51
|
Abstract
Non-communicable diseases contribute to 71% of the deaths worldwide, of which cancers rank second after cardiovascular diseases. Among all the cancers, head and neck cancers (HNC) are consequential in augmenting the global cancer incidence as well as mortality. Receptor tyrosine kinases (RTKs) are emphatic for the matter that they serve as biomarkers aiding the analysis of tumor progression and metastasis as well as diagnosis, prognosis and therapeutic progression in the patients. The extensive researches on HNC have made significant furtherance in numerous targeted therapies, but for the escalating therapeutic resistance. This review explicates RTKs in HNC, their signaling pathways involved in tumorigenesis, metastasis and stemness induction, the association of non-coding RNAs with RTKs, an overview of RTK based therapy and associated resistance in HNC, as well as a sneak peek into the HPV positive HNC and its therapy. The review extrapolates the cardinal role of RTKs and RTK based therapy as superior to other existing therapeutic interventions for HNC.
Collapse
Affiliation(s)
- Revathy Nadhan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Priya Srinivas
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India.
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
52
|
Wang S, Ma F, Feng Y, Liu T, He S. Role of exosomal miR‑21 in the tumor microenvironment and osteosarcoma tumorigenesis and progression (Review). Int J Oncol 2020; 56:1055-1063. [PMID: 32319566 DOI: 10.3892/ijo.2020.4992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/07/2020] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is the most common bone tumor affecting both adolescents and children. Early detection is critical for the effective treatment of the disease. Derived from cancer cells, miR‑21 contained within exosomes in the tumor microenvironment may act on both cancer cells and the surrounding tumor microenvironment (TME), including immune cells, endothelial cells and fibroblasts. In human serum and plasm, the level of exosomal miR‑21 between osteosarcoma patients and healthy controls differs, supporting the role of miR‑21 as a biomarker for osteosarcoma. The involvement of a number of miR‑21 target genes in tumor progression suggests that miR‑21 may significantly affect the plasticity of cancer cells, leading to tumor progression, metastasis, angiogenesis and immune escape in osteosarcoma. Understanding the biogenesis and functions of exosomal miR‑21 is of great value for the diagnosis and therapy of cancer, including osteosarcoma. The present review discusses the role of miR‑21 in the tumor microenvironment, and in the development and progression of osteosarcoma, with an aim to summarize the functions of this miRNA in cancer.
Collapse
Affiliation(s)
- Shoufeng Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Fang Ma
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Yi Feng
- Ovarian Cancer Research, Perelman School of Medicine, University of Pennsylvania, Philadephia, PA 19104, USA
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
53
|
Jing C, Wang T, Ma R, Cao H, Wang Z, Liu S, Chen D, Zhang J, Wu Y, Zhang Y, Wu J, Feng J. New genetic variations discovered in KRAS wild-type cetuximab resistant chinese colorectal cancer patients. Mol Carcinog 2020; 59:478-491. [PMID: 32141150 DOI: 10.1002/mc.23172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022]
Abstract
To perform a comprehensive genomic analysis of colorectal cancer (CRC) tumor to detect genetic variants and identify novel resistant mutations associated with cetuximab-resistance in CRC patients. A retrospective study was performed using whole exome sequencing (WES) to identify common genetic factors from 22 cetuximab-sensitive and 10 cetuximab-resistant patients. In all 10 cetuximab-resistant patients, we discovered there are 37 significantly mutated genes (SMGs). CYP4A11 was the most frequently mutated gene in cetuximab-resistant patients. BCAS1 and GOLGA6L1 were found to be among the second group of frequently mutated genes with a frequency of 60%. After cosine similarity analysis, three mutational signatures (signature a, b, and c) were found in all CRC tumors, similar to signature 1, 5, and 6 in COSMIC, respectively. Gene ontology analysis was performed on SMGs and found 12 enriched GO terms. Four genes are enriched in six specific Kyoto Encyclopedia of Genes and Genomes pathway groups, including the metabolism of xenobiotics by cytochrome P450, steroid hormone biosynthesis, retinol metabolism, and drug metabolism. Our data supports a network composed of SMGs and cellular signaling pathways that have been positively linked to the mechanisms of cetuximab resistance. These involve DNA damage repair, angiogenesis, invasion, drug metabolism, and the CRC tumor microenvironment. There is a SMG, OR9G1 correlated with survival rates of KRAS wild-type colon adenocarcinoma patients. These findings support further investigation using WES in a prospective clinical study of cetuximab resistance CRC, to further identify, confirm, and extend the clinical significance of these and other potentially important new candidate predictive biomarkers of cetuximab response.
Collapse
Affiliation(s)
- Changwen Jing
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Cell Biology, Nanjing Medical University, Nanjing, China
| | - Rong Ma
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Haixia Cao
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuo Wang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Siwen Liu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Chen
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Junying Zhang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Chemotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
54
|
New Paradigms to Assess Consequences of Long-Term, Low-Dose Curcumin Exposure in Lung Cancer Cells. Molecules 2020; 25:molecules25020366. [PMID: 31963196 PMCID: PMC7024150 DOI: 10.3390/molecules25020366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
Curcumin has been investigated extensively for cancer prevention, but it has been proposed that long-term treatments may promote clonal evolution and gain of cellular resistance, potentially rendering cancer cells less sensitive to future therapeutic interventions. Here, we used long-term, low-dose treatments to determine the potential for adverse effects in non-small cell lung cancer (NSCLC) cells. IC50s for curcumin, cisplatin, and pemetrexed in A549, PC9, and PC9ER NSCLC cells were evaluated using growth curves. IC50s were subsequently re-assessed following long-term, low-dose curcumin treatment and a three-month treatment withdrawal period, with a concurrent assessment of oncology-related protein expression. Doublet cisplatin/pemetrexed-resistant cell lines were created and the IC50 for curcumin was determined. Organotypic NSCLC-fibroblast co-culture models were used to assess the effects of curcumin on invasive capacity. Following long-term treatment/treatment withdrawal, there was no significant change in IC50s for the chemotherapy drugs, with chemotherapy-resistant cell lines exhibiting similar sensitivity to curcumin as their non-resistant counterparts. Curcumin (0.25-0.5 µM) was able to inhibit the invasion of both native and chemo-resistant NSCLC cells in the organotypic co-culture model. In summary, long-term curcumin treatment in models of NSCLC neither resulted in the acquisition of pro-carcinogenic phenotypes nor caused resistance to chemotherapy agents.
