51
|
Gulla' A, Anderson KC. Multiple myeloma: the (r)evolution of current therapy and a glance into future. Haematologica 2020; 105:2358-2367. [PMID: 33054076 PMCID: PMC7556665 DOI: 10.3324/haematol.2020.247015] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past 20 years, the regulatory approval of several novel agents to treat multiple myeloma (MM) has prolonged median patient survival from 3 to 8-10 years. Increased understanding of MM biology has translated to advances in diagnosis, prognosis, and response assessment, as well as informed the development of targeted and immune agents. Here we provide an overview of the recent progress in MM, and highlight research areas of greatest promise to further improve patient outcome in the future.
Collapse
Affiliation(s)
| | - Kenneth C. Anderson
- Division of Hematologic Neoplasia, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
52
|
Soncini D, Minetto P, Martinuzzi C, Becherini P, Fenu V, Guolo F, Todoerti K, Calice G, Contini P, Miglino M, Rivoli G, Aquino S, Dominietto A, Cagnetta A, Passalacqua M, Bruzzone S, Nencioni A, Zucchetti M, Ceruti T, Neri A, Lemoli RM, Cea M. Amino acid depletion triggered by ʟ-asparaginase sensitizes MM cells to carfilzomib by inducing mitochondria ROS-mediated cell death. Blood Adv 2020; 4:4312-4326. [PMID: 32915979 PMCID: PMC7509874 DOI: 10.1182/bloodadvances.2020001639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is emerging as a cancer vulnerability that could be therapeutically exploitable using different approaches, including amino acid depletion for those tumors that rely on exogenous amino acids for their maintenance. ʟ-Asparaginase (ASNase) has contributed to a significant improvement in acute lymphoblastic leukemia outcomes; however, toxicity and resistance limit its clinical use in other tumors. Here, we report that, in multiple myeloma (MM) cells, the DNA methylation status is significantly associated with reduced expression of ASNase-related gene signatures, thus suggesting ASNase sensitivity for this tumor. Therefore, we tested the effects of ASNase purified from Erwinia chrysanthemi (Erw-ASNase), combined with the next-generation proteasome inhibitor (PI) carfilzomib. We observed an impressive synergistic effect on MM cells, whereas normal peripheral blood mononuclear cells were not affected. Importantly, this effect was associated with increased reactive oxygen species (ROS) generation, compounded mitochondrial damage, and Nrf2 upregulation, regardless of the c-Myc oncogenic-specific program. Furthermore, the cotreatment resulted in genomic instability and DNA repair mechanism impairment via increased mitochondrial oxidative stress, which further enhanced its antitumor activity. Interestingly, carfilzomib-resistant cells were found to be highly dependent on amino acid starvation, as reflected by their higher sensitivity to Erw-ASNase treatment compared with isogenic cells. Overall, by affecting several cellular programs, Erw-ASNase makes MM cells more vulnerable to carfilzomib, providing proof of concept for clinical use of this combination as a novel strategy to enhance PI sensitivity in MM patients.
Collapse
Affiliation(s)
- Debora Soncini
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Paola Minetto
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Division of Hematology and Hematopoietic Stem Cell Transplantation Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Martinuzzi
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Pamela Becherini
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Valeria Fenu
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabio Guolo
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Katia Todoerti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Giovanni Calice
- IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | | | - Maurizio Miglino
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Rivoli
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Sara Aquino
- Division of Hematology and Hematopoietic Stem Cell Transplantation Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Alida Dominietto
- Division of Hematology and Hematopoietic Stem Cell Transplantation Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonia Cagnetta
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and
| | - Massimo Zucchetti
- Clinical Cancer Pharmacology Unit, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; and
| | - Tommaso Ceruti
- Clinical Cancer Pharmacology Unit, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; and
| | - Antonino Neri
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberto M Lemoli
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cea
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
53
|
Qiu Z, Fa P, Liu T, Prasad CB, Ma S, Hong Z, Chan ER, Wang H, Li Z, He K, Wang QE, Williams TM, Yan C, Sizemore ST, Narla G, Zhang J. A Genome-Wide Pooled shRNA Screen Identifies PPP2R2A as a Predictive Biomarker for the Response to ATR and CHK1 Inhibitors. Cancer Res 2020; 80:3305-3318. [PMID: 32522823 PMCID: PMC7518641 DOI: 10.1158/0008-5472.can-20-0057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 01/18/2023]
Abstract
There is currently a lack of precise predictive biomarkers for patient selection in clinical trials of inhibitors targeting replication stress (RS) response proteins ATR and CHK1. The objective of this study was to identify novel predictive biomarkers for the response to these agents in treating non-small cell lung cancer (NSCLC). A genome-wide loss-of-function screen revealed that tumor suppressor PPP2R2A, a B regulatory subunit of protein phosphatase 2 (PP2A), determines sensitivity to CHK1 inhibition. A synthetic lethal interaction between PPP2R2A deficiency and ATR or CHK1 inhibition was observed in NSCLC in vitro and in vivo and was independent of p53 status. ATR and CHK1 inhibition resulted in significantly increased levels of RS and altered replication dynamics, particularly in PPP2R2A-deficient NSCLC cells. Mechanistically, PPP2R2A negatively regulated translation of oncogene c-Myc protein. c-Myc activity was required for PPP2R2A deficiency-induced alterations of replication initiation/RS and sensitivity to ATR/CHK1 inhibitors. We conclude that PPP2R2A deficiency elevates RS by upregulating c-Myc activity, rendering cells reliant on the ATR/CHK1 axis for survival. Our studies show a novel synthetic lethal interaction and identify PPP2R2A as a potential new predictive biomarker for patient stratification in the clinical use of ATR and CHK1 inhibitors. SIGNIFICANCE: This study reveals new approaches to specifically target PPP2R2A-deficient lung cancer cells and provides a novel biomarker that will significantly improve treatment outcome with ATR and CHK1 inhibitors.
