cell lines. Furthermore, HOTAIR expression was upregulated in OCSCs compared with non-CSC, ectopic overexpression of HOTAIR enriched the ALDH+ cell population and HOTAIR overexpression increased spheroid formation and colony-forming ability. Targeting HOTAIR using peptide nucleic acid-PNA3, which acts by disrupting the interaction between HOTAIR and EZH2, in combination with a DNMT inhibitor inhibited OCSC spheroid formation and decreased the percentage of ALDH+ cells. Disrupting HOTAIR-EZH2 with PNA3 in combination with the DNMTi on the ability of OCSCs to initiate tumors in vivo as xenografts was examined. HGSOC OVCAR3 cells were treated with PNA3 in vitro and then implanted in nude mice. Tumor growth, initiation, and stem cell frequency were inhibited. Collectively, these results demonstrate that blocking HOTAIR-EZH2 interaction combined with inhibiting DNA methylation is a potential approach to eradicate OCSCs and block disease recurrence.
Collapse
Affiliation(s)
- Weini Wang
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Fang Fang
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Ali Ozes
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Kenneth P Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana. .,Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| |
Collapse
|
93
|
Long non-coding RNA HAL suppresses the migration and invasion of serous ovarian cancer by inhibiting EMT signaling pathway. Biosci Rep 2021; 40:222072. [PMID: 32039453 PMCID: PMC7056446 DOI: 10.1042/bsr20194496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the specific function of long non-coding RNA HAL in serous ovarian cancer (SOC) and to further clarify the regulation of HAL on EMT pathway. MATERIALS AND METHODS The expression of HAL and TWIST1 was detected by qRT-PCR. CCK8 assay, wound healing assay, transwell assay and flow cytometry were used to detect the HAL function on proliferation, migration, invasion and apoptosis in SOC cells. Western blot was used to calculate protein level of Vimentin, N-cadherin and E-cadherin. The effect of HAL on tumorigenesis of SOC was confirmed by xenograft nude mice model. RESULTS HAL was significantly decreased in SOC tissues and cells. Overexpression of HAL inhibited the proliferation, migration and invasion of SKOV3 cells, but promoted apoptosis. Furthermore, overexpression of HAL decreased the mRNA and protein levels of TWIST1 via a binding between HAL and TWIST1. Forced expression of TWIST1 reversed the inhibitory role of HAL on SOC cells' migration and invasion. The in vivo tumor growth assay showed that HAL suppressed SOC tumorigenesis with inhibiting EMT pathway. CONCLUSIONS Our research emphasized HAL acting as a tumor-inhibiting gene by regulating EMT signaling pathway, thus providing some novel experimental basis for clinical treatment of SOC.
Collapse
|
94
|
Akman M, Belisario DC, Salaroglio IC, Kopecka J, Donadelli M, De Smaele E, Riganti C. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:28. [PMID: 33423689 PMCID: PMC7798239 DOI: 10.1186/s13046-020-01824-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Solid tumors often grow in a micro-environment characterized by < 2% O2 tension. This condition, together with the aberrant activation of specific oncogenic patwhays, increases the amount and activity of the hypoxia-inducible factor-1α (HIF-1α), a transcription factor that controls up to 200 genes involved in neoangiogenesis, metabolic rewiring, invasion and drug resistance. Hypoxia also induces endoplasmic reticulum (ER) stress, a condition that triggers cell death, if cells are irreversibly damaged, or cell survival, if the stress is mild.Hypoxia and chronic ER stress both induce chemoresistance. In this review we discuss the multiple and interconnected circuitries that link hypoxic environment, chronic ER stress and chemoresistance. We suggest that hypoxia and ER stress train and select the cells more adapted to survive in unfavorable conditions, by activating pleiotropic mechanisms including apoptosis inhibition, metabolic rewiring, anti-oxidant defences, drugs efflux. This adaptative process unequivocally expands clones that acquire resistance to chemotherapy.We believe that pharmacological inhibitors of HIF-1α and modulators of ER stress, although characterized by low specificty and anti-cancer efficacy when used as single agents, may be repurposed as chemosensitizers against hypoxic and chemorefractory tumors in the next future.
