51
|
Chen J, Zhang W, Wang Y, Zhao D, Wu M, Fan J, Li J, Gong Y, Dan N, Yang D, Liu R, Zhan Q. The diacylglycerol kinase α (DGKα)/Akt/NF-κB feedforward loop promotes esophageal squamous cell carcinoma (ESCC) progression via FAK-dependent and FAK-independent manner. Oncogene 2018; 38:2533-2550. [DOI: 10.1038/s41388-018-0604-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
|
52
|
Campbell ST, Franks CE, Borne AL, Shin M, Zhang L, Hsu KL. Chemoproteomic Discovery of a Ritanserin-Targeted Kinase Network Mediating Apoptotic Cell Death of Lung Tumor Cells. Mol Pharmacol 2018; 94:1246-1255. [PMID: 30158316 PMCID: PMC6160665 DOI: 10.1124/mol.118.113001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
Ritanserin was tested in the clinic as a serotonin receptor inverse agonist but recently emerged as a novel kinase inhibitor with potential applications in cancer. Here, we discovered that ritanserin induced apoptotic cell death of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cells via a serotonin-independent mechanism. We used quantitative chemical proteomics to reveal a ritanserin-dependent kinase network that includes key mediators of lipid [diacylglycerol kinase α, phosphatidylinositol 4-kinase β] and protein [feline encephalitis virus-related kinase, rapidly accelerated fibrosarcoma (RAF)] signaling, metabolism [eukaryotic elongation factor 2 kinase, eukaryotic translation initiation factor 2-α kinase 4], and DNA damage response [tousled-like kinase 2] to broadly kill lung tumor cell types. Whereas ritanserin exhibited polypharmacology in NSCLC proteomes, this compound showed unexpected specificity for c-RAF in the SCLC subtype, with negligible activity against other kinases mediating mitogen-activated protein kinase signaling. Here we show that ritanserin blocks c-RAF but not B-RAF activation of established oncogenic signaling pathways in live cells, providing evidence in support of c-RAF as a key target mediating its anticancer activity. Given the role of c-RAF activation in RAS-mutated cancers resistant to clinical B-RAF inhibitors, our findings may have implications in overcoming resistance mechanisms associated with c-RAF biology. The unique target landscape combined with acceptable safety profiles in humans provides new opportunities for repositioning ritanserin in cancer.
Collapse
Affiliation(s)
- Sean T Campbell
- Departments of Chemistry (S.T.C., C.E.F., M.S., L.Z., K.-L.H.), Pathology (S.T.C.), and Pharmacology (A.L.B., K.-L.H.), University of Virginia Cancer Center (K.-L.H.), University of Virginia, Charlottesville, Virginia
| | - Caroline E Franks
- Departments of Chemistry (S.T.C., C.E.F., M.S., L.Z., K.-L.H.), Pathology (S.T.C.), and Pharmacology (A.L.B., K.-L.H.), University of Virginia Cancer Center (K.-L.H.), University of Virginia, Charlottesville, Virginia
| | - Adam L Borne
- Departments of Chemistry (S.T.C., C.E.F., M.S., L.Z., K.-L.H.), Pathology (S.T.C.), and Pharmacology (A.L.B., K.-L.H.), University of Virginia Cancer Center (K.-L.H.), University of Virginia, Charlottesville, Virginia
| | - Myungsun Shin
- Departments of Chemistry (S.T.C., C.E.F., M.S., L.Z., K.-L.H.), Pathology (S.T.C.), and Pharmacology (A.L.B., K.-L.H.), University of Virginia Cancer Center (K.-L.H.), University of Virginia, Charlottesville, Virginia
| | - Liuzhi Zhang
- Departments of Chemistry (S.T.C., C.E.F., M.S., L.Z., K.-L.H.), Pathology (S.T.C.), and Pharmacology (A.L.B., K.-L.H.), University of Virginia Cancer Center (K.-L.H.), University of Virginia, Charlottesville, Virginia
| | - Ku-Lung Hsu
- Departments of Chemistry (S.T.C., C.E.F., M.S., L.Z., K.-L.H.), Pathology (S.T.C.), and Pharmacology (A.L.B., K.-L.H.), University of Virginia Cancer Center (K.-L.H.), University of Virginia, Charlottesville, Virginia
| |
Collapse
|
53
|
Ratti S, Follo MY, Ramazzotti G, Faenza I, Fiume R, Suh PG, McCubrey JA, Manzoli L, Cocco L. Nuclear phospholipase C isoenzyme imbalance leads to pathologies in brain, hematologic, neuromuscular, and fertility disorders. J Lipid Res 2018; 60:312-317. [PMID: 30287524 DOI: 10.1194/jlr.r089763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/30/2018] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositide-specific phospholipases C (PI-PLCs) are involved in signaling pathways related to critical cellular functions, such as cell cycle regulation, cell differentiation, and gene expression. Nuclear PI-PLCs have been studied as key enzymes, molecular targets, and clinical prognostic/diagnostic factors in many physiopathologic processes. Here, we summarize the main studies about nuclear PI-PLCs, specifically, the imbalance of isozymes such as PI-PLCβ1 and PI-PLCζ, in cerebral, hematologic, neuromuscular, and fertility disorders. PI-PLCβ1 and PI-PLCɣ1 affect epilepsy, depression, and bipolar disorder. In the brain, PI-PLCβ1 is involved in endocannabinoid neuronal excitability and is a potentially novel signature gene for subtypes of high-grade glioma. An altered quality or quantity of PI-PLCζ contributes to sperm defects that result in infertility, and PI-PLCβ1 aberrant inositide signaling contributes to both hematologic and degenerative muscle diseases. Understanding the mechanisms behind PI-PLC involvement in human pathologies may help identify new strategies for personalized therapies of these conditions.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
54
|
Takahashi D, Sakane F. Expression and purification of human diacylglycerol kinase α from baculovirus-infected insect cells for structural studies. PeerJ 2018; 6:e5449. [PMID: 30128205 PMCID: PMC6089211 DOI: 10.7717/peerj.5449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/26/2018] [Indexed: 02/02/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are lipid kinases that modulate the levels of lipid second messengers, diacylglycerol and phosphatidic acid. Recently, increasing attention has been paid to its α isozyme (DGKα) as a potential target for cancer immunotherapy. DGKα consists of the N-terminal regulatory domains including EF-hand motifs and C1 domains, and the C-terminal catalytic domain (DGKα-CD). To date, however, no structures of mammalian DGKs including their CDs have yet been reported, impeding our understanding on the catalytic mechanism of DGKs and the rational structure-based drug design. Here we attempted to produce DGKα-CD or a full-length DGKα using bacterial and baculovirus-insect cell expression system for structural studies. While several DGKα-CD constructs produced using both bacterial and insect cells formed insoluble or soluble aggregates, the full-length DGKα expressed in insect cells remained soluble and was purified to near homogeneity as a monomer with yields (1.3 mg/mL per one L cell culture) feasible for protein crystallization. Following enzymatic characterization showed that the purified DGKα is in fully functional state. We further demonstrated that the purified enzyme could be concentrated without any significant aggregation, and characterized its secondary structure by circular dichroism. Taken together, these results suggest that the presence of N-terminal regulatory domains suppress protein aggregation likely via their intramolecular interactions with DGKα-CD, and demonstrate that the baculovirus-insect cell expression of the full-length form of DGKα, not DGKα-CD alone, represents a promising approach to produce protein sample for structural studies of DGKα. Thus, our study will encourage future efforts to determine the crystal structure of DGK, which has not been determined since it was first identified in 1959.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
55
|
Arranz-Nicolás J, Ogando J, Soutar D, Arcos-Pérez R, Meraviglia-Crivelli D, Mañes S, Mérida I, Ávila-Flores A. Diacylglycerol kinase α inactivation is an integral component of the costimulatory pathway that amplifies TCR signals. Cancer Immunol Immunother 2018; 67:965-980. [PMID: 29572701 PMCID: PMC11028345 DOI: 10.1007/s00262-018-2154-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
The arsenal of cancer therapies has evolved to target T lymphocytes and restore their capacity to destroy tumor cells. T cells rely on diacylglycerol (DAG) to carry out their functions. DAG availability and signaling are regulated by the enzymes diacylglycerol kinase (DGK) α and ζ, whose excess function drives T cells into hyporesponsive states. Targeting DGKα is a promising strategy for coping with cancer; its blockade could reinstate T-cell attack on tumors while limiting tumor growth, due to positive DGKα functions in several oncogenic pathways. Here, we made a side-by-side comparison of the effects of commercial pharmacological DGK inhibitors on T-cell responses with those promoted by DGKα and DGKζ genetic deletion or silencing. We show the specificity for DGKα of DGK inhibitors I and II and the structurally similar compound ritanserin. Inhibitor treatment promoted Ras/ERK (extracellular signal-regulated kinase) signaling and AP-1 (Activator protein-1) transcription, facilitated DGKα membrane localization, reduced the requirement for costimulation, and cooperated with enhanced activation following DGKζ silencing/deletion. DGKiII and ritanserin had similar effects on TCR proximal signaling, but ritanserin counteracted long-term T-cell activation, an effect that was potentiated in DGKα-/- cells. In contrast with enhanced activation triggered by pharmacological inhibition, DGKα silencing/genetic deletion led to impaired Lck (lymphocyte-specific protein tyrosine kinase) activation and limited costimulation responses. Our results demonstrate that pharmacological inhibition of DGKα downstream of the TCR provides a gain-of-function effect that amplifies the DAG-dependent signaling cascade, an ability that could be exploited therapeutically to reinvigorate T cells to attack tumors.
