51
|
García MPS, García-García A. Epigenome and DNA methylation in oral squamous cell carcinoma. Methods Mol Biol 2012; 863:207-19. [PMID: 22359295 DOI: 10.1007/978-1-61779-612-8_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetics studies and defines inherited changes in gene expression that are not encoded in the DNA sequence. The most studied epigenetic change in mammalian DNA is cytosine methylation in CpG dinucleotide areas. The other main group in epigenetic changes includes the posttranslational modifications of histones, mainly phosphorylation, deacetylation changes, and in the ubiquitinylation status. Oral squamous cell carcinoma is the most common malignancy of the oral cavity, and epigenetic changes are very common, as described in this chapter. Alterations in the DNA methylation status resulting from exposure to environmental stress agents have been documented even before birth. Although many epigenetic markers are potentially reversible, the mechanism still remains unclear and many epigenetic changes persist across cell lines and the life of the organism.
Collapse
|
52
|
Rigi-Ladiz MA, Kordi-Tamandani DM, Torkamanzehi A. Analysis of hypermethylation and expression profiles of APC and ATM genes in patients with oral squamous cell carcinoma. Clin Epigenetics 2011; 3:6. [PMID: 22414247 PMCID: PMC3303468 DOI: 10.1186/1868-7083-3-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/01/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Adenomatous polyposis coli (APC) and Ataxia-telangiectasia-mutated (ATM) gene products have an important role in cell cycle control and maintenance of genomic stability. Our aim was to analyze ATM and APC methylation and its relationship with oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Eighty-four OSCC tissues that have been fixed in paraffin along with 57 control oral samples have been used for analyzing promoter methylation of ATM and APC genes by Methylation Specific Polymerase Chain Reaction (MS-PCR). In addition, 10 cases of OSCC and the same of matched controls were examined for estimating expression of the above mentioned genes using Real-Time Reverse-Transcription PCR. RESULTS Observed promoter methylations were 71.42% and 87.71% for the APC gene and 88.09% and 77.19% for the ATM gene in cases and controls, respectively. Analysis of these data showed that promoter methylation at APC was significantly different in cases compared to healthy controls (p = 0.01), but no difference was detected for the ATM gene. Furthermore, the mRNA expression levels did not differ statistically between cases and controls for both ATM (cases = 9, controls = 10) and APC (cases = 11, controls = 10) genes. CONCLUSIONS Our results, for the first time, provide methylation profiles of ATM and APC genes in a sample of patients with OSCC in a southeast Iranian population. The present data support related evidence of APC methylation effect on OSCC development.
Collapse
Affiliation(s)
- Mohammad Ayub Rigi-Ladiz
- Department of Periodontics, Dental School, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Adam Torkamanzehi
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
53
|
Kumar A, Rai PS, Upadhya R, Vishwanatha, Prasada KS, Rao BSS, Satyamoorthy K. γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines. Int J Radiat Biol 2011; 87:1086-1096. [PMID: 21815748 DOI: 10.3109/09553002.2011.605417] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Ionizing radiation induces cellular damage through both direct and indirect mechanisms, which may include effects from epigenetic changes. The purpose of this study was to determine the effect of ionizing radiation on DNA methylation patterns that may be associated with altered gene expression. MATERIALS AND METHODS Sixteen human tumor cell lines originating from various cancers were initially tested for radiation sensitivity by irradiating them with γ-radiation in vitro and subsequently, radiation sensitive and resistant cell lines were treated with different doses of a demethylating agent, 5-Aza-2'-Deoxycytidine (5-aza-dC) and a chromatin modifier, Trichostatin-A (TSA). Survival of these cell lines was measured using 3-(4, 5-Dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium (MTT) and clonogenic assays. The effect of radiation on global DNA methylation was measured using reverse phase high performance liquid chromatography (RP-HPLC). The transcription response of methylated gene promoters, from cyclin-dependent kinase inhibitor 2A (p16(INK4a)) and ataxia telangiectasia mutated (ATM) genes, to radiation was measured using a luciferase reporter assay. RESULTS γ-radiation resistant (SiHa and MDAMB453) and sensitive (SaOS2 and WM115) tumor cell lines were examined for the relationship between radiation sensitivity and DNA methylation. Treatment of cells with 5-aza-dC and TSA prior to irradiation enhanced DNA strand breaks, G2/M phase arrest, apoptosis and cell death. Exposure to γ-radiation led to global demethylation in a time-dependent manner in tumor cells in relation to resistance and sensitivity to radiation with concomitant activation of p16(INK4a) and ATM gene promoters. CONCLUSION These results provide important information on alterations in DNA methylation as one of the determinants of radiation effects, which may be associated with altered gene expression. Our results may help in delineating the mechanisms of radiation resistance in tumor cells, which can influence diagnosis, prognosis and eventually therapy for human cancers.
