51
|
Melzer MK, Resheq Y, Navaee F, Kleger A. The application of pancreatic cancer organoids for novel drug discovery. Expert Opin Drug Discov 2023; 18:429-444. [PMID: 36945198 DOI: 10.1080/17460441.2023.2194627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma presents with a dismal prognosis. Personalized therapy is urgently warranted to overcome the treatment limitations of the "one-size-fits-all" scheme. Organoids have emerged as fundamental novel tools to study tumor biology and heterogeneity, hence overcoming limitations of other model systems by better-reflecting tissue heterogeneity and recapitulating in-vivo processes. Besides their crucial role in basic research, they have evolved as tools for translational drug discovery and patient stratification. AREAS COVERED This review highlights the achievements of an organoid-based drug investigation and discovery. The authors present an overview of studies using organoids for drug testing. Further, they pinpoint studies correlating the in vitro prediction of organoids to the actual patient`s response. Furthermore, the authors describe novel model systems and take a thorough overlook of microfluidic chips, synthetic matrices, multicellular systems, bioprinting, and stem cell-derived pancreatic organoid systems. EXPERT OPINION Organoid systems promise great potential for future clinical applications. Indeed, they may be implemented into informed decision-making for guiding therapies. However, validation by randomized trials is mandatory. Additionally, organoids in combination with other cellular compartments may be exploited for drug discovery by studying niche-tumor interaction. Yet, several precautions must be kept in mind, such as standardization and reproducibility.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Yazid Resheq
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Fatemeh Navaee
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
- Core Facility Organoids, Ulm University, Ulm, Germany
| |
Collapse
|
52
|
Sereti E, Papapostolou I, Dimas K. Pancreatic Cancer Organoids: An Emerging Platform for Precision Medicine? Biomedicines 2023; 11:890. [PMID: 36979869 PMCID: PMC10046065 DOI: 10.3390/biomedicines11030890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/17/2023] Open
Abstract
Despite recent therapeutic advances, pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive malignancies, with remarkable resistance to treatment, poor prognosis, and poor clinical outcome. More efficient therapeutic approaches are urgently needed to improve patients' survival. Recently, the development of organoid culture systems has gained substantial attention as an emerging preclinical research model. PDAC organoids have been developed to study pancreatic cancer biology, progression, and treatment response, filling the translational gap between in vitro and in vivo models. Here, we review the rapidly evolving field of PDAC organoids and their potential as powerful preclinical tools that could pave the way towards precision medicine for pancreatic cancer.
Collapse
Affiliation(s)
- Evangelia Sereti
- Department of Translational Medicine, Lund University, 22363 Lund, Sweden
| | - Irida Papapostolou
- Department of Biochemistry and Molecular Medicine, 3012 Bern, Switzerland
| | - Konstantinos Dimas
- Department of Pharmacology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
53
|
Chen L, Wei X, Gu D, Xu Y, Zhou H. Human liver cancer organoids: Biological applications, current challenges, and prospects in hepatoma therapy. Cancer Lett 2023; 555:216048. [PMID: 36603689 DOI: 10.1016/j.canlet.2022.216048] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Liver cancer and disease are among the most socially challenging global health concerns. Although organ transplantation, surgical resection and anticancer drugs are the main methods for the treatment of liver cancer, there are still no proven cures owing to the lack of donor livers and tumor heterogeneity. Recently, advances in tumor organoid technology have attracted considerable attention as they can simulate the spatial constructs and pathophysiological characteristics of tumorigenesis and metastasis in a more realistic manner. Organoids may further contribute to the development of tailored therapies. Combining organoids with other emerging techniques, such as CRISPR-HOT, organ-on-a-chip, and 3D bioprinting, may further develop organoids and address their bottlenecks to create more practical models that generalize different tissue or organ interactions in tumor progression. In this review, we summarize the various methods in which liver organoids may be generated and describe their biological and clinical applications, present challenges, and prospects for their integration with emerging technologies. These rapidly developing liver organoids may become the focus of in vitro clinical model development and therapeutic research for liver diseases in the near future.