Collapse
Affiliation(s)
- Javier Arranz-Nicolás
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús Ogando
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Denise Soutar
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Raquel Arcos-Pérez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Daniel Meraviglia-Crivelli
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain
| | - Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
56
|
BET-bromodomain inhibitors modulate epigenetic patterns at the diacylglycerol kinase alpha enhancer associated with radiation-induced fibrosis. Radiother Oncol 2017; 125:168-174. [PMID: 28916223 DOI: 10.1016/j.radonc.2017.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Fibrosis is a frequent adverse effect of radiotherapy and no effective treatments are currently available to prevent or reverse fibrotic disease. We have previously identified altered epigenetic patterns at a gene enhancer of the diacylglycerol kinase alpha (DGKA) locus in normal skin fibroblasts derived from fibrosis patients. An open chromatin pattern related to radiation-inducibility of DGKA is associated with onset of radiation-induced fibrosis. Here, we explore epigenetic modulation of DGKA as a way to mitigate predisposition to fibrosis. MATERIAL AND METHODS We studied the effect of the BET-bromodomain inhibitors (JQ1, PFI-1) on DGKA inducibility in primary fibroblasts. Hence, DGKA transcription was additionally induced by the radiomimetic drug bleomycin, and DGKA mRNA expression, histone H3K27 acetylation and downstream markers of profibrotic fibroblast activation after BET-bromodomain inhibition were determined. RESULTS BET-bromodomain inhibition suppressed induction of DGKA in bleomycin-treated fibroblasts, reduced H3K27ac at the DGKA enhancer and repressed collagen marker gene expression. Alterations in fibroblast morphology and reduction of collagen deposition were observed. CONCLUSION For the DGKA enhancer, we show that BET-bromodomain inhibitors can alter the epigenetic landscape of fibroblasts, thus counteracting profibrotic transcriptional events. Interference with epigenetic patterns of fibrosis predisposition may provide novel preventive therapies that improve radiotherapy.
Collapse
|
57
|
Franks CE, Campbell ST, Purow BW, Harris TE, Hsu KL. The Ligand Binding Landscape of Diacylglycerol Kinases. Cell Chem Biol 2017; 24:870-880.e5. [PMID: 28712745 DOI: 10.1016/j.chembiol.2017.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/15/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
Abstract
Diacylglycerol kinases (DGKs) are integral components of signal transduction cascades that regulate cell biology through ATP-dependent phosphorylation of the lipid messenger diacylglycerol. Methods for direct evaluation of DGK activity in native biological systems are lacking and needed to study isoform-specific functions of these multidomain lipid kinases. Here, we utilize ATP acyl phosphate activity-based probes and quantitative mass spectrometry to define, for the first time, ATP and small-molecule binding motifs of representative members from all five DGK subtypes. We use chemical proteomics to discover an unusual binding mode for the DGKα inhibitor, ritanserin, including interactions at the atypical C1 domain distinct from the ATP binding region. Unexpectedly, deconstruction of ritanserin yielded a fragment compound that blocks DGKα activity through a conserved binding mode and enhanced selectivity against the kinome. Collectively, our studies illustrate the power of chemical proteomics to profile protein-small molecule interactions of lipid kinases for fragment-based lead discovery.
Collapse
Affiliation(s)
- Caroline E Franks
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Sean T Campbell
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Benjamin W Purow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
58
|
Kai M, Yamamoto E, Sato A, Yamano HO, Niinuma T, Kitajima H, Harada T, Aoki H, Maruyama R, Toyota M, Hatahira T, Nakase H, Sugai T, Yamashita T, Toyota M, Suzuki H. Epigenetic silencing of diacylglycerol kinase gamma in colorectal cancer. Mol Carcinog 2017; 56:1743-1752. [PMID: 28218473 DOI: 10.1002/mc.22631] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/23/2017] [Accepted: 02/16/2017] [Indexed: 02/02/2023]
Abstract
Diacylglycerol kinases (DGKs) are important regulators of cell signaling and have been implicated in human malignancies. Whether epigenetic alterations are involved in the dysregulation of DGKs in cancer is unknown, however. We therefore analyzed methylation of the promoter CpG islands of DGK genes in colorectal cancer (CRC) cell lines. We found that DGKG, which encodes DGKγ, was hypermethylated in all CRC cell lines tested (n = 9), but was not methylated in normal colonic tissue. Correspondingly, DGKG expression was suppressed in CRC cell lines but not in normal colonic tissue, and was restored in CRC cells by treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC). DGKG methylation was frequently observed in primary CRCs (73/141, 51.8%) and was positively associated with KRAS and BRAF mutations and with the CpG island methylator phenotype (CIMP). DGKG methylation was also frequently detected in colorectal adenomas (89 of 177, 50.3%), which suggests it is an early event during colorectal tumorigenesis. Ectopic expression of wild-type DGKγ did not suppress CRC cell proliferation, but did suppress cell migration and invasion. Notably, both constitutively active and kinase-dead DGKγ mutants exerted inhibitory effects on CRC cell proliferation, migration and invasion, and the wild-type and mutant forms of DGKγ all suppressed Rac1 activity in CRC cells. These data suggest DGKG may play a tumor suppressor role in CRC.
Collapse
Affiliation(s)
- Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akiko Sato
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiro-O Yamano
- Digestive Disease Center, Akira Red Cross Hospital, Akita, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taku Harada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomo Hatahira
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University, Morioka, Japan
| | - Toshiharu Yamashita
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Minoru Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
59
|
Li J, Roy S, Kim YM, Li S, Zhang B, Love C, Reddy A, Rajagopalan D, Dave S, Diehl AM, Zhuang Y. Id2 Collaborates with Id3 To Suppress Invariant NKT and Innate-like Tumors. THE JOURNAL OF IMMUNOLOGY 2017; 198:3136-3148. [PMID: 28258199 DOI: 10.4049/jimmunol.1601935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
Inhibitor of DNA binding (Id) proteins, including Id1-4, are transcriptional regulators involved in promoting cell proliferation and survival in various cell types. Although upregulation of Id proteins is associated with a broad spectrum of tumors, recent studies have identified that Id3 plays a tumor-suppressor role in the development of Burkitt's lymphoma in humans and hepatosplenic T cell lymphomas in mice. In this article, we report rapid lymphoma development in Id2/Id3 double-knockout mice that is caused by unchecked expansion of invariant NKT (iNKT) cells or a unique subset of innate-like CD1d-independent T cells. These populations began to expand in neonatal mice and, upon malignant transformation, resulted in mortality between 3 and 11 mo of age. The malignant cells also gave rise to lymphomas upon transfer to Rag-deficient and wild-type hosts, reaffirming their inherent tumorigenic potential. Microarray analysis revealed a significantly modified program in these neonatal iNKT cells that ultimately led to their malignant transformation. The lymphoma cells demonstrated chromosome instability along with upregulation of several signaling pathways, including the cytokine-cytokine receptor interaction pathway, which can promote their expansion and migration. Dysregulation of genes with reported driver mutations and the NF-κB pathway were found to be shared between Id2/Id3 double-knockout lymphomas and human NKT tumors. Our work identifies a distinct premalignant state and multiple tumorigenic pathways caused by loss of function of Id2 and Id3. Thus, conditional deletion of Id2 and Id3 in developing T cells establishes a unique animal model for iNKT and relevant innate-like lymphomas.