Collapse
MESH Headings
- Animals
- Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors
- Biomarkers, Tumor/deficiency
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/chemistry
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Checkpoint Kinase 1/antagonists & inhibitors
- DNA Damage
- DNA Replication
- Drug Resistance, Neoplasm
- Female
- Gene Knockdown Techniques
- Genes, p53
- Genome-Wide Association Study
- Heterografts
- Humans
- Lung Neoplasms/chemistry
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- Mice
- Mice, Nude
- Protein Phosphatase 2/deficiency
- Protein Phosphatase 2/genetics
- Protein Phosphatase 2/metabolism
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Small Interfering
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Pengyan Fa
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Tao Liu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Chandra B Prasad
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Shanhuai Ma
- University of Rochester, Rochester, New York
| | - Zhipeng Hong
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Ernest R Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Zaibo Li
- Department of Pathology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Kai He
- Department of Internal Medicine, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Qi-En Wang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Steven T Sizemore
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio
| | - Goutham Narla
- Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio.
| |
Collapse
|
54
|
Xing L, Lin L, Yu T, Li Y, Cho SF, Liu J, Wen K, Hsieh PA, Kinneer K, Munshi N, Anderson KC, Tai YT. A novel BCMA PBD-ADC with ATM/ATR/WEE1 inhibitors or bortezomib induce synergistic lethality in multiple myeloma. Leukemia 2020; 34:2150-2162. [PMID: 32060401 PMCID: PMC7392808 DOI: 10.1038/s41375-020-0745-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023]
Abstract
To target mechanisms critical for multiple myeloma (MM) plasma cell adaptations to genomic instabilities and further sustain MM cell killing, we here specifically trigger DNA damage response (DDR) in MM cells by a novel BCMA antibody-drug conjugate (ADC) delivering the DNA cross-linking PBD dimer tesirine, MEDI2228. MEDI2228, more effectively than its anti-tubulin MMAF-ADC homolog, induces cytotoxicity against MM cells regardless of drug resistance, BCMA levels, p53 status, and the protection conferred by bone marrow stromal cells and IL-6. Distinctly, prior to apoptosis, MEDI2228 activates DDRs in MM cells via phosphorylation of ATM/ATR kinases, CHK1/2, CDK1/2, and H2AX, associated with expression of DDR-related genes. Significantly, MEDI2228 synergizes with DDR inhibitors (DDRi s) targeting ATM/ATR/WEE1 checkpoints to induce MM cell lethality. Moreover, suboptimal doses of MEDI2228 and bortezomib (btz) synergistically trigger apoptosis of even drug-resistant MM cells partly via modulation of RAD51 and accumulation of impaired DNA. Such combination further induces superior in vivo efficacy than monotherapy via increased nuclear γH2AX-expressing foci, irreversible DNA damages, and tumor cell death, leading to significantly prolonged host survival. These results indicate leveraging MEDI2228 with DDRi s or btz as novel combination strategies, further supporting ongoing clinical development of MEDI2228 in patients with relapsed and refractory MM.
Collapse
Key Words
- multiple myeloma, mm
- b cell maturation antigen, bcma
- antibody drug conjugate, adc
- pyrrolobenzodiazepine, pbd
- monomethyl auristatin f, mmaf
- bortezomib, btz
- lenalidomide, len
- pomalidomide, pom
- bone marrow stromal cells, bmscs
- interleukin-6, il-6
- dna damage response, ddr
- double strand break, dsb
- ddr inhibitor, ddri
- dna repair
- ataxia-telangiesctasia mutated, atm
- atr, ataxia telangiectasia and rad3-related protein
- wee1
- drug resistance
- synthetic cytotoxicity
Collapse
Affiliation(s)
- Lijie Xing
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, PR China
| | - Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tengteng Yu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yuyin Li
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- School of Biotechnology, Tianjin University of Science and Technology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin, 300457, PR China
| | - Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Phillip A Hsieh
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
55
|
Tripathi SK, Biswal BK. Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent. Pharmacol Res 2020; 156:104772. [PMID: 32283222 DOI: 10.1016/j.phrs.2020.104772] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Piperlongumine, a white to beige biologically active alkaloid/amide phytochemical, has high pharmacological relevance as an anticancer agent. Piperlongumine has several biological activities, including selective cytotoxicity against multiple cancer cells of different origins at a preclinical level. Several preclinical studies have documented the anticancer potential of piperlongumine through its targeting of multiple molecular mechanisms, such as cell cycle arrest, anti-angiogenesis, anti- invasive and anti-metastasis pathways, autophagy pathways, and intrinsic apoptotic pathways in vitro and in vivo. Mechanistically, piperlongumine inhibits cancer growth by resulting in the accumulation of intracellular reactive oxygen species, decreasing glutathione and chromosomal damage, or modulating key regulatory proteins, including PI3K, AKT, mTOR, NF-kβ, STATs, and cyclin D1. Furthermore, combined treatment with piperlongumine potentiates the anticancer activity of conventional chemotherapeutics and overcomes resistance to chemo- and radio- therapy. Nanoformulation of piperlongumine has been associated with increased aqueous solubility and bioavailability and lower toxicity, thus enhancing therapeutic efficacy in both preclinical and clinical settings. The current review highlights anticancer studies on the occurrence, chemical properties, chemopreventive mechanisms, toxicity, bioavailability, and pharmaceutical relevance of piperlongumine in vitro and in vivo.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
56
|
Alagpulinsa DA, Szalat RE, Poznansky MC, Shmookler Reis RJ. Genomic Instability in Multiple Myeloma. Trends Cancer 2020; 6:858-873. [PMID: 32487486 DOI: 10.1016/j.trecan.2020.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Genomic instability (GIN), an increased tendency to acquire genomic alterations, is a cancer hallmark. However, its frequency, underlying causes, and disease relevance vary across different cancers. Multiple myeloma (MM), a plasma cell malignancy, evolves through premalignant phases characterized by genomic abnormalities. Next-generation sequencing (NGS) methods are deconstructing the genomic landscape of MM across the continuum of its development, inextricably linking malignant transformation and disease progression with increasing acquisition of genomic alterations, and illuminating the mechanisms that generate these alterations. Although GIN drives disease evolution, it also creates vulnerabilities such as dependencies on 'superfluous' repair mechanisms and the induction of tumor-specific antigens that can be targeted. We review the mechanisms of GIN in MM, the associated vulnerabilities, and therapeutic targeting strategies.