Collapse
Affiliation(s)
- Lichan Chen
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Dayong Gu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong Xu
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hongzhong Zhou
- Department of Laboratory Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
54
|
Aggarwal D, Russo S, Naik P, Bhatia S, Spector DL. Establishment and Culture of Patient-Derived Breast Organoids. J Vis Exp 2023:10.3791/64889. [PMID: 36876940 PMCID: PMC10193304 DOI: 10.3791/64889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Breast cancer is a complex disease that has been classified into several different histological and molecular subtypes. Patient-derived breast tumor organoids developed in our laboratory consist of a mix of multiple tumor-derived cell populations, and thus represent a better approximation of tumor cell diversity and milieu than the established 2D cancer cell lines. Organoids serve as an ideal in vitro model, allowing for cell-extracellular matrix interactions, known to play an important role in cell-cell interactions and cancer progression. Patient-derived organoids also have advantages over mouse models as they are of human origin. Furthermore, they have been shown to recapitulate the genomic, transcriptomic as well as metabolic heterogeneity of patient tumors; thus, they are capable of representing tumor complexity as well as patient diversity. As a result, they are poised to provide more accurate insights into target discovery and validation and drug sensitivity assays. In this protocol, we provide a detailed demonstration of how patient-derived breast organoids are established from resected breast tumors (cancer organoids) or reductive mammoplasty-derived breast tissue (normal organoids). This is followed by a comprehensive account of 3D organoid culture, expansion, passaging, freezing, as well as thawing of patient-derived breast organoid cultures.
Collapse
Affiliation(s)
- Disha Aggarwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor; Genetics Graduate Program, Stony Brook University
| | | | - Payal Naik
- Cold Spring Harbor Laboratory, Cold Spring Harbor
| | - Sonam Bhatia
- Cold Spring Harbor Laboratory, Cold Spring Harbor;
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor; Genetics Graduate Program, Stony Brook University;
| |
Collapse
|
55
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
56
|
Kokumai T, Omori Y, Ishida M, Ohtsuka H, Mizuma M, Nakagawa K, Maeda C, Ono Y, Mizukami Y, Miura S, Kume K, Masamune A, Morikawa T, Unno M, Furukawa T. GATA6 and CK5 Stratify the Survival of Patients With Pancreatic Cancer Undergoing Neoadjuvant Chemotherapy. Mod Pathol 2023; 36:100102. [PMID: 36788090 DOI: 10.1016/j.modpat.2023.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Relevant protein expression of GATA6, CK5, vimentin, and mucins using immunohistochemistry was assessed for predicting the prognosis of and chemotherapy efficacy in patients with pancreatic cancers (PCs). The protein expression was examined in 159 PCs resected after neoadjuvant chemotherapy (NAC-PCs) and compared with that of 120 matched biopsy specimens taken before NAC. KRAS mutations were assessed by digital PCR. NAC-PCs were classified by GATA6 expression initially and CK5 expression subsequently into 4 types: classical-type (n = 22) with GATA6-high (≥50%)/CK5-low (<10%) PCs; hybrid-type (n = 45) with GATA6-high/CK5-high (≥10%) PCs; basal-like-type (n = 53) with GATA6-low (<50%)/CK5-high (≥30%) PCs; and null-type (n = 39) with GATA6-low/CK5-low (<30%) PCs, which resulted in clear stratification of patient prognosis. The classical-type was associated with the most favorable prognosis, whereas the null-type was associated with the worst prognosis (multivariate hazard ratio: 3.56; 95% CI: 1.63-7.77; P = .0015). The hybrid and basal-like types correlated with in-between levels of prognosis. The risk of hepatic recurrence was lower in the classical-type than in null (multivariate odds ratio [mOR]: 0.18; 95% CI: 0.04-0.96; P = .0449) and basal-like (mOR: 0.24; 95% CI: 0.05-1.16; P =.0750) types. By contrast, the risk of locoregional recurrence was higher in the classical-type than in the basal-like-type (mOR: 5.03; 95% CI: 1.20-21.1; P = .0272). The hybrid-type was subclassified into transition and coexpression patterns with different gastric mucin expression levels. High levels of vimentin (≥10%, n = 30) in pre-NAC-PC tissues was associated with poor prognosis (P = .0256). Phenotypic transitions between pre-NAC and post-NAC-PCs were common (73/120; 61%). PCs with NAC regression grades 2 and 3 showed a transition to poorer prognostic phenotypes (P = .0497). KRAS mutations were not associated with these phenotypes. In conclusion, GATA6 and CK5 immunohistochemical expression phenotypes may stratify the survival of patients with NAC-PCs and reflect post-NAC phenotypic transitions associated with poor prognosis. Prompt evaluation of immunohistochemical phenotypes may contribute to designing a precision therapeutic strategy for patients with PCs.