Collapse
Affiliation(s)
- Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | | | | | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.
| |
Collapse
|
95
|
Liao C, Xiao Y, Liu L. The Dynamic Process and Its Dual Effects on Tumors of Therapy-Induced Senescence. Cancer Manag Res 2021; 12:13553-13566. [PMID: 33408525 PMCID: PMC7781229 DOI: 10.2147/cmar.s285083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is traditionally considered as stable cell cycle arrest state with other phenotypic alterations including the production of an array of cytokines and growth factors. Cancer cells undergo senescence in response to chemotherapeutic agents, radiotherapy and molecular targeted therapy. This form of senescence is termed therapy-induced senescence (TIS) and represents a desirable target in cancer therapy. Recent studies have shown that cellular senescence is a highly heterogeneous and dynamic process. Apart from being cleared by the immune system, the senescent cancer cells may survive for a long time and escape from senescence state. Notably, these cells even have the potential to regain stem-like state with high aggressiveness that eventually facilitates cancer recurrence. Furthermore, the senescence-associated secretory phenotype (SASP) of senescent cells is not always the same, and could establish immunosuppression and a protumor microenvironment. Given these detrimental effects, senescence-inducing chemotherapy followed by senotherapy (the “one–two punch” approach), has emerged. This combined therapy could mitigate unnecessary side effects of the persistent senescent cells, reduce the toxicity of pro-senescence therapy and prolong the survival of cancer patients, and it has a potential future in the precise treatment of cancer. Herein, we review the complex effects of therapy-induced senescence in cancer and highlight the great promise of two-step strategies in anticancer therapies.
Collapse
Affiliation(s)
- Chenxi Liao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yin Xiao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
96
|
Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021; 6:2. [PMID: 33384409 PMCID: PMC7775471 DOI: 10.1038/s41392-020-00354-w] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
NAD+ was discovered during yeast fermentation, and since its discovery, its important roles in redox metabolism, aging, and longevity, the immune system and DNA repair have been highlighted. A deregulation of the NAD+ levels has been associated with metabolic diseases and aging-related diseases, including neurodegeneration, defective immune responses, and cancer. NAD+ acts as a cofactor through its interplay with NADH, playing an essential role in many enzymatic reactions of energy metabolism, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, and the TCA cycle. NAD+ also plays a role in deacetylation by sirtuins and ADP ribosylation during DNA damage/repair by PARP proteins. Finally, different NAD hydrolase proteins also consume NAD+ while converting it into ADP-ribose or its cyclic counterpart. Some of these proteins, such as CD38, seem to be extensively involved in the immune response. Since NAD cannot be taken directly from food, NAD metabolism is essential, and NAMPT is the key enzyme recovering NAD from nicotinamide and generating most of the NAD cellular pools. Because of the complex network of pathways in which NAD+ is essential, the important role of NAD+ and its key generating enzyme, NAMPT, in cancer is understandable. In the present work, we review the role of NAD+ and NAMPT in the ways that they may influence cancer metabolism, the immune system, stemness, aging, and cancer. Finally, we review some ongoing research on therapeutic approaches.
Collapse
Affiliation(s)
- Lola E Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, Sevilla, Spain.
| |
Collapse
|
97
|
Fukumoto T, Lin J, Fatkhutdinov N, Liu P, Somasundaram R, Herlyn M, Zhang R, Nishigori C. ARID2 Deficiency Correlates with the Response to Immune Checkpoint Blockade in Melanoma. J Invest Dermatol 2020; 141:1564-1572.e4. [PMID: 33333124 DOI: 10.1016/j.jid.2020.11.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
The SWI/SNF chromatin remodeler family includes the BAF and PBAF complexes. ARID2, encoding a PBAF complex subunit, is frequently mutated in melanoma independently of BRAF/RAS mutations. Emerging evidence shows that SWI/SNF complexes regulate tumor immunity; for instance, the loss of PBRM1, another PBAF complex subunit, enhances susceptibility to immune checkpoint inhibitors in melanoma. Notably, ARID2 mutations are more frequent in melanoma than PBRM1 mutations. However, the role of ARID2 as a modulator of tumor immunity remains unclear. In this study, we show that ARID2 knockout sensitizes melanoma to immune checkpoint inhibitors. Anti‒PD-L1 treatment restricts tumor growth in mice bearing ARID2-knockout melanoma cells, correlating with an increase in the infiltration of cytotoxic CD8+ T cells. Furthermore, ARID2 deficiency leads to signal transducer and activator of transcription 1 upregulation, which subsequently causes increased expression of T-cell‒attracting chemokines such as CXCL9, CXCL10, and CCL5. These results demonstrate that ARID2 is an immunomodulator and a potential biomarker that indicates immune checkpoint inhibitor effectiveness in patients with melanoma.
