51
|
The vital role of ATP citrate lyase in chronic diseases. J Mol Med (Berl) 2019; 98:71-95. [PMID: 31858156 DOI: 10.1007/s00109-019-01863-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Chronic or non-communicable diseases are the leading cause of death worldwide; they usually result in long-term illnesses and demand long-term care. Despite advances in molecular therapeutics, specific biomarkers and targets for the treatment of these diseases are required. The dysregulation of de novo lipogenesis has been found to play an essential role in cell metabolism and is associated with the development and progression of many chronic diseases; this confirms the link between obesity and various chronic diseases. The main enzyme in this pathway-ATP-citrate lyase (ACLY), a lipogenic enzyme-catalyzes the critical reaction linking cellular glucose catabolism and lipogenesis. Increasing lines of evidence suggest that the modulation of ACLY expression correlates with the development and progressions of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases, diabetes, obesity, inflammation, and cancer. Recent studies suggest that the inhibition of ACLY activity modulates the glycolysis and lipogenesis processes and stimulates normal physiological functions. This comprehensive review aimed to critically evaluate the role of ACLY in the development and progression of different diseases and the effects of its downregulation in the prevention and treatment of these diseases.
Collapse
|
52
|
Fontana F, Raimondi M, Marzagalli M, Moretti RM, Marelli MM, Limonta P. Tocotrienols and Cancer: From the State of the Art to Promising Novel Patents. Recent Pat Anticancer Drug Discov 2019; 14:5-18. [PMID: 30652648 DOI: 10.2174/1574892814666190116111827] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tocotrienols (TTs) are vitamin E derivatives naturally occurring in several plants and vegetable oils. Like Tocopherols (TPs), they comprise four isoforms, α, β, γ and δ, but unlike TPs, they present an unsaturated isoprenoid chain. Recent studies indicate that TTs provide important health benefits, including neuroprotective, anti-inflammatory, anti-oxidant, cholesterol lowering and immunomodulatory effects. Moreover, they have been found to possess unique anti-cancer properties. OBJECTIVE The purpose of this review is to present an overview of the state of the art of TTs role in cancer prevention and treatment, as well as to describe recent patents proposing new methods for TTs isolation, chemical modification and use in cancer prevention and/or therapy. METHODS Recent literature and patents focusing on TTs anti-cancer applications have been identified and reviewed, with special regard to their scientific impact and novelty. RESULTS TTs have demonstrated significant anti-cancer activity in multiple tumor types, both in vitro and in vivo. Furthermore, they have shown synergistic effects when given in combination with standard anti-cancer agents or other anti-tumor natural compounds. Finally, new purification processes and transgenic sources have been designed in order to improve TTs production, and novel TTs formulations and synthetic derivatives have been developed to enhance their solubility and bioavailability. CONCLUSION The promising anti-cancer effects shown by TTs in several preclinical studies may open new opportunities for therapeutic interventions in different tumors. Thus, clinical trials aimed at confirming TTs chemopreventive and tumor-suppressing activity, particularly in combination with standard therapies, are urgently needed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Michela Raimondi
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Marzagalli
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Roberta M Moretti
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marina Montagnani Marelli
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Patrizia Limonta
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
53
|
Subramaniam S, Selvaduray KR, Radhakrishnan AK. Bioactive Compounds: Natural Defense Against Cancer? Biomolecules 2019; 9:biom9120758. [PMID: 31766399 PMCID: PMC6995630 DOI: 10.3390/biom9120758] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is a devastating disease that has claimed many lives. Natural bioactive agents from plants are gaining wide attention for their anticancer activities. Several studies have found that natural plant-based bioactive compounds can enhance the efficacy of chemotherapy, and in some cases ameliorate some of the side-effects of drugs used as chemotherapeutic agents. In this paper, we have reviewed the literature on the anticancer effects of four plant-based bioactive compounds namely, curcumin, myricetin, geraniin and tocotrienols (T3) to provide an overview on some of the key findings that are related to this effect. The molecular mechanisms through which the active compounds may exert their anticancer properties in cell and animal-based studies also discussed.
Collapse
Affiliation(s)
- Shonia Subramaniam
- Pathology Division, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 50050, Malaysia;
- Product Development and Advisory Services, Malaysian Palm Oil Board, Kajang, Selangor 43000, Malaysia;
| | - Kanga Rani Selvaduray
- Product Development and Advisory Services, Malaysian Palm Oil Board, Kajang, Selangor 43000, Malaysia;
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
- Correspondence: ; Tel.: +60-355-144-902
| |
Collapse
|
54
|
Dehshahri A, Ashrafizadeh M, Ghasemipour Afshar E, Pardakhty A, Mandegary A, Mohammadinejad R, Sethi G. Topoisomerase inhibitors: Pharmacology and emerging nanoscale delivery systems. Pharmacol Res 2019; 151:104551. [PMID: 31743776 DOI: 10.1016/j.phrs.2019.104551] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Topoisomerase enzymes have shown unique roles in replication and transcription. These enzymes which were initially found in Escherichia coli have attracted considerable attention as target molecules for cancer therapy. Nowadays, there are several topoisomerase inhibitors in the market to treat or at least control the progression of cancer. However, significant toxicity, low solubility and poor pharmacokinetic properties have limited their wide application and these characteristics need to be improved. Nano-delivery systems have provided an opportunity to modify the intrinsic properties of molecules and also to transfer the toxic agent to the target tissues. These delivery systems leads to the re-introduction of existing molecules present in the market as novel therapeutic agents with different physicochemical and pharmacokinetic properties. This review focusses on a variety of nano-delivery vehicles used for the improvement of pharmacological properties of topoisomerase inhibitors and thus enabling their potential application as novel drugs in the market.
Collapse
Affiliation(s)
- Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
55
|
Bordoloi D, Monisha J, Roy NK, Padmavathi G, Banik K, Harsha C, Wang H, Kumar AP, Arfuso F, Kunnumakkara AB. An Investigation on the Therapeutic Potential of Butein, A Tretrahydroxychalcone Against Human Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2019; 20:3437-3446. [PMID: 31759370 PMCID: PMC7063020 DOI: 10.31557/apjcp.2019.20.11.3437] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is one of the most predominant cancers in India. With advances in the field of oncology, a number of therapies have emerged; however, they are minimally effective. Consequently, there is a need to develop safe and effective regimens for the treatment of OSCC. Butein, a tetrahydroxychalcone has been found to exhibit potent antioxidant, anti-inflammatory, and also anti-tumor effects against several cancer types. However, its effect on OSCC is not studied yet. Methods: The effect of butein on the viability, apoptosis, migration and invasion of OSCC cells was evaluated using MTT, colony formation, PI/FACS, live and dead, scratch wound healing, and matrigel invasion assays. Further Western blot analysis was done to evaluate the expression of different proteins involved in the regulation of cancer hallmarks. Results: This is the first report exemplifying the anti-cancer effect of butein against OSCC. Our results showed that butein exhibited potent anti-proliferative, cytotoxic, anti-migratory, and anti-invasive effects in OSCC cells. It suppressed the expression of NF-κB and NF-κB-regulated gene products such as COX-2, survivin and MMP-9 which are involved in the regulation of different processes like proliferation, survival, invasion, and metastasis of OSCC cells. Conclusion Collectively, these results suggest that butein has immense potential in the management of OSCC. Nonetheless, in vivo validation is critical before moving to clinical trials.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Javadi Monisha
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Kishore Banik
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Choudhary Harsha
- Cancer Biology Laboratory, & DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Hong Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | | |
Collapse
|
56
|
Marconi GD, Carradori S, Ricci A, Guglielmi P, Cataldi A, Zara S. Kinesin Eg5 Targeting Inhibitors as a New Strategy for Gastric Adenocarcinoma Treatment. Molecules 2019; 24:molecules24213948. [PMID: 31683688 PMCID: PMC6864856 DOI: 10.3390/molecules24213948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 01/30/2023] Open
Abstract
The Kinesins are proteins involved in several biological processes such as mitosis, intracellular transport, and microtubule movement. The mitotic process is allowed by the correct formation of the mitotic spindle which consists of microtubules originating from the spindle poles. In recent years, kinesin Eg5 inhibitors were studied as new chemotherapeutic drugs, due to the lack of side effects and resistance mechanisms. The aim of this work was to investigate the molecular signaling underlying the administration of novel kinesis Eg5 inhibitors in an in vitro model of gastric adenocarcinoma. Data obtained from analogues of K858 led us to select compounds 2 and 41, due to their lower IC50 values. The ability of kinesin inhibitors to induce apoptosis was investigated by evaluating Bax and Caspase-3 protein expression, evidencing that compound 41 and K858 markedly raise Bax expression, while only compounds 2 and 41 co-administrated with K858 trigger Caspase-3 activation. The inhibition of mitotic spindle was measured by β-tubulin immunofluorescence analysis revealing monopolar spindles formation in gastric cancer cells treated with compounds 2, 41, and K858. Nitric Oxide Synthase (NOS-2) and Matrix Metalloproteinase 9 (MMP-9) expression levels were measured finding a NOS-2-mediated downregulation of MMP-9 when compound 41 and K858 are co-administered. However, this is in contrast to what was reported by migration assay in which both novel compounds and K858 in monotherapy markedly reduce cell migration. This work remarks the importance of understanding and exploring the biological effects of different novel Eg5 kinesin inhibitors administered in monotherapy and in combination with K858 as potential strategy to counteract gastric cancer.