Collapse
Affiliation(s)
- Ashok Kumar
- Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Karnataka, India
| | | | | | | | | | | | | |
Collapse
|
54
|
Radhakrishnan R, Kabekkodu S, Satyamoorthy K. DNA hypermethylation as an epigenetic mark for oral cancer diagnosis. J Oral Pathol Med 2011; 40:665-676. [PMID: 21649736 DOI: 10.1111/j.1600-0714.2011.01055.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oral cancer is the largest group of cancers which fall into the head and neck category. While genetic alterations in oral cancer have long been documented, the effect of epigenetic changes is more recent. The recent explosion in science of how chromatin organization modulates the gene expression has highlighted the epigenetic mechanism of oral cancer pathogenesis. DNA methylation, which is an important epigenetic marker, is perhaps the best characterized chemical modification of mammalian DNA and provides a stable, heritable, and critical component of epigenetic regulation. This review attempts to decipher the epigenetic aspects of oral cancer by evaluating the DNA methylation status through its various stages from normal to potentially malignant to malignant states. In doing so, we emphasize DNA methylation as a novel biomarker in oral cancer research, thus opening newer avenues in oral cancer research.
Collapse
Affiliation(s)
- Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal University, Manipal, Karnataka, India.
| | | | | |
Collapse
|
55
|
Role of DNA methylation in head and neck cancer. Clin Epigenetics 2011; 2:123-50. [PMID: 22704334 PMCID: PMC3365391 DOI: 10.1007/s13148-011-0045-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/14/2011] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer (HNC) is a heterogenous and complex entity including diverse anatomical sites and a variety of tumor types displaying unique characteristics and different etilogies. Both environmental and genetic factors play a role in the development of the disease, but the underlying mechanism is still far from clear. Previous studies suggest that alterations in the genes acting in cellular signal pathways may contribute to head and neck carcinogenesis. In cancer, DNA methylation patterns display specific aberrations even in the early and precancerous stages and may confer susceptibility to further genetic or epigenetic changes. Silencing of the genes by hypermethylation or induction of oncogenes by promoter hypomethylation are frequent mechanisms in different types of cancer and achieve increasing diagnostic and therapeutic importance since the changes are reversible. Therefore, methylation analysis may provide promising clinical applications, including the development of new biomarkers and prediction of the therapeutic response or prognosis. In this review, we aimed to analyze the available information indicating a role for the epigenetic changes in HNC.
Collapse
|
56
|
Abstract
'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.
Collapse
Affiliation(s)
- Christoph Lahtz
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
57
|
Mazumder Indra D, Mitra S, Roy A, Mondal RK, Basu PS, Roychoudhury S, Chakravarty R, Panda CK. Alterations of ATM and CADM1 in chromosomal 11q22.3-23.2 region are associated with the development of invasive cervical carcinoma. Hum Genet 2011; 130:735-48. [PMID: 21643982 DOI: 10.1007/s00439-011-1015-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 05/22/2011] [Indexed: 12/29/2022]
Abstract
To understand the importance of chr11q22.3-23.2 region in the development of cervical cancer, we have studied the genetic and epigenetic alterations of the candidate genes ATM, PPP2R1B, SDHD and CADM1 in cervical intraepithelial neoplasia (CIN) and cervical carcinoma (CACX) samples. Our study revealed low expression and high alterations (methylation/deletion) (55-59%) of ATM and CADM1 genes along with poor patient outcome. The alterations of ATM and CADM1 are associated with the progression of tumor from CIN to Stage I/II, thus implying their role in early invasiveness. The two genes, PPP2R1B and SDHD, lying in between ATM and CADM1, have low frequency of alterations, and majority of the alterations are in CACX samples, indicating that their alterations might be associated with disease progression. Expressions (mRNA/protein) of the genes showed concordance with their molecular alterations. Significant co-alteration of ATM and CADM1 points to their synergic action for the development of CACX. Mutation is, however, a rare phenomenon for inactivation of ATM. Association between the alteration of ATM and CHEK1 and poor survival of the patients having co-alterations of ATM and CHEK1 points to the DNA damage response pathway disruption in development of CACX. Thus, our data suggest that inactivation of ATM-CHEK1-associated DNA damage response pathway and CADM1-associated signaling network might have an important role in the development of CACX.