Collapse
Affiliation(s)
- David A Alagpulinsa
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | - Raphael E Szalat
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
57
|
Manni S, Fregnani A, Barilà G, Zambello R, Semenzato G, Piazza F. Actionable Strategies to Target Multiple Myeloma Plasma Cell Resistance/Resilience to Stress: Insights From "Omics" Research. Front Oncol 2020; 10:802. [PMID: 32500036 PMCID: PMC7243738 DOI: 10.3389/fonc.2020.00802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
While the modern therapeutic armamentarium to treat multiple myeloma (MM) patients allows a longer control of the disease, this second-most-frequent hematologic cancer is still uncurable in the vast majority of cases. Since MM plasma cells are subjected to various types of chronic cellular stress and the integrity of specific stress-coping pathways is essential to ensure MM cell survival, not surprisingly the most efficacious anti-MM therapy are those that make use of proteasome inhibitors and/or immunomodulatory drugs, which target the biochemical mechanisms of stress management. Based on this notion, the recently realized discoveries on MM pathobiology through high-throughput techniques (genomic, transcriptomic, and other "omics"), in order for them to be clinically useful, should be elaborated to identify novel vulnerabilities in this disease. This groundwork of information will likely allow the design of novel therapies against targetable molecules/pathways, in an unprecedented opportunity to change the management of MM according to the principle of "precision medicine." In this review, we will discuss some examples of therapeutically actionable molecules and pathways related to the regulation of cellular fitness and stress resistance in MM.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Anna Fregnani
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy
- Foundation for Advanced Biomedical Research – Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| |
Collapse
|
58
|
Gorecki L, Andrs M, Rezacova M, Korabecny J. Discovery of ATR kinase inhibitor berzosertib (VX-970, M6620): Clinical candidate for cancer therapy. Pharmacol Ther 2020; 210:107518. [PMID: 32109490 DOI: 10.1016/j.pharmthera.2020.107518] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Chemoresistance, radioresistance, and the challenge of achieving complete resection are major driving forces in the search for more robust and targeted anticancer therapies. Targeting the DNA damage response has recently attracted research interest, as these processes are enhanced in tumour cells. The major replication stress responder is ATM and Rad3-related (ATR) kinase, which is attracting attention worldwide with four drug candidates currently in phase I/II clinical trials. This review addresses a potent and selective small-molecule ATR inhibitor, which is known as VX-970 (also known as berzosertib or M6620), and summarizes the existing preclinical data to provide deep insight regarding its real potential. We also outline the transition from preclinical to clinical studies, as well as its relationships with other clinical candidates (AZD6738, VX-803 [M4344], and BAY1895344). The results suggest that VX-970 is indeed a promising anticancer drug that can be used both as monotherapy and in combination with either chemotherapy or radiotherapy strategies. Based on patient anamnesis and biomarker identification, VX-970 could become a valuable tool for oncologists in the fight against cancer.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 38 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
59
|
Mei AHC, Tung K, Han J, Perumal D, Laganà A, Keats J, Auclair D, Chari A, Jagannath S, Parekh S, Cho HJ. MAGE-A inhibit apoptosis and promote proliferation in multiple myeloma through regulation of BIM and p21 Cip1. Oncotarget 2020; 11:727-739. [PMID: 32133047 PMCID: PMC7041939 DOI: 10.18632/oncotarget.27488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/29/2020] [Indexed: 12/22/2022] Open
Abstract
The type I Melanoma Antigen Gene (MAGE) A3 is a functional target associated with survival and proliferation in multiple myeloma (MM). To investigate the mechanisms of these oncogenic functions, we performed gene expression profiling (GEP) of p53 wild-type human myeloma cell lines (HMCL) after MAGE-A knockdown, which identified a set of 201 differentially expressed genes (DEG) associated with apoptosis, DNA repair, and cell cycle regulation. MAGE knockdown increased protein levels of pro-apoptotic BIM and of the endogenous cyclin-dependent kinase (CDK) inhibitor p21Cip1. Depletion of MAGE-A in HMCL increased sensitivity to the alkylating agent melphalan but not to proteasome inhibition. High MAGEA3 was associated with the MYC and Cell Cycling clusters defined by a network model of GEP data from the CoMMpass database of newly diagnosed, untreated MM patients. Comparative analysis of CoMMpass subjects based on high or low MAGEA3 expression revealed a set of 6748 DEG that also had significant functional associations with cell cycle and DNA replication pathways, similar to that observed in HMCL. High MAGEA3 expression correlated with shorter overall survival after melphalan chemotherapy and autologous stem cell transplantation (ASCT). These results demonstrate that MAGE-A3 regulates Bim and p21Cip1 transcription and protein expression, inhibits apoptosis, and promotes proliferation.
Collapse
Affiliation(s)
- Anna Huo-Chang Mei
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Kaity Tung
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Jessie Han
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Deepak Perumal
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Institute for Next Generation Healthcare, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Jonathan Keats
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Daniel Auclair
- The Multiple Myeloma Research Foundation, Norwalk, CT, USA
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Sundar Jagannath
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Hearn Jay Cho
- Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- The Multiple Myeloma Research Foundation, Norwalk, CT, USA
| |
Collapse
|
60
|
Sonugür FG, Akbulut H. The Role of Tumor Microenvironment in Genomic Instability of Malignant Tumors. Front Genet 2019; 10:1063. [PMID: 31737046 PMCID: PMC6828977 DOI: 10.3389/fgene.2019.01063] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic instability is an essential feature of cancer cells. The somatic mutation theory suggests that along with inherited ones, the changes in DNA caused by environmental factors may cause cancer. Although approximately 50–60 mutations per tumor are observed in established cancer tissue, it is known that not all of these mutations occur at the beginning of carcinogenesis but also occur later in the disease progression. The high frequency of somatic mutations referring to genomic instability contributes to the intratumoral genetic heterogeneity and treatment resistance. The contribution of the tumor microenvironment to the mutations observed following the acquirement of essential malignant characteristics of a cancer cell is one of the topics that have been extensively investigated in recent years. The frequency of mutations in hematologic tumors is generally less than solid tumors. Although it is a hematologic tumor, multiple myeloma is more similar to solid tumors in terms of the high number of chromosomal abnormalities and genetic heterogeneity. In multiple myeloma, bone marrow microenvironment also plays a role in genomic instability that occurs in the very early stages of the disease. In this review, we will briefly summarize the role of the tumor microenvironment and bone marrow microenvironment in the genomic instability seen in solid tumors and multiple myeloma.
Collapse
Affiliation(s)
- F Gizem Sonugür
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey.,Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Turkey
| | - Hakan Akbulut
- Department of Medical Oncology, Ankara University School of Medicine, Ankara, Turkey.,Department of Basic Oncology, Ankara University Cancer Research Institute, Ankara, Turkey
| |
Collapse
|
61
|
Gourzones C, Bret C, Moreaux J. Treatment May Be Harmful: Mechanisms/Prediction/Prevention of Drug-Induced DNA Damage and Repair in Multiple Myeloma. Front Genet 2019; 10:861. [PMID: 31620167 PMCID: PMC6759943 DOI: 10.3389/fgene.2019.00861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy characterized by accumulation of malignant plasma cells within the bone marrow (BM). MM is considered mostly without definitive treatment because of the inability of standard of care therapies to overcome drug-resistant relapse. Genotoxic agents are used in the treatment of MM and exploit the fact that DNA double-strand breaks are highly cytotoxic for cancer cells. However, their mutagenic effects are well-established and described. According to these effects, chemotherapy could cause harmful DNA damage associated with new driver genomic abnormalities providing selective advantage, drug resistance, and higher relapse risk. Several mechanisms associated with MM cell (MMC) resistance to genotoxic agents have been described, underlining MM heterogeneity. The understanding of these mechanisms provides several therapeutic strategies to overcome drug resistance and limit mutagenic effects of treatment in MM. According to this heterogeneity, adopting precision medicine into clinical practice, with the development of biomarkers, has the potential to improve MM disease management and treatment.