Collapse
|
55
|
Li S, Zhang Q, Hong Y. Tumor Vessel Normalization: A Window to Enhancing Cancer Immunotherapy. Technol Cancer Res Treat 2020; 19:1533033820980116. [PMID: 33287656 PMCID: PMC7727091 DOI: 10.1177/1533033820980116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 10/30/2020] [Indexed: 01/05/2023] Open
Abstract
Hostile microenvironment produced by abnormal blood vessels, which is characterized by hypoxia, low pH value and increasing interstitial fluid pressure, would facilitate tumor progression, metastasis, immunosuppression and anticancer treatments resistance. These abnormalities are the result of the imbalance of pro-angiogenic and anti-angiogenic factors (such as VEGF and angiopoietin 2, ANG2). Prudent use of anti-angiogenesis drugs would normalize these aberrant tumor vessels, resulting in a transient window of vessel normalization. In addition, use of cancer immunotherapy including immune checkpoint blockers when vessel normalization is achieved brings better outcomes. In this review, we sum up the advances in the field of understanding and application of the concept of tumor vessels normalization window to treat cancer. Moreover, we also outline some challenges and opportunities ahead to optimize the combination of anti-angiogenic agents and immunotherapy, leading to improve patients' outcomes.
Collapse
Affiliation(s)
- Sai Li
- Department of gynecologic oncology, Women’s hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yupeng Hong
- Department of Oncology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
56
|
Identification of HGF as a novel target of miR-15a/16/195 in gastric cancer. Invest New Drugs 2019; 38:922-933. [PMID: 31414268 DOI: 10.1007/s10637-019-00834-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Background Gastric malignancy is the third most frequently encountered cancer globally and have been documented to confer extremely poor prognosis, given their limited treatment options. The up-regulation of hepatocyte growth factor (HGF) has been found in various tumor tissues, including GC tissue, and has been linked with tumor development. Nevertheless, the pathways leading to HGF upregulation have yet to be fully explored. Methods Immunohistochemistry (IHC) assay was used to detect HGF expression in human gastric tumor tissues, while western blotting allowed quantification of protein levels. Bioinformatics tools were used to predict potential miRNA that may target HGF mRNA. Relative levels of miR-15a/16/195 as well as the target mRNA levels were analyzed with qRT-PCR. Direct targeting between miRNA and mRNA was then validated by luciferase assay. Finally, a mouse xenograft tumor model was selected to demonstrate the in vivo effects of miR-15a/16/195. Results HGF protein expressions were markedly raised, while miR-15a/16/195 levels were dramatically down-regulated in tumor tissues of GC. miR-15a/16/195 were shown to directly bind with the 3'-UTR of HGF mRNA. This study demonstrated that HGF can be repressed by overexpressed miR-15a/16/195, which resulted in the suppression of GC cell proliferation and migration. Furthermore, in the xenograft mouse model, miR-15a/16/195 were also found to have a tumor growth suppression effect. Conclusions miR-15a/16/195 suppresses tumorigenesis by targeting HGF and may have a potential therapeutic application in the clinical treatment of GC.
Collapse
|
57
|
Targeting Cellular Metabolism Modulates Head and Neck Oncogenesis. Int J Mol Sci 2019; 20:ijms20163960. [PMID: 31416244 PMCID: PMC6721038 DOI: 10.3390/ijms20163960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
Considering the great energy and biomass demand for cell survival, cancer cells exhibit unique metabolic signatures compared to normal cells. Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent neoplasms worldwide. Recent findings have shown that environmental challenges, as well as intrinsic metabolic manipulations, could modulate HNSCC experimentally and serve as clinic prognostic indicators, suggesting that a better understanding of dynamic metabolic changes during HNSCC development could be of great benefit for developing adjuvant anti-cancer schemes other than conventional therapies. However, the following questions are still poorly understood: (i) how does metabolic reprogramming occur during HNSCC development? (ii) how does the tumorous milieu contribute to HNSCC tumourigenesis? and (iii) at the molecular level, how do various metabolic cues interact with each other to control the oncogenicity and therapeutic sensitivity of HNSCC? In this review article, the regulatory roles of different metabolic pathways in HNSCC and its microenvironment in controlling the malignancy are therefore discussed in the hope of providing a systemic overview regarding what we knew and how cancer metabolism could be translated for the development of anti-cancer therapeutic reagents.