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Alessia Ricci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Amelia Cataldi
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Susi Zara
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| |
Collapse
|
57
|
Anti-cancer effects of oxymatrine are mediated through multiple molecular mechanism(s) in tumor models. Pharmacol Res 2019; 147:104327. [DOI: 10.1016/j.phrs.2019.104327] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/24/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
|
58
|
Fangchinoline, a Bisbenzylisoquinoline Alkaloid can Modulate Cytokine-Impelled Apoptosis via the Dual Regulation of NF-κB and AP-1 Pathways. Molecules 2019; 24:molecules24173127. [PMID: 31466313 PMCID: PMC6749215 DOI: 10.3390/molecules24173127] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
Fangchinoline (FCN) derived from Stephaniae tetrandrine S. Moore can be employed to treat fever, inflammation, rheumatism arthralgia, edema, dysuria, athlete’s foot, and swollen wet sores. FCN can exhibit a plethora of anti-neoplastic effects although its precise mode of action still remains to be deciphered. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) can closely regulate carcinogenesis and thus we analyzed the possible action of FCN may have on these two signaling cascades in tumor cells. The effect of FCN on NF-κB and AP-1 signaling cascades and its downstream functions was deciphered using diverse assays in both human chronic myeloid leukemia (KBM5) and multiple myeloma (U266). FCN attenuated growth of both leukemic and multiple myeloma cells and repressed NF-κB, and AP-1 activation through diverse mechanisms, including attenuation of phosphorylation of IκB kinase (IKK) and p65. Furthermore, FCN could also cause significant enhancement in TNFα-driven apoptosis as studied by various molecular techniques. Thus, FCN may exhibit potent anti-neoplastic effects by affecting diverse oncogenic pathways and may be employed as pro-apoptotic agent against various malignancies.
Collapse
|
59
|
Roy NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, Padmavathi G, Shakibaei M, Fan L, Sethi G, Kunnumakkara AB. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int J Mol Sci 2019; 20:ijms20174101. [PMID: 31443458 PMCID: PMC6747466 DOI: 10.3390/ijms20174101] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson’s disease, Alzheimer’s, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.
Collapse
Affiliation(s)
- Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
60
|
Formononetin Regulates Multiple Oncogenic Signaling Cascades and Enhances Sensitivity to Bortezomib in a Multiple Myeloma Mouse Model. Biomolecules 2019; 9:biom9070262. [PMID: 31284669 PMCID: PMC6681380 DOI: 10.3390/biom9070262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
Here, we determined the anti-neoplastic actions of formononetin (FT) against multiple myeloma (MM) and elucidated its possible mode of action. It was observed that FT enhanced the apoptosis caused by bortezomib (Bor) and mitigated proliferation in MM cells, and these events are regulated by nuclear factor-κB (NF-κB), phosphatidylinositol 3-kinase (PI3K)/AKT, and activator protein-1 (AP-1) activation. We further noted that FT treatment reduced the levels of diverse tumorigenic proteins involved in myeloma progression and survival. Interestingly, we observed that FT also blocked persistent NF-κB, PI3K/AKT, and AP-1 activation in myeloma cells. FT suppressed the activation of these oncogenic cascades by affecting a number of signaling molecules involved in their cellular regulation. In addition, FT augmented tumor growth-inhibitory potential of Bor in MM preclinical mouse model. Thus, FT can be employed with proteasomal inhibitors for myeloma therapy by regulating the activation of diverse oncogenic transcription factors involved in myeloma growth.
Collapse
|
61
|
Hwang ST, Kim C, Lee JH, Chinnathambi A, Alharbi SA, Shair OHM, Sethi G, Ahn KS. Cycloastragenol can negate constitutive STAT3 activation and promote paclitaxel-induced apoptosis in human gastric cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152907. [PMID: 30981183 DOI: 10.1016/j.phymed.2019.152907] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cycloastragenol (CAG), a triterpene aglycone is commonly prescribed for treating hypertension, cardiovascular disease, diabetic nephropathy, viral hepatitis, and various inflammatory-linked diseases. HYPOTHESIS We investigated CAG for its action on signal transducer and activator of transcription 3 (STAT3) activation cascades, and its potential to sensitize gastric cancer cells to paclitaxel-induced apoptosis. METHODS The effect of CAG on STAT3 phosphorylation and other hallmarks of cancer was deciphered using diverse assays in both SNU-1 and SNU-16 cells. RESULTS We observed that CAG exhibited cytotoxic activity against SNU-1 and SNU-16 cells to a greater extent as compared to normal GES-1 cells. CAG predominantly caused negative regulation of STAT3 phosphorylation at tyrosine 705 through the abrogation of Src and Janus-activated kinases (JAK1/2) activation. We noted that CAG impaired translocation of STAT3 protein as well as its DNA binding activity. It further decreased cellular proliferation and mediated its anticancer effects predominantly by causing substantial apoptosis rather than autophagy. In addition, CAG potentiated paclitaxel-induced anti-oncogenic effects in gastric tumor cells. CONCLUSIONS Our results indicate that CAG can function to impede STAT3 activation in human gastric tumor cells and therefore it may be a suitable candidate agent for therapy of gastric cancer.
Collapse
Affiliation(s)
- Sun Tae Hwang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Chulwon Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong Hyun Lee
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
62
|
Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, Sailo BL, Shanmugam MK, Fan L, Arfuso F, Sethi G, Kunnumakkara AB. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res 2019; 144:192-209. [DOI: 10.1016/j.phrs.2019.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
|
63
|
Focus on Formononetin: Anticancer Potential and Molecular Targets. Cancers (Basel) 2019; 11:cancers11050611. [PMID: 31052435 PMCID: PMC6562434 DOI: 10.3390/cancers11050611] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
Formononetin, an isoflavone, is extracted from various medicinal plants and herbs, including the red clover (Trifolium pratense) and Chinese medicinal plant Astragalus membranaceus. Formononetin's antioxidant and neuroprotective effects underscore its therapeutic use against Alzheimer's disease. Formononetin has been under intense investigation for the past decade as strong evidence on promoting apoptosis and against proliferation suggests for its use as an anticancer agent against diverse cancers. These anticancer properties are observed in multiple cancer cell models, including breast, colorectal, and prostate cancer. Formononetin also attenuates metastasis and tumor growth in various in vivo studies. The beneficial effects exuded by formononetin can be attributed to its antiproliferative and cell cycle arrest inducing properties. Formononetin regulates various transcription factors and growth-factor-mediated oncogenic pathways, consequently alleviating the possible causes of chronic inflammation that are linked to cancer survival of neoplastic cells and their resistance against chemotherapy. As such, this review summarizes and critically analyzes current evidence on the potential of formononetin for therapy of various malignancies with special emphasis on molecular targets.
Collapse
|
64
|
Vitamin E and cancer: an update on the emerging role of γ and δ tocotrienols. Eur J Nutr 2019; 59:845-857. [PMID: 31016386 DOI: 10.1007/s00394-019-01962-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Despite significant advances in the diagnosis and treatment of cancer, the latter still remains a fatal disease due to the lack of prevention, early diagnosis, and effective drugs. Radiotherapy, chemotherapy, and surgery are not only expensive but produce a number of side effects that are detrimental to the patients' quality of life. Therefore, there is a great need to discover anti-cancer therapies that are specific to cancer cells and affordable, safe, and well tolerated by the patients. Vitamin E is a potential candidate due to its safety. Accumulating evidence on the anti-cancer potency of vitamin E has shifted the focus from tocopherols (TOCs) to tocotrienols (TTs). γ-TT and δ-TT have the highest anti-cancer activities and target common molecular pathways involved in the inhibition of the cell cycle, the induction of apoptosis and autophagy, and the inhibition of invasion, metastasis, and angiogenesis. Future directions should focus on further investigating how γ-TT and δ-TT (solely or in combination) induce anti-cancer molecular pathways when used in the presence of conventional chemotherapeutic drugs. These studies should be carried out in vitro, and promising results and combinations should then be assessed in in vivo experiments and finally in clinical trials. Finally, future research should focus on further evaluating the roles of γ-TT and δ-TT in the chemoprevention of cancer.