Collapse
Affiliation(s)
- Takashi Kokumai
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuko Omori
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chiho Maeda
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Shin Miura
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyoshi Kume
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
57
|
Harada K, Sakamoto N. Cancer organoid applications to investigate chemotherapy resistance. Front Mol Biosci 2022; 9:1067207. [PMID: 36582205 PMCID: PMC9792487 DOI: 10.3389/fmolb.2022.1067207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
In clinical practice, a large proportion of cancer patients receive chemotherapy, yet tumors persist or acquire resistance; removing this obstacle could help to lower the number of cancer-related fatalities. All areas of cancer research are increasingly using organoid technology, a culture technique that simulates the in vivo environment in vitro, especially in the quickly developing fields of anticancer drug resistance, drug-tolerant persisters, and drug screening. This review provides an overview of organoid technology, the use of organoids in the field of anticancer drug resistance research, their relevance to clinical information and clinical trials, and approaches to automation and high throughput.
Collapse
Affiliation(s)
- Kenji Harada
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan,Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Naoya Sakamoto
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan,*Correspondence: Naoya Sakamoto,
| |
Collapse
|
58
|
Hogenson TL, Xie H, Phillips WJ, Toruner MD, Li JJ, Horn IP, Kennedy DJ, Almada LL, Marks DL, Carr RM, Toruner M, Sigafoos AN, Koenig-Kappes AN, Olson RL, Tolosa EJ, Zhang C, Li H, Doles JD, Bleeker J, Barrett MT, Boyum JH, Kipp BR, Mahipal A, Hubbard JM, Scheffler Hanson TJ, Petersen GM, Dasari S, Oberg AL, Truty MJ, Graham RP, Levy MJ, Zhu M, Billadeau DD, Adjei AA, Dusetti N, Iovanna JL, Bekaii-Saab TS, Ma WW, Fernandez-Zapico ME. Culture media composition influences patient-derived organoid ability to predict therapeutic responses in gastrointestinal cancers. JCI Insight 2022; 7:e158060. [PMID: 36256477 PMCID: PMC9746806 DOI: 10.1172/jci.insight.158060] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDA patient-derived organoid (PDO) platform may serve as a promising tool for translational cancer research. In this study, we evaluated PDO's ability to predict clinical response to gastrointestinal (GI) cancers.METHODSWe generated PDOs from primary and metastatic lesions of patients with GI cancers, including pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and cholangiocarcinoma. We compared PDO response with the observed clinical response for donor patients to the same treatments.RESULTSWe report an approximately 80% concordance rate between PDO and donor tumor response. Importantly, we found a profound influence of culture media on PDO phenotype, where we showed a significant difference in response to standard-of-care chemotherapies, distinct morphologies, and transcriptomes between media within the same PDO cultures.CONCLUSIONWhile we demonstrate a high concordance rate between donor tumor and PDO, these studies also showed the important role of culture media when using PDOs to inform treatment selection and predict response across a spectrum of GI cancers.TRIAL REGISTRATIONNot applicable.FUNDINGThe Joan F. & Richard A. Abdoo Family Fund in Colorectal Cancer Research, GI Cancer program of the Mayo Clinic Cancer Center, Mayo Clinic SPORE in Pancreatic Cancer, Center of Individualized Medicine (Mayo Clinic), Department of Laboratory Medicine and Pathology (Mayo Clinic), Incyte Pharmaceuticals and Mayo Clinic Hepatobiliary SPORE, University of Minnesota-Mayo Clinic Partnership, and the Early Therapeutic program (Department of Oncology, Mayo Clinic).