Collapse
Affiliation(s)
- Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan; Immunology, Microenvironment and Metastasis Program, Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.
| | - Jianhuang Lin
- Immunology, Microenvironment and Metastasis Program, Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Nail Fatkhutdinov
- Immunology, Microenvironment and Metastasis Program, Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Pingyu Liu
- Immunology, Microenvironment and Metastasis Program, Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Rajasekharan Somasundaram
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
98
|
Siraj AK, Pratheeshkumar P, Divya SP, Parvathareddy SK, Alobaisi KA, Thangavel S, Siraj S, Al-Badawi IA, Al-Dayel F, Al-Kuraya KS. Krupple-Like Factor 5 is a Potential Therapeutic Target and Prognostic Marker in Epithelial Ovarian Cancer. Front Pharmacol 2020; 11:598880. [PMID: 33424607 PMCID: PMC7793801 DOI: 10.3389/fphar.2020.598880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy. Despite current therapeutic and surgical options, advanced EOC shows poor prognosis. Identifying novel molecular therapeutic targets is highly needed in the management of EOC. Krupple-like factor 5 (KLF5), a zinc-finger transcriptional factor, is highly expressed in a variety of cancer types. However, its role and expression in EOC is not fully illustrated. Immunohistochemical analysis was performed to assess KLF5 protein expression in 425 primary EOC samples using tissue microarray. We also addressed the function of KLF5 in EOC and its interaction with signal transducer and activator of transcription 3 (STAT3) signaling pathway. We found that KLF5 overexpressed in 53% (229/425) of EOC samples, and is associated with aggressive markers. Forced expression of KLF5 enhanced cell growth in low expressing EOC cell line, MDAH2774. Conversely, knockdown of KLF5 reduced cell growth, migration, invasion and progression of epithelial to mesenchymal transition in KLF5 expressing cell lines, OVISE and OVSAHO. Importantly, silencing of KLF5 decreased the self-renewal ability of spheroids generated from OVISE and OVSAHO cell lines. In addition, downregulation of KLF5 potentiated the effect of cisplatin to induce apoptosis in these cell lines. These data reveals the pro-tumorigenic role of KLF5 in EOC and uncover its role in activation of STAT3 signaling pathway, suggesting the importance of KLF5 as a potential therapeutic target for EOC therapy.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Khadija A Alobaisi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saravanan Thangavel
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sarah Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ismail A Al-Badawi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
99
|
Carpenter VJ, Patel BB, Autorino R, Smith SC, Gewirtz DA, Saleh T. Senescence and castration resistance in prostate cancer: A review of experimental evidence and clinical implications. Biochim Biophys Acta Rev Cancer 2020; 1874:188424. [PMID: 32956765 DOI: 10.1016/j.bbcan.2020.188424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/10/2023]
Abstract
The development of Castration-Resistant Prostate Cancer (CRPC) remains a major challenge in the treatment of this disease. While Androgen Deprivation Therapy (ADT) can result in tumor shrinkage, a primary response of Prostate Cancer (PCa) cells to ADT is a senescent growth arrest. As a response to cancer therapies, senescence has often been considered as a beneficial outcome due to its association with stable growth abrogation, as well as the potential for immune system activation via the Senescence-Associated Secretory Phenotype (SASP). However, there is increasing evidence that not only can senescent cells regain proliferative capacity, but that senescence contributes to deleterious effects of cancer chemotherapy, including disease recurrence. Notably, the preponderance of work investigating the consequences of therapy-induced senescence on tumor progression has been performed in non-PCa models. Here, we summarize the evidence that ADT promotes a senescent response in PCa and postulate mechanisms by which senescence may contribute to the development of castration-resistance. Primarily, we suggest that ADT-induced senescence may support CRPC development via escape from senescence, by cell autonomous-reprogramming, and by the formation of a pro-tumorigenic SASP. However, due to the scarcity of direct evidence from PCa models, the consequences of ADT-induced senescence outlined here remain speculative until the relationship between senescence and CRPC can be experimentally defined.
Collapse
Affiliation(s)
- Valerie J Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Bhaumik B Patel
- Department of Internal Medicine, Division of Hematology, Oncology & Palliative Care, VCU Health, Richmond, VA, USA
| | - Riccardo Autorino
- Department of Surgery, Division of Urology, VCU Health, Richmond, VA, USA
| | | | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tareq Saleh
- The Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
100
|
Grams RJ, Garcia CJ, Szwetkowski C, Santos WL. Catalytic, Transition-Metal-Free Semireduction of Propiolamide Derivatives: Scope and Mechanistic Investigation. Org Lett 2020; 22:7013-7018. [PMID: 32846095 PMCID: PMC10998456 DOI: 10.1021/acs.orglett.0c02567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a transition-metal-free trans-selective semireduction of alkynes with pinacolborane and catalytic potassium tert-butoxide. A variety of 3-substituted primary and secondary propiolamides, including an analog of FK866, a potent nicotinamide mononucleotide adenyltransferase (NMNAT) inhibitor, are reduced to the corresponding (E)-3-substituted acrylamide derivatives in up to 99% yield with >99:1 E/Z selectivity. Mechanistic studies suggest that an activated Lewis acid-base complex transfers a hydride to the α-carbon followed by rapid protonation in a trans fashion.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher J Garcia
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Connor Szwetkowski
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|