Collapse
Affiliation(s)
| | - Caroline Bret
- IGH, CNRS, Univ Montpellier, France.,Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Univ Montpellier, UFR de Médecine, Montpellier, France
| | - Jerome Moreaux
- IGH, CNRS, Univ Montpellier, France.,Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Univ Montpellier, UFR de Médecine, Montpellier, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
62
|
Vlummens P, De Veirman K, Menu E, De Bruyne E, Offner F, Vanderkerken K, Maes K. The Use of Murine Models for Studying Mechanistic Insights of Genomic Instability in Multiple Myeloma. Front Genet 2019; 10:740. [PMID: 31475039 PMCID: PMC6704229 DOI: 10.3389/fgene.2019.00740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. In normal plasma cell development, cells undergo programmed DNA breaks and translocations, a process necessary for generation of a wide repertoire of antigen-specific antibodies. This process also makes them vulnerable for the acquisition of chromosomal defects. Well-known examples of these aberrations, already seen at time of MM diagnosis, are hyperdiploidy or the translocations involving the immunoglobulin heavy chain. Over the recent years, however, novel aspects concerning genomic instability and its role in tumor development, disease progression and nascence of refractory disease were identified. As such, genomic instability is becoming a very relevant research topic with the potential identification of novel disease pathways. In this review, we aim to describe recent studies involving murine MM models focusing on the deregulation of processes implicated in genomic instability and their clinical impact. More specifically, we will discuss chromosomal instability, DNA damage and repair responses, development of drug resistance, and recent insights into the study of clonal hierarchy using different murine MM models. Lastly, we will discuss the importance and the use of murine MM models in the pre-clinical evaluation of promising novel therapeutic agents.
Collapse
Affiliation(s)
- Philip Vlummens
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Clinical Hematology, Ghent University Hospital, Gent, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fritz Offner
- Department of Clinical Hematology, Ghent University Hospital, Gent, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
63
|
Johnson DP, Spitz-Becker GS, Chakraborti K, Bhaskara S. Assessment of epigenetic mechanisms and DNA double-strand break repair using laser micro-irradiation technique developed for hematological cells. EBioMedicine 2019; 43:138-149. [PMID: 31000418 PMCID: PMC6562062 DOI: 10.1016/j.ebiom.2019.03.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/28/2022] Open
Abstract
Background Certain tumors rely heavily on their DNA repair capability to survive the DNA damage induced by chemotherapeutic agents. Therefore, it is important to monitor the dynamics of DNA repair in patient samples during the course of their treatment, in order to determine whether a particular drug regimen perturbs the DNA repair networks in cancer cells and provides therapeutic benefits. Quantitative measurement of proteins and/or their posttranslational modification(s) at DNA double strand breaks (DSBs) induced by laser microirradiation provides an applicable diagnostic approach to examine DNA repair and its dynamics. However, its use is restricted to adherent cell lines and not employed in suspension tumor cells that include the many hematological malignancies. Methods Here, we report the development of an assay to laser micro-irradiate and quantitatively measure DNA repair transactions at DSB sites in normal mononuclear cells and a variety of suspension leukemia and lymphoma cells including primary patient samples. Findings We show that global changes in the H3K27me3-ac switch modulated by inhibitors of Class I HDACs, EZH2 methyltransferase and (or) H3K27me3 demethylases do not reflect the dynamic changes in H3K27me3 that occur at double-strand break sites during DNA repair. Interpretation Results from our mechanistic studies and proof-of-principle data with patient samples together show the effectiveness of using the modified micro-laser-based assay to examine DNA repair directly in suspension cancer cells, and has important clinical implications by serving as a valuable tool to assess drug efficacies in hematological cancer cells that grow in suspension.
Collapse
Affiliation(s)
- Danielle P Johnson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gabriella S Spitz-Becker
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Korak Chakraborti
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Srividya Bhaskara
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
64
|
Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 2019; 16:81-104. [PMID: 30356138 PMCID: PMC8327299 DOI: 10.1038/s41571-018-0114-z] [Citation(s) in RCA: 779] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genomic instability is a key hallmark of cancer that arises owing to defects in the DNA damage response (DDR) and/or increased replication stress. These alterations promote the clonal evolution of cancer cells via the accumulation of driver aberrations, including gene copy-number changes, rearrangements and mutations; however, these same defects also create vulnerabilities that are relatively specific to cancer cells, which could potentially be exploited to increase the therapeutic index of anticancer treatments and thereby improve patient outcomes. The discovery that BRCA-mutant cancer cells are exquisitely sensitive to inhibition of poly(ADP-ribose) polymerase has ushered in a new era of research on biomarker-driven synthetic lethal treatment strategies for different cancers. The therapeutic landscape of antitumour agents targeting the DDR has rapidly expanded to include inhibitors of other key mediators of DNA repair and replication, such as ATM, ATR, CHK1 and CHK2, DNA-PK and WEE1. Efforts to optimize these therapies are ongoing across a range of cancers, involving the development of predictive biomarker assays of responsiveness (beyond BRCA mutations), assessment of the mechanisms underlying intrinsic and acquired resistance, and evaluation of rational, tolerable combinations with standard-of-care treatments (such as chemotherapeutics and radiation), novel molecularly targeted agents and immune-checkpoint inhibitors. In this Review, we discuss the current status of anticancer therapies targeting the DDR.
Collapse
Affiliation(s)
- Patrick G Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
65
|
Jovanović KK, Escure G, Demonchy J, Willaume A, Van de Wyngaert Z, Farhat M, Chauvet P, Facon T, Quesnel B, Manier S. Deregulation and Targeting of TP53 Pathway in Multiple Myeloma. Front Oncol 2019; 8:665. [PMID: 30687640 PMCID: PMC6333636 DOI: 10.3389/fonc.2018.00665] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple Myeloma (MM) is an incurable disease characterized by a clonal evolution across the course of the diseases and multiple lines of treatment. Among genomic drivers of the disease, alterations of the tumor suppressor TP53 are associated with poor outcomes. In physiological situation, once activated by oncogenic stress or DNA damage, p53 induces either cell-cycle arrest or apoptosis depending on the cellular context. Its inactivation participates to drug resistance in MM. The frequency of TP53 alterations increases along with the progression of the disease, from 5 at diagnosis to 75% at late relapses. Multiple mechanisms of regulation lead to decreased expression of p53, such as deletion 17p, TP53 mutations, specific microRNAs overexpression, TP53 promoter methylations, and MDM2 overexpression. Several therapeutic approaches aim to target the p53 pathway, either by blocking its interaction with MDM2 or by restoring the function of the altered protein. In this review, we describe the mechanism of deregulation of TP53 in MM, its role in MM progression, and the therapeutic options to interact with the TP53 pathway.