Collapse
|
65
|
Yang MH, Jung SH, Sethi G, Ahn KS. Pleiotropic Pharmacological Actions of Capsazepine, a Synthetic Analogue of Capsaicin, against Various Cancers and Inflammatory Diseases. Molecules 2019; 24:molecules24050995. [PMID: 30871017 PMCID: PMC6429077 DOI: 10.3390/molecules24050995] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Capsazepine is a synthetic analogue of capsaicin that can function as an antagonist of TRPV1. Capsazepine can exhibit diverse effects on cancer (prostate cancer, breast cancer, colorectal cancer, oral cancer, and osteosarcoma) growth and survival, and can be therapeutically used against other major disorders such as colitis, pancreatitis, malaria, and epilepsy. Capsazepine has been reported to exhibit pleiotropic anti-cancer effects against numerous tumor cell lines. Capsazepine can modulate Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) pathway, intracellular Ca2+ concentration, and reactive oxygen species (ROS)-JNK-CCAAT/enhancer-binding protein homologous protein (CHOP) pathways. It can inhibit cell proliferation, metastasis, and induce apoptosis. Moreover, capsazepine can exert anti-inflammatory effects through the downregulation of lipopolysaccharide (LPS)-induced nuclear transcription factor-kappa B (NF-κB), as well as the blockage of activation of both transient receptor potential cation channel subfamily V member 1 (TRPV1) and transient receptor potential cation channel, subfamily A, and member 1 (TRPA1). This review briefly summarizes the diverse pharmacological actions of capsazepine against various cancers and inflammatory conditions.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
66
|
Casticin-Induced Inhibition of Cell Growth and Survival Are Mediated through the Dual Modulation of Akt/mTOR Signaling Cascade. Cancers (Basel) 2019; 11:cancers11020254. [PMID: 30813295 PMCID: PMC6406334 DOI: 10.3390/cancers11020254] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
The Akt/mTOR signaling cascade is a critical pathway involved in various physiological and pathological conditions, including regulation of cell proliferation, survival, invasion, and angiogenesis. In the present study, we investigated the anti-neoplastic effects of casticin (CTC), identified from the plant Vitex rotundifolia L., alone and/or in combination with BEZ-235, a dual Akt/mTOR inhibitor in human tumor cells. We found that CTC exerted a significant dose-dependent cytotoxicity and reduced cell proliferation in a variety of human tumor cells. Also, CTC effectively blocked the phosphorylation levels of Akt (Ser473) and mTOR (Ser2448) proteins as well as induced substantial apoptosis. Additionally treatment with CTC and BEZ-235 in conjunction resulted in a greater apoptotic effect than caused by either agent alone thus implicating the anti-neoplastic effects of this novel combination. Overall, the findings suggest that CTC can interfere with Akt/mTOR signaling cascade involved in tumorigenesis and can be used together with pharmacological agents targeting Akt/mTOR pathway.
Collapse
|
67
|
FBXW7 in Cancer: What Has Been Unraveled Thus Far? Cancers (Basel) 2019; 11:cancers11020246. [PMID: 30791487 PMCID: PMC6406609 DOI: 10.3390/cancers11020246] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
: The FBXW7 (F-box with 7 tandem WD40) protein encoded by the gene FBXW7 is one of the crucial components of ubiquitin ligase called Skp1-Cullin1-F-box (SCF) complex that aids in the degradation of many oncoproteins via the ubiquitin-proteasome system (UPS) thus regulating cellular growth. FBXW7 is considered as a potent tumor suppressor as most of its target substrates can function as potential growth promoters, including c-Myc, Notch, cyclin E, c-JUN, and KLF5. Its regulators include p53, C/EBP-δ, Numb, microRNAs, Pin 1, Hes-5, BMI1, Ebp2. Mounting evidence has indicated the involvement of aberrant expression of FBXW7 for tumorigenesis. Moreover, numerous studies have also shown its role in cancer cell chemosensitization, thereby demonstrating the importance of FBXW7 in the development of curative cancer therapy. This comprehensive review emphasizes on the targets, functions, regulators and expression of FBXW7 in different cancers and its involvement in sensitizing cancer cells to chemotherapeutic drugs.
Collapse
|
68
|
Girisa S, Shabnam B, Monisha J, Fan L, Halim CE, Arfuso F, Ahn KS, Sethi G, Kunnumakkara AB. Potential of Zerumbone as an Anti-Cancer Agent. Molecules 2019; 24:molecules24040734. [PMID: 30781671 PMCID: PMC6413012 DOI: 10.3390/molecules24040734] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer is still a major risk factor to public health globally, causing approximately 9.8 million deaths worldwide in 2018. Despite advances in conventional treatment modalities for cancer treatment, there are still few effective therapies available due to the lack of selectivity, adverse side effects, non-specific toxicities, and tumour recurrence. Therefore, there is an immediate need for essential alternative therapeutics, which can prove to be beneficial and safe against cancer. Various phytochemicals from natural sources have been found to exhibit beneficial medicinal properties against various human diseases. Zerumbone is one such compound isolated from Zingiber zerumbet Smith that possesses diverse pharmacological properties including those of antioxidant, antibacterial, antipyretic, anti-inflammatory, immunomodulatory, as well as anti-neoplastic. Zerumbone has shown its anti-cancer effects by causing significant suppression of proliferation, survival, angiogenesis, invasion, and metastasis through the molecular modulation of different pathways such as NF-κB, Akt, and IL-6/JAK2/STAT3 (interleukin-6/janus kinase-2/signal transducer and activator of transcription 3) and their downstream target proteins. The current review briefly summarizes the modes of action and therapeutic potential of zerumbone against various cancers.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Bano Shabnam
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Javadi Monisha
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Clarissa Esmeralda Halim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
69
|
Deng S, Shanmugam MK, Kumar AP, Yap CT, Sethi G, Bishayee A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer 2019; 125:1228-1246. [DOI: 10.1002/cncr.31978] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/24/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Shuo Deng
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Muthu K. Shanmugam
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Alan Prem Kumar
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Cancer Science Institute of Singapore National University of Singapore Singapore
- Cancer Program, Medical Science Cluster Yong Loo Lin School of Medicine, National University of Singapore Singapore
- National University Cancer Institute National University Health System Singapore
- Curtin Medical School, Faculty of Health Sciences Curtin University Perth West Australia Australia
| | - Celestial T. Yap
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- National University Cancer Institute National University Health System Singapore
| | - Gautam Sethi
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | | |
Collapse
|
70
|
Aggarwal V, Kashyap D, Sak K, Tuli HS, Jain A, Chaudhary A, Garg VK, Sethi G, Yerer MB. Molecular Mechanisms of Action of Tocotrienols in Cancer: Recent Trends and Advancements. Int J Mol Sci 2019; 20:656. [PMID: 30717416 PMCID: PMC6386883 DOI: 10.3390/ijms20030656] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Tocotrienols, found in several natural sources such as rice bran, annatto seeds, and palm oil have been reported to exert various beneficial health promoting properties especially against chronic diseases, including cancer. The incidence of cancer is rapidly increasing around the world not only because of continual aging and growth in global population, but also due to the adaptation of Western lifestyle behaviours, including intake of high fat diets and low physical activity. Tocotrienols can suppress the growth of different malignancies, including those of breast, lung, ovary, prostate, liver, brain, colon, myeloma, and pancreas. These findings, together with the reported safety profile of tocotrienols in healthy human volunteers, encourage further studies on the potential application of these compounds in cancer prevention and treatment. In the current article, detailed information about the potential molecular mechanisms of actions of tocotrienols in different cancer models has been presented and the possible effects of these vitamin E analogues on various important cancer hallmarks, i.e., cellular proliferation, apoptosis, angiogenesis, metastasis, and inflammation have been briefly analyzed.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Advanced Pediatric Center (APC), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India.
| | - Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India.
| | | | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India.