Collapse
|
58
|
Brands RC, De Donno F, Knierim ML, Steinacker V, Hartmann S, Seher A, Kübler AC, Müller-Richter UDA. Multi-kinase inhibitors and cisplatin for head and neck cancer treatment in vitro. Oncol Lett 2019; 18:2220-2231. [PMID: 31452723 PMCID: PMC6676536 DOI: 10.3892/ol.2019.10541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) remains one of the major causes of suboptimal outcome following therapy in head and neck squamous cell carcinoma (HNSCC). ATP-binding cassette (ABC) transporters are overexpressed in HNSCC, which contributes to the limited effect of chemotherapeutic treatment. In addition to their named function, tyrosine kinase inhibitors (TKIs) have been revealed to impact on ABC transporter activity and expression. Therefore, the present study aimed to investigate the effects of combination therapy using different TKIs combined with cisplatin. Reverse transcription-quantitative PCR was used to characterize ABC transporter and receptor expression in 5 HNSCC cell lines treated with 3 different TKIs (pazopanib, dovitinib, nintedanib) and cisplatin. Treatment efficacy was analyzed using a crystal violet staining assay. Analysis of ABC transporter (ABCB1, ABCC1 and ABCG2) genetic alterations was performed using The Cancer Genome Atlas. Statistical analysis was conducted to evaluate the effects of mono- and combination treatment. With the exception of ABCB1, all of the investigated ABC transporters were expressed in each cell line. The additive effects of TKI + cisplatin combination treatment were observed for pazopanib in three cell lines, nintedanib in four cell lines, and were not observed for dovitinib in any of the cell lines investigated. The combination of multi-kinase inhibitors and conventional chemotherapy in HNSCC may strengthen the use of current therapeutic strategies; nintedanib appears to be the most suitable TKI for combination therapy. Further efforts are required to classify TKI efficacy with regard to cisplatin resistance.
Collapse
Affiliation(s)
- Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Francesco De Donno
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Marie Luise Knierim
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Valentin Steinacker
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Urs D A Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
59
|
Valenzuela-Iglesias A, Burks HE, Arnette CR, Yalamanchili A, Nekrasova O, Godsel LM, Green KJ. Desmoglein 1 Regulates Invadopodia by Suppressing EGFR/Erk Signaling in an Erbin-Dependent Manner. Mol Cancer Res 2019; 17:1195-1206. [PMID: 30655320 PMCID: PMC6581214 DOI: 10.1158/1541-7786.mcr-18-0048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Loss of the desmosomal cell-cell adhesion molecule, Desmoglein 1 (Dsg1), has been reported as an indicator of poor prognosis in head and neck squamous cell carcinomas (HNSCC) overexpressing epidermal growth factor receptor (EGFR). It has been well established that EGFR signaling promotes the formation of invadopodia, actin-based protrusions formed by cancer cells to facilitate invasion and metastasis, by activating pathways leading to actin polymerization and ultimately matrix degradation. We previously showed that Dsg1 downregulates EGFR/Erk signaling by interacting with the ErbB2-binding protein Erbin (ErbB2 Interacting Protein) to promote keratinocyte differentiation. Here, we provide evidence that restoring Dsg1 expression in cells derived from HNSCC suppresses invasion by decreasing the number of invadopodia and matrix degradation. Moreover, Dsg1 requires Erbin to downregulate EGFR/Erk signaling and to fully suppress invadopodia formation. Our findings indicate a novel role for Dsg1 in the regulation of invadopodia signaling and provide potential new targets for development of therapies to prevent invadopodia formation and therefore cancer invasion and metastasis. IMPLICATIONS: Our work exposes a new pathway by which a desmosomal cadherin called Dsg1, which is lost early in head and neck cancer progression, suppresses cancer cell invadopodia formation by scaffolding ErbB2 Interacting Protein and consequent attenuation of EGF/Erk signaling.
Collapse
Affiliation(s)
| | - Hope E Burks
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christopher R Arnette
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amulya Yalamanchili
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Oxana Nekrasova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lisa M Godsel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago and Evanston, IL
| |
Collapse
|
60
|
Novoplansky O, Fury M, Prasad M, Yegodayev K, Zorea J, Cohen L, Pelossof R, Cohen L, Katabi N, Cecchi F, Joshua BZ, Popovtzer A, Baselga J, Scaltriti M, Elkabets M. MET activation confers resistance to cetuximab, and prevents HER2 and HER3 upregulation in head and neck cancer. Int J Cancer 2019; 145:748-762. [PMID: 30694565 DOI: 10.1002/ijc.32170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022]
Abstract
An understanding of the mechanisms underlying acquired resistance to cetuximab is urgently needed to improve cetuximab efficacy in patients with head and neck squamous cell carcinoma (HNSCC). Here, we present a clinical observation that MET pathway activation constitutes the mechanism of acquired resistance to cetuximab in a patient with HNSCC. Specifically, RNA sequencing and mass spectrometry analysis of cetuximab-sensitive (CetuxSen ) and cetuximab-resistant (CetuxRes ) tumors indicated MET amplification and overexpression in the CetuxRes tumor compared to the CetuxSen lesion. Stimulation of MET in HNSCC cell lines was sufficient to reactivate the MAPK pathway and to confer resistance to cetuximab in vitro and in vivo. In addition to the direct role of MET in reactivation of the MAPK pathway, MET stimulation abrogates the well-known cetuximab-induced compensatory feedback loop of HER2/HER3 expression. Mechanistically, we showed that the overexpression of HER2 and HER3 following cetuximab treatment is mediated by the ETS homologous transcription factor (EHF), and is suppressed by MET/MAPK pathway activation. Collectively, our findings indicate that evaluation of MET and HER2/HER3 in response to cetuximab in HNSCC patients can provide the rationale of successive line of treatment.