Collapse
Affiliation(s)
| | - Guillaume Escure
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | - Jordane Demonchy
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | | | | | - Meryem Farhat
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | - Paul Chauvet
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | - Thierry Facon
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | - Bruno Quesnel
- IRCL, INSERM UMR-S1172, University of Lille, Lille, France
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| | - Salomon Manier
- IRCL, INSERM UMR-S1172, University of Lille, Lille, France
- Department of Hematology, CHU Lille, University of Lille, Lille, France
| |
Collapse
|
66
|
Wang L, Kumar M, Deng Q, Wang X, Liu M, Gong Z, Zhang S, Ma X, Xu-Monette ZY, Xiao M, Yi Q, Young KH, Ramos KS, Li Y. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces peripheral blood abnormalities and plasma cell neoplasms resembling multiple myeloma in mice. Cancer Lett 2019; 440-441:135-144. [PMID: 30343114 PMCID: PMC6238649 DOI: 10.1016/j.canlet.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Abstract
Although epidemiologic studies have suggested a possible association between occupational exposures to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the risk of development of multiple myeloma, definitive evidence in support of this association is lacking. In the present study, we employed the Vk*Myc mouse model of multiple myeloma to assess the impact of TCDD exposure on multiple myeloma pathogenesis. TCDD induced splenomegaly and multiple peripheral blood abnormalities, including anemia and high serum IgG levels. In addition, TCDD triggered bone lytic lesions, as well as renal tubular casts, a phenomenon associated with human myeloma kidney disease. Even in wild-type C57BL/6 mice, TCDD increased serum IgG levels, induced anemia, and increased plasma cell presence in the spleen and bone marrow, hallmarks of benign monoclonal gammopathy. Lastly, TCDD induced AKT activation and the DNA damage response, key pathogenic events in myeloma pathogenesis, in animal spleen and/or bone marrow. These data indicate that TCDD accelerates monoclonal gammopathy development and promotes progression to multiple myeloma in genetically-predisposed mice. This work offers the first direct experimental evidence establishing TCDD as an environmental risk factor for monoclonal gammopathy of undetermined significance and multiple myeloma.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Munish Kumar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Raman Fellow (UGC), Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Qipan Deng
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xu Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ming Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhaojian Gong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaodong Ma
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Xiao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth S Ramos
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
67
|
Okayama M, Kitabatake S, Sato M, Fujimori K, Ichikawa D, Matsushita M, Suto Y, Iwasaki G, Yamada T, Kiuchi F, Hirao M, Kunieda H, Osada M, Okamoto S, Hattori Y. A novel derivative (GTN024) from a natural product, komaroviquinone, induced the apoptosis of high-risk myeloma cells via reactive oxygen production and ER stress. Biochem Biophys Res Commun 2018; 505:787-793. [DOI: 10.1016/j.bbrc.2018.09.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/16/2023]
|
68
|
Abstract
The chemical treatment of cancer started with the realization that DNA damaging agents such as mustard gas present notable antitumoural properties. Consequently, early drug development focused on genotoxic chemicals, some of which are still widely used in the clinic. However, the efficacy of such therapies is often limited by the side effects of these drugs on healthy cells. A refinement to this approach is to use compounds that can exploit the presence of DNA damage in cancer cells. Given that replication stress (RS) is a major source of genomic instability in cancer, targeting the RS-response kinase ataxia telangiectasia and Rad3-related protein (ATR) has emerged as a promising alternative. With ATR inhibitors now entering clinical trials, we here revisit the biology behind this strategy and discuss potential biomarkers that could be used for a better selection of patients who respond to therapy.
Collapse
Affiliation(s)
- Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
69
|
Komura K, Yoshikawa Y, Shimamura T, Chakraborty G, Gerke TA, Hinohara K, Chadalavada K, Jeong SH, Armenia J, Du SY, Mazzu YZ, Taniguchi K, Ibuki N, Meyer CA, Nanjangud GJ, Inamoto T, Lee GSM, Mucci LA, Azuma H, Sweeney CJ, Kantoff PW. ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D. J Clin Invest 2018; 128:2979-2995. [PMID: 29863497 DOI: 10.1172/jci96769] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modifications control cancer development and clonal evolution in various cancer types. Here, we show that loss of the male-specific histone demethylase lysine-specific demethylase 5D (KDM5D) encoded on the Y chromosome epigenetically modifies histone methylation marks and alters gene expression, resulting in aggressive prostate cancer. Fluorescent in situ hybridization demonstrated that segmental or total deletion of the Y chromosome in prostate cancer cells is one of the causes of decreased KDM5D mRNA expression. The result of ChIP-sequencing analysis revealed that KDM5D preferably binds to promoter regions with coenrichment of the motifs of crucial transcription factors that regulate the cell cycle. Loss of KDM5D expression with dysregulated H3K4me3 transcriptional marks was associated with acceleration of the cell cycle and mitotic entry, leading to increased DNA-replication stress. Analysis of multiple clinical data sets reproducibly showed that loss of expression of KDM5D confers a poorer prognosis. Notably, we also found stress-induced DNA damage on the serine/threonine protein kinase ATR with loss of KDM5D. In KDM5D-deficient cells, blocking ATR activity with an ATR inhibitor enhanced DNA damage, which led to subsequent apoptosis. These data start to elucidate the biological characteristics resulting from loss of KDM5D and also provide clues for a potential novel therapeutic approach for this subset of aggressive prostate cancer.