Collapse
Affiliation(s)
- Jia Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Sumedha Roy
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Young-Mi Kim
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK 73014
| | - Shibo Li
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK 73014
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Cassandra Love
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Anupama Reddy
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Deepthi Rajagopalan
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Sandeep Dave
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Anna Mae Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
60
|
Noessner E. DGK-α: A Checkpoint in Cancer-Mediated Immuno-Inhibition and Target for Immunotherapy. Front Cell Dev Biol 2017; 5:16. [PMID: 28316970 PMCID: PMC5335622 DOI: 10.3389/fcell.2017.00016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is moving to the forefront of cancer treatments owing to impressive durable responses achieved with checkpoint blockade antibodies and adoptive T-cell therapy. Still, improvements are necessary since, overall, only a small percentage of patients benefit from current therapies. Here, I summarize evidence that DGK-α may represent an immunological checkpoint suppressing the activity of cytotoxic immunocytes in the tumor microenvironment. DGK-inhibitors can restore the antitumor function of tumor-suppressed adaptive and innate cytotoxic immunocytes. The activity of DGK-inhibitors lays downstream of current checkpoint blockade antibodies. Thus, synergistic effects are expected from combination strategies. Moreover, DGK-inhibitors may permit a double-strike attack on tumor cells as DGK-inhibition may not only re-instate immunological tumor attack but also may harm tumor cells directly by interfering with oncogenic survival pathways. Together, DGK-inhibitors have very promising characteristics and may be beneficially included into the armamentarium of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Elfriede Noessner
- Immunoanalytics Core Facility and Research Group Tissue Control of Immunocytes, Helmholtz Zentrum München München, Germany
| |
Collapse
|
61
|
Modulated DISP3/PTCHD2 expression influences neural stem cell fate decisions. Sci Rep 2017; 7:41597. [PMID: 28134287 PMCID: PMC5278513 DOI: 10.1038/srep41597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022] Open
Abstract
Neural stem cells (NSCs) are defined by their dual ability to self-renew through mitotic cell division or differentiate into the varied neural cell types of the CNS. DISP3/PTCHD2 is a sterol-sensing domain-containing protein, highly expressed in neural tissues, whose expression is regulated by thyroid hormone. In the present study, we used a mouse NSC line to investigate what effect DISP3 may have on the self-renewal and/or differentiation potential of the cells. We demonstrated that NSC differentiation triggered significant reduction in DISP3 expression in the resulting astrocytes, neurons and oligodendrocytes. Moreover, when DISP3 expression was disrupted, the NSC "stemness" was suppressed, leading to a larger population of cells undergoing spontaneous neuronal differentiation. Conversely, overexpression of DISP3 resulted in increased NSC proliferation. When NSCs were cultured under differentiation conditions, we observed that the lack of DISP3 augmented the number of NSCs differentiating into each of the neural cell lineages and that neuronal morphology was altered. In contrast, DISP3 overexpression resulted in impaired cell differentiation. Taken together, our findings imply that DISP3 may help dictate the NSC cell fate to either undergo self-renewal or switch to the terminal differentiation cell program.
Collapse
|
62
|
Mérida I, Torres-Ayuso P, Ávila-Flores A, Arranz-Nicolás J, Andrada E, Tello-Lafoz M, Liébana R, Arcos R. Diacylglycerol kinases in cancer. Adv Biol Regul 2017; 63:22-31. [PMID: 27697466 DOI: 10.1016/j.jbior.2016.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 05/27/2023]
Abstract
Diacylglycerol kinases (DGK) are a family of enzymes that catalyze the transformation of diacylglycerol into phosphatidic acid. In T lymphocytes, DGKα and ζ limit the activation of the PLCγ/Ras/ERK axis, providing a critical checkpoint to inhibit T cell responses. Upregulation of these isoforms limits Ras activation, leading to hypo-responsive, anergic states similar to those caused by tumors. Recent studies have identified DGKα upregulation in tumor lymphocyte infiltrates, and cells from DGKα and ζ deficient mice show enhanced antitumor activity, suggesting that limitation of DAG based signals by DGK is used by tumors to evade immune attack. DGKα expression is low or even absent in other healthy cells like melanocytes, hepatocytes or neurons. Expression of this isoform, nevertheless is upregulated in melanoma, hepatocarcinoma and glioblastoma where DGKα contributes to the acquisition of tumor metastatic traits. A model thus emerges where tumor milieu fosters DGKα expression in tumors as well as in tumor infiltrating lymphocytes with opposite consequences. Here we review the mechanisms and targets that facilitate tumor "addiction" to DGKα, and discuss its relevance in the more advanced forms of cancer for tumor immune evasion. A better knowledge of this function offers a new perspective in the search of novel approaches to prevent inhibition of immune attack in cancer. Part of the failure in clinical progress may be attributed to the complexity of the tumor/T lymphocyte interaction. As they develop, tumors use a number of mechanisms to drive endogenous, tumor reactive T cells to a general state of hyporesponsiveness or anergy. A better knowledge of the molecular mechanisms that tumors use to trigger T cell anergic states will greatly help in the advance of immunotherapy research.
Collapse
Affiliation(s)
- Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain.
| | - Pedro Torres-Ayuso
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Javier Arranz-Nicolás
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Elena Andrada
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - María Tello-Lafoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| | - Raquel Arcos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), E-28049, Madrid, Spain
| |
Collapse
|
63
|
Ruffo E, Malacarne V, Larsen SE, Das R, Patrussi L, Wülfing C, Biskup C, Kapnick SM, Verbist K, Tedrick P, Schwartzberg PL, Baldari CT, Rubio I, Nichols KE, Snow AL, Baldanzi G, Graziani A. Inhibition of diacylglycerol kinase α restores restimulation-induced cell death and reduces immunopathology in XLP-1. Sci Transl Med 2016; 8:321ra7. [PMID: 26764158 DOI: 10.1126/scitranslmed.aad1565] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
X-linked lymphoproliferative disease (XLP-1) is an often-fatal primary immunodeficiency associated with the exuberant expansion of activated CD8(+) T cells after Epstein-Barr virus (EBV) infection. XLP-1 is caused by defects in signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), an adaptor protein that modulates T cell receptor (TCR)-induced signaling. SAP-deficient T cells exhibit impaired TCR restimulation-induced cell death (RICD) and diminished TCR-induced inhibition of diacylglycerol kinase α (DGKα), leading to increased diacylglycerol metabolism and decreased signaling through Ras and PKCθ (protein kinase Cθ). We show that down-regulation of DGKα activity in SAP-deficient T cells restores diacylglycerol signaling at the immune synapse and rescues RICD via induction of the proapoptotic proteins NUR77 and NOR1. Pharmacological inhibition of DGKα prevents the excessive CD8(+) T cell expansion and interferon-γ production that occur in SAP-deficient mice after lymphocytic choriomeningitis virus infection without impairing lytic activity. Collectively, these data highlight DGKα as a viable therapeutic target to reverse the life-threatening EBV-associated immunopathology that occurs in XLP-1 patients.