Collapse
Affiliation(s)
- Ofra Novoplansky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matthew Fury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ksenia Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Raphael Pelossof
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Liz Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Ben-Zion Joshua
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Otolaryngology - Head and Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Aron Popovtzer
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel.,The Head and Neck Cancer Radiation Clinic, Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva, Israel
| | - Jose Baselga
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Maurizio Scaltriti
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
61
|
Byeon HK, Ku M, Yang J. Beyond EGFR inhibition: multilateral combat strategies to stop the progression of head and neck cancer. Exp Mol Med 2019; 51:1-14. [PMID: 30700700 PMCID: PMC6353966 DOI: 10.1038/s12276-018-0202-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) overexpression is common in head and neck squamous cell carcinoma. Targeted therapy specifically directed towards EGFR has been an area of keen interest in head and neck cancer research, as EGFR is potentially an integration point for convergent signaling. Despite the latest advancements in cancer diagnostics and therapeutics against EGFR, the survival rates of patients with advanced head and neck cancer remain disappointing due to anti-EGFR resistance. This review article will discuss recent multilateral efforts to discover and validate actionable strategies that involve signaling pathways in heterogenous head and neck cancer and to overcome anti-EGFR resistance in the era of precision medicine. Particularly, this review will discuss in detail the issue of cancer metabolism, which has recently emerged as a novel mechanism by which head and neck cancer may be successfully controlled according to different perspectives. South Korean researchers propose novel combination strategies for overcoming drug resistance and halting the progression of head and neck cancer (HNC). Although high levels of epidermal growth factor receptor (EGFR) protein in HNC correlate with reduced survival, patients’ response to the EGFR inhibitor cetuximab often declines rapidly after a short period of effectiveness. Hyung Kwon Byeon at Korea University College of Medicine in Seoul and colleagues review current knowledge of the mechanisms underlying cetuximab resistance. They suggest that evaluating a patient’s genetic profile and combining cetuximab with drugs that enhance the effects of inhibiting EGFR signaling pathways (with inhibitors of other EGFR family members or proteins that mediate EGFR entry to the cell nucleus, for example) as well as with agents that inhibit cancer cell metabolism could be a more effective approach for treating HNC.
Collapse
Affiliation(s)
- Hyung Kwon Byeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Seoul, Republic of Korea. .,Systems Molecular Oncology for Head and Neck Cancer, Seoul, Republic of Korea. .,Systems Molecular Radiology at Yonsei, Seoul, Republic of Korea.
| | - Minhee Ku
- Systems Molecular Radiology at Yonsei, Seoul, Republic of Korea.,Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Research Institute of Radiological Science, Yonsei University, Seoul, Republic of Korea
| | - Jaemoon Yang
- Systems Molecular Radiology at Yonsei, Seoul, Republic of Korea. .,Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Research Institute of Radiological Science, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
62
|
IL-8 Secreted from M2 Macrophages Promoted Prostate Tumorigenesis via STAT3/MALAT1 Pathway. Int J Mol Sci 2018; 20:ijms20010098. [PMID: 30591689 PMCID: PMC6337597 DOI: 10.3390/ijms20010098] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is a major health problem in males. Metastasis-associated with lung adenocarcinoma transcript-1 (MALAT1), which is overexpressed in PCa tissue, is associated with physiological and pathological conditions of PCa. M2 macrophages are major immune cells abundant in the tumor microenvironment. However, it remains unknown whether M2 macrophages are involved in the effects or not, and molecular mechanisms of MALAT1 on PCa progression have not yet been comprehensively explored. Here we reported that, M2 macrophages (PMA/IL-4 treated THP1) induced MALAT1 expression in PCa cell lines. Knockdown MALAT1 expression level in PCa cell lines inhibited cellular proliferation, invasion, and tumor formation. Further mechanistic dissection revealed that M2 macrophages secreted IL-8 was sufficient to drive up MALAT1 expression level via activating STAT3 signaling pathway. Additional chromatin immunoprecipitation (ChIP) and luciferase reporter assays displayed that STAT3 could bind to the MALAT1 promoter region and transcriptionally stimulate the MALAT1 expression. In summary, our present study identified the IL-8/STAT3/MALAT1 axis as key regulators during prostate tumorigenesis and therefore demonstrated a new mechanism for the MALAT1 transcriptional regulation.
Collapse
|
63
|
Beizaei K, Gleißner L, Hoffer K, Bußmann L, Vu AT, Steinmeister L, Laban S, Möckelmann N, Münscher A, Petersen C, Rothkamm K, Kriegs M. Receptor tyrosine kinase MET as potential target of multi-kinase inhibitor and radiosensitizer sorafenib in HNSCC. Head Neck 2018; 41:208-215. [PMID: 30552828 DOI: 10.1002/hed.25440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/13/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The multi-kinase inhibitor sorafenib displays antitumoral effects in head and neck squamous cell carcinoma (HNSCC); however, the targeted kinases are unknown. Here we aimed to identify those kinases to determine the mechanism of sorafenib-mediated effects and establish candidate biomarkers for patient stratification. METHODS The effects of sorafenib and MET inhibitors crizotinib and SU11274 were analyzed using a slide-based antibody array, Western blotting, proliferation, and survival assays. X-rays were used for irradiations. RESULTS Sorafenib inhibited auto-phosphorylation of epidermal growth factor receptor and MET, which has not been described previously. MET expression in HNSCC cells was not always associated with activity/phosphorylation. Furthermore, sorafenib-dependent cell kill and radiosensitization was not associated with MET level. Although MET inhibitors blocked proliferation, they caused only mild cytotoxicity and no radiosensitization. CONCLUSION We identified MET as a new potential target of sorafenib. However, MET inhibition is not the cause for sorafenib-mediated cytotoxicity or radiosensitization.