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, City Campus, Mansa Road, Bathinda 151001, India.
| | - Ashun Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital (GMCH), Chandigarh, Punjab 160031, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | | |
Collapse
|
71
|
Zeynali-Moghaddam S, Mohammadian M, Kheradmand F, Fathi-Azarbayjani A, Rasmi Y, Esna-Ashari O, Malekinejad H. A molecular basis for the synergy between 17‑allylamino‑17‑demethoxy geldanamycin with Capecitabine and Irinotecan in human colorectal cancer cells through VEFG and MMP-9 gene expression. Gene 2019; 684:30-38. [DOI: 10.1016/j.gene.2018.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
|
72
|
Singh YP, Girisa S, Banik K, Ghosh S, Swathi P, Deka M, Padmavathi G, Kotoky J, Sethi G, Fan L, Mao X, Halim CE, Arfuso F, Kunnumakkara AB. Potential application of zerumbone in the prevention and therapy of chronic human diseases. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
73
|
Tham SY, Loh HS, Mai CW, Fu JY. Tocotrienols Modulate a Life or Death Decision in Cancers. Int J Mol Sci 2019; 20:372. [PMID: 30654580 PMCID: PMC6359475 DOI: 10.3390/ijms20020372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Malignancy often arises from sophisticated defects in the intricate molecular mechanisms of cells, rendering a complicated molecular ground to effectively target cancers. Resistance toward cell death and enhancement of cell survival are the common adaptations in cancer due to its infinite proliferative capacity. Existing cancer treatment strategies that target a single molecular pathway or cancer hallmark fail to fully resolve the problem. Hence, multitargeted anticancer agents that can concurrently target cell death and survival pathways are seen as a promising alternative to treat cancer. Tocotrienols, a minor constituent of the vitamin E family that have previously been reported to induce various cell death mechanisms and target several key survival pathways, could be an effective anticancer agent. This review puts forward the potential application of tocotrienols as an anticancer treatment from a perspective of influencing the life or death decision of cancer cells. The cell death mechanisms elicited by tocotrienols, particularly apoptosis and autophagy, are highlighted. The influences of several cell survival signaling pathways in shaping cancer cell death, particularly NF-κB, PI3K/Akt, MAPK, and Wnt, are also reviewed. This review may stimulate further mechanistic researches and foster clinical applications of tocotrienols via rational drug designs.
Collapse
Affiliation(s)
- Shiau-Ying Tham
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
- Biotechnology Research Centre, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| | - Ju-Yen Fu
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
74
|
Sun WG, Song RP, Wang Y, Zhang YH, Wang HX, Ge S, Liu JR, Liu LX. γ-Tocotrienol-Inhibited Cell Proliferation of Human Gastric Cancer by Regulation of Nuclear Factor-κB Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:441-451. [PMID: 30562020 DOI: 10.1021/acs.jafc.8b05832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
γ-Tocotrienol (γ-T3) exhibits the activity of anticancer via regulating cell signaling pathways. Nuclear factor-κB (NF-κB), one of the crucial pro-inflammatory factors, is involved in the regulation of cell proliferation, apoptosis, invasion, and migration of tumor. In the present study, NF-κB activity inhibited by γ-T3 was investigated in gastric cancer cells. Cell proliferation, NF-κB activity, active protein phosphatase type 2A (PP2A), and ataxia-telangiectasia mutated (ATM) protein were explored using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), methylene blue, enzyme-linked immunosorbent assay (ELISA), malachite green, luciferase, and Western blotting assays. The effects of γ-T3 on tumor growth and the expression of NF-κB and PP2A proteins were also further examined by implanting human gastric cancer cells in a BALB/c nude mouse model. The results showed that γ-T3 significantly inhibited the cell proliferation and attenuated the NF-κB activity in vitro and in vivo. γ-T3 dramatically increased PP2A activity and protein expression, which suppressed ATM phosphorylation and its translocation to the cytoplasm in gastric cancer cells. Thus, our findings may provide mechanistic insight into effects of γ-T3 on the regulation of NF-κB activity by a PP2A-dependent mechanism and suggest that PP2A may serve as a molecular target for a potential chemopreventive agent.
Collapse
Affiliation(s)
- Wen-Guang Sun
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Rui-Peng Song
- Department of General Surgery , The First Affiliated Hospital of University of Science and Technology , 17 LuJiang Road , LuYang District, HeFei 230031 , P. R. China
| | - Yong Wang
- Harbin Center for Disease Control and Prevention , 30 WeiXing Road , DaoWai District, Harbin 150056 , P. R. China
| | - Ya-Hui Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Hai-Xia Wang
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Sheng Ge
- International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai JiaoTong University , 910 Hengshan Road , Shanghai 200030 , P. R. China
| | - Jia-Ren Liu
- Department of Clinical Laboratory , The Fourth Affiliated Hospital of Harbin Medical University , 37 YiYuan Street , NanGang District, Harbin 150001 , P. R. China
| | - Lian-Xin Liu
- Department of General Surgery , The First Affiliated Hospital of University of Science and Technology , 17 LuJiang Road , LuYang District, HeFei 230031 , P. R. China
| |
Collapse
|
75
|
Ko JH, Arfuso F, Sethi G, Ahn KS. Pharmacological Utilization of Bergamottin, Derived from Grapefruits, in Cancer Prevention and Therapy. Int J Mol Sci 2018; 19:ijms19124048. [PMID: 30558157 PMCID: PMC6321104 DOI: 10.3390/ijms19124048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022] Open
Abstract
Cancer still remains one of the leading causes of death worldwide. In spite of significant advances in treatment options and the advent of novel targeted therapies, there still remains an unmet need for the identification of novel pharmacological agents for cancer therapy. This has led to several studies evaluating the possible application of natural agents found in vegetables, fruits, or plant-derived products that may be useful for cancer treatment. Bergamottin is a furanocoumarin derived from grapefruits and is also a well-known cytochrome P450 inhibitor. Recent studies have demonstrated potent anti-oxidative, anti-inflammatory, and anti-cancer properties of grapefruit furanocoumarin both in vitro and in vivo. The present review focuses on the potential anti-neoplastic effects of bergamottin in different tumor models and briefly describes the molecular targets affected by this agent.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
76
|
Jiang Q. Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms. IUBMB Life 2018; 71:495-506. [PMID: 30548200 DOI: 10.1002/iub.1978] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 12/25/2022]
Abstract
The disappointing results from large clinical studies of α-tocopherol (αT), the major form of vitamin E in tissues, for prevention of chronic diseases including cancer have cast doubt on not only αT but also other forms of vitamin E regarding their role in preventing carcinogenesis. However, basic research has shown that specific forms of vitamin E such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE) and δ-tocotrienol (δTE) can inhibit the growth and induce death of many types of cancer cells, and are capable of suppressing cancer development in preclinical cancer models. For these activities, these vitamin E forms are much stronger than αT. Further, recent research revealed novel anti-inflammatory and anticancer effects of vitamin E metabolites including 13'-carboxychromanols. This review focuses on anti-proliferation and induction of death in cancer cells by vitamin E forms and metabolites, and discuss mechanisms underlying these anticancer activities. The existing in vitro and in vivo evidence indicates that γT, δT, tocotrienols and 13'-carboxychromanols have anti-cancer activities via modulating key signaling or mediators that regulate cell death and tumor progression, such as eicosanoids, NF-κB, STAT3, PI3K, and sphingolipid metabolism. These results provide useful scientific rationales and mechanistic understanding for further translation of basic discoveries to the clinic with respect to potential use of these vitamin E forms and metabolites for cancer prevention and therapy. © 2018 IUBMB Life, 71(4):495-506, 2019.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
77
|
Zuo Jin Wan Reverses DDP Resistance in Gastric Cancer through ROCK/PTEN/PI3K Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4278568. [PMID: 30622602 PMCID: PMC6304623 DOI: 10.1155/2018/4278568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death. Chemotherapy resistance remains the major reason for GC treatment failure and poor overall survival of patients. Our previous studies have proved that Zuo Jin Wan (ZJW), a traditional Chinese medicine (TCM) formula, could significantly enhance the sensitivity of cisplatin (DDP)-resistant gastric cancer cells to DDP by inducing apoptosis via mitochondrial translocation of cofilin-1. However, the underlying mechanism remains poorly understood. This study aimed to evaluate the effects of ROCK/PTEN/PI3K on ZJW-induced apoptosis in vitro and in vivo. We found that ZJW could significantly activate the ROCK/PTEN pathway, inhibit PI3K/Akt, and promote the apoptosis of SGC-7901/DDP cells. Inhibition of ROCK obviously attenuated ZJW-induced apoptosis as well as cofilin-1 mitochondrial translocation, while inhibition of PI3K had the opposite effects. In vivo, combination treatment of DDP and ZJW (2000 mg/kg) significantly reduced tumor growth compared with DDP alone. Moreover, the combined administration of ZJW and DDP increased the expression of cleaved ROCK and p-PTEN while it decreased p-PI3K and p-cofilin-1, which was consistent with our in vitro results. These findings indicated that ZJW could effectively inhibit DDP resistance in GC by regulating ROCK/PTEN/PI3K signaling and provide a promising treatment strategy for gastric cancer.