Collapse
Affiliation(s)
- Elisa Ruffo
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Valeria Malacarne
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Sasha E Larsen
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Laura Patrussi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TH Bristol, UK
| | - Christoph Biskup
- Biomolecular Photonics Group, Jena University Hospital, D 07740 Jena, Germany
| | - Senta M Kapnick
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Verbist
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paige Tedrick
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pamela L Schwartzberg
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Ignacio Rubio
- Integrated Research and Treatment Center, Center for Sepsis Control and Care and Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, D-07745 Jena, Germany
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gianluca Baldanzi
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Graziani
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy. School of Medicine, University Vita e Salute San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
64
|
Chen T, Zhou Q, Tang H, Bozkanat M, Yuan JXJ, Raj JU, Zhou G. miR-17/20 Controls Prolyl Hydroxylase 2 (PHD2)/Hypoxia-Inducible Factor 1 (HIF1) to Regulate Pulmonary Artery Smooth Muscle Cell Proliferation. J Am Heart Assoc 2016; 5:e004510. [PMID: 27919930 PMCID: PMC5210422 DOI: 10.1161/jaha.116.004510] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previously we found that smooth muscle cell (SMC)-specific knockout of miR-17~92 attenuates hypoxia-induced pulmonary hypertension. However, the mechanism underlying miR-17~92-mediated pulmonary artery SMC (PASMC) proliferation remains unclear. We sought to investigate whether miR-17~92 regulates hypoxia-inducible factor (HIF) activity and PASMC proliferation via prolyl hydroxylases (PHDs). METHODS AND RESULTS We show that hypoxic sm-17~92-/- mice have decreased hematocrit, red blood cell counts, and hemoglobin contents. The sm-17~92-/- mouse lungs express decreased mRNA levels of HIF targets and increased levels of PHD2. miR-17~92 inhibitors suppress hypoxia-induced levels of HIF1α, VEGF, Glut1, HK2, and PDK1 but not HIF2α in vitro in PASMC. Overexpression of miR-17 in PASMC represses PHD2 expression, whereas miR-17/20a inhibitors induce PHD2 expression. The 3'-UTR of PHD2 contains a functional miR-17/20a seed sequence. Silencing of PHD2 induces HIF1α and PCNA protein levels, whereas overexpression of PHD2 decreases HIF1α and cell proliferation. SMC-specific knockout of PHD2 enhances hypoxia-induced vascular remodeling and exacerbates established pulmonary hypertension in mice. PHD2 activator R59949 reverses vessel remodeling in existing hypertensive mice. PHDs are dysregulated in PASMC isolated from pulmonary arterial hypertension patients. CONCLUSIONS Our results suggest that PHD2 is a direct target of miR-17/20a and that miR-17~92 contributes to PASMC proliferation and polycythemia by suppression of PHD2 and induction of HIF1α.
Collapse
Affiliation(s)
- Tianji Chen
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL
| | - Qiyuan Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL
| | - Haiyang Tang
- Department of Medicine, University of Arizona, Tucson, AZ
| | - Melike Bozkanat
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL
| | - Jason X-J Yuan
- Department of Medicine, University of Arizona, Tucson, AZ
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL
- Children's Hospital University of Illinois, University of Illinois Hospital and Health Sciences System, Chicago, IL
| | - Guofei Zhou
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
65
|
Baldanzi G, Bettio V, Malacarne V, Graziani A. Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity. Front Cell Dev Biol 2016; 4:140. [PMID: 27965956 PMCID: PMC5126041 DOI: 10.3389/fcell.2016.00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
Diacylglycerol kinases (DGKs) terminate diacylglycerol (DAG) signaling and promote phosphatidic acid (PA) production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse. Upon T cell receptor engagement, both DGK α and ζ metabolize DAG at the immune synapse thus constraining DAG signaling. Interestingly, their activity and localization are not fully redundant because DGKζ activity metabolizes the bulk of DAG in the cell, whereas DGKα limits the DAG signaling area localizing specifically at the periphery of the immune synapse. When DGKs terminate DAG signaling, the local PA production defines a new signaling domain, where PA recruits and activates a second wave of effector proteins. The best-characterized example is the role of DGKs in protrusion elongation and cell migration. Indeed, upon growth factor stimulation, several DGK isoforms, such as α, ζ, and γ, are recruited and activated at the plasma membrane. Here, local PA production controls cell migration by finely modulating cytoskeletal remodeling and integrin recycling. Interestingly, DGK-produced PA also controls the localization and activity of key players in cell polarity such as aPKC, Par3, and integrin β1. Thus, T cell polarization and directional migration may be just two instances of the general contribution of DGKs to the definition of cell polarity by local specification of membrane identity signaling.
Collapse
Affiliation(s)
- Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Institute for Research and Cure of Autoimmune DiseasesNovara, Italy
| | - Valentina Bettio
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Institute for Research and Cure of Autoimmune DiseasesNovara, Italy
| | - Valeria Malacarne
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Division of Experimental Oncology, School of Medicine, University Vita e Salute San RaffaeleMilan, Italy
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Division of Experimental Oncology, School of Medicine, University Vita e Salute San RaffaeleMilan, Italy
| |
Collapse
|
66
|
Boroda S, Niccum M, Raje V, Purow BW, Harris TE. Dual activities of ritanserin and R59022 as DGKα inhibitors and serotonin receptor antagonists. Biochem Pharmacol 2016; 123:29-39. [PMID: 27974147 DOI: 10.1016/j.bcp.2016.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022]
Abstract
Diacylglycerol kinase alpha (DGKα) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). Recently, DGKα was identified as a therapeutic target in various cancers, as well as in immunotherapy. Application of small-molecule DGK inhibitors, R59022 and R59949, induces cancer cell death in vitro and in vivo. The pharmacokinetics of these compounds in mice, however, are poor. Thus, there is a need to discover additional DGK inhibitors not only to validate these enzymes as targets in oncology, but also to achieve a better understanding of their biology. In the present study, we investigate the activity of ritanserin, a compound structurally similar to R59022, against DGKα. Ritanserin, originally characterized as a serotonin (5-HT) receptor (5-HTR) antagonist, underwent clinical trials as a potential medicine for the treatment of schizophrenia and substance dependence. We document herein that ritanserin attenuates DGKα kinase activity while increasing the enzyme's affinity for ATP in vitro. In addition, R59022 and ritanserin function as DGKα inhibitors in cultured cells and activate protein kinase C (PKC). While recognizing that ritanserin attenuates DGK activity, we also find that R59022 and R59949 are 5-HTR antagonists. In conclusion, ritanserin, R59022 and R59949 are combined pharmacological inhibitors of DGKα and 5-HTRs in vitro.
Collapse
Affiliation(s)
- Salome Boroda
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Maria Niccum
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Vidisha Raje
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Benjamin W Purow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| |
Collapse
|
67
|
Abstract
Phospholipids are important signaling molecules that regulate cell proliferation, death, migration, and metabolism. Many phospholipid signaling cascades are altered in breast cancer. To understand the functions of phospholipid signaling molecules, genetically encoded phospholipid biosensors have been developed to monitor their spatiotemporal dynamics. Compared to other phospholipids, much less is known about the subcellular production and cellular functions of phosphatidic acid (PA), partially due to the lack of a specific and sensitive PA biosensor in the past. This chapter describes the use of a newly developed PA biosensor, PASS, in two applications: regular fluorescent microscopy and fluorescence lifetime imaging microscopy-Förster/fluorescence resonance energy transfer (FLIM-FRET). These protocols can be also used with other phospholipid biosensors.
Collapse
|
68
|
Riese MJ, Moon EK, Johnson BD, Albelda SM. Diacylglycerol Kinases (DGKs): Novel Targets for Improving T Cell Activity in Cancer. Front Cell Dev Biol 2016; 4:108. [PMID: 27800476 PMCID: PMC5065962 DOI: 10.3389/fcell.2016.00108] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/14/2016] [Indexed: 01/23/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the metabolism of diacylglycerol (DAG). Two isoforms of DGK, DGKα, and DGKζ, specifically regulate the pool of DAG that is generated as a second messenger after stimulation of the T cell receptor (TCR). Deletion of either isoform in mouse models results in T cells bearing a hyperresponsive phenotype and enhanced T cell activity against malignancy. Whereas, DGKζ appears to be the dominant isoform in T cells, rationale exists for targeting both isoforms individually or coordinately. Additional work is needed to rigorously identify the molecular changes that result from deletion of DGKs in order to understand how DAG contributes to T cell activation, the effect of DGK inhibition in human T cells, and to rationally develop combined immunotherapeutic strategies that target DGKs.