Collapse
Affiliation(s)
- Kaweh Beizaei
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Lisa Gleißner
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Lara Bußmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Anh Thu Vu
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Leonhard Steinmeister
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Nikolaus Möckelmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology and Head and Neck Surgery, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Cordula Petersen
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology and Experimental Radiation Oncology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Hamburg-Eppendorf, Germany
| |
Collapse
|
64
|
HGF/c-MET Signaling in Melanocytes and Melanoma. Int J Mol Sci 2018; 19:ijms19123844. [PMID: 30513872 PMCID: PMC6321285 DOI: 10.3390/ijms19123844] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte growth factor (HGF)/ mesenchymal-epithelial transition factor (c-MET) signaling is involved in complex cellular programs that are important for embryonic development and tissue regeneration, but its activity is also utilized by cancer cells during tumor progression. HGF and c-MET usually mediate heterotypic cell–cell interactions, such as epithelial–mesenchymal, including tumor–stroma interactions. In the skin, dermal fibroblasts are the main source of HGF. The presence of c-MET on keratinocytes is crucial for wound healing in the skin. HGF is not released by normal melanocytes, but as melanocytes express c-MET, they are receptive to HGF, which protects them from apoptosis and stimulates their proliferation and motility. Dissimilar to melanocytes, melanoma cells not only express c-MET, but also release HGF, thus activating c-MET in an autocrine manner. Stimulation of the HGF/c-MET pathways contributes to several processes that are crucial for melanoma development, such as proliferation, survival, motility, and invasiveness, including distant metastatic niche formation. HGF might be a factor in the innate and acquired resistance of melanoma to oncoprotein-targeted drugs. It is not entirely clear whether elevated serum HGF level is associated with low progression-free survival and overall survival after treatment with targeted therapies. This review focuses on the role of HGF/c-MET signaling in melanoma with some introductory information on its function in skin and melanocytes.
Collapse
|
65
|
Li X, Zhao Z, Yi S, Ma L, Li M, Liu M, Zhang Y, Liu G. Nuclear Klf4 accumulation is associated with cetuximab drug-resistance and predicts poor prognosis of nasopharyngeal carcinoma. J Transl Med 2018; 16:183. [PMID: 29973197 PMCID: PMC6030795 DOI: 10.1186/s12967-018-1561-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/23/2018] [Indexed: 02/08/2023] Open
Abstract
Background The functions of the protein expressed in the nucleus and cytoplasm were different or opposite. The previous study found that oncogene Klf4 played a role of tumor suppressor in the nasopharyngeal cytoplasm. Cetuximab targeted epidermal growth factor receptor (EGFR) for the treatment of nasopharyngeal carcinoma. Methods A cohort of 231 cases of advanced nasopharyngeal carcinoma (7th AJCC III–IVa) samples was assessed by immunohistochemistry (IHC), of which, 63 cases were treated with basic treatment without cetuximab, the basic treatment include chemotherapy and radiotherapy, the regent of the chemotherapy include cisplatin and fluorouracil and 168 cases were treated with cetuximab in addition to the basic treatment. The expression of the KLF4 protein was detected in nucleus and cytoplasm, c-Met protein and nuclear EGFR protein (nEGFR) by IHC, and H-Ras and PI3K mutations by an arms-PCR method in vivo. KLF4 was found to specifically express in the cytoplasm by deleting the NES, while H-Ras and PI3K genes were mutated in the nasopharyngeal carcinoma 5–8F and HONE1cell line. The cetuximab resistance in differentially mutated 5–8F and HONE1 cells was analyzed. Results The expression of Klf4 in the nucleus was associated with prognosis in 168 patients with cetuximab-treated nasopharyngeal carcinoma, which was found by retrospective analysis. The KLF4 expression in the nucleus was not significantly correlated with the prognosis in 63 nasopharyngeal carcinoma patients treated with basic treatment (P = 0.261). The expression of Klf4 in the nucleus was correlated with mutations of H-Ras and PI3K in 168 cases of nasopharyngeal carcinoma with cetuximab treatment. In vitro experiments showed that Klf4 was specifically expressed in the nucleus of 5–8F and HONE1 cells as assessed by deleting nuclear export signal, which led to cetuximab resistance. H-Ras and PI3K mutations in 5–8F and HONE1 cells also led to the expression of Klf4 in the nucleus and resistance to cetuximab. In HONE1 cells, Klf4 was specifically localized in the cytoplasm by deleting the NES, and the H-Ras and PI3K mutations did not result in an increased expression of Klf4 in the nucleus and cetuximab resistance. Conclusion The prognosis of nasopharyngeal carcinoma was not significantly improved by cetuximab treatment when the Klf4 was highly expressed in the nucleus of nasopharyngeal carcinoma tissues. The expression of Klf4 in the nucleus can be used as a biomarker for predicting the effects of cetuximab treatment in nasopharyngeal carcinoma, which might be attributed to the H-RAS and PI3K mutations, leading to cetuximab resistance.