Collapse
Affiliation(s)
- Dipanjana Mazumder Indra
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Lee KW, Tsai YS, Chiang FY, Huang JL, Ho KY, Yang YH, Kuo WR, Chen MK, Lin CS. Lower ataxia telangiectasia mutated (ATM) mRNA expression is correlated with poor outcome of laryngeal and pharyngeal cancer patients. Ann Oncol 2011; 22:1088-1093. [DOI: 10.1093/annonc/mdq569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
59
|
OMARUDDIN RA, CHAUDHRY MA. Detection of genomic DNA methylation with denaturing high performance liquid chromatography. Hum Cell 2010; 23:41-9. [DOI: 10.1111/j.1749-0774.2010.00084.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
60
|
Ataxia telangiectasia mutated nuclear localization in head and neck cancer cells is PPP2R2B-dependent. ASIAN BIOMED 2010. [DOI: 10.2478/abm-2010-0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Protein phosphatase 2A (PP2A) has been implicated in radiation-induced activation of cellular responses, likely by its ability to regulate the autophosphorylation of the ataxia telangiectasia mutated (ATM) protein, a key molecule involved in the DNA damage response initiated by double-stranded DNA breaks. Interestingly, a hereditary defect in the PPP2R2B gene, which encodes the beta isoform of PP2A regulatory subunit B, causes autosomal dominant spinocerebellar ataxia 12, a clinical condition resembling that of ataxia telangiectasia patients. Moreover, PPP2R2B is significantly down-regulated in many human cancers, including head and neck squamous cell carcinomas (HNSCCs). Objective: Examine whether PPP2R2B regulates ATM function, thereby contributing to tumor progression due to the resulting defective DNA repair. Methods: The roles of PPP2R2B were evaluated in irradiated HNSCC cell lines, siRNAPPP2R2B cells and okadaic acid treated cells. Expression of PPP2R2B was measured by microarray, Western blot analysis and real time quantitative rtPCR. ATM quantity and localization, ATM phosphorylation and γ-H2AX were determined by Western blot analysis and/or immunofluorescence assay. Clonogenic cell survival assay was performed to determine ionizing radiation sensitivity. Results: PPP2R2B expression is reduced in multiple tumor types, including HNSCCs. Indeed, HNSCC cell lines that have lower PPP2R2B mRNA expression and siRNAPPP2R2B cells lower basal and radiation-induced levels of phosphorylated ATM and the consequent reduction in the levels of phosphorylation of the downstream ATM target, γ-H2AX. Depletion of PPP2R2B and inhibition of PP2A with okadaic acid resulted in limited ATM nuclear localization. Finally, siRNAPPP2R2B cells displayed enhanced sensitivity to death after radiation. Conclusion: In HNSCCs, ATM nuclear localization is PPP2R2B dependent, and decreased PPP2R2B expression may result in limited ATM activation by preventing its nuclear accumulation and ATM-chromatin interaction. Therefore, decreased PPP2R2B expression in HNSCCs may contribute to genomic instability, cancer development and radiation sensitivity by limiting ATM functions.
Collapse
|
61
|
Mydlarz WK, Hennessey PT, Califano JA. Advances and Perspectives in the Molecular Diagnosis of Head and Neck Cancer. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2010; 4:53-65. [PMID: 20161611 PMCID: PMC2811380 DOI: 10.1517/17530050903338068] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a debilitating and lethal disease. Despite significant advances in radiotherapy and surgical management, the 5-year survival rate for head and neck cancer has remained a dismal 50%. Advances in early detection have been made, but to improve patient outcomes better biomarkers and targeted therapeutic agents are needed. Novel biomarkers can improve early detection and provide data to optimize therapeutic strategy and patient survival, and could lead to potentially effective targeted therapies. OBJECTIVE: Report the advances in the discovery of novel biomarkers for HNSCC, and review the potential utility of biomarkers in the molecular diagnosis of HNSCC. METHODS: A review of the English literature (PubMed) from 1980 to 2009. RESULTS/CONCLUSION: Currently the most widely accepted biomarker for HNSCC is high risk HPV status. EGFR is another promising biomarker, however, further research is necessary to determine its prognostic benefit. A large number of promising biomarker candidates are currently being evaluated including epigenetic, expression, and genomic based markers. Studies to validate the sensitivity and specificity of these biomarkers in clinical samples from adequately powered prospective cohorts are needed for successful translation of these findings into potential molecular diagnostic, prognostic, and therapeutic biomarkers for HNSCC.
Collapse
Affiliation(s)
- Wojciech K. Mydlarz
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21231 United States
| | - Patrick T. Hennessey
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21231 United States
| | - Joseph A. Califano
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21231 United States
- Milton J Dance Head and Neck Center, Greater Baltimore Medical Center, Baltimore, MD 21204, United States
| |
Collapse
|
62
|
Taioli E, Ragin C, Wang XH, Chen J, Langevin SM, Brown AR, Gollin SM, Garte S, Sobol RW. Recurrence in oral and pharyngeal cancer is associated with quantitative MGMT promoter methylation. BMC Cancer 2009; 9:354. [PMID: 19807915 PMCID: PMC2763008 DOI: 10.1186/1471-2407-9-354] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 10/06/2009] [Indexed: 12/12/2022] Open
Abstract
Background Biomarkers that predict clinical response, tumor recurrence or patient survival are severely lacking for most cancers, particularly for oral and pharyngeal cancer. This study examines whether gene-promoter methylation of tumor DNA correlates with survival and recurrence rates in a population of patients with oral or pharyngeal cancer. Methods The promoter methylation status of the DNA repair gene MGMT and the tumor suppressor genes CDKN2A and RASSF1 were evaluated by methylation-specific PCR in 88 primary oral and pharyngeal tumors and correlated with survival and tumor recurrence. Quantitative MGMT methylation was also assessed. Results 29.6% of the tumors presented with MGMT methylation, 11.5% with CDKN2A methylation and 12.1% with RASSF1 methylation. MGMT promoter methylation was significantly associated with poorer overall and disease-free survival. No differences in methylation status of MGMT and RASSF1 with HPV infection, smoking or drinking habits were observed. A significant inverse trend with the amount of MGMT methylation and overall and disease-free survival was observed (ptrend = 0.002 and 0.001 respectively). Conclusion These results implicate MGMT promoter methylation as a possible biomarker for oral and pharyngeal cancer prognosis. The critical role of MGMT in DNA repair suggests that defective DNA repair may be correlative in the observed association between MGMT promoter methylation and tumor recurrence. Follow-up studies should include further quantitative MSP-PCR measurement, global methylation profiling and detailed analysis of downstream DNA repair genes regulated by promoter methylation.