Collapse
Affiliation(s)
- Matthew J. Riese
- Division of Hematology/Oncology, Department of Medicine, Medical College of WisconsinMilwaukee, WI, USA
- Blood Center of Wisconsin, Blood Research InstituteMilwaukee, WI, USA
| | - Edmund K. Moon
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Bryon D. Johnson
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of WisconsinMilwaukee, WI, USA
| | - Steven M. Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
69
|
Brobeil A, Dietel E, Gattenlöhner S, Wimmer M. Orchestrating cellular signaling pathways-the cellular "conductor" protein tyrosine phosphatase interacting protein 51 (PTPIP51). Cell Tissue Res 2016; 368:411-423. [PMID: 27734150 DOI: 10.1007/s00441-016-2508-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/07/2016] [Indexed: 12/28/2022]
Abstract
The protein tyrosine phosphatase interacting protein 51 (PTPIP51) is thought to regulate crucial cellular functions such as mitosis, apoptosis, migration, differentiation and communication between organelles as a scaffold protein. These diverse functions are modulated by the tyrosine/serine phosphorylation status of PTPIP51. This review interconnects the insights obtained about the action of PTPIP51 in mitogen-activated protein kinase signaling, nuclear factor kB signaling, calcium homeostasis and chromosomal segregation and identifies important signaling hubs. The interference of PTPIP51 in such multiprotein complexes and their PTPIP51-modulated cross-talk makes PTPIP51 an ideal target for novel drugs such as the small molecule LDC-3. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alexander Brobeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35392, Giessen, Germany. .,Institute of Pathology, Justus-Liebig-University, 35392, Giessen, Germany.
| | - Eric Dietel
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35392, Giessen, Germany
| | | | - Monika Wimmer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35392, Giessen, Germany
| |
Collapse
|
70
|
Sakane F, Mizuno S, Komenoi S. Diacylglycerol Kinases as Emerging Potential Drug Targets for a Variety of Diseases: An Update. Front Cell Dev Biol 2016; 4:82. [PMID: 27583247 PMCID: PMC4987324 DOI: 10.3389/fcell.2016.00082] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/29/2016] [Indexed: 01/08/2023] Open
Abstract
Ten mammalian diacylglycerol kinase (DGK) isozymes (α–κ) have been identified to date. Our previous review noted that several DGK isozymes can serve as potential drug targets for cancer, epilepsy, autoimmunity, cardiac hypertrophy, hypertension and type II diabetes (Sakane et al., 2008). Since then, recent genome-wide association studies have implied several new possible relationships between DGK isozymes and diseases. For example, DGKθ and DGKκ have been suggested to be associated with susceptibility to Parkinson's disease and hypospadias, respectively. In addition, the DGKη gene has been repeatedly identified as a bipolar disorder (BPD) susceptibility gene. Intriguingly, we found that DGKη-knockout mice showed lithium (BPD remedy)-sensitive mania-like behaviors, suggesting that DGKη is one of key enzymes of the etiology of BPD. Because DGKs are potential drug targets for a wide variety of diseases, the development of DGK isozyme-specific inhibitors/activators has been eagerly awaited. Recently, we have identified DGKα-selective inhibitors. Because DGKα has both pro-tumoral and anti-immunogenic properties, the DGKα-selective inhibitors would simultaneously have anti-tumoral and pro-immunogenic (anti-tumor immunogenic) effects. Although the ten DGK isozymes are highly similar to each other, our current results have encouraged us to identify and develop specific inhibitors/activators against every DGK isozyme that can be effective regulators and drugs against a wide variety of physiological events and diseases.
Collapse
Affiliation(s)
- Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University Chiba, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University Chiba, Japan
| | - Suguru Komenoi
- Department of Chemistry, Graduate School of Science, Chiba University Chiba, Japan
| |
Collapse
|
71
|
Kong Y, Zheng Y, Jia Y, Li P, Wang Y. Decreased LIPF expression is correlated with DGKA and predicts poor outcome of gastric cancer. Oncol Rep 2016; 36:1852-60. [PMID: 27498782 PMCID: PMC5022960 DOI: 10.3892/or.2016.4989] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer (GC) is a common and deadly digestive tract tumor worldwide. Unfortunately, diagnosis of GC is usually confused and misleading because of atypical symptoms or incomplete complaints. Accordingly, exploring gene expression profile and identifying genes with analogical variance trend will bring new perspective into the diagnosis and treatment of GC. Herein, a RNA-Seq dataset from Caucasian GC and their matched non-cancerous samples [Gene Expression Omnibus (GEO): SRP049809] and datasets from four microarrays constituted with tumor and non-tumor tissues (GEO: GSE13911, GSE19826, GSE29272, GSE33335) were analyzed to explore the differentially expressed genes (DGEs). As a result, we identified a core set of 373 DGEs. Among these genes, we found that most downregulated genes were related to lipid-metabolic functions. Especially, the gastric lipase (LIPF) gene, which was connected with various lipid metabolism processes, was significantly decreased among all datasets. We then performed immunohistochemistry experiments using gastric tissue arrays to investigate the clinical effects, and the expression of a LIPF target gene, diacylglycerol kinase α (DGKA). Among the 90 samples of gastric adenocarcinoma, the LIPF and DGKA levels were both decreased in cancer tissues [LIPF, 59.1% (53/90); DGKA, 77.8% (70/90)] compared to normal tissues [LIPF, 94.4% (85/90); DGKA, 90% (81/90)]. The expression level of these two proteins in GC was associated with local invasion and disease stage. Cox regression identified high DGKA expression (HR, 0.49; 95% CI, 0.26–0.94; P=0.03) as a predictor of good prognosis and LNM status (HR, 4.63; 95% CI, 1.39–15.51; P=0.01) as a predictor of poor prognosis. Thus we speculated that LIPF-DGKA might serve as a potential possible biomarkers for diagnosis of GC, and their downregulation may bring new perspective into the investigation of GC prognosis.
Collapse
Affiliation(s)
- Yi Kong
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yan Zheng
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Ping Li
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yunshan Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
72
|
Basler G, Nikoloski Z, Larhlimi A, Barabási AL, Liu YY. Control of fluxes in metabolic networks. Genome Res 2016; 26:956-68. [PMID: 27197218 PMCID: PMC4937563 DOI: 10.1101/gr.202648.115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/18/2016] [Indexed: 01/09/2023]
Abstract
Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism.
Collapse
Affiliation(s)
- Georg Basler
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA; Department of Environmental Protection, Estación Experimental del Zaidín CSIC, Granada, 18008 Spain
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476 Germany
| | - Abdelhalim Larhlimi
- Laboratoire d'Informatique de Nantes Atlantique, Université de Nantes, Nantes, 44322 France
| | - Albert-László Barabási
- Center for Complex Network Research and Departments of Physics, Computer Science, and Biology, Northeastern University, Boston, Massachusetts 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
73
|
Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nat Commun 2016; 7:10893. [PMID: 26964756 PMCID: PMC4792958 DOI: 10.1038/ncomms10893] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is a fundamental part of cancer treatment but its use is limited by the onset of late adverse effects in the normal tissue, especially radiation-induced fibrosis. Since the molecular causes for fibrosis are largely unknown, we analyse if epigenetic regulation might explain inter-individual differences in fibrosis risk. DNA methylation profiling of dermal fibroblasts obtained from breast cancer patients prior to irradiation identifies differences associated with fibrosis. One region is characterized as a differentially methylated enhancer of diacylglycerol kinase alpha (DGKA). Decreased DNA methylation at this enhancer enables recruitment of the profibrotic transcription factor early growth response 1 (EGR1) and facilitates radiation-induced DGKA transcription in cells from patients later developing fibrosis. Conversely, inhibition of DGKA has pronounced effects on diacylglycerol-mediated lipid homeostasis and reduces profibrotic fibroblast activation. Collectively, DGKA is an epigenetically deregulated kinase involved in radiation response and may serve as a marker and therapeutic target for personalized radiotherapy. Radiotherapy can induce fibrosis in cancer patients, limiting its use in clinical settings. Here, the authors identify a differentially methylated enhancer of the lipid kinase DGKA in fibroblasts from breast cancer patients developing fibrosis after radiotherapy and they show that DGKA inhibition affects lipid homeostasis and reduces pro-fibrotic fibroblast activation.
Collapse
|
74
|
Liu K, Kunii N, Sakuma M, Yamaki A, Mizuno S, Sato M, Sakai H, Kado S, Kumagai K, Kojima H, Okabe T, Nagano T, Shirai Y, Sakane F. A novel diacylglycerol kinase α-selective inhibitor, CU-3, induces cancer cell apoptosis and enhances immune response. J Lipid Res 2016; 57:368-79. [PMID: 26768655 DOI: 10.1194/jlr.m062794] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 02/02/2023] Open
Abstract
Diacylglycerol kinase (DGK) consists of 10 isozymes. The α-isozyme enhances the proliferation of cancer cells. However, DGKα facilitates the nonresponsive state of immunity known as T-cell anergy; therefore, DGKα enhances malignant traits and suppresses immune surveillance. The aim of this study was to identify a novel small molecule that selectively and potently inhibits DGKα activity. We screened a library containing 9,600 chemical compounds using a newly established high-throughput DGK assay. As a result, we have obtained a promising compound, 5-[(2E)-3-(2-furyl)prop-2-enylidene]-3-[(phenylsulfonyl)amino]2-thioxo-1,3-thiazolidin-4-one) (CU-3), which selectively inhibited DGKα with an IC50 value of 0.6 μM. CU-3 targeted the catalytic region, but not the regulatory region, of DGKα. CU-3 competitively reduced the affinity of DGKα for ATP, but not diacylglycerol or phosphatidylserine. Moreover, this compound induced apoptosis in HepG2 hepatocellular carcinoma and HeLa cervical cancer cells while simultaneously enhancing the interleukin-2 production of Jurkat T cells. Taken together, these results indicate that CU-3 is a selective and potent inhibitor for DGKα and can be an ideal anticancer drug candidate that attenuates cancer cell proliferation and simultaneously enhances immune responses including anticancer immunity.