Collapse
Affiliation(s)
- Tara L. Hogenson
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Hao Xie
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Division of Medical Oncology, Department of Oncology
| | - William J. Phillips
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Merih D. Toruner
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jenny J. Li
- Division of Medical Oncology, Department of Oncology
| | - Isaac P. Horn
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Devin J. Kennedy
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - David L. Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan M. Carr
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Murat Toruner
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Ashley N. Sigafoos
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Amanda N. Koenig-Kappes
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Rachel L.O. Olson
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Ezequiel J. Tolosa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hu Li
- Department of Pharmacology, and
| | - Jason D. Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathan Bleeker
- Sanford Research, Oncology, Sanford Health, Sioux Falls, South Dakota, USA
| | | | | | | | - Amit Mahipal
- Division of Medical Oncology, Department of Oncology
| | | | | | | | - Surendra Dasari
- Division of Computational Biology, Department of Quantitative Health Sciences, and
| | - Ann L. Oberg
- Division of Computational Biology, Department of Quantitative Health Sciences, and
| | - Mark J. Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Rondell P. Graham
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J. Levy
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mojun Zhu
- Division of Medical Oncology, Department of Oncology
| | - Daniel D. Billadeau
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Alex A. Adjei
- Division of Medical Oncology, Department of Oncology
| | - Nelson Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan L. Iovanna
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | | - Wen Wee Ma
- Division of Medical Oncology, Department of Oncology
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
59
|
Baptista LS, Porrini C, Kronemberger GS, Kelly DJ, Perrault CM. 3D organ-on-a-chip: The convergence of microphysiological systems and organoids. Front Cell Dev Biol 2022; 10:1043117. [PMID: 36478741 PMCID: PMC9720174 DOI: 10.3389/fcell.2022.1043117] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 07/29/2023] Open
Abstract
Medicine today faces the combined challenge of an increasing number of untreatable diseases and fewer drugs reaching the clinic. While pharmaceutical companies have increased the number of drugs in early development and entering phase I of clinical trials, fewer actually successfully pass phase III and launch into the market. In fact, only 1 out of every 9 drugs entering phase I will launch. In vitro preclinical tests are used to predict earlier and better the potential of new drugs and thus avoid expensive clinical trial phases. The most recent developments favor 3D cell culture and human stem cell biology. These 3D humanized models known as organoids better mimic the 3D tissue architecture and physiological cell behavior of healthy and disease models, but face critical issues in production such as small-scale batches, greater costs (when compared to monolayer cultures) and reproducibility. To become the gold standard and most relevant biological model for drug discovery and development, organoid technology needs to integrate biological culture processes with advanced microtechnologies, such as microphysiological systems based on microfluidics technology. Microphysiological systems, known as organ-on-a-chip, mimic physiological conditions better than conventional cell culture models since they can emulate perfusion, mechanical and other parameters crucial for tissue and organ physiology. In addition, they reduce labor cost and human error by supporting automated operation and reduce reagent use in miniaturized culture systems. There is thus a clear advantage in combining organoid culture with microsystems for drug development. The main objective of this review is to address the recent advances in organoids and microphysiological systems highlighting crucial technologies for reaching a synergistic strategy, including bioprinting.
Collapse
Affiliation(s)
- Leandra S. Baptista
- Eden Tech, Paris, France
- Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias Prof Geraldo Cidade, Rio de Janeiro, Brazil
| | | | - Gabriela S. Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
60
|
Schuth S, Le Blanc S, Krieger TG, Jabs J, Schenk M, Giese NA, Büchler MW, Eils R, Conrad C, Strobel O. Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:312. [PMID: 36273171 PMCID: PMC9588250 DOI: 10.1186/s13046-022-02519-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are considered to play a fundamental role in pancreatic ductal adenocarcinoma (PDAC) progression and chemoresistance. Patient-derived organoids have demonstrated great potential as tumor avatars for drug response prediction in PDAC, yet they disregard the influence of stromal components on chemosensitivity. METHODS We established direct three-dimensional (3D) co-cultures of primary PDAC organoids and patient-matched CAFs to investigate the effect of the fibroblastic compartment on sensitivity to gemcitabine, 5-fluorouracil and paclitaxel treatments using an image-based drug assay. Single-cell RNA sequencing was performed for three organoid/CAF pairs in mono- and co-culture to uncover transcriptional changes induced by tumor-stroma interaction. RESULTS Upon co-culture with CAFs, we observed increased proliferation and reduced chemotherapy-induced cell death of PDAC organoids. Single-cell RNA sequencing data evidenced induction of a pro-inflammatory phenotype in CAFs in co-cultures. Organoids showed increased expression of genes associated with epithelial-to-mesenchymal transition (EMT) in co-cultures and several potential receptor-ligand interactions related to EMT were identified, supporting a key role of CAF-driven induction of EMT in PDAC chemoresistance. CONCLUSIONS Our results demonstrate the potential of personalized PDAC co-cultures models not only for drug response profiling but also for unraveling the molecular mechanisms involved in the chemoresistance-supporting role of the tumor stroma.