Collapse
Affiliation(s)
- Emanuela Taioli
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Huang Q, Su X, Ai L, Li M, Fan CY, Weiss LM. Promoter hypermethylation of multiple genes in primary gastric lymphoma. Leuk Lymphoma 2009; 48:1988-96. [PMID: 17852707 DOI: 10.1080/10428190701573224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aberrant hypermethylation of CpG islands in the promoter region of tumor suppressor and other important genes in neoplastic cells of lymphoma has been demonstrated to be one of the mechanisms for epigenetic loss of gene function. In this study, we analyzed promoter hypermethylation of the following genes in 49 cases of primary gastric lymphoma (PGL): ATM, p16INK4a(CDKN2A), hMLH1, MGMT, DAPK, and CDH1(ECAD). The PGL cases studied included 26 (53%) cases of diffuse large B-cell lymphoma (DLBCL), 12 (25%) cases of extranodal marginal zone lymphoma (MZL), 7 (14%) cases of MZL with large cell transformation (MZL/DLBCL), 1 (2%) case of follicular lymphoma (FL), one (2%) case of Burkitt-like lymphoma (BL), one case (2%) of lymphoplasmacytic lymphoma (LPL) and one case (2%) of peripheral T-cell lymphoma. Available pathologic data regarding to extragastric involvement at the time of resection of the PGLs were reviewed and correlated. Promoter hypermethylation was detected in 6 of 49 (12.2%) cases for ATM; 13 of 49 (26.5%) for p16INK4a, 19 of 49 (38.8%) for hMLH1; 22 of 49 (44.9%) for MGMT; 27 of 49 (55.1%) for DAPK and 16 of 49 (32.7%) for CDH1. A total of 85% of the PGLs had promoter hypermethylation in at least one of these genes. With different histologic subtypes, promoter hypermethylation of DAPK, hMLH1, and CDH1 genes occurred in 70%, 42%, and 42% respectively for DLBCL, which appeared to be higher than combined MZL and MZL/DLBCL subgroup. Approximately 81% PGLs demonstrated H. pylori infection by immunohistochemistry. H. pylori status did not appear to be statistically correlated with promoter hypermethylation of the genes. Of 37 PGL cases, 19 cases had extragastric involvement at the time of resection, indicating relatively higher stage disease. The frequencies of promoter methylation in those cases were 58% for DAPK, 42% for hMLH1, 37% for CDH1, 26% for p16INK4a and 11% for ATM respectively. The promoter methylation at MGMT gene was significantly higher in the PGLs without extragastric involvement (61%) as compared to those with extragastric involvement (26%).
Collapse
Affiliation(s)
- Qin Huang
- Division of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Applying the molecular biology and epigenetics of head and neck cancer in everyday clinical practice. Oral Oncol 2009; 45:440-6. [DOI: 10.1016/j.oraloncology.2008.05.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
65
|
Brait M, Begum S, Carvalho AL, Dasgupta S, Vettore AL, Czerniak B, Caballero OL, Westra WH, Sidransky D, Hoque MO. Aberrant promoter methylation of multiple genes during pathogenesis of bladder cancer. Cancer Epidemiol Biomarkers Prev 2008; 17:2786-94. [PMID: 18843024 DOI: 10.1158/1055-9965.epi-08-0192] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The aims of our study were to elucidate the role of methylation of a large panel of genes during multistage pathogenesis of bladder cancer and to correlate our findings with patient age and other clinicopathologic features. EXPERIMENTAL DESIGN We studied the methylation status of 21 genes by quantitative methylation-specific PCR in an evaluation set of 25 tumor and 5 normal samples. Based on methylation frequency in tumors and normals in gene evaluation set, we selected 7 candidate genes and tested an independent set of 93 tumors and 26 normals. The presence or absence of methylation was evaluated for an association with cancer using cross-tabulations and chi(2) or Fisher's exact tests as appropriate. All statistical tests were two-sided. RESULTS Most primary tumors (89 of 93, 96%) had methylation of one or more genes of independent set; 53 (57%) CCNA1, 29 (31%) MINT1, 36 (39%) CRBP, 53 (57%) CCND2, 66 (71%) PGP9.5, 60 (65%) CALCA, and 78 (84%) AIM1. Normal uroepithelium samples from 26 controls revealed no methylation of the CCNA1 and MINT1 genes, whereas methylation of CRBP, CCND2, PGP9.5, and CALCA was detected at low levels. All the 7 genes in independent set were tightly correlated with each other and 3 of these genes showed increased methylation frequencies in bladder cancer with increasing age. PGP9.5 and AIM1 methylation correlated with primary tumor invasion. CONCLUSION Our results indicate that the methylation profile of novel genes in bladder cancers correlates with clinicopathologic features of poor prognosis and is an age-related phenomenon.