Collapse
Affiliation(s)
- Ke Liu
- Department of Chemistry, Chiba University, Chiba 263-8522, Japan
| | - Naoko Kunii
- Department of Chemistry, Chiba University, Chiba 263-8522, Japan
| | - Megumi Sakuma
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Atsumi Yamaki
- Department of Chemistry, Chiba University, Chiba 263-8522, Japan
| | - Satoru Mizuno
- Department of Chemistry, Chiba University, Chiba 263-8522, Japan
| | - Mayu Sato
- Department of Chemistry, Chiba University, Chiba 263-8522, Japan
| | - Hiromichi Sakai
- Department of Chemistry, Chiba University, Chiba 263-8522, Japan
| | - Sayaka Kado
- Graduate School of Science and Center for Analytical Instrumentation, Chiba University, Chiba 263-8522, Japan
| | - Kazuo Kumagai
- Drug Discovery Initiative, University of Tokyo, Tokyo 113-0033, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, University of Tokyo, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsuo Nagano
- Drug Discovery Initiative, University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Fumio Sakane
- Department of Chemistry, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
75
|
BIM and mTOR expression levels predict outcome to erlotinib in EGFR-mutant non-small-cell lung cancer. Sci Rep 2015; 5:17499. [PMID: 26639561 PMCID: PMC4671004 DOI: 10.1038/srep17499] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/30/2015] [Indexed: 12/24/2022] Open
Abstract
BIM is a proapoptotic protein that initiates apoptosis triggered by EGFR tyrosine kinase inhibitors (TKI). mTOR negatively regulates apoptosis and may influence response to EGFR TKI. We examined mRNA expression of BIM and MTOR in 57 patients with EGFR-mutant NSCLC from the EURTAC trial. Risk of mortality and disease progression was lower in patients with high BIM compared with low/intermediate BIM mRNA levels. Analysis of MTOR further divided patients with high BIM expression into two groups, with those having both high BIM and MTOR experiencing shorter overall and progression-free survival to erlotinib. Validation of our results was performed in an independent cohort of 19 patients with EGFR-mutant NSCLC treated with EGFR TKIs. In EGFR-mutant lung adenocarcinoma cell lines with high BIM expression, concomitant high mTOR expression increased IC50 of gefitinib for cell proliferation. We next sought to analyse the signalling pattern in cell lines with strong activation of mTOR and its substrate P-S6. We showed that mTOR and phosphodiesterase 4D (PDE4D) strongly correlate in resistant EGFR-mutant cancer cell lines. These data suggest that the combination of EGFR TKI with mTOR or PDE4 inhibitors could be adequate therapy for EGFR-mutant NSCLC patients with high pretreatment levels of BIM and mTOR.
Collapse
|
76
|
Loss of Diacylglycerol Kinase-Ζ Inhibits Cell Proliferation and Survival in Human Gliomas. Mol Neurobiol 2015; 53:5425-35. [DOI: 10.1007/s12035-015-9419-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/02/2015] [Indexed: 12/25/2022]
|
77
|
Purow B. Molecular Pathways: Targeting Diacylglycerol Kinase Alpha in Cancer. Clin Cancer Res 2015; 21:5008-12. [PMID: 26420856 DOI: 10.1158/1078-0432.ccr-15-0413] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Abstract
Lipid kinases have largely been neglected as targets in cancer, and an increasing number of reports suggest diacylglycerol kinase alpha (DGKα) may be one with promising therapeutic potential. DGKα is one of 10 DGK family members that convert diacylglycerol (DAG) to phosphatidic acid (PA), and both DAG and PA are critical lipid second messengers in the plasma membrane. A host of important oncogenic proteins and pathways affect cancer cells in part through DGKα, including the c-Met and VEGF receptors. Others partially mediate the effects of DGKα inhibition in cancer, such as mTOR and HIF-1α. DGKα inhibition can directly impair cancer cell viability, inhibits angiogenesis, and notably may also boost T-cell activation and enhance cancer immunotherapies. Although two structurally similar inhibitors of DGKα were established decades ago, they have seen minimal in vivo usage, and it is unlikely that either of these older DGKα inhibitors will have utility for cancer. An abandoned compound that also inhibits serotonin receptors may have more translational potential as a DGKα inhibitor, but more potent and specific DGKα inhibitors are sorely needed. Other DGK family members may also provide therapeutic targets in cancer, but require further investigation.
Collapse
Affiliation(s)
- Benjamin Purow
- Department of Neurology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
78
|
Torres-Ayuso P, Daza-Martín M, Martín-Pérez J, Ávila-Flores A, Mérida I. Diacylglycerol kinase α promotes 3D cancer cell growth and limits drug sensitivity through functional interaction with Src. Oncotarget 2015; 5:9710-26. [PMID: 25339152 PMCID: PMC4259432 DOI: 10.18632/oncotarget.2344] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 02/02/2023] Open
Abstract
Diacylglycerol kinase (DGK)α converts diacylglycerol to phosphatidic acid. This lipid kinase sustains survival, migration and invasion of tumor cells, with no effect over untransformed cells, suggesting its potential as a cancer-specific target. Nonetheless the mechanisms that underlie DGKα specific contribution to cancer survival have not been elucidated. Using three-dimensional (3D) colon and breast cancer cell cultures, we demonstrate that DGKα upregulation is part of the transcriptional program that results in Src activation in these culture conditions. Pharmacological or genetic DGKα silencing impaired tumor growth in vivo confirming its function in malignant transformation. DGKα-mediated Src regulation contributed to limit the effect of Src inhibitors, and its transcriptional upregulation in response to PI3K/Akt inhibitors resulted in reduced toxicity. Src oncogenic properties and contribution to pharmacological resistance have been linked to its overactivation in cancer. DGKα participation in this central node helps to explain why its pharmacological inhibition or siRNA-mediated targeting specifically alters tumor viability with no effect on untransformed cells. Our results identify DGKα-mediated stabilization of Src activation as an important mechanism in tumor growth, and suggest that targeting this enzyme, alone or in combination with other inhibitors in wide clinical use, could constitute a treatment strategy for aggressive forms of cancer.
Collapse
Affiliation(s)
- Pedro Torres-Ayuso
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Manuel Daza-Martín
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Jorge Martín-Pérez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols/CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonia Ávila-Flores
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Isabel Mérida
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
79
|
Karachaliou N, Rosell R, Molina MA, Viteri S. Predicting resistance by selection of signaling pathways. Transl Lung Cancer Res 2015; 3:107-15. [PMID: 25806289 DOI: 10.3978/j.issn.2218-6751.2014.02.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 02/04/2023]
Abstract
Epidermal growth factor receptor (EGFR) mutations occur in 17% of non-small-cell lung cancer (NSCLC) patients with notable response to single agent therapy but with low complete remission rate and, eventually, disease progression. Priming BIM, a pro-apoptotic signaling BH3-only protein, induces sensitivity to erlotinib in EGFR-mutant cell lines. Synthetic lethal approaches and preemptive therapies based on the initial expression of BIM may significantly improve the treatment outcome. EGFR mutations result in transient pro-death imbalance of survival and apoptotic signaling in response to EGFR inhibition. SHP2 is essential to the balance between ERK and the phosphoinositide-3-kinase (PI3K)/AKT and signal transducer activator of transcription (STAT) activity, while mTOR can be an additional marker for patients with high BIM expression. Furthermore, stromal hepatocyte growth factor (HGF) confers EGFR tyrosine kinase inhibitor (TKI) resistance and induces interreceptor crosstalk with integrin-b4, Eph2, CUB domain-containing protein-1 (CDCP1), AXL and JAK1. Only by understanding better, and in more depth, complex cancer molecular biology will we have the information that will help us to design strategies to augment efficacy of EGFR TKIs and offer our patients the best, most correct therapeutic option.