Collapse
Affiliation(s)
- Kazumasa Komura
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Urology and.,Translational Research Program, Osaka Medical College, Osaka, Japan
| | - Yuki Yoshikawa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Urology and
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Travis A Gerke
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Kunihiko Hinohara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kalyani Chadalavada
- Molecular Cytogenetics Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Seong Ho Jeong
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Joshua Armenia
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shin-Yi Du
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ying Z Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical College, Osaka, Japan.,Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka, Japan
| | | | - Clifford A Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gouri J Nanjangud
- Molecular Cytogenetics Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Christopher J Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
70
|
Huang D, jin L, Li Z, Wu J, Zhang N, Zhou D, Ni X, Hou T. Isoorientin triggers apoptosis of hepatoblastoma by inducing DNA double-strand breaks and suppressing homologous recombination repair. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
71
|
Amodio N, Stamato MA, Juli G, Morelli E, Fulciniti M, Manzoni M, Taiana E, Agnelli L, Cantafio MEG, Romeo E, Raimondi L, Caracciolo D, Zuccalà V, Rossi M, Neri A, Munshi NC, Tagliaferri P, Tassone P. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia 2018; 32:1948-1957. [PMID: 29487387 PMCID: PMC6127082 DOI: 10.1038/s41375-018-0067-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/21/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022]
Abstract
The biological role and therapeutic potential of long non-coding RNAs (lncRNAs) in multiple myeloma (MM) are still to be investigated. Here, we studied the functional significance and the druggability of the oncogenic lncRNA MALAT1 in MM. Targeting MALAT1 by novel LNA-gapmeR antisense oligonucleotide antagonized MM cell proliferation and triggered apoptosis both in vitro and in vivo in a murine xenograft model of human MM. Of note, antagonism of MALAT1 downmodulated the two major transcriptional activators of proteasome subunit genes, namely NRF1 and NRF2, and resulted in reduced trypsin, chymotrypsin and caspase-like proteasome activities and in accumulation of polyubiquitinated proteins. NRF1 and NRF2 decrease upon MALAT1 targeting was due to transcriptional activation of their negative regulator KEAP1, and resulted in reduced expression of anti-oxidant genes and increased ROS levels. In turn, NRF1 promoted MALAT1 expression thus establishing a positive feedback loop. Our findings demonstrate a crucial role of MALAT1 in the regulation of the proteasome machinery, and provide proof-of-concept that its targeting is a novel powerful option for the treatment of MM.
Collapse
Affiliation(s)
- Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Angelica Stamato
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Eugenio Morelli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martina Manzoni
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Agnelli
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Enrica Romeo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Lavinia Raimondi
- Laboratory of Tissue Engineering, Rizzoli Orthopedic Institute, Palermo, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nikhil C Munshi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,VA Boston Healthcare System, West Roxbury, Boston, MA, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy. .,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
72
|
Dytfeld D, Luczak M, Wrobel T, Usnarska-Zubkiewicz L, Brzezniakiewicz K, Jamroziak K, Giannopoulos K, Przybylowicz-Chalecka A, Ratajczak B, Czerwinska-Rybak J, Nowicki A, Joks M, Czechowska E, Zawartko M, Szczepaniak T, Grzasko N, Morawska M, Bochenek M, Kubicki T, Morawska M, Tusznio K, Jakubowiak A, Komarnicki MA. Comparative proteomic profiling of refractory/relapsed multiple myeloma reveals biomarkers involved in resistance to bortezomib-based therapy. Oncotarget 2018; 7:56726-56736. [PMID: 27527861 PMCID: PMC5302948 DOI: 10.18632/oncotarget.11059] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022] Open
Abstract
Identifying biomarkers of the resistance in multiple myeloma (MM) is a key research challenge. We aimed to identify proteins that differentiate plasma cells in patients with refractory/relapsed MM (RRMM) who achieved at least very good partial response (VGPR) and in those with reduced response to PAD chemotherapy (bortezomib, doxorubicin and dexamethasone). Comparative proteomic analysis was conducted on pretreatment plasma cells from 77 proteasome inhibitor naïve patients treated subsequently with PAD due to RRMM. To increase data confidence we used two independent proteomic platforms: isobaric Tags for Relative and Absolute Quantitation (iTRAQ) and label free (LF). Proteins were considered as differentially expressed when their accumulation between groups differed by at least 50% in iTRAQ and LF. The proteomic signature revealed 118 proteins (35 up-regulated and 83 down-regulated in ≥ VGPR group). Proteins were classified into four classes: (1) involved in proteasome function; (2) involved in the response to oxidative stress; (3) related to defense response; and (4) regulating the apoptotic process. We confirmed the differential expression of proteasome activator complex subunit 1 (PSME1) by enzyme-linked immunosorbent assay. Increased expression of proteasomes and proteins involved in protection from oxidative stress (eg., TXN, TXNDC5) plays a major role in bortezomib resistance.
Collapse
Affiliation(s)
- Dominik Dytfeld
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.,Researchers of Polish Myeloma Consortium
| | - Magdalena Luczak
- nstitute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Tomasz Wrobel
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland.,Researchers of Polish Myeloma Consortium
| | - Lidia Usnarska-Zubkiewicz
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Brzezniakiewicz
- Department of Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland.,Researchers of Polish Myeloma Consortium
| | - Krzysztof Jamroziak
- Institute of Hematology and Transfusiology, Warsaw, Poland.,Researchers of Polish Myeloma Consortium
| | - Krzysztof Giannopoulos
- Experimental Hematooncology Department, Medical University of Lublin and Hematology Department, St John's Cancer Center in Lublin, Lublin, Poland.,Researchers of Polish Myeloma Consortium
| | - Anna Przybylowicz-Chalecka
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Blazej Ratajczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Czerwinska-Rybak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Adam Nowicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.,Researchers of Polish Myeloma Consortium
| | - Monika Joks
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.,Researchers of Polish Myeloma Consortium
| | - Elzbieta Czechowska
- Department of Internal Medicine and Hematology, StanisÅaw Staszic Specialist Hospital, PiÅa, Poland.,Researchers of Polish Myeloma Consortium
| | | | - Tomasz Szczepaniak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.,Researchers of Polish Myeloma Consortium
| | - Norbert Grzasko
- Experimental Hematooncology Department, Medical University of Lublin and Hematology Department, St John's Cancer Center in Lublin, Lublin, Poland.,Researchers of Polish Myeloma Consortium
| | - Marta Morawska
- Experimental Hematooncology Department, Medical University of Lublin and Hematology Department, St John's Cancer Center in Lublin, Lublin, Poland.,Researchers of Polish Myeloma Consortium
| | - Maciej Bochenek
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Tadeusz Kubicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Michalina Morawska
- Department of Hematology, Hospital in Gorzow Wlkp, Gorzow Wlkp, Poland.,Researchers of Polish Myeloma Consortium
| | | | | | - MieczysÅ Aw Komarnicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
73
|
Kwan SY, Cheng X, Tsang YTM, Choi JS, Kwan SY, Izaguirre DI, Kwan HS, Gershenson DM, Wong KK. Loss of ARID1A expression leads to sensitivity to ROS-inducing agent elesclomol in gynecologic cancer cells. Oncotarget 2018; 7:56933-56943. [PMID: 27486766 PMCID: PMC5302963 DOI: 10.18632/oncotarget.10921] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/18/2016] [Indexed: 12/14/2022] Open
Abstract
Inactivating mutations in ARID1A are found in a broad spectrum of cancer types, with the highest frequency in gynecologic cancers. However, therapeutic strategies targeting ARID1A-mutant cancer cells remain limited. In this study, we aimed to identify drugs sensitivities in ARID1A-mutant cancer cell lines. By analyzing the Genomics of Drug Sensitivity in Cancer database, we found that ARID1A-mutant cancer cell lines were more sensitive to treatment with the reactive oxygen species (ROS)-inducing agent elesclomol. In a panel of 14 gynecologic cancer cell lines, treatment with elesclomol inhibited growth and induced apoptosis more potently in ARID1A-mutant cells. Knockdown of ARID1A in RMG1 and OVCA432 ovarian cancer cells resulted in increased sensitivity to elesclomol, whereas restoration of ARID1A expression in TOV21G ovarian cancer cells resulted in increased resistance to elesclomol. Furthermore, we found that knockdown of ARID1A expression resulted in increased intracellular ROS levels. In ovarian clear cell carcinoma patient samples, low expression of ARID1A correlated with high expression of 8-hydroxyguanosine, a marker for oxidative stress. In summary, we demonstrate for the first time that loss of ARID1A leads to accumulation of ROS and suggest that elesclomol may be used to target ARID1A-mutant gynecologic cancer cells.