Collapse
Affiliation(s)
- Sebastian Schuth
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Solange Le Blanc
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365NCT partner site Heidelberg, a clinical-translational cancer research partnership between University Hospital Heidelberg and DKFZ, Heidelberg, Germany ,grid.22937.3d0000 0000 9259 8492Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Teresa G. Krieger
- grid.484013.a0000 0004 6879 971XBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Julia Jabs
- grid.7497.d0000 0004 0492 0584Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,Present Address: Merck Healthcare KGaA, Global Research, Darmstadt, Germany
| | - Miriam Schenk
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia A. Giese
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus W. Büchler
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Roland Eils
- grid.484013.a0000 0004 6879 971XBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany ,grid.7497.d0000 0004 0492 0584Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Conrad
- grid.484013.a0000 0004 6879 971XBerlin Institute of Health at Charité – Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany ,grid.7497.d0000 0004 0492 0584Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Strobel
- grid.5253.10000 0001 0328 4908European Pancreas Center, Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany ,grid.461742.20000 0000 8855 0365NCT partner site Heidelberg, a clinical-translational cancer research partnership between University Hospital Heidelberg and DKFZ, Heidelberg, Germany ,grid.22937.3d0000 0000 9259 8492Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
61
|
Flobak Å, Skånland SS, Hovig E, Taskén K, Russnes HG. Functional precision cancer medicine: drug sensitivity screening enabled by cell culture models. Trends Pharmacol Sci 2022; 43:973-985. [PMID: 36163057 DOI: 10.1016/j.tips.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
Abstract
Functional precision medicine is a new, emerging area that can guide cancer treatment by capturing information from direct perturbations of tumor-derived, living cells, such as by drug sensitivity screening. Precision cancer medicine as currently implemented in clinical practice has been driven by genomics, and current molecular tumor boards rely extensively on genomic characterization to advise on therapeutic interventions. However, genomic biomarkers can only guide treatment decisions for a fraction of the patients. In this review we provide an overview of the current state of functional precision medicine, highlight advances for drug-sensitivity screening enabled by cell culture models, and discuss how artificial intelligence (AI) can be coupled to functional precision medicine to guide patient stratification.
Collapse
Affiliation(s)
- Åsmund Flobak
- The Cancer Clinic, St. Olav University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigrid S Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hege G Russnes
- Department of Pathology, Oslo University Hospital, Oslo, Norway; Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
62
|
Demyan L, Habowski AN, Plenker D, King DA, Standring OJ, Tsang C, St Surin L, Rishi A, Crawford JM, Boyd J, Pasha SA, Patel H, Galluzzo Z, Metz C, Gregersen PK, Fox S, Valente C, Abadali S, Matadial-Ragoo S, DePeralta DK, Deutsch GB, Herman JM, Talamini MA, Tuveson DA, Weiss MJ. Pancreatic Cancer Patient-derived Organoids Can Predict Response to Neoadjuvant Chemotherapy. Ann Surg 2022; 276:450-462. [PMID: 35972511 PMCID: PMC10202108 DOI: 10.1097/sla.0000000000005558] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate if patient-derived organoids (PDOs) may predict response to neoadjuvant (NAT) chemotherapy in patients with pancreatic adenocarcinoma. BACKGROUND PDOs have been explored as a biomarker of therapy response and for personalized therapeutics in patients with pancreatic cancer. METHODS During 2017-2021, patients were enrolled into an IRB-approved protocol and PDO cultures were established. PDOs of interest were analyzed through a translational pipeline incorporating molecular profiling and drug sensitivity testing. RESULTS One hundred thirty-six samples, including both surgical resections and fine needle aspiration/biopsy from 117 patients with pancreatic cancer were collected. This biobank included diversity in stage, sex, age, and race, with minority populations representing 1/3 of collected cases (16% Black, 9% Asian, 7% Hispanic/Latino). Among surgical specimens, PDO generation was successful in 71% (15 of 21) of patients who had received NAT prior to sample collection and in 76% (39 of 51) of patients who were untreated with chemotherapy or radiation at the time of collection. Pathological response to NAT correlated with PDO chemotherapy response, particularly oxaliplatin. We demonstrated the feasibility of a rapid PDO drug screen and generated data within 7 days of tissue resection. CONCLUSION Herein we report a large single-institution organoid biobank, including ethnic minority samples. The ability to establish PDOs from chemotherapy-naive and post-NAT tissue enables longitudinal PDO generation to assess dynamic chemotherapy sensitivity profiling. PDOs can be rapidly screened and further development of rapid screening may aid in the initial stratification of patients to the most active NAT regimen.