Collapse
Affiliation(s)
- Niki Karachaliou
- 1 Dr Rosell Oncology Institute, Quirón Dexeus University Institute, Barcelona, Spain ; 2 Pangaea Biotech, Quirón Dexeus University Institute, Barcelona, Spain ; 3 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 4 Molecular Cancer Research (MORe) Foundation, Barcelona, Spain
| | - Rafael Rosell
- 1 Dr Rosell Oncology Institute, Quirón Dexeus University Institute, Barcelona, Spain ; 2 Pangaea Biotech, Quirón Dexeus University Institute, Barcelona, Spain ; 3 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 4 Molecular Cancer Research (MORe) Foundation, Barcelona, Spain
| | - Miguel Angel Molina
- 1 Dr Rosell Oncology Institute, Quirón Dexeus University Institute, Barcelona, Spain ; 2 Pangaea Biotech, Quirón Dexeus University Institute, Barcelona, Spain ; 3 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 4 Molecular Cancer Research (MORe) Foundation, Barcelona, Spain
| | - Santiago Viteri
- 1 Dr Rosell Oncology Institute, Quirón Dexeus University Institute, Barcelona, Spain ; 2 Pangaea Biotech, Quirón Dexeus University Institute, Barcelona, Spain ; 3 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain ; 4 Molecular Cancer Research (MORe) Foundation, Barcelona, Spain
| |
Collapse
|
80
|
Brobeil A, Viard M, Petri MK, Steger K, Tag C, Wimmer M. Memory and PTPIP51--a new protein in hippocampus and cerebellum. Mol Cell Neurosci 2014; 64:61-73. [PMID: 25496818 DOI: 10.1016/j.mcn.2014.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 10/25/2014] [Accepted: 12/09/2014] [Indexed: 12/28/2022] Open
Abstract
Previously the expression of Protein Tyrosine Phosphatase Interacting Protein 51 (PTPIP51) in mouse brain was reported. Here, we investigated PTPIP51 mRNA and protein in two of the brain regions namely the hippocampus and the cerebellum of mouse brains. On a cellular level both the protein and the mRNA were related to the pyramidal cells of the hippocampal formation, the granular cells of the dentate gyrus and the cells of the adjacent strata. In the cerebellum PTPIP51 was traced in Purkinje cells, the cells of the molecular layer and the granular layer. On a subcellular level only partial co-localization was seen for the endoplasmic reticulum, but not with mitochondria. In addition the interactome of PTPIP51 was analysed. In hippocampal cells a strong interaction with PTP1B and vesicle-associated membrane protein-associated protein B (VAPB) was detected. A somewhat differing interaction profile was found in the cerebellum, where high interaction levels were found for 14-3-3, diacylglycerol kinase α (DGKα), NFκB and PTP1B. These interaction partners represent specific signalling pathways linked to building memory. PTPIP51 can be associated with nerve growth factor signalling, dendritic and axonal growth, synaptogenesis, and all processes needed for memory formation. Moreover, in HT-22 mouse hippocampal cells PTPIP51 expression was induced by administrating the fibroblast growth factor 1 (FGF-1), which is known to take part in learning/memory processes. Knocking down p38-MAPK also led to an up-regulation of PTPIP51 probably resembling a compensative mechanism. Thus, a possible connection to the processing of memories can be anticipated. Differences in the interaction profile in both regions may be attributed to the actual/local differences in memory formation.
Collapse
Affiliation(s)
- A Brobeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany; Institute of Pathology, Justus-Liebig-University, 35385 Giessen, Germany.
| | - M Viard
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - M K Petri
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - K Steger
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig-University, 35385 Giessen, Germany
| | - C Tag
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - M Wimmer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| |
Collapse
|
81
|
Yang Y, Xiong J, Zhou Z, Huo F, Miao W, Ran C, Liu Y, Zhang J, Feng J, Wang M, Wang M, Wang L, Yao B. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host. Genome Biol Evol 2014; 6:3182-98. [PMID: 25381665 PMCID: PMC4986447 DOI: 10.1093/gbe/evu247] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Members of Myxozoa, a parasitic metazoan taxon, have considerable detrimental effects on fish hosts and also have been associated with human food-borne illness. Little is known about their biology and metabolism. Analysis of the genome of Thelohanellus kitauei and comparative analysis with genomes of its two free-living cnidarian relatives revealed that T. kitauei has adapted to parasitism, as indicated by the streamlined metabolic repertoire and the tendency toward anabolism rather than catabolism. Thelohanellus kitauei mainly secretes proteases and protease inhibitors for nutrient digestion (parasite invasion), and depends on endocytosis (mainly low-density lipoprotein receptors-mediated type) and secondary carriers for nutrient absorption. Absence of both classic and complementary anaerobic pathways and gluconeogenesis, the lack of de novo synthesis and reduced activity in hydrolysis of fatty acids, amino acids, and nucleotides indicated that T. kitauei in this vertebrate host-parasite system has adapted to inhabit a physiological environment extremely rich in both oxygen and nutrients (especially glucose), which is consistent with its preferred parasitic site, that is, the host gut submucosa. Taking advantage of the genomic and transcriptomic information, 23 potential nutrition-related T. kitauei-specific chemotherapeutic targets were identified. This first genome sequence of a myxozoan will facilitate development of potential therapeutics for efficient control of myxozoan parasites and ultimately prevent myxozoan-induced fish-borne illnesses in humans.
Collapse
Affiliation(s)
- Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Fengmin Huo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuchun Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jinyong Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jinmei Feng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Meng Wang
- Tianjin Biochip Corporation, Tianjin, People's Republic of China
| | - Min Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
82
|
Foster DA, Salloum D, Menon D, Frias MA. Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR). J Biol Chem 2014; 289:22583-22588. [PMID: 24990952 DOI: 10.1074/jbc.r114.566091] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphatidic acid (PA) is a critical metabolite at the heart of membrane phospholipid biosynthesis. However, PA also serves as a critical lipid second messenger that regulates several proteins implicated in the control of cell cycle progression and cell growth. Three major metabolic pathways generate PA: phospholipase D (PLD), diacylglycerol kinase (DGK), and lysophosphatidic acid acyltransferase (LPAAT). The LPAAT pathway is integral to de novo membrane phospholipid biosynthesis, whereas the PLD and DGK pathways are activated in response to growth factors and stress. The PLD pathway is also responsive to nutrients. A key target for the lipid second messenger function of PA is mTOR, the mammalian/mechanistic target of rapamycin, which integrates both nutrient and growth factor signals to control cell growth and proliferation. Although PLD has been widely implicated in the generation of PA needed for mTOR activation, it is becoming clear that PA generated via the LPAAT and DGK pathways is also involved in the regulation of mTOR. In this minireview, we highlight the coordinated maintenance of intracellular PA levels that regulate mTOR signals stimulated by growth factors and nutrients, including amino acids, lipids, glucose, and Gln. Emerging evidence indicates compensatory increases in one source of PA when another source is compromised, highlighting the importance of being able to adapt to stressful conditions that interfere with PA production. The regulation of PA levels has important implications for cancer cells that depend on PA and mTOR activity for survival.
Collapse
Affiliation(s)
- David A Foster
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065.
| | - Darin Salloum
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Deepak Menon
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| | - Maria A Frias
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10065
| |
Collapse
|
83
|
Rainero E, Cianflone C, Porporato PE, Chianale F, Malacarne V, Bettio V, Ruffo E, Ferrara M, Benecchia F, Capello D, Paster W, Locatelli I, Bertoni A, Filigheddu N, Sinigaglia F, Norman JC, Baldanzi G, Graziani A. The diacylglycerol kinase α/atypical PKC/β1 integrin pathway in SDF-1α mammary carcinoma invasiveness. PLoS One 2014; 9:e97144. [PMID: 24887021 PMCID: PMC4041662 DOI: 10.1371/journal.pone.0097144] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/15/2014] [Indexed: 12/11/2022] Open
Abstract
Diacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5β1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1α stimulation, DGKα is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1α induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKα promotes localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKα by promoting Rac-mediated protrusion elongation and localized recruitment of β1 integrin and MMP-9. We finally demonstrate that activation of DGKα, atypical PKCs signaling and β1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the existence of a SDF-1α induced DGKα - atypical PKC - β1 integrin signaling pathway, which is essential for matrix invasion of carcinoma cells.