Collapse
Affiliation(s)
- Suet-Yan Kwan
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Xuanjin Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yvonne T M Tsang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jong-Sun Choi
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The Center for Anti-cancer Companion Diagnostics, Institutes of Entrepreneurial BioConvergence, Seoul National University, Gwanak-Gu, Seoul, Korea
| | - Suet-Ying Kwan
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Daisy I Izaguirre
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Hoi-Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - David M Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
74
|
Nieto-Soler M, Morgado-Palacin I, Lafarga V, Lecona E, Murga M, Callen E, Azorin D, Alonso J, Lopez-Contreras AJ, Nussenzweig A, Fernandez-Capetillo O. Efficacy of ATR inhibitors as single agents in Ewing sarcoma. Oncotarget 2018; 7:58759-58767. [PMID: 27577084 PMCID: PMC5312273 DOI: 10.18632/oncotarget.11643] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 01/22/2023] Open
Abstract
Ewing sarcomas (ES) are pediatric bone tumors that arise from a driver translocation, most frequently EWS/FLI1. Current ES treatment involves DNA damaging agents, yet the basis for the sensitivity to these therapies remains unknown. Oncogene-induced replication stress (RS) is a known source of endogenous DNA damage in cancer, which is suppressed by ATR and CHK1 kinases. We here show that ES suffer from high endogenous levels of RS, rendering them particularly dependent on the ATR pathway. Accordingly, two independent ATR inhibitors show in vitro toxicity in ES cell lines as well as in vivo efficacy in ES xenografts as single agents. Expression of EWS/FLI1 or EWS/ERG oncogenic translocations sensitizes non-ES cells to ATR inhibitors. Our data shed light onto the sensitivity of ES to genotoxic agents, and identify ATR inhibitors as a potential therapy for Ewing Sarcomas.
Collapse
Affiliation(s)
- Maria Nieto-Soler
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Isabel Morgado-Palacin
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Daniel Azorin
- Department of Pathology, Hospital Universitario Niño Jesus, Madrid, Spain
| | - Javier Alonso
- Pediatric Solid Tumor Laboratory, Institute of Rare Disease Research, ISCIII, Madrid, Spain
| | - Andres J Lopez-Contreras
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Denmark
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
75
|
Carey JPW, Karakas C, Bui T, Chen X, Vijayaraghavan S, Zhao Y, Wang J, Mikule K, Litton JK, Hunt KK, Keyomarsi K. Synthetic Lethality of PARP Inhibitors in Combination with MYC Blockade Is Independent of BRCA Status in Triple-Negative Breast Cancer. Cancer Res 2017; 78:742-757. [PMID: 29180466 DOI: 10.1158/0008-5472.can-17-1494] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/29/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients. Several of those patients exhibit intrinsic/acquired resistance mechanisms that limit efficacy of PARPi monotherapy. Here we show how the efficacy of PARPi in triple-negative breast cancers (TNBC) can be expanded by targeting MYC-induced oncogenic addiction. In BRCA-mutant/sporadic TNBC patients, amplification of the MYC gene is correlated with increased expression of the homologous DNA recombination enzyme RAD51 and tumors overexpressing both genes are associated with worse overall survival. Combining MYC blockade with PARPi yielded synthetic lethality in MYC-driven TNBC cells. Using the cyclin-dependent kinase inhibitor dinaciclib, which downregulates MYC expression, we found that combination with the PARPi niraparib increased DNA damage and downregulated homologous recombination, leading to subsequent downregulation of the epithelial-mesenchymal transition and cancer stem-like cell phenotypes. Notably, dinaciclib resensitized TBNC cells, which had acquired resistance to niraparib. We found that the synthetic lethal strategy employing dinaciclib and niraparib was also highly efficacious in ovarian, prostate, pancreatic, colon, and lung cancer cells. Taken together, our results show how blunting MYC oncogene addiction can leverage cancer cell sensitivity to PARPi, facilitating the clinical use of c-myc as a predictive biomarker for this treatment.Significance: Dual targeting of MYC-regulated homologous recombination and PARP-mediated DNA repair yields potent synthetic lethality in triple-negative breast tumors and other aggressive tumors characterized by MYC overexpression. Cancer Res; 78(3); 742-57. ©2017 AACR.
Collapse
Affiliation(s)
- Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tuyen Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Smruthi Vijayaraghavan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith Mikule
- Tesaro Biopharmaceuticals, Waltham, Massacheusetts
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
76
|
Cagnetta A, Soncini D, Orecchioni S, Talarico G, Minetto P, Guolo F, Retali V, Colombo N, Carminati E, Clavio M, Miglino M, Bergamaschi M, Nahimana A, Duchosal M, Todoerti K, Neri A, Passalacqua M, Bruzzone S, Nencioni A, Bertolini F, Gobbi M, Lemoli RM, Cea M. Depletion of SIRT6 enzymatic activity increases acute myeloid leukemia cells' vulnerability to DNA-damaging agents. Haematologica 2017; 103:80-90. [PMID: 29025907 PMCID: PMC5777193 DOI: 10.3324/haematol.2017.176248] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022] Open
Abstract
Genomic instability plays a pathological role in various malignancies, including acute myeloid leukemia (AML), and thus represents a potential therapeutic target. Recent studies demonstrate that SIRT6, a NAD+-dependent nuclear deacetylase, functions as genome-guardian by preserving DNA integrity in different tumor cells. Here, we demonstrate that also CD34+ blasts from AML patients show ongoing DNA damage and SIRT6 overexpression. Indeed, we identified a poor-prognostic subset of patients, with widespread instability, which relies on SIRT6 to compensate for DNA-replication stress. As a result, SIRT6 depletion compromises the ability of leukemia cells to repair DNA double-strand breaks that, in turn, increases their sensitivity to daunorubicin and Ara-C, both in vitro and in vivo In contrast, low SIRT6 levels observed in normal CD34+ hematopoietic progenitors explain their weaker sensitivity to genotoxic stress. Intriguingly, we have identified DNA-PKcs and CtIP deacetylation as crucial for SIRT6-mediated DNA repair. Together, our data suggest that inactivation of SIRT6 in leukemia cells leads to disruption of DNA-repair mechanisms, genomic instability and aggressive AML. This synthetic lethal approach, enhancing DNA damage while concomitantly blocking repair responses, provides the rationale for the clinical evaluation of SIRT6 modulators in the treatment of leukemia.