Collapse
Affiliation(s)
- Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II, 5M, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Paulson QX, Pusapati RV, Hong S, Weaks RL, Conti CJ, Johnson DG. Transgenic expression of E2F3a causes DNA damage leading to ATM-dependent apoptosis. Oncogene 2008; 27:4954-61. [PMID: 18469863 DOI: 10.1038/onc.2008.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many early stage human tumors display markers of a DNA-damage response (DDR), including ataxia telangiectasia mutated (ATM) kinase activation. This suggests that DNA damage accumulates during the process of carcinogenesis and that the ATM-dependent response to this damage may function to suppress cancer progression. The E2F3a transcription factor plays an important role in regulating cell proliferation and is amplified in a subset of human cancers. Similar to human premalignant lesions, we find activated ATM and other markers of the DDR in the hyperplastic epidermis of transgenic mice expressing E2F3a through a keratin 5 (K5) promoter. Primary keratinocytes from K5 E2F3a transgenic mice contain increased levels of DNA breaks compared to wild-type cells. E2F3a overexpression also induced DNA damage in primary human fibroblasts that was inhibited by blocking DNA replication. The absence of ATM impaired apoptosis induced by E2F3a and treating K5 E2F3a transgenic mice with caffeine, an inhibitor of ATM and Rad3-related (ATR), promoted skin tumor development. These findings demonstrate that the deregulated expression of E2F3a causes DNA damage under physiological conditions and indicate that the ATM-dependent response to this damage is important for the induction of apoptosis and tumor suppression.
Collapse
Affiliation(s)
- Q X Paulson
- Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
67
|
He Y, Chen Q, Li B. ATM in oral carcinogenesis: association with clinicopathological features. J Cancer Res Clin Oncol 2008; 134:1013-20. [DOI: 10.1007/s00432-008-0365-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
|
68
|
Kang B, Guo RF, Tan XH, Zhao M, Tang ZB, Lu YY. Expression status of ataxia-telangiectasia-mutated gene correlated with prognosis in advanced gastric cancer. Mutat Res 2008; 638:17-25. [DOI: 10.1016/j.mrfmmm.2007.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 08/09/2007] [Accepted: 08/20/2007] [Indexed: 04/09/2023]
|
69
|
Treilleux I, Chapot B, Goddard S, Pisani P, Angèle S, Hall J. The molecular causes of low ATM protein expression in breast carcinoma; promoter methylation and levels of the catalytic subunit of DNA-dependent protein kinase. Histopathology 2007; 51:63-9. [PMID: 17593081 DOI: 10.1111/j.1365-2559.2007.02726.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS To investigate whether aberrant methylation of the ATM promoter or loss of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) may be the underlying causes of reduced ATM protein levels often seen in breast tumours. METHODS AND RESULTS Methylation-specific polymerase chain reaction was used to determine the ATM promoter status and DNA-PKcs levels were measured by immunohistochemistry. None of the 74 invasive carcinomas (ICs) studied showed ATM promoter hypermethylation, whereas promoter methylation of CDKN2A/p16 (1.8%) and GSTP1 (15.8%) was detected. Of 92 ICs examined, 68 had reduced DNA-PKcs levels, supporting previous findings that alterations in double-strand break repair are associated with breast cancer pathogenesis. Although no association was found between the DNA-PKcs and ATM scores for the series of 92 tissues and 22/24 tissues with normal DNA-PKcs had reduced ATM, 29 tumours showed low expression of both DNA-PKcs and ATM compared with normal tissues. CONCLUSIONS No evidence was found that the reduction in ATM protein levels seen in breast carcinoma is the result of epigenetic silencing. However, cross-regulation between DNA-PKcs and ATM may be a possible cause in a subset of tumours and warrants further investigation.
Collapse
Affiliation(s)
- I Treilleux
- Centre Régional Léon Bérard, International Agency for Research on Cancer Lyon, France
| | | | | | | | | | | |
Collapse
|
70
|
Righini CA, de Fraipont F, Timsit JF, Faure C, Brambilla E, Reyt E, Favrot MC. Tumor-specific methylation in saliva: a promising biomarker for early detection of head and neck cancer recurrence. Clin Cancer Res 2007; 13:1179-85. [PMID: 17317827 DOI: 10.1158/1078-0432.ccr-06-2027] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Our goal was to define tumor and saliva gene methylation profile of head and neck squamous cell carcinoma and to evaluate its prognostic significance and its biomarker potential for early detection of relapse. EXPERIMENTAL DESIGN We prospectively analyzed 11 genes by methylation-specific PCR on primary tumors, histologically normal adjacent mucosa, and saliva from 90 French patients at diagnosis and during follow-up as well as on 30 saliva specimens from control-matched patients with nonmalignant head and neck pathology. Five additional genes were analyzed on 50 tumors of the series. RESULTS Methylation of TIMP3, ECAD, p16, MGMT, DAPK, and RASSF1 was the most frequently observed in tumors and paired saliva samples were analyzed at diagnosis, with an excellent agreement between both samples. At least one of these six genes was methylated in >75% of the samples without additional positive samples when other genes were analyzed. Methylation profile was similar in newly diagnosed and second primary cancers. Aberrant methylation was not associated with a worse prognosis. Ninety percent of normal adjacent mucosa and all control saliva samples were negative. Twenty-two patients were followed after treatment; abnormal methylation was detectable in the saliva of five patients few months before clinical and 2-deoxy-2[(18)F]fluoro-d-glucose-positron emission tomography signs of relapse, allowing curable surgery. Saliva samples were negative for the 17 other patients: 16 were in remission and only 1 relapsed. CONCLUSIONS Gene methylation in saliva is a promising biomarker for the follow-up and early detection of still curable relapses of head and neck squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Christian Adrien Righini