Collapse
Affiliation(s)
- Elena Rainero
- Integrin Biology Laboratory, Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Cristina Cianflone
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | | | - Federica Chianale
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Valeria Malacarne
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Valentina Bettio
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Elisa Ruffo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Michele Ferrara
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Fabio Benecchia
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Wolfgang Paster
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Irene Locatelli
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Alessandra Bertoni
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Nicoletta Filigheddu
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Fabiola Sinigaglia
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Jim C. Norman
- Integrin Biology Laboratory, Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Gianluca Baldanzi
- Integrin Biology Laboratory, Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Andrea Graziani
- Integrin Biology Laboratory, Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| |
Collapse
|
84
|
Floyd D, Purow B. Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs. Neuro Oncol 2014; 16:622-7. [PMID: 24723563 DOI: 10.1093/neuonc/nou049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs are small noncoding RNAs encoded in eukaryotic genomes that have been found to play critical roles in most biological processes, including cancer. This is true for glioblastoma, the most common and lethal primary brain tumor, for which microRNAs have been shown to strongly influence cell viability, stem cell characteristics, invasiveness, angiogenesis, metabolism, and immune evasion. Developing microRNAs as prognostic markers or as therapeutic agents is showing increasing promise and has potential to reach the clinic in the next several years. This succinct review summarizes current progress and future directions in this exciting and steadily expanding field.
Collapse
Affiliation(s)
- Desiree Floyd
- Neurology Department, University of Virginia, Charlottesville, Virginia (D.F. and B.P.)
| | | |
Collapse
|
85
|
Prinz PU, Mendler AN, Brech D, Masouris I, Oberneder R, Noessner E. NK-cell dysfunction in human renal carcinoma reveals diacylglycerol kinase as key regulator and target for therapeutic intervention. Int J Cancer 2014; 135:1832-41. [DOI: 10.1002/ijc.28837] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Petra U. Prinz
- Helmholtz Zentrum München; Germany Research Center for Environmental Health; Institute of Molecular Immunology, Munich Germany
| | - Anna N. Mendler
- Helmholtz Zentrum München; Germany Research Center for Environmental Health; Institute of Molecular Immunology, Munich Germany
| | - Dorothee Brech
- Helmholtz Zentrum München; Germany Research Center for Environmental Health; Institute of Molecular Immunology, Munich Germany
| | - Ilias Masouris
- Helmholtz Zentrum München; Germany Research Center for Environmental Health; Institute of Molecular Immunology, Munich Germany
| | | | - Elfriede Noessner
- Helmholtz Zentrum München; Germany Research Center for Environmental Health; Institute of Molecular Immunology, Munich Germany
| |
Collapse
|
86
|
Bhat KPL, Aldape K. Not expecting the unexpected: diacylglycerol kinase alpha as a cancer target. Cancer Discov 2014; 3:726-7. [PMID: 23847350 DOI: 10.1158/2159-8290.cd-13-0244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Cancer Discovery, Dominguez and colleagues identify diacylglycerol kinase alpha (DGKα), an enzyme that converts the membrane lipid diacylglycerol to phosphatidic acid, as a central node upstream of mTOR and other oncogenic pathways. Importantly, targeting DGKα causes apoptosis in cancer cells and tumor growth inhibition in mice with no overt toxicity, implicating DGKα as a novel cancer-specific target.
Collapse
Affiliation(s)
- Krishna P L Bhat
- Department of Pathology, and Brain Tumor Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
87
|
Kefas B, Floyd DH, Comeau L, Frisbee A, Dominguez C, Dipierro CG, Guessous F, Abounader R, Purow B. A miR-297/hypoxia/DGK-α axis regulating glioblastoma survival. Neuro Oncol 2013; 15:1652-63. [PMID: 24158111 DOI: 10.1093/neuonc/not118] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Despite advances in the treatment of the most aggressive form of brain tumor, glioblastoma, patient prognosis remains disappointing. This failure in treatment has been attributed to dysregulated oncogenic pathways, as observed in other tumors. We and others have suggested the use of microRNAs (miRs) as therapeutic tools able to target multiple pathways in glioblastoma. METHODS This work features PCR quantification of miRs and transient transfection of many glioblastoma cell lines with miRs, followed by cell number analysis, trypan blue staining, alamarBlue assay of cell viability, caspase-3/-7 activity assay, immunoblot of cleaved poly(ADP-ribose) polymerase and fluorescence activated cell sorting and imaging of apoptotic nuclei, cell invasion assays, MRIs of glioblastoma xenografts in mice using transiently transfected cells as well as posttumor treatment with lentiviral vector encoding miR-297, and analysis of miR-297 target diacylglycerol kinase (DGK)-α including immunoblot, 3'UTR luciferase activity, and rescue with DGK-α overexpression. Cell counts and DGK-α immunoblot were also analyzed in the context of hypoxia and with overexpression of heterogeneous ribonucleoprotein L (hnRNPL). RESULTS We identified miR-297 as a highly cytotoxic microRNA in glioblastoma, with minimal cytotoxicity to normal astrocytes. miR-297 overexpression reduced in vitro invasiveness and in vivo tumor formation. DGK-α is shown to be a miR-297 target with a critical role in miR-297 toxicity. In addition, hypoxia and its mediator hnRNPL upregulated DGK-α and buffered the cytotoxic effects of miR-297. CONCLUSION This work shows miR-297 as a novel and physiologic regulator of cancer cell survival, largely through targeting of DGK-α, and also indicates that hypoxia ameliorates miR-297 toxicity to cancer cells.
Collapse
Affiliation(s)
- Benjamin Kefas
- Corresponding Authors: Benjamin Kefas, B. Pharm, MSc, PhD, University of Virginia Health System, Old Medical School, Rooms 4885/4881, 21 Hospital Drive, Charlottesville, VA 22908. ); Benjamin Purow, MD, University of Virginia Health System, Old Medical School, Rooms 4885/4881, 21 Hospital Drive, Charlottesville, VA 22908 (
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Qiu Y, Fakas S, Han GS, Barbosa AD, Siniossoglou S, Carman GM. Transcription factor Reb1p regulates DGK1-encoded diacylglycerol kinase and lipid metabolism in Saccharomyces cerevisiae. J Biol Chem 2013; 288:29124-33. [PMID: 23970552 PMCID: PMC3790011 DOI: 10.1074/jbc.m113.507392] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the DGK1-encoded diacylglycerol kinase catalyzes the CTP-dependent phosphorylation of diacylglycerol to form phosphatidate. This enzyme, in conjunction with PAH1-encoded phosphatidate phosphatase, controls the levels of phosphatidate and diacylglycerol for phospholipid synthesis, membrane growth, and lipid droplet formation. In this work, we showed that a functional level of diacylglycerol kinase is regulated by the Reb1p transcription factor. In the electrophoretic mobility shift assay, purified recombinant Reb1p was shown to specifically bind its consensus recognition sequence (CGGGTAA, -166 to -160) in the DGK1 promoter. Analysis of cells expressing the PDGK1-lacZ reporter gene showed that mutations (GT→TG) in the Reb1p-binding sequence caused an 8.6-fold reduction in β-galactosidase activity. The expression of DGK1(reb1), a DGK1 allele containing the Reb1p-binding site mutation, was greatly lower than that of the wild type allele, as indicated by analyses of DGK1 mRNA, Dgk1p, and diacylglycerol kinase activity. In the presence of cerulenin, an inhibitor of de novo fatty acid synthesis, the dgk1Δ mutant expressing DGK1(reb1) exhibited a significant defect in growth as well as in the synthesis of phospholipids from triacylglycerol mobilization. Unlike DGK1, the DGK1(reb1) expressed in the dgk1Δ pah1Δ mutant did not result in the nuclear/endoplasmic reticulum membrane expansion, which occurs in cells lacking phosphatidate phosphatase activity. Taken together, these results indicate that the Reb1p-mediated regulation of diacylglycerol kinase plays a major role in its in vivo functions in lipid metabolism.
Collapse
Affiliation(s)
- Yixuan Qiu
- From the Department of Food Science, Rutgers Center for Lipid Research, and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901 and
| | | | | | | | | | | |
Collapse
|
89
|
Rosell R, Karachaliou N. Lung cancer: Maintenance therapy and precision medicine in NSCLC. Nat Rev Clin Oncol 2013; 10:549-50. [PMID: 23959270 DOI: 10.1038/nrclinonc.2013.152] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rafael Rosell
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Carreterra del Canyet s/n, 08916 Badalona, Barcelona, Spain
| | | |
Collapse
|