Collapse
Affiliation(s)
- Antonia Cagnetta
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Debora Soncini
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | | | | | - Paola Minetto
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Fabio Guolo
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Veronica Retali
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Nicoletta Colombo
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Enrico Carminati
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Marino Clavio
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Maurizio Miglino
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Micaela Bergamaschi
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Switzerland
| | - Michel Duchosal
- Service and Central Laboratory of Hematology, University Hospital of Lausanne, Switzerland
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.,Hematology Unit, Fondazione Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Italy and
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, Italy and
| | - Alessio Nencioni
- Hematology Unit, Policlinico San Martino, Genova, Italy.,Department of Internal Medicine, University of Genova, Italy
| | | | - Marco Gobbi
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Roberto M Lemoli
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy.,Hematology Unit, Policlinico San Martino, Genova, Italy
| | - Michele Cea
- Chair of Hematology, Department of Internal Medicine (DiMI), University of Genova, Italy .,Hematology Unit, Policlinico San Martino, Genova, Italy
| |
Collapse
|
77
|
Marchesini M, Fiorini E, Colla S. RNA processing: a new player of genomic instability in multiple myeloma. Oncoscience 2017; 4:73-74. [PMID: 28966938 PMCID: PMC5616198 DOI: 10.18632/oncoscience.361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 02/04/2023] Open
Affiliation(s)
- Matteo Marchesini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elena Fiorini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
78
|
Manni S, Carrino M, Piazza F. Role of protein kinases CK1α and CK2 in multiple myeloma: regulation of pivotal survival and stress-managing pathways. J Hematol Oncol 2017; 10:157. [PMID: 28969692 PMCID: PMC5625791 DOI: 10.1186/s13045-017-0529-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/22/2017] [Indexed: 01/07/2023] Open
Abstract
Multiple myeloma (MM) is a malignant tumor of transformed plasma cells. MM pathogenesis is a multistep process. This cancer can occur de novo (rarely) or it can develop from monoclonal gammopathy of undetermined significance (most of the cases). MM can be asymptomatic (smoldering myeloma) or clinically active. Malignant plasma cells exploit intrinsic and extrinsic bone marrow microenvironment-derived growth signals. Upregulation of stress-coping pathways is also instrumental to maintain MM cell growth. The phylogenetically related Ser/Thr kinases CSNK1A1 (CK1α) and CSNK2 (CK2) have recently gained a growing importance in hematologic malignancies arising both from precursors and from mature blood cells. In multiple myeloma, CK1α or CK2 sustain oncogenic cascades, such as the PI3K/AKT, JAK/STAT, and NF-κB, as well as propel stress-related signaling that help in coping with different noxae. Data also suggest that these kinases modulate the delivery of growth factors and cytokines from the bone marrow stroma. The “non-oncogene addiction” phenotype generated by the increased activity of CK1α and CK2 in multiple myeloma contributes to malignant plasma cell proliferation and survival and represents an Achilles’ heel for the activity of small ATP competitive CK1α or CK2 inhibitors.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine, Hematology Section, University of Padova, Via Giustiniani 2, 35128, Padova, Italy. .,Venetian Institute of Molecular Medicine, Padova, Italy.
| | - Marilena Carrino
- Department of Medicine, Hematology Section, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology Section, University of Padova, Via Giustiniani 2, 35128, Padova, Italy. .,Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
79
|
Green AM, Budagyan K, Hayer KE, Reed MA, Savani MR, Wertheim GB, Weitzman MD. Cytosine Deaminase APOBEC3A Sensitizes Leukemia Cells to Inhibition of the DNA Replication Checkpoint. Cancer Res 2017; 77:4579-4588. [PMID: 28655787 PMCID: PMC5581702 DOI: 10.1158/0008-5472.can-16-3394] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/18/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022]
Abstract
Mutational signatures in cancer genomes have implicated the APOBEC3 cytosine deaminases in oncogenesis, possibly offering a therapeutic vulnerability. Elevated APOBEC3B expression has been detected in solid tumors, but expression of APOBEC3A (A3A) in cancer has not been described to date. Here, we report that A3A is highly expressed in subsets of pediatric and adult acute myelogenous leukemia (AML). We modeled A3A expression in the THP1 AML cell line by introducing an inducible A3A gene. A3A expression caused ATR-dependent phosphorylation of Chk1 and cell-cycle arrest, consistent with replication checkpoint activation. Further, replication checkpoint blockade via small-molecule inhibition of ATR kinase in cells expressing A3A led to apoptosis and cell death. Although DNA damage checkpoints are broadly activated in response to A3A activity, synthetic lethality was specific to ATR signaling via Chk1 and did not occur with ATM inhibition. Our findings identify elevation of A3A expression in AML cells, enabling apoptotic sensitivity to inhibitors of the DNA replication checkpoint and suggesting it as a candidate biomarker for ATR inhibitor therapy. Cancer Res; 77(17); 4579-88. ©2017 AACR.
Collapse
Affiliation(s)
- Abby M Green
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Konstantin Budagyan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Katharina E Hayer
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Morgann A Reed
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Milan R Savani
- University of Pennsylvania College of Arts and Sciences, Philadelphia, Pennsylvania
| | - Gerald B Wertheim
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Matthew D Weitzman
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
80
|
Trap Seq: An RNA Sequencing-Based Pipeline for the Identification of Gene-Trap Insertions in Mammalian Cells. J Mol Biol 2017; 429:2780-2789. [PMID: 28782559 DOI: 10.1016/j.jmb.2017.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/19/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022]
Abstract
The development of haploid mammalian cell lines, coupled to next-generation sequencing, has recently facilitated forward genetic screenings in mammals. For mutagenesis, retrovirus- or transposon-based gene traps are frequently used. Current methods to map gene-trap insertions are based on inverse or splinkerette PCR, which despite their efficacy are prone to artifacts and do not provide information on expression of the targeted gene. Here, we describe a new RNA sequencing-based method (TrapSeq) to map gene-trap insertions. By recognizing chimeric mRNAs containing gene-