- Institut National de la Sante et de la Recherche Medicale/Université Joseph Fourier, La Tronche, France
| | | | | | | | | | | | | |
Collapse
|
71
|
Safar AM, Spencer H, Su X, Cooney CA, Shwaiki A, Fan CY. Promoter hypermethylation for molecular nodal staging in non-small cell lung cancer. Arch Pathol Lab Med 2007; 131:936-41. [PMID: 17550322 DOI: 10.5858/2007-131-936-phfmns] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2006] [Indexed: 11/06/2022]
Abstract
CONTEXT Even among cases of non-small cell lung cancer (NSCLC) in the most favorable stage (IA), the disease-specific mortality is 25% or greater. One plausible explanation implicates the simplistic standard pathologic procedures used to designate lymph node involvement. A more sensitive assessment of the nodal status may improve staging. OBJECTIVE To determine the prognostic impact of detecting an abnormal molecular event (promoter hypermethylation in a set of relevant genes) in histologically uninvolved lymph nodes in resected NSCLC. DESIGN In this retrospective analysis of archived material, we examined DNA extracted from lymph nodes of stage I NSCLC (n = 180). Patients underwent surgery between 1991 and 1995 in a single institution. Methylation-specific polymerase chain reaction was used to detect promoter hypermethylation in a panel of 8 genes. Survival data were extracted from the computerized database at the Tumor Registry. RESULTS Evidence of promoter hypermethylation in at least 1 gene was detected in 67% of these N0 nodes. The most commonly hypermethylated gene was E-cadherin (53%). The hypermethylation frequency for the remaining genes were as follows: APC, 5%; p16, 9%; MGMT, 11%; hMLH1, 15%; RASSF1A, 4%; DAP kinase, 9%; and ATM, 19%. The presence of promoter hypermethylation in 2 or more genes did not influence the overall, median, or 5-year survival rates. CONCLUSIONS Identifying promoter hypermethylation (in our panel) in N0 lymph nodes in stage I NSCLC cannot be recommended for clinical decision making. Molecular abnormalities, including those found in cancer by qualitative methylation-specific polymerase chain reaction, are not synonymous with established, histologically detectable metastasis.
Collapse
Affiliation(s)
- A Mazin Safar
- Department of Medicine, The University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Brandes JC, Carraway H, Herman JG. Optimal primer design using the novel primer design program: MSPprimer provides accurate methylation analysis of the ATM promoter. Oncogene 2007; 26:6229-37. [PMID: 17384671 DOI: 10.1038/sj.onc.1210433] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methylation-specific polymerase chain reaction (PCR) (MSP) is frequently used to study gene silencing by promoter hypermethylation. However, non-specific primer design can lead to false-positive detection of methylation. We present a novel, web-based algorithm for the design of primers for bisulfite-PCRs (MSP, sequencing, COBRA and multiplex-MSP), allowing the determination of a specificity score, which is based on the thermodynamic characteristics of the primer 3'-end. PCR amplification with primers not reaching a high specificity score can result in false-positive findings. We used MSPprimer to design MSP primers for analysis of the ATM promoter. In 37 non-small cell lung cancer (NSCLC) samples and 43 breast cancer samples no promoter methylation was detected. Conversely, published MSP primers not reaching the required specificity score led to non-specific amplification of DNA not converted by bisulfite. The result was a false-positive incidence of ATM promoter methylation of 24% in NSCLC and 48% in breast cancers, similar to published studies. This highlights the critical need for specific primer design for MSP. MSPprimer is a convenient tool to achieve this goal, which is available free of charge to the scientific community.
Collapse
Affiliation(s)
- J C Brandes
- Cancer Biology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer, Center at Johns Hopkins, Baltimore, MD 21231-1000, USA
| | | | | |
Collapse
|
73
|
Roy K, Wang L, Makrigiorgos GM, Price BD. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity. Biochem Biophys Res Commun 2006; 344:821-6. [PMID: 16631604 DOI: 10.1016/j.bbrc.2006.03.222] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 11/29/2022]
Abstract
Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells.
Collapse
Affiliation(s)
- Kanaklata Roy
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
74
|
Gumy-Pause F, Wacker P, Maillet P, Betts DR, Sappino AP. ATM alterations in childhood non-Hodgkin lymphoma. ACTA ACUST UNITED AC 2006; 166:101-11. [PMID: 16631465 DOI: 10.1016/j.cancergencyto.2005.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/09/2005] [Accepted: 09/12/2005] [Indexed: 12/30/2022]
Abstract
ATM gene alterations and impaired ATM protein expression have been described in various adult lymphoproliferative malignancies, suggesting that ATM contributes to lymphomagenesis. The present study investigated the prevalence of ATM gene and ATM protein expression alterations in sporadic childhood non-Hodgkin lymphoma (NHL). Twenty-seven cases of NHL were screened for ATM mutations by denaturing high-performance liquid chromatography (DHPLC). Direct and indirect criteria, including in silico tools, were used to classify the gene alterations. The methylation status of the ATM promoter CpG island was determined in 25 samples; ATM protein expression was assessed by Western blot in 9 lymphomas. ATM alterations were detected in 12 NHLs (44%). Ten different heterozygous base substitutions were identified in 10 NHLs (37%). Five samples (19%) were found to harbor a gene alteration considered to be a mutation or a rare variant potentially pathogenic. In one case, an ATM mutation was found in the germline. Four NHLs (44%) showed reduced or absent ATM protein expression. Except for one sample, no definite genetic or epigenetic alteration was identified to account for impaired ATM protein expression. These observations document a high prevalence of ATM gene and protein expression alterations, suggesting that ATM is involved in childhood NHL.