Collapse
Affiliation(s)
- Lyudmyla Demyan
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Lustgarten Foundation Pancreatic Cancer Research Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Amber N Habowski
- Lustgarten Foundation Pancreatic Cancer Research Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Dennis Plenker
- Lustgarten Foundation Pancreatic Cancer Research Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- Loxo Oncology at Lilly, Discovery Technologies, New York, NY
| | - Daniel A King
- Lustgarten Foundation Pancreatic Cancer Research Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- Department of Medical Oncology/Hematology, Northwell Health Cancer Institute, New Hyde Park, NYY
| | - Oliver J Standring
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Lustgarten Foundation Pancreatic Cancer Research Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Caitlin Tsang
- Lustgarten Foundation Pancreatic Cancer Research Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Luce St Surin
- Lustgarten Foundation Pancreatic Cancer Research Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Arvind Rishi
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - James M Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Jeff Boyd
- Institute of Cancer Research, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Shamsher A Pasha
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Hardik Patel
- Lustgarten Foundation Pancreatic Cancer Research Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Zachary Galluzzo
- Lustgarten Foundation Pancreatic Cancer Research Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Christine Metz
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Peter K Gregersen
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Sharon Fox
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Cristina Valente
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Sonya Abadali
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Steffi Matadial-Ragoo
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Danielle K DePeralta
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Gary B Deutsch
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Joseph M Herman
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Mark A Talamini
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - David A Tuveson
- Lustgarten Foundation Pancreatic Cancer Research Laboratory at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Matthew J Weiss
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Institute of Cancer Research, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| |
Collapse
|
63
|
Navarro-Serer B, Wood LD. Organoids: A Promising Preclinical Model for Pancreatic Cancer Research. Pancreas 2022; 51:608-616. [PMID: 36206467 DOI: 10.1097/mpa.0000000000002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer is one of the most lethal cancer types, estimated to become the second leading cause of cancer-related deaths in the United States in 2030. The use of 3-dimensional culture systems has greatly expanded over the past few years, providing a valuable tool for the study of pancreatic cancer. In this review, we highlight some of the preclinical in vitro and in vivo models used in pancreatic cancer research, each with its own advantages and disadvantages, and focus on one of the recently used 3-dimensional culture models: organoids. Organoids are multicellular units derived from tissue samples and embedded within extracellular matrix gels after mechanical and enzymatic digestion. We define organoids, differentiate them from other 3-dimensional culture systems such as spheroids, and describe some applications of this model that have recently advanced our understanding of pancreatic cancer and its tumor microenvironment. Organoids have provided valuable insights into pancreatic cancer progression, heterogeneity, and invasion, and they have enabled the creation of biobanks, providing a platform for drug screening. In addition, we discuss some of the future directions and challenges in this model when addressing research questions.
Collapse
Affiliation(s)
- Bernat Navarro-Serer
- From the Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine
| | | |
Collapse
|
64
|
Preclinical In Vitro and In Vivo Models for Adoptive Cell Therapy of Cancer. Cancer J 2022; 28:257-262. [PMID: 35880934 DOI: 10.1097/ppo.0000000000000609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
ABSTRACT Adoptive cellular therapies are making major strides in the treatment of cancer, both for hematologic and solid tumors. These cellular products include chimeric antigen receptor T cells and T-cell receptor-modified T cells, tumor-infiltrating lymphocytes, marrow-infiltrating T cells, natural killer cells as well as macrophage-based therapeutics. Advancement in genomics, computational biology, immunology, and cell therapy manufacturing has facilitated advancement of adoptive T cell therapies into the clinic, whereas clinical efficacy has driven Food and Drug Administration approvals. The growth of adoptive cellular therapy has, in turn, led to innovation in the preclinical models available, from ex vivo cell-based models to in vivo xenograft models of treatment. This review focuses on the development and application of in vitro models and in vivo models (cell line xenograft, humanized mice, and patient-derived xenograft models) that directly evaluate these human cellular products.
Collapse
|
65
|
Larsen BM, Cancino A, Shaxted JM, Salahudeen AA. Protocol for drug screening of patient-derived tumor organoids using high-content fluorescent imaging. STAR Protoc 2022; 3:101407. [PMID: 35620075 PMCID: PMC9127194 DOI: 10.1016/j.xpro.2022.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-content imaging of tumor organoids (TOs) treated with therapeutic agents provides detailed cell viability readouts at the organoid level. In contrast, most used protocols provide one number per well. While requiring the use of inverted microscopy with an automated stage, this protocol can provide critical information about heterogeneous responses of TOs to various treatments. This protocol describes a technique for culturing and drug testing TOs using fluorescent indicators of cell viability with high reproducibility. For complete details on the use and execution of this protocol, please refer to Larsen et al. (2021).