Collapse
|
78
|
Mohan CD, Bharathkumar H, Dukanya, Rangappa S, Shanmugam MK, Chinnathambi A, Alharbi SA, Alahmadi TA, Bhattacharjee A, Lobie PE, Deivasigamani A, Hui KM, Sethi G, Basappa, Rangappa KS, Kumar AP. N-Substituted Pyrido-1,4-Oxazin-3-Ones Induce Apoptosis of Hepatocellular Carcinoma Cells by Targeting NF-κB Signaling Pathway. Front Pharmacol 2018; 9:1125. [PMID: 30455641 PMCID: PMC6230568 DOI: 10.3389/fphar.2018.01125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/14/2018] [Indexed: 01/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease and ranked fifth in cancer related mortality. Persistent activation of NF-κB is responsible for the oncogenesis, metastasis, tumor evasion, anti-apoptosis, angiogenesis and proliferation in HCC. Therefore, designing of chemically novel, biologically potent small molecules that target NF-κB signaling cascade have gained prominent clinical interest. Herein we synthesized a novel class of 4-(substituted)-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one by reacting 2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one with various alkyl halides by using combustion derived bismuth oxide. We evaluated the antiproliferative efficacy of newly synthesized compounds against HCC cells and identified 4-(4-nitrobenzyl)-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one (NPO) as lead anticancer agent. In addition, we investigated the effect of NPO on the DNA binding ability of NF-κB and NF-κB regulated luciferase expression in HCC cells. The results demonstrated that NPO can induce significant growth inhibitory effects in HepG2, HCCLM3 and Huh-7 cells in dose and time-dependent manner. Interestingly, NPO induced significant downregulation in p65 DNA binding ability, p65 phosphorylation and subsequent expression of NF-κB dependent luciferase gene expression in diverse HCC cell lines. Further, in silico docking analysis suggested that NPO can show direct physical interaction with NF-κB. Finally, NPO was found to significantly abrogate tumor growth at a dose of 50 mg/kg in an orthotopic mouse model. Thus, we report the potential anticancer effects of NPO as a novel inhibitor of NF-κB signaling pathway in HCC.
Collapse
Affiliation(s)
| | | | - Dukanya
- Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Mandya, India
| | - Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Atanu Bhattacharjee
- Department of Biotechnology & Bioinformatics, North Eastern Hill University, Shillong, India
| | - Peter E. Lobie
- Tsinghua Berkeley Shenzhen Institute and Division of Life Science and Health, Tsinghua University Graduate School, Shenzhen, China
| | - Amudha Deivasigamani
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Basappa
- Laboratory of Chemical Biology, Department of Chemistry, Bangalore University, Bangalore, India
- Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Cancer Program, Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
79
|
Liu L, Ahn KS, Shanmugam MK, Wang H, Shen H, Arfuso F, Chinnathambi A, Alharbi SA, Chang Y, Sethi G, Tang FR. Oleuropein induces apoptosis via abrogating NF‐κB activation cascade in estrogen receptor–negative breast cancer cells. J Cell Biochem 2018; 120:4504-4513. [DOI: 10.1002/jcb.27738] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Lian Liu
- Department of Pharmacology Medical School of Yangtze University Jingzhou China
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Kwang Seok Ahn
- Department of Korean Pathology, College of Korean Medicine, Kyung Hee University Seoul Korea
| | - Muthu K Shanmugam
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Hong Wang
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore Singapore
| | - Hongyuan Shen
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth Australia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology College of Science, King Saud University Riyadh Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology College of Science, King Saud University Riyadh Saudi Arabia
| | - Yung Chang
- Department of Botany and Microbiology College of Science, King Saud University Riyadh Saudi Arabia
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University Taoyuan Taiwan
| | - Gautam Sethi
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Feng Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore Singapore
| |
Collapse
|
80
|
Montagnani Marelli M, Marzagalli M, Fontana F, Raimondi M, Moretti RM, Limonta P. Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets. J Cell Physiol 2018; 234:1147-1164. [PMID: 30066964 DOI: 10.1002/jcp.27075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
Vitamin E is composed of two groups of compounds: α-, β-, γ-, and δ-tocopherols (TPs), and the corresponding unsaturated tocotrienols (TTs). TTs are found in natural sources such as red palm oil, annatto seeds, and rice bran. In the last decades, TTs (specifically, γ-TT and δ-TT) have gained interest due to their health benefits in chronic diseases, based on their antioxidant, neuroprotective, cholesterol-lowering, anti-inflammatory activities. Several in vitro and in vivo studies pointed out that TTs also exert a significant antitumor activity in a wide range of cancer cells. Specifically, TTs were shown to exert antiproliferative/proapoptotic effects and to reduce the metastatic or angiogenic properties of different cancer cells; moreover, these compounds were reported to specifically target the subpopulation of cancer stem cells, known to be deeply involved in the development of resistance to standard therapies. Interestingly, recent studies pointed out that TTs exert a synergistic antitumor effect on cancer cells when given in combination with either standard antitumor agents (i.e., chemotherapeutics, statins, "targeted" therapies) or natural compounds with anticancer activity (i.e., sesamin, epigallocatechin gallate (EGCG), resveratrol, ferulic acid). Based on these observations, different TT synthetic derivatives and formulations were recently developed and demonstrated to improve TT water solubility and to reduce TT metabolism in cancer cells, thus increasing their biological activity. These promising results, together with the safety of TT administration in healthy subjects, suggest that these compounds might represent a new chemopreventive or anticancer treatment (i.e., in combination with standard therapies) strategy. Clinical trials aimed at confirming this antitumor activity of TTs are needed.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
81
|
Tocotrienols: The promising analogues of vitamin E for cancer therapeutics. Pharmacol Res 2018; 130:259-272. [DOI: 10.1016/j.phrs.2018.02.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
|
82
|
Xu YH, Li ZL, Qiu SF. IFN-γ Induces Gastric Cancer Cell Proliferation and Metastasis Through Upregulation of Integrin β3-Mediated NF-κB Signaling. Transl Oncol 2018; 11:182-192. [PMID: 29306706 PMCID: PMC5755748 DOI: 10.1016/j.tranon.2017.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
Interferon γ (IFN-γ), a multifunctional cytokine, was upregulated in the resected gastric cancer tissue. However, whether IFN-γ is involved in the regulation of gastric cancer has not been well elucidated. Herein, we aimed to investigate the effects and mechanism of IFN-γ on gastric cancer. In this study, we found a vital role of IFN-γ in enhancing proliferation, inhibiting apoptosis, and promoting cell migration and invasion in gastric cancer cells SGC-7901 and MGC-803. Additionally, IFN-γ activated nuclear factor κB (NF-κB) signaling pathway by upregulating the phosphorylation expression of p65 and IκBα, and induced the expression of integrin β3 in vitro. Therefore, to further investigate the relationship between IFN-γ and integrin β3, SGC-7901 cells were transfected with integrin β3 siRNA. And then cells expressed lower cell viability, migration, and invasion rates, while cell apoptosis was significantly enhanced. Meanwhile, expression of integrin β3, MMP-2, MMP-9, and NF-κB, including p65 and IκBα, and the nuclear translocation of NF-κB/p65 were dramatically repressed, whereas IFN-γ significantly improved the effects. Moreover, in vivo, the experiment of xenograft model and pulmonary metastasis model also retarded in integrin β3 siRNA group. And the expression of integrin β3, MMP-2, MMP-9, and NF-κB was repressed. However, the treatment with IFN-γ improved tumor volume, lung/total weight, tumor nodules, and the protein expression described above compared with integrin β3 siRNA group. Overall, the results indicated that IFN-γ induces gastric cancer cell proliferation and metastasis partially through the upregulation of integrin β3-mediated NF-κB signaling. Hence, the inhibition of IFN-γ or integrin β3 may be the key for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yuan-Hua Xu
- Department of Obstetrics and Gynecology, The Zhongda Affiliated Hosoital with Southeast University, Nanjing, Jiangsu Province 210029, China
| | - Zheng-Li Li
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, China
| | - Sheng-Feng Qiu
- Department of Laboratory Medicine, The First Affiliated Hosoital with Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
83
|
Husain K, Malafa MP. Role of Tocotrienols in Chemosensitization of Cancer. ROLE OF NUTRACEUTICALS IN CHEMORESISTANCE TO CANCER 2018:77-97. [DOI: 10.1016/b978-0-12-812373-7.00004-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
84
|
Abstract