Collapse
Affiliation(s)
- Fabienne Gumy-Pause
- Department of Pediatrics, Unit of Hemato-Oncology, University Hospital of Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
75
|
Gumy-Pause F, Wacker P, Maillet P, Betts DR, Sappino AP. ATM promoter analysis in childhood lymphoid malignancies: A brief communication. Leuk Res 2006; 30:335-7. [PMID: 16125772 DOI: 10.1016/j.leukres.2005.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 07/15/2005] [Accepted: 07/18/2005] [Indexed: 12/30/2022]
Abstract
ATM promoter hypermethylation has been recently reported in adult carcinomas, but no information is available concerning the methylation status of ATM gene promoter in childhood B-precursor acute lymphoblastic leukaemia (ALL). Furthermore, involvement of somatic ATM promoter mutations in cancer is not known. We report a complete ATM gene promoter analysis in 74 childhood lymphoid malignancies.
Collapse
Affiliation(s)
- Fabienne Gumy-Pause
- Department of Pediatrics, Unit of Hematology/Oncology, University Hospital of Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
76
|
Shaw R. The epigenetics of oral cancer. Int J Oral Maxillofac Surg 2006; 35:101-8. [PMID: 16154320 DOI: 10.1016/j.ijom.2005.06.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 05/31/2005] [Accepted: 06/17/2005] [Indexed: 11/29/2022]
Abstract
Whilst genetic alterations in oral cancer have long been documented, the appreciation of epigenetic changes is more recent. Epigenetic changes alter expression of tumour suppressor genes without changes in DNA sequence. Epigenetic mechanisms such as DNA methylation, histone methylation and deacetylation have been shown to silence key genes involved in cell proliferation, differentiation and genome integrity, and clearly have a central role in oral cancer. The pattern of hypermethylation in any individual tumour can now be accurately determined, which may find application in molecular staging. In addition, current trials are evaluating the safety and efficacy of agents affecting epigenetic changes in cancer patients which hold some therapeutic promise.
Collapse
Affiliation(s)
- R Shaw
- Regional Maxillofacial Unit, University Hospital Aintree, Liverpool, UK.
| |
Collapse
|
77
|
Madhusudan S, Middleton MR. The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev 2005; 31:603-17. [PMID: 16298073 DOI: 10.1016/j.ctrv.2005.09.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Advanced cancer is the second leading cause of death in the western world. Chemotherapy and radiation are the two main treatment modalities currently available to improve patient outcomes, but treatment related toxicity and the emergence of resistance limit their effectiveness. Hence there is an urgent need to develop novel treatment strategies. Rapid advances in cancer biology have identified key pathways involved in the repair of DNA damage induced by chemotherapeutic agents and irradiation. Efficient DNA repair in the cancer cell is an important mechanism for therapeutic resistance. Up to 130 genes have been identified that are associated with human DNA repair. Several of these proteins are emerging as important predictive and prognostic factors in solid tumours. Inhibition of DNA repair has the potential to enhance the efficacy of currently available DNA damaging agents. In recent years, several promising drug targets have been identified and novel drugs synthesised that target specific DNA repair proteins. These agents have shown impressive anti-cancer effects in preclinical studies in combination with chemotherapy or irradiation. Their role in human cancer is now being investigated in early phase clinical trials in combination with chemotherapy. MGMT inhibitors, PARP inhibitors and methoxyamine are currently in early stages of clinical development. Innovative clinical trial designs are essential to evaluate the potential of DNA repair inhibitor in cancer therapy.
Collapse
Affiliation(s)
- Srinivasan Madhusudan
- Cancer Research UK, Medical Oncology Unit, University of Oxford, The Churchill, Oxford Radcliffe Hospitals, Oxford OX3 7LJ, United Kingdom
| | | |
Collapse
|
78
|
Bolt J, Vo QN, Kim WJ, McWhorter AJ, Thomson J, Hagensee ME, Friedlander P, Brown KD, Gilbert J. The ATM/p53 pathway is commonly targeted for inactivation in squamous cell carcinoma of the head and neck (SCCHN) by multiple molecular mechanisms. Oral Oncol 2005; 41:1013-20. [PMID: 16139561 DOI: 10.1016/j.oraloncology.2005.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 06/05/2005] [Indexed: 11/22/2022]
Abstract
The ATM/p53 pathway plays a critical role in maintenance of genome integrity and can be targeted for inactivation by a number of characterized mechanisms including somatic genetic/epigenetic alterations and expression of oncogenic viral proteins. Here, we examine a panel of 24 SCCHN tumors using various molecular approaches for the presence of human papillomavirus (HPV), mutations in the p53 gene and methylation of the ATM promoter. We observed that 30% of our SCCHN samples displayed the presence of HPV and all but one was HPV type 16. All HPV E6 gene-positive tumors exhibited E6 transcript expression. We observed 21% of the tumors harbored p53 mutations and 42% of tumors displayed ATM promoter methylation. The majority of tumors (71%) were positive for at least one of these events. These findings indicate that molecular events resulting in inactivation of the ATM/p53 pathway are common in SCCHN and can arise by a number of distinct mechanisms.