Collapse
Affiliation(s)
- Xiqing Li
- Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Zunlan Zhao
- The Health Sciences Biomedical Research Facility II, University of California San Diego, La Jolla, CA, 92121, USA
| | - Shijiang Yi
- Affiliated Hospital of Guilin Medical University, 1 Lequn Road, Guilin, 541004, Guangxi, China
| | - Lei Ma
- Cancer Hospital of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510060, Guangdong, China
| | - Ming Li
- Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Mingyue Liu
- Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Yaping Zhang
- University of Illinois at Chicago College of Medicine, 1835 W Polk St, Chicago, IL, 60612, USA
| | - Guangzhi Liu
- Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
66
|
Patnaik A, Gordon M, Tsai F, Papadopoulos KP, Rasco D, Beeram M, Fu S, Janku F, Hynes SM, Gundala SR, Willard MD, Zhang W, Lin AB, Hong D. A phase I study of LY3164530, a bispecific antibody targeting MET and EGFR, in patients with advanced or metastatic cancer. Cancer Chemother Pharmacol 2018; 82:407-418. [PMID: 29926131 PMCID: PMC6105165 DOI: 10.1007/s00280-018-3623-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE The phase I study characterized the safety, pharmacokinetics, anti-tumor activity, and recommended phase II dose/schedule of LY3164530 in patients with advanced or metastatic cancer. METHODS Patients received LY3164530 on days 1 and 15 (Schedule 1: 300, 600, 1000, and 1250 mg) or Days 1, 8, 15, and 22 (Schedule 2: 500 and 600 mg) of each 28 days cycle. Dose escalation used a modified toxicity probability interval model. RESULTS Dose escalation defined a maximum tolerated dose (MTD) of 1000 mg on Schedule 1 and 500 mg on Schedule 2. Treatment-emergent adverse events related to study treatment were consistent with epidermal growth factor receptor (EGFR) inhibition and included maculopapular rash/dermatitis acneiform (83%, Grade 3/4 17%), hypomagnesemia (55%, Grade 3/4 7%), paronychia (35%), fatigue (28%, Grade 3/4 3%), skin fissures (24%), and hypokalemia (21%, Grade 3/4 7%). Partial response was achieved in three patients on Schedule 2 with colorectal cancer (n = 2) or squamous cell cancer. Overall response rate (ORR) was 10.3%, disease control rate (ORR + stable disease [SD]) was 51.7 and 17.2% of patients had SD ≥ 4 months. The in vivo stability of the bispecific antibody was confirmed. Schedule 2 provided greater and more consistent inhibition of mesenchymal-epithelial transition (MET)/EGFR throughout the dosing interval than Schedule 1. CONCLUSIONS Although this study defined the LY3164530 MTD and pharmacokinetics on both schedules, significant toxicities associated with EGFR inhibition and lack of a potential predictive biomarker limit future development. Nonetheless, the results provide insight into the development of bispecific antibody therapy.
Collapse
Affiliation(s)
- Amita Patnaik
- South Texas Accelerated Research Therapeutics (START), 4383 Medical Drive, Suite 4026, San Antonio, TX, USA.
| | | | - Frank Tsai
- HonorHealth Research Institute, Scottsdale, AZ, USA
| | - Kyriakos P Papadopoulos
- South Texas Accelerated Research Therapeutics (START), 4383 Medical Drive, Suite 4026, San Antonio, TX, USA
| | - Drew Rasco
- South Texas Accelerated Research Therapeutics (START), 4383 Medical Drive, Suite 4026, San Antonio, TX, USA
| | - Muralidhar Beeram
- South Texas Accelerated Research Therapeutics (START), 4383 Medical Drive, Suite 4026, San Antonio, TX, USA
| | - Siqing Fu
- Cancer Medicine Division, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Filip Janku
- Cancer Medicine Division, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | | | | | | | - Wei Zhang
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - David Hong
- Cancer Medicine Division, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| |
Collapse
|
67
|
Tian Y, Lin J, Tian Y, Zhang G, Zeng X, Zheng R, Zhang W, Yuan Y. Efficacy and safety of anti-EGFR agents administered concurrently with standard therapies for patients with head and neck squamous cell carcinoma: a systematic review and meta-analysis of randomized controlled trials. Int J Cancer 2018; 142:2198-2206. [PMID: 29143328 DOI: 10.1002/ijc.31157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/29/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
Abstract
Agents targeting epidermal growth factor receptor (EGFR) are used to treat head and neck squamous cell carcinoma (HNSCC); however, their efficacy and safety is poorly understood. Here we evaluated the efficacy and safety of anti-EGFR agents administered concurrently with standard therapies for HNSCC. Randomized controlled trials that evaluated addition of EGFR targeted therapy versus standard therapy alone were included. The primary outcome was overall survival (OS). Secondary outcomes were progression-free survival (PFS), overall response rate (ORR), locoregional control, and severe adverse events (SAEs, grade ≥ 3). Sixteen eligible trials with 4031 patients were included. Addition of anti-EGFR regimens to standard therapy significantly improved OS of patients with HNSCC (HR = 0.89; 95% CI, 0.82-0.96), with a moderately elevated rate of SAEs (RR = 1.08; 95% CI, 1.03-1.13). Subgroup analysis indicated that the survival benefit was observed when cetuximab was administered concurrently with radiotherapy (RT) for stage III/IV patients (HR = 0.76; 95% CI, 0.61-0.94; p = 0.01), or with chemotherapy for recurrent or metastatic (R/M) HNSCC (HR = 0.86; 95% CI, 0.78-0.95; p = 0.005). Significantly increased ORR (RR = 1.51; 95% CI 1.05-2.18) and PFS (HR = 0.72; 95% CI, 0.59-0.88) were found in R/M HNSCC patients treated with anti-EGFR plus chemotherapy, while no significant improvements were found in stage III/IV patients treated with anti-EGFR plus standard therapy. In conclusion, addition of cetuximab to standard therapy may improve outcomes for R/M HNSCC patients, while causing a moderate increase in SAEs. For stage III/IV patients, anti-EGFR mAb plus RT can improve OS compared with RT alone, while replacement of chemotherapy with EGFR mAb or adding EGFR mAb to combined chemotherapy and RT did not improve outcomes.