Initial research on vitamin E and cancer has focused on α-tocopherol (αT), but recent clinical studies on cancer-preventive effects of αT supplementation have shown disappointing results, which has led to doubts about the role of vitamin E, including different vitamin E forms, in cancer prevention. However, accumulating mechanistic and preclinical animal studies show that other forms of vitamin E, such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE), and δ-tocotrienol (δTE), have far superior cancer-preventive activities than does αT. These vitamin E forms are much stronger than αT in inhibiting multiple cancer-promoting pathways, including cyclo-oxygenase (COX)- and 5-lipoxygenase (5-LOX)-catalyzed eicosanoids, and transcription factors such as nuclear transcription factor κB (NF-κB) and signal transducer and activator of transcription factor 3 (STAT3). These vitamin E forms, but not αT, cause pro-death or antiproliferation effects in cancer cells via modulating various signaling pathways, including sphingolipid metabolism. Unlike αT, these vitamin E forms are quickly metabolized to various carboxychromanols including 13'-carboxychromanols, which have even stronger anti-inflammatory and anticancer effects than some vitamin precursors. Consistent with mechanistic findings, γT, δT, γTE, and δTE, but not αT, have been shown to be effective for preventing the progression of various types of cancer in preclinical animal models. This review focuses on cancer-preventive effects and mechanisms of γT, δT, γTE, and δTE in cells and preclinical models and discusses current progress in clinical trials. The existing evidence strongly indicates that these lesser-known vitamin E forms are effective agents for cancer prevention or as adjuvants for improving prevention, therapy, and control of cancer.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
85
|
Fang Z, Yin S, Sun R, Zhang S, Fu M, Wu Y, Zhang T, Khaliq J, Li Y. miR-140-5p suppresses the proliferation, migration and invasion of gastric cancer by regulating YES1. Mol Cancer 2017; 16:139. [PMID: 28818100 PMCID: PMC5561618 DOI: 10.1186/s12943-017-0708-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/07/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aberrant expression of microRNA-140-5p (miR-140-5p) has been described in gastric cancer (GC). However, the role of miR-140-5p in GC remains unclear. In this study, the prognostic relevance of miR-140-5p in GC was investigated and YES1 was identified as a novel target of miR-140-5p in regulating tumor progression. METHODS miR-140-5p level was determined in 20 paired frozen specimens through quantitative real-time PCR, and analyzed in tissue microarrays through in situ hybridization. The target of miR-140-5p was verified through a dual luciferase reporter assay, and the effects of miR-140-5p on phenotypic changes in GC cells were investigated in vitro and in vivo. RESULTS Compared with that in adjacent normal tissues, miR-140-5p expression decreased in cancerous tissues. The downregulated miR-140-5p in 144 patients with GC was significantly correlated with the reduced overall survival of these patients. miR-140-5p could inhibit GC cell proliferation, migration and invasion by directly targeting 3'-untranlated region of YES1. miR-140-5p could also remarkably reduce the tumor size in GC xenograft mice. CONCLUSIONS miR-140-5p serves as a potential prognostic factor in patients with GC, and miR-140-5p mediated YES1 inhibition is a novel mechanism behind the suppressive effects of miR-140-5p in GC.
Collapse
Affiliation(s)
- Zheng Fang
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Shuai Yin
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of University of Munich, Marchioninistr.15, 5H-02-428, 81377, Munich, Germany
| | - Ruochuan Sun
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Shangxin Zhang
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Min Fu
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Youliang Wu
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Tao Zhang
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Junaid Khaliq
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China
| | - Yongxiang Li
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, 218 Jixi Avenue, Hefei, 230022, China.
| |
Collapse
|
86
|
Kanchi MM, Shanmugam MK, Rane G, Sethi G, Kumar AP. Tocotrienols: the unsaturated sidekick shifting new paradigms in vitamin E therapeutics. Drug Discov Today 2017; 22:1765-1781. [PMID: 28789906 DOI: 10.1016/j.drudis.2017.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 11/15/2022]
Abstract
Vitamin E family members: tocotrienols and tocopherols are widely known for their health benefits. Decades of research on tocotrienols have shown they have diverse biological activities such as antioxidant, anti-inflammatory, anticancer, neuroprotective and skin protection benefits, as well as improved cognition, bone health, longevity and reduction of cholesterol levels in plasma. Tocotrienols also modulate several intracellular molecular targets and, most importantly, have been shown to improve lipid profiles, reduce total cholesterol and reduce the volume of white matter lesions in human clinical trials. This review provides a comprehensive update on the little-known therapeutic potentials of tocotrienols, which tocopherols lack in a variety of inflammation-driven diseases.
Collapse
Affiliation(s)
- Madhu M Kanchi
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Grishma Rane
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Alan P Kumar
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; National University Cancer Institute, National University Health System, 119074, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
87
|
Sokolova O, Naumann M. NF-κB Signaling in Gastric Cancer. Toxins (Basel) 2017; 9:toxins9040119. [PMID: 28350359 PMCID: PMC5408193 DOI: 10.3390/toxins9040119] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Diet, obesity, smoking and chronic infections, especially with Helicobacter pylori, contribute to stomach cancer development. H. pylori possesses a variety of virulence factors including encoded factors from the cytotoxin-associated gene pathogenicity island (cagPAI) or vacuolating cytotoxin A (VacA). Most of the cagPAI-encoded products form a type 4 secretion system (T4SS), a pilus-like macromolecular transporter, which translocates CagA into the cytoplasm of the host cell. Only H. pylori strains carrying the cagPAI induce the transcription factor NF-κB, but CagA and VacA are dispensable for direct NF-κB activation. NF-κB-driven gene products include cytokines/chemokines, growth factors, anti-apoptotic factors, angiogenesis regulators and metalloproteinases. Many of the genes transcribed by NF-κB promote gastric carcinogenesis. Since it has been shown that chemotherapy-caused cellular stress could elicit activation of the survival factor NF-κB, which leads to acquisition of chemoresistance, the NF-κB system is recommended for therapeutic targeting. Research is motivated for further search of predisposing conditions, diagnostic markers and efficient drugs to improve significantly the overall survival of patients. In this review, we provide an overview about mechanisms and consequences of NF-κB activation in gastric mucosa in order to understand the role of NF-κB in gastric carcinogenesis.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| |
Collapse
|
88
|
Ningegowda R, Shivananju NS, Rajendran P, Basappa, Rangappa KS, Chinnathambi A, Li F, Achar RR, Shanmugam MK, Bist P, Alharbi SA, Lim LHK, Sethi G, Priya BS. A novel 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivative inhibits tumor cell invasion and potentiates the apoptotic effect of TNFα by abrogating NF-κB activation cascade. Apoptosis 2016; 22:145-157. [DOI: 10.1007/s10495-016-1312-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
89
|
Huang Y, Wu R, Su ZY, Guo Y, Zheng X, Yang CS, Kong AN. A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27. J Nutr Biochem 2016; 40:155-163. [PMID: 27889685 DOI: 10.1016/j.jnutbio.2016.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/19/2016] [Accepted: 10/30/2016] [Indexed: 11/25/2022]
Abstract
Tocotrienols, members of the vitamin E family, have three unsaturated bonds in their side chains. Recently, it has been suggested that the biological effects of tocotrienols may differ from that of tocopherols. Several in vitro studies have shown that tocotrienols have stronger anticancer effects than tocopherols. VCaP cell line used in this study is from a vertebral bone metastasis from a patient with prostate cancer. Eight-week-old male NCr(-/-) nude mice were subcutaneously injected with VCaP-luc cells in matrigel and then administered a tocotrienol mixture for 8 weeks. The tocotrienol mixture inhibited the growth of human prostate tumor xenografts in a dose-dependent manner. The concentrations of tocotrienols and their metabolites were significantly increased in treatment groups. Tocotrienols inhibited prostate tumor growth by suppressing cell proliferation, which was associated with the induction of the cyclin-dependent kinase (CDK) inhibitors p21 and p27. In addition, tocotrienol treatment was associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27 and with decreased expression of histone deacetylases. Tocotrienols inhibited human prostate tumor growth, associated with up-regulation of the CDK inhibitors p21 and p27. Elevated expression of p21 and p27 could be partly due to the suppressed expression of HDACs.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Bioscience Technology, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan (R.O.C.)
| | - Yue Guo
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xi Zheng
- Department of Chemical Biology, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chung S Yang
- Department of Chemical Biology, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
90
|
Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review. Int J Mol Sci 2016; 17:ijms17101605. [PMID: 27669218 PMCID: PMC5085638 DOI: 10.3390/ijms17101605] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components (e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy.