Collapse
Affiliation(s)
- Jennifer Bolt
- Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Safar AM, Spencer H, Su X, Coffey M, Cooney CA, Ratnasinghe LD, Hutchins LF, Fan CY. Methylation profiling of archived non-small cell lung cancer: a promising prognostic system. Clin Cancer Res 2005; 11:4400-5. [PMID: 15958624 DOI: 10.1158/1078-0432.ccr-04-2378] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Enhanced prognostication power is becoming more desirable in clinical oncology. In this study, we explored the prognostic potential of multigene hypermethylation profiling in non-small-cell lung cancer. EXPERIMENTAL DESIGN We evaluated a panel of eight genes (p16, APC, ATM, hMLH1, MGMT, DAPK, ECAD, and RASSF1A) using methylation-specific PCR in 105 archived specimens of non-small-cell lung cancer representing all stages of the illness. We analyzed the effect of gene methylation status on outcome individually in a cumulative manner and in a combinatorial approach using recursive partitioning to identify methylation profiles, which affect overall survival. RESULTS In this data set, tumors harboring promoter hypermethylation at two or more genes exhibit similar survival trends to others in the cohort. Using recursive partitioning, three genes (APC, ATM, and RASSF1A) emerged as determinants of prognostic groups. This designation retained its statistical significance even when disease stage and age were entered into a multivariate analysis. Using this approach, patients whose tumors were hypermethylated at APC and those hypermethylated at only ATM (not also at APC or RASSF1A) enjoyed substantially longer 1- and 2-year survival than patients in the remaining groups. In 32 adjacent histologically normal lung tissue specimens, we detected similar methylation abnormalities. CONCLUSION Assessment of promoter hypermethylation aberrations may facilitate prognostic profiling of lung tumors, but validation in independent data sets is needed to verify these profiles. This system uses material that is abundantly available with linked outcome data and can be used to generate reliable epigenetic determinants.
Collapse
Affiliation(s)
- A Mazin Safar
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Vo QN, Kim WJ, Cvitanovic L, Boudreau DA, Ginzinger DG, Brown KD. The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene 2004; 23:9432-7. [PMID: 15516988 DOI: 10.1038/sj.onc.1208092] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several epidemiological studies on ataxia-telangiectasia families indicate that obligate ATM heterozygotes display an elevated risk for developing breast cancer. However, a molecular basis for a potential link between diminished ATM function and sporadic breast malignancy remains elusive. Here, we show that 78% (18 out of a panel of 23) of surgically removed breast tumors (stage II or greater) displayed aberrant methylation of the ATM proximal promoter region as judged by methylation-specific PCR. Aberrant methylation of the ATM promoter was independently confirmed in several tumors by bisulfite sequencing. Moreover, bisulfite sequencing indicated that this region of the genome is subject to dense methylation. Further, we found a highly significant correlation (P = 0.0006) between reduced ATM mRNA abundance, as measured by real-time RT-PCR, and aberrant methylation of the ATM gene promoter. These findings indicate that epigenetic silencing of ATM expression occurs in locally advanced breast tumors, and establish a link at the molecular level between reduced ATM function and sporadic breast malignancy.
Collapse
Affiliation(s)
- Quynh N Vo
- Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
81
|
Fan CY. Epigenetic alterations in head and neck cancer: prevalence, clinical significance, and implications. Curr Oncol Rep 2004; 6:152-61. [PMID: 14751093 DOI: 10.1007/s11912-004-0027-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Head and neck cancers are a group of malignancies with diverse biologic behaviors and a strong, well-established association with tobacco and alcohol use. Although the hunt for genetic alterations in head and neck cancer has continued in the past two decades, with unequivocal proof of a genetic role in multistage head and neck carcinogenesis, epigenetic alteration in association with promoter CpG island hypermethylation has emerged in the past few years as one of the most active areas of cancer research. It is now firmly believed that, in cancer cells, promoter CpG island hypermethylation (epigenetic alteration) represents a bona fide alternative mechanism, as opposed to genetic factors, such as gene mutations and deletion, in the inactivation of many tumor-suppressor genes. It is also realized that epigenetic and genetic factors often work together, affecting multiple cellular pathways, such as cell-cycle regulation, DNA repair, apoptosis, angiogenesis, and cell-to-cell adhesion, during the process of tumor growth and progression.
Collapse
Affiliation(s)
- Chun-Yang Fan
- Department of Pathology and Otolaryngology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, 4300 West 7th Street (113/LR), Little Rock, AR 72205, USA.
| |
Collapse
|