Collapse
Affiliation(s)
- Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yunming Tian
- Department of Radiation Oncology, Hui Zhou Municipal Central Hospital, Guangzhou, People's Republic of China
| | - Guoqian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xing Zeng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Ronghui Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Weijun Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
68
|
Kolenda T, Przybyła W, Kapałczyńska M, Teresiak A, Zajączkowska M, Bliźniak R, Lamperska KM. Tumor microenvironment - Unknown niche with powerful therapeutic potential. Rep Pract Oncol Radiother 2018; 23:143-153. [PMID: 29760589 PMCID: PMC5948324 DOI: 10.1016/j.rpor.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 11/20/2017] [Accepted: 01/20/2018] [Indexed: 12/25/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are in a group of cancers that are the most resistant to treatment. The survival rate of HNSCC patients has been still very low since last 20 years. The existence of relationship between oncogenic and surrounding cells is probably the reason for a poor response to treatment. Fibroblasts are an important element of tumor stroma which increases tumor cells ability to proliferate. Another highly resistance, tumorigenic and metastatic cell population in tumor microenvironment are cancer initiating cells (CICs). The population of cancer initiating cells can be found regardless of differentiation status of cancer and they seem to be crucial for HNSCC development. In this review, we describe the current state of knowledge about HNSCC biological and physiological tumor microenvironment.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Weronika Przybyła
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Marta Kapałczyńska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Gastroenterology and Hepatology, Charite University Medicine Berlin, Berlin, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anna Teresiak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | - Maria Zajączkowska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
69
|
Kawano M, Tanaka K, Itonaga I, Iwasaki T, Tsumura H. Interaction between human osteosarcoma and mesenchymal stem cells via an interleukin-8 signaling loop in the tumor microenvironment. Cell Commun Signal 2018; 16:13. [PMID: 29625612 PMCID: PMC5889532 DOI: 10.1186/s12964-018-0225-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/02/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the representative primary malignant bone tumor with the highest incidence. It is known that malignant phenotypes of OS, such as proliferation, invasion, and metastasis, are significantly influenced not only by characteristics of the tumor itself, but also by the surrounding microenvironment. In other words, OS is considered to utilize cells in the vicinity of the tumor by changing the characteristics of these cells. Direct intercellular contact is believed to be important for this phenomenon. In the present study, we hypothesized that an interaction mediated by a humoral factor, requiring no cellular contact, might play a significant role in the progression of OS. METHODS We developed a new co-culture model, using OS cells and mesenchymal stem cells (MSCs) without cellular contact, and found that both cell types expressed IL-8 at a high level, and FAK in OS cells was phosphorylated leading to an increase in the metastatic potential of the tumor in the co-culture condition. RESULTS It was revealed that OS cells formed a loop of signal cross-talk in which they released IL-8 as a paracrine factor, stimulating MSCs to express IL-8, and received IL-8 released by MSCs to accelerate IL-8 expression in OS cells. Administration of anti-IL-8 antibody resulted in the inhibition of FAK expression, its downstream signaling, and the invasive potential of the OS cells, resulting in decrease in metastatic lesions. CONCLUSION The present study might lead not only to the clarification of a new molecular mechanism of invasion and metastasis of OS, but also to the development of a new therapeutic strategy of blocking IL-8 in OS.
Collapse
Affiliation(s)
- Masanori Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan.
| | - Ichiro Itonaga
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Tatsuya Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| |
Collapse
|
70
|
Ma S, Pradeep S, Hu W, Zhang D, Coleman R, Sood A. The role of tumor microenvironment in resistance to anti-angiogenic therapy. F1000Res 2018; 7:326. [PMID: 29560266 PMCID: PMC5854986 DOI: 10.12688/f1000research.11771.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Anti-angiogenic therapy has been demonstrated to increase progression-free survival in patients with many different solid cancers. Unfortunately, the benefit in overall survival is modest and the rapid emergence of drug resistance is a significant clinical problem. Over the last decade, several mechanisms have been identified to decipher the emergence of resistance. There is a multitude of changes within the tumor microenvironment (TME) in response to anti-angiogenic therapy that offers new therapeutic opportunities. In this review, we compile results from contemporary studies related to adaptive changes in the TME in the development of resistance to anti-angiogenic therapy. These include preclinical models of emerging resistance, dynamic changes in hypoxia signaling and stromal cells during treatment, and novel strategies to overcome resistance by targeting the TME.
Collapse
Affiliation(s)
- Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Reproductive Medicine Research Center, Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong province, China
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dikai Zhang
- Reproductive Medicine Research Center, Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong province, China
| | - Robert Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
71
|
Zhang S, Zhang Y, Qu J, Che X, Fan Y, Hou K, Guo T, Deng G, Song N, Li C, Wan X, Qu X, Liu Y. Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells. ACTA ACUST UNITED AC 2017; 51:e6472. [PMID: 29160412 PMCID: PMC5685060 DOI: 10.1590/1414-431x20176472] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
Cetuximab is widely used in patients with metastatic colon cancer expressing wildtype KRAS. However, acquired drug resistance limits its clinical efficacy. Exosomes are nanosized vesicles secreted by various cell types. Tumor cell-derived exosomes participate in many biological processes, including tumor invasion, metastasis, and drug resistance. In this study, exosomes derived from cetuximab-resistant RKO colon cancer cells induced cetuximab resistance in cetuximab-sensitive Caco-2 cells. Meanwhile, exosomes from RKO and Caco-2 cells showed different levels of phosphatase and tensin homolog (PTEN) and phosphor-Akt. Furthermore, reduced PTEN and increased phosphorylated Akt levels were found in Caco-2 cells after exposure to RKO cell-derived exosomes. Moreover, an Akt inhibitor prevented RKO cell-derived exosome-induced drug resistance in Caco-2 cells. These findings provide novel evidence that exosomes derived from cetuximab-resistant cells could induce cetuximab resistance in cetuximab-sensitive cells, by downregulating PTEN and increasing phosphorylated Akt levels.