Collapse
|
91
|
γ-Tocotrienol suppresses growth and sensitises human colorectal tumours to capecitabine in a nude mouse xenograft model by down-regulating multiple molecules. Br J Cancer 2016; 115:814-24. [PMID: 27575851 PMCID: PMC5046209 DOI: 10.1038/bjc.2016.257] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most common malignancies worldwide and even develops resistance to chemotherapeutic agents over time. As a result survival for patients with CRC remains poor. Method: We investigated both in vitro and in vivo effects of γ-tocotrienol (γ-T3) alone and in combination with capecitabine. Apoptosis and cytotoxicity assays were performed by MTT and FACS analysis, whereas expression of proteins was investigated using western blotting and immunohistochemistry. Results: The γ-T3 inhibited the proliferation of CRC cells with wild-type or mutated KRAS. It also induced apoptosis, inhibited colony formation, and suppressed key regulators of cell survival, cell proliferation, invasion, angiogenesis, and metastasis. Furthermore, γ-T3 enhanced the anticancer effects of capecitabine in CRC cells. In a nude mouse xenograft model of human CRC, oral administration of γ-T3 inhibited tumour growth and enhanced the antitumour efficacy of capecitabine. Western blot and immunohistochemical analysis results indicated that expression of Ki-67, cyclin D1, MMP-9, CXCR4, NF-κB/p65, and VEGF was lower in tumour tissue from the combination treatment group. Combination treatment also downregulated NF-κB and NF-κB-regulated gene products. Conclusions: Our findings suggest that γ-T3 inhibited the growth of human CRC and sensitised CRC to capecitabine by regulating proteins linked to tumourigenesis.
Collapse
|
92
|
Zhu M, Zhou X, Du Y, Huang Z, Zhu J, Xu J, Cheng G, Shu Y, Liu P, Zhu W, Wang T. miR-20a induces cisplatin resistance of a human gastric cancer cell line via targeting CYLD. Mol Med Rep 2016; 14:1742-50. [PMID: 27357419 DOI: 10.3892/mmr.2016.5413] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 06/01/2016] [Indexed: 12/13/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) has been demonstrated to contribute to drug resistance of cancer cells, and sustained nuclear factor (NF)κB activation is also pivotal in tumor resistance to chemotherapy. In the present study, an essential role for miRNA (miR)-20a was identified in the regulation of gastric cancer (GC) chemoresistance. The expression level of miR‑20a was assayed by reverse transcription‑quantitative polymerase chain reaction. Additionally, 3-(4,5-dimethylthiazol-2‑yl)-2,5-diphenyltetrazolium bromide was used to detect the drug‑resistance phenotype changes of cancer cells associated with upregulation or downregulation of miR‑20a. Protein expression levelss were measured by western blotting and immunohistochemistry. Flow cytometry was used to detect cisplatin‑induced apoptosis. It was found that miR‑20a was markedly upregulated in GC plasma and tissue samples. Additionally, miR‑20a was upregulated in GC plasma and tissues from patients with cisplatin (DDP) resistance, and in the DPP‑resistant gastric cancer cell line (SGC7901/DDP). The expression of miR‑20a was inversely correlated with the expression of cylindromatosis (CYLD). Subsequently, the assessment of luciferase activity verified that CYLD was a direct target gene of miR‑20a. Treatment with miR‑20a inhibitor increased the protein expression of CYLD, downregulated the expression levels of p65, livin and survivin, and led to a higher proportion of apoptotic cells in the SGC7901/DDP cells. By contrast, ectopic expression of miR‑20a significantly repressed the expression of CYLD, upregulated the expression levels of p65, livin and survivin, and resulted in a decrease in the apoptosis induced by DDP in the SGC7901 cells. Taken together, the results of the present study suggested that miR‑20a directly repressed the expression of CYLD, leading to activation of the NFκB pathway and the downstream targets, livin and survivin, which potentially induced GC chemoresistance. Altering miR‑20a expression may be a potential therapeutic strategy for the treatment of chemoresistance in GC in the future.
Collapse
Affiliation(s)
- Mingxia Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yiping Du
- Department of Oncology, The First People's Hospital of Kunshan Affiliated With Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Zebo Huang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jun Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Gongming Cheng
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongqian Shu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ping Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tongshan Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
93
|
Lian PL, Liu Z, Yang GY, Zhao R, Zhang ZY, Chen YG, Zhuang ZN, Xu KS. Integrin αvβ6 and matrix metalloproteinase 9 correlate with survival in gastric cancer. World J Gastroenterol 2016; 22:3852-3859. [PMID: 27076771 PMCID: PMC4814749 DOI: 10.3748/wjg.v22.i14.3852] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of integrin αvβ6 and matrix metalloproteinase 9 (MMP-9), their association with prognostic factors and to assess their predictive role in gastric cancer patients.
METHODS: Immunohistochemistry was used to determine the expressions of integrin αvβ6 and MMP-9 in 126 specimens from patients with primary gastric carcinoma. Associations between immunohistochemical staining and various clinic pathologic variables of tissue specimens were evaluated by the χ2 test and Fisher’s exact test. Expression correlation of αvβ6 and MMP-9 was assessed using bivariate correlation analysis. The patients were followed-up every 3 mo in the first two years and at least every 6 mo afterwards, with a median follow-up of 56 mo (ranging from 2 mo to 94 mo). Four different combinations of αvβ6 and MMP-9 levels (that is, both markers positive, both markers negative, αvβ6 positive with MMP-9 negative, and αvβ6 negative with MMP-9 positive) were evaluated for their relative effect on survival. The difference in survival curves was evaluated with a log-rank test. Survival analysis was conducted using the Kaplan-Meier survival and Cox proportional hazards model analysis.
RESULTS: The expressions of integrin αvβ6 and MMP-9 were investigated in 126 cases, among which 34.92% were positive for αvβ6 expression, and 42.06% for MMP-9 expression. The expression of αvβ6 was associated with Lauren type, differentiation, N stage, and TNM stage (the P values were 0.006, 0.038, 0.016, and 0.002, respectively). While MMP-9 expression was associated with differentiation, T stage, N stage, and TNM stage (the P values were 0.039, 0.014, 0.033, and 0.008, respectively). The positive correlation between αvβ6 and MMP-9 in gastric cancer was confirmed by a correlation analysis. The Kaplan-Meier survival analysis showed that patients with expression of αvβ6 or MMP-9 alone died earlier than those with negative expression and that patients who were both αvβ6 and MMP-9 positive had a shorter overall survival than those with the opposite pattern (both αvβ6 and MMP-9 negative) (P = 0.000). A Cox model indicated that positive expression of αvβ6 and MMP-9, diffuse Lauren type, as well as a senior grade of N stage, M stage, and TNM stage were predictors of a poor prognosis in univariate analysis. Only αvβ6 and MMP-9 retained their significance when adjustments were made for other known prognostic factors in multivariate analysis (RR = 2.632, P = 0.003 and RR = 1.813, P = 0.007).
CONCLUSION: The expression of αvβ6 and MMP-9 are closely correlated, and the combinational pattern of αvβ6 and MMP-9 can serve as a more effective prognostic index for gastric cancer patients.