Collapse
|
66
|
Melzer MK, Roger E, Kleger A. State-matched organoid models to fight pancreatic cancer. Trends Cancer 2022; 8:445-447. [PMID: 35370114 DOI: 10.1016/j.trecan.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
As one of the deadliest cancers, pancreatic ductal adenocarcinoma (PDAC) requires sophisticated model systems to dissect disease onset, progression, and therapy resistance, as well as to personalize therapy. In recent years, patient- and pluripotent stem cell-derived organoids have become state-of-the-art systems to refine existing therapeutic strategies and deepen our knowledge of disease pathophysiology.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany; Clinic of Urology, Ulm University Hospital, Ulm, Germany
| | - Elodie Roger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany.
| |
Collapse
|
67
|
Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol 2022; 15:58. [PMID: 35551634 PMCID: PMC9103066 DOI: 10.1186/s13045-022-01278-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a top-ranked life-threatening disease with intratumor heterogeneity. Tumor heterogeneity is associated with metastasis, relapse, and therapy resistance. These factors contribute to treatment failure and an unfavorable prognosis. Personalized tumor models faithfully capturing the tumor heterogeneity of individual patients are urgently needed for precision medicine. Advances in stem cell culture have given rise to powerful organoid technology for the generation of in vitro three-dimensional tissues that have been shown to more accurately recapitulate the structures, specific functions, molecular characteristics, genomic alterations, expression profiles, and tumor microenvironment of primary tumors. Tumoroids in vitro serve as an important component of the pipeline for the discovery of potential therapeutic targets and the identification of novel compounds. In this review, we will summarize recent advances in tumoroid cultures as an excellent tool for accurate cancer modeling. Additionally, vascularization and immune microenvironment modeling based on organoid technology will also be described. Furthermore, we will summarize the great potential of tumor organoids in predicting the therapeutic response, investigating resistance-related mechanisms, optimizing treatment strategies, and exploring potential therapies. In addition, the bottlenecks and challenges of current tumoroids will also be discussed in this review.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
68
|
Casamitjana J, Espinet E, Rovira M. Pancreatic Organoids for Regenerative Medicine and Cancer Research. Front Cell Dev Biol 2022; 10:886153. [PMID: 35592251 PMCID: PMC9110799 DOI: 10.3389/fcell.2022.886153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, the development of ex vivo organoid cultures has gained substantial attention as a model to study regenerative medicine and diseases in several tissues. Diabetes and pancreatic ductal adenocarcinoma (PDAC) are the two major devastating diseases affecting the pancreas. Suitable models for regenerative medicine in diabetes and to accurately study PDAC biology and treatment response are essential in the pancreatic field. Pancreatic organoids can be generated from healthy pancreas or pancreatic tumors and constitute an important translational bridge between in vitro and in vivo models. Here, we review the rapidly emerging field of pancreatic organoids and summarize the current applications of the technology to tissue regeneration, disease modelling, and drug screening.
Collapse
Affiliation(s)
- Joan Casamitjana
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Elisa Espinet
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
69
|
Sandhya S, Hogenson TL, Fernandez‐Zapico ME. Patient-derived organoids, creating a new window of opportunities for pancreatic cancer patients. EMBO Mol Med 2022; 14:e15707. [PMID: 35285156 PMCID: PMC8988199 DOI: 10.15252/emmm.202215707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Standard-of-care regimens for pancreatic ductal adenocarcinoma (PDAC) include a combination of chemotherapies, which are associated with toxicity and eventually tumor resistance. The lack of relevant tool to identify and evaluate new therapies in PDAC necessitates the search for a model, especially for cases with treatment resistance to standard of care. In the study from Peschke et al (2022), they describe a longitudinal platform to identify drug-induced vulnerabilities following standard-of-care chemotherapy treatment using patient-derived organoids (PDOs) providing an opportunity to predict therapeutic response and define new treatment vulnerability induced by standard of care. Previously, tumor resistance to chemotherapy has typically been described as selection for resistant tumor cell populations. However, Peschke et al (2022) demonstrated that PDAC cells seemed to acquire resistance not only through genetic changes, but also through modifications in cellular plasticity leading to gene expression and metabolism changes. Thus, the study supports this type of platform for the identification of new therapeutic targets following standard-of-care treatments in PDAC.