Collapse
Affiliation(s)
- S Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Y Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - J Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - X Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Y Fan
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - K Hou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - T Guo
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - G Deng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - N Song
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - C Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - X Wan
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - X Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Y Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
72
|
Benkhoucha M, Molnarfi N, Kaya G, Belnoue E, Bjarnadóttir K, Dietrich PY, Walker PR, Martinvalet D, Derouazi M, Lalive PH. Identification of a novel population of highly cytotoxic c-Met-expressing CD8 + T lymphocytes. EMBO Rep 2017; 18:1545-1558. [PMID: 28751311 DOI: 10.15252/embr.201744075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 01/22/2023] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) are critical mediators of anti-tumor immunity, and controlling the mechanisms that govern CTL functions could be crucial for enhancing patient outcome. Previously, we reported that hepatocyte growth factor (HGF) limits effective murine CTL responses via antigen-presenting cells. Here, we show that a fraction of murine effector CTLs expresses the HGF receptor c-Met (c-Met+ CTLs). Phenotypic and functional analysis of c-Met+ CTLs reveals that they display enhanced cytolytic capacities compared to their c-Met- CTL counterparts. Furthermore, HGF directly restrains the cytolytic function of c-Met+ CTLs in cell-mediated cytotoxicity reactions in vitro and in vivo and abrogates T-cell responses against metastatic melanoma in vivo Finally, we establish in three murine tumor settings and in human melanoma tissues that c-Met+ CTLs are a naturally occurring CD8+ T-cell population. Together, our findings suggest that the HGF/c-Met pathway could be exploited to control CD8+ T-cell-mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Mahdia Benkhoucha
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Molnarfi
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Gürkan Kaya
- Division of Dermatology, University Hospital of Geneva, Geneva, Switzerland
| | - Elodie Belnoue
- Amal Therapeutics, Geneva, Switzerland.,Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Kristbjörg Bjarnadóttir
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Madiha Derouazi
- Amal Therapeutics, Geneva, Switzerland.,Centre of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Patrice H Lalive
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland .,Department of Neurosciences, Division of Neurology, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
73
|
Rothenberger NJ, Stabile LP. Hepatocyte Growth Factor/c-Met Signaling in Head and Neck Cancer and Implications for Treatment. Cancers (Basel) 2017; 9:cancers9040039. [PMID: 28441771 PMCID: PMC5406714 DOI: 10.3390/cancers9040039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
Aberrant signaling of the hepatocyte growth factor (HGF)/c-Met pathway has been identified as a promoter of tumorigenesis in several tumor types including head and neck squamous cell carcinoma (HNSCC). Despite a relatively low c-Met mutation frequency, overexpression of HGF and its receptor c-Met has been observed in more than 80% of HNSCC tumors, with preclinical and clinical studies linking overexpression with cellular proliferation, invasion, migration, and poor prognosis. c-Met is activated by HGF through a paracrine mechanism to promote cellular morphogenesis enabling cells to acquire mesenchymal phenotypes in part through the epithelial-mesenchymal transition, contributing to metastasis. The HGF/c-Met pathway may also act as a resistance mechanism against epidermal growth factor receptor (EGFR) inhibition in advanced HNSCC. Furthermore, with the identification of a biologically distinct subset of HNSCC tumors acquired from human papillomavirus (HPV) infection that generally portends a good prognosis, high expression of HGF or c-Met in HPV-negative tumors has been associated with worse prognosis. Dysregulated HGF/c-Met signaling results in an aggressive HNSCC phenotype which has led to clinical investigations for targeted inhibition of this pathway. In this review, HGF/c-Met signaling, pathway alterations, associations with clinical outcomes, and preclinical and clinical therapeutic strategies for targeting HGF/c-Met signaling in HNSCC are discussed.
Collapse
Affiliation(s)
- Natalie J Rothenberger
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- University of Pittsburgh Cancer Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
74
|
El-Bayoumy K, Chen KM, Zhang SM, Sun YW, Amin S, Stoner G, Guttenplan JB. Carcinogenesis of the Oral Cavity: Environmental Causes and Potential Prevention by Black Raspberry. Chem Res Toxicol 2016; 30:126-144. [DOI: 10.1021/acs.chemrestox.6b00306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Shang-Min Zhang
- Department
of Pathology, Yale University, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | | | | | - Gary Stoner
- Department
of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Joseph B. Guttenplan
- Department
of Basic Science, and Department of Environmental Medicine, New York University College of Dentistry and New York University School of Medicine, New York, New York 10010, United States
| |
Collapse
|
75
|
Cho YA, Kim EK, Heo SJ, Cho BC, Kim HR, Chung JM, Yoon SO. Alteration status and prognostic value of MET in head and neck squamous cell carcinoma. J Cancer 2016; 7:2197-2206. [PMID: 27994655 PMCID: PMC5166528 DOI: 10.7150/jca.16686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/18/2016] [Indexed: 12/17/2022] Open
Abstract
The MET pathway plays a key role in various cancers, and its inhibition represents a potential treatment target. However, appropriate biomarkers are needed to facilitate the selection of patients who would benefit from MET inhibiting therapy. We herein conducted a robust confirmatory evaluation of the MET copy number alteration status and prognostic significance of c-Met expression in a large series of patients (n = 396) who underwent standard surgical resection and adjuvant chemoradiotherapy for head and neck squamous cell carcinoma (HNSCC). Surgically resected HNSCC samples were subjected to immunohistochemical and H-score analysis of c-Met expression and silver in situ hybridization analysis of MET amplification and copy number gains. c-Met expression varied, with mean and median H-scores (scale: 0-300 scale) of 61.2 and 60.0, respectively. The lowest and highest expression levels were observed in SCC of the larynx and oral cavity, respectively. MET copy number gains were observed in 16.9% of cases (67/339) and were associated with c-Met protein expression. High c-Met expression, determined according to MET gain status, was associated with an inferior overall survival rate, especially among completely resected cases. In conclusion, our robust analysis revealed that c-Met expression in HNSCCs varied according to anatomical site, correlated with MET copy number gains, and was associated with poor prognosis. This c-Met expression analysis method, which is based on the MET gain status, appears to appropriately predict high-risk HNSCC patients in the context of anti-MET therapeutic decisions.
Collapse
Affiliation(s)
- Yoon Ah Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Kyung Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Heo
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Chul Cho
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Ryun Kim
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Korea
| | | | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|