Collapse
|
94
|
Zhao L, Fang X, Marshall MR, Chung S. Regulation of Obesity and Metabolic Complications by Gamma and Delta Tocotrienols. Molecules 2016; 21:344. [PMID: 26978344 PMCID: PMC6274282 DOI: 10.3390/molecules21030344] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
Tocotrienols (T3s) are a subclass of unsaturated vitamin E that have been extensively studied for their anti-proliferative, anti-oxidative and anti-inflammatory properties in numerous cancer studies. Recently, T3s have received increasing attention due to their previously unrecognized property to attenuate obesity and its associated metabolic complications. In this review, we comprehensively evaluated the recent published scientific literature about the influence of T3s on obesity, with a particular emphasis on the signaling pathways involved. T3s have been demonstrated in animal models or human subjects to reduce fat mass, body weight, plasma concentrations of free fatty acid, triglycerides and cholesterol, as well as to improve glucose and insulin tolerance. Their mechanisms of action in adipose tissue mainly include (1) modulation of fat cell adipogenesis and differentiation; (2) modulation of energy sensing; (3) induction of apoptosis in preadipocytes and (4) modulation of inflammation. Studies have also been conducted to investigate the effects of T3s on other targets, e.g., the immune system, liver, muscle, pancreas and bone. Since δT3 and γT3 are regarded as the most active isomers among T3s, their clinical relevance to reduce obesity should be investigated in human trials.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| | - Xiefan Fang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Maurice R Marshall
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
95
|
De Silva L, Chuah LH, Meganathan P, Fu JY. Tocotrienol and cancer metastasis. Biofactors 2016; 42:149-62. [PMID: 26948691 DOI: 10.1002/biof.1259] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/30/2015] [Accepted: 12/02/2015] [Indexed: 01/03/2023]
Abstract
Tumor metastasis involves some of the most complex and dynamic processes in cancer, often leading to poor quality of life and inevitable death. The search for therapeutic compounds and treatment strategies to prevent and/or manage metastasis is the ultimate challenge to fight cancer. In the past two decades, research focus on vitamin E has had a shift from saturated tocopherols to unsaturated tocotrienols (T3). Despite sharing structural similarities with tocopherols, T3 strive to gain scientific prominence due to their anti-cancer effects. Recent studies have shed some light on the anti-metastatic properties of T3. In this review, the roles of T3 in each step of the metastatic process are discussed. During the invasion process, signaling pathways that regulate the extracellular matrix and tumor cell motility have been reported to be modulated by T3. Although studies on T3 and tumor cell migration are fairly limited, they were shown to play a vital role in the suppression of angiogenesis. Furthermore, the anti-inflammatory effect of T3 could be highly promising in the regulation of tumor microenvironment, which is crucial in supporting tumor growth in distant organs.
Collapse
Affiliation(s)
- Leanne De Silva
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Lay Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | - Ju-Yen Fu
- Nutrition Unit, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, Malaysia
| |
Collapse
|
96
|
Zhang L, Ding Y, Yuan Z, Liu J, Sun J, Lei F, Wu S, Li S, Zhang D. MicroRNA-500 sustains nuclear factor-κB activation and induces gastric cancer cell proliferation and resistance to apoptosis. Oncotarget 2016; 6:2483-95. [PMID: 25595906 PMCID: PMC4385865 DOI: 10.18632/oncotarget.2800] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/20/2015] [Indexed: 11/25/2022] Open
Abstract
Ubiquitin deconjugation of key signalling molecules by deubiquitinases (DUBs) such as cylindromatosis (CYLD), A20, and OTU deubiquitinase 7B (OTUD7B) has emerged as an important regulatory mechanism in the downregulation of NF-κB signalling and homeostasis. However, how these serial negative regulations are simultaneously disrupted to result in constitutive activation of NF-κB signalling in cancers remains puzzling. Here, we report that the miR-500 directly repressed the expression of CYLD, OTUD7B, and the A20 complex component Tax1-binding protein 1 (TAX1BP1), leading to ubiquitin conjugation of receptor-interacting protein 1 (RIP1) and sustained NF-ĸB activation. Furthermore, we found that miR-500 promoted gastric cancer cell proliferation, survival, and tumorigenicity. Importantly, miR-500 was upregulated in gastric cancer and was highly correlated with malignant progression and poor survival. Hence, we report the uncovering of a novel mechanism for constitutive NF-κB activation, indicating the potentially pivotal role of miR-500 in the progression of gastric cancer.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Department of Diagnostic Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ya Ding
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhongyu Yuan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Junling Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jian Sun
- Clinical Trial Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fangyong Lei
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shu Wu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Su Li
- Clinical Trial Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dongsheng Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
97
|
Wu Y, Zhang Q, Ruan Z, Yin Y. Intrinsic effects of gold nanoparticles on proliferation and invasion activity in SGC-7901 cells. Oncol Rep 2015; 35:1457-62. [PMID: 26648165 DOI: 10.3892/or.2015.4474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/08/2015] [Indexed: 11/06/2022] Open
Abstract
Although biomedical applications of functionalized nanoparticles have taken significant strides, biological characterization of unmodified nanoparticles remains unclear. In the present study, we investigated the cell viability and invasion activity of gastric cancer cells after treatment with gold nanoparticles. The growth of SGC-7901 cells was inhibited significantly after treatment with 5-nm gold nanoparticles, and the cell invasion decreased markedly. These effects were not seen by different size gold nanoparticles (10, 20 and 40 nm). The attenuated invasion activity may be associated with the decreased expression of matrix metalloproteinase 9 and intercellular adhesion molecule-1. These data indicated that the response of SGC-7901 cells to gold nanoparticles was strongly associated with their unique size-dependent physiochemical properties. Therefore, we provided new evidence for the effect of gold nanoparticles on gastric cancer cell proliferation and invasion in vitro, making a contribution to the application of gold nanoparticles to novel therapies in gastric cancer.
Collapse
Affiliation(s)
- Yucheng Wu
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Qingqing Zhang
- Department of Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Zhongbao Ruan
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Yigang Yin
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
98
|
Xia W, Mo H. Potential of tocotrienols in the prevention and therapy of Alzheimer's disease. J Nutr Biochem 2015; 31:1-9. [PMID: 27133418 DOI: 10.1016/j.jnutbio.2015.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Currently there is no cure for Alzheimer's disease (AD); clinical trials are underway to reduce amyloid generation and deposition, a neuropathological hallmark in brains of AD patients. While genetic factors and neuroinflammation contribute significantly to AD pathogenesis, whether increased cholesterol level is a causative factor or a result of AD is equivocal. Prenylation of proteins regulating neuronal functions requires mevalonate-derived farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The observation that the levels of FPP and GGPP, but not that of cholesterol, are elevated in AD patients is consistent with the finding that statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, reduce FPP and GGPP levels and amyloid β protein production in preclinical studies. Retrospective studies show inverse correlations between incidence of AD and the intake and serum levels of the HMG CoA reductase-suppressive tocotrienols; tocopherols show mixed results. Tocotrienols, but not tocopherols, block the processing and nuclear localization of sterol regulatory element binding protein-2, the transcriptional factor for HMG CoA reductase and FPP synthase, and enhance the degradation of HMG CoA reductase. Consequently, tocotrienols deplete the pool of FPP and GGPP and potentially blunt prenylation-dependent AD pathogenesis. The antiinflammatory activity of tocotrienols further contributes to their protection against AD. The mevalonate- and inflammation-suppressive activities of tocotrienols may represent those of an estimated 23,000 mevalonate-derived plant secondary metabolites called isoprenoids, many of which are neuroprotective. Tocotrienol-containing plant foods and tocotrienol derivatives and formulations with enhanced bioavailability may offer a novel approach in AD prevention and treatment.
Collapse
Affiliation(s)
- Weiming Xia
- Geriatric Research Education and Clinical Center, ENR Memorial Veterans Hospital, Bedford, MA.
| | - Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, GA; Center for Obesity Reversal, Georgia State University, Atlanta, GA.
| |
Collapse
|
99
|
W346 inhibits cell growth, invasion, induces cycle arrest and potentiates apoptosis in human gastric cancer cells in vitro through the NF-κB signaling pathway. Tumour Biol 2015; 37:4791-801. [DOI: 10.1007/s13277-015-4277-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/19/2015] [Indexed: 02/03/2023] Open
|
100
|
Manu KA, Shanmugam MK, Ramachandran L, Li F, Siveen KS, Chinnathambi A, Zayed M, Alharbi SA, Arfuso F, Kumar AP, Ahn KS, Sethi G. Isorhamnetin augments the anti-tumor effect of capeciatbine through the negative regulation of NF-κB signaling cascade in gastric cancer. Cancer Lett 2015; 363:28-36. [DOI: 10.1016/j.canlet.2015.03.033] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 01/28/2023]
|