Collapse
Affiliation(s)
- Sandhya Sandhya
- Schulze Center for Novel TherapeuticsDivision of Oncology ResearchMayo ClinicRochesterMNUSA
| | - Tara L Hogenson
- Schulze Center for Novel TherapeuticsDivision of Oncology ResearchMayo ClinicRochesterMNUSA
| | | |
Collapse
|
70
|
Zheng Q, Zhang B, Li C, Zhang X. Overcome Drug Resistance in Cholangiocarcinoma: New Insight Into Mechanisms and Refining the Preclinical Experiment Models. Front Oncol 2022; 12:850732. [PMID: 35372014 PMCID: PMC8970309 DOI: 10.3389/fonc.2022.850732] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumor characterized by a poor prognosis. Therapeutic options are limited in patients with advanced stage of CCA, as a result of the intrinsic or acquired resistance to currently available chemotherapeutic agents, and the lack of new drugs entering into clinical application. The challenge in translating basic research to the clinical setting, caused by preclinical models not being able to recapitulate the tumor characteristics of the patient, seems to be an important reason for the lack of effective and specific therapies for CCA. So, there seems to be two ways to improve patient outcomes. The first one is developing the combination therapies based on a better understanding of the mechanisms contributing to the resistance to currently available chemotherapeutic agents. The second one is developing novel preclinical experimental models that better recapitulate the genetic and histopathological features of the primary tumor, facilitating the screening of new drugs for CCA patients. In this review, we discussed the evidence implicating the mechanisms underlying treatment resistance to currently investigated drugs, and the development of preclinical experiment models for CCA.
Collapse
Affiliation(s)
- Qingfan Zheng
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Bin Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
71
|
Multicellular Modelling of Difficult-to-Treat Gastrointestinal Cancers: Current Possibilities and Challenges. Int J Mol Sci 2022; 23:ijms23063147. [PMID: 35328567 PMCID: PMC8955095 DOI: 10.3390/ijms23063147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers affecting the gastrointestinal system are highly prevalent and their incidence is still increasing. Among them, gastric and pancreatic cancers have a dismal prognosis (survival of 5–20%) and are defined as difficult-to-treat cancers. This reflects the urge for novel therapeutic targets and aims for personalised therapies. As a prerequisite for identifying targets and test therapeutic interventions, the development of well-established, translational and reliable preclinical research models is instrumental. This review discusses the development, advantages and limitations of both patient-derived organoids (PDO) and patient-derived xenografts (PDX) for gastric and pancreatic ductal adenocarcinoma (PDAC). First and next generation multicellular PDO/PDX models are believed to faithfully generate a patient-specific avatar in a preclinical setting, opening novel therapeutic directions for these difficult-to-treat cancers. Excitingly, future opportunities such as PDO co-cultures with immune or stromal cells, organoid-on-a-chip models and humanised PDXs are the basis of a completely new area, offering close-to-human models. These tools can be exploited to understand cancer heterogeneity, which is indispensable to pave the way towards more tumour-specific therapies and, with that, better survival for patients.
Collapse
|
72
|
Pancreatic Cancer Organoids in the Field of Precision Medicine: A Review of Literature and Experience on Drug Sensitivity Testing with Multiple Readouts and Synergy Scoring. Cancers (Basel) 2022; 14:cancers14030525. [PMID: 35158794 PMCID: PMC8833348 DOI: 10.3390/cancers14030525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary New treatments are urgently needed for pancreatic ductal adenocarcinoma because it is one of the most aggressive and lethal cancers, detected too late and resistant to conventional chemotherapy. Tumors in most patients feature a similar set of core mutations but so far it has not been possible to design a one-fits-all treatment strategy. Instead, efforts are underway to personalize the therapies. To find the treatments that might work the best for each patient, entirely new experimental platforms based on living miniature tumors, organoids, have been developed. We review here the latest international findings in designing personalized treatments pancreatic cancer patients using organoids as testing beds. Our own work adds important clues about how such testing could, and perhaps should, be conducted. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a silent killer, often diagnosed late. However, it is also dishearteningly resistant to nearly all forms of treatment. New therapies are urgently needed, and with the advent of organoid culture for pancreatic cancer, an increasing number of innovative approaches are being tested. Organoids can be derived within a short enough time window to allow testing of several anticancer agents, which opens up the possibility for functional precision medicine for pancreatic cancer. At the same time, organoid model systems are being refined to better mimic the cancer, for example, by incorporation of components of the tumor microenvironment. We review some of the latest developments in pancreatic cancer organoid research and in novel treatment design. We also summarize our own current experiences with pancreatic cancer organoid drug sensitivity and resistance testing (DSRT) in 14 organoids from 11 PDAC patients. Our data show that it may be necessary to include a cell death read-out in ex vivo DSRT assays, as metabolic viability quantitation does not capture actual organoid killing. We also successfully adapted the organoid platform for drug combination synergy discovery. Lastly, live organoid culture 3D confocal microscopy can help identify individual surviving tumor cells escaping cell death even during harsh combination treatments. Taken together, the organoid technology allows the development of novel precision medicine approaches for PDAC, which paves the way for clinical trials and much needed new treatment options for pancreatic cancer patients.
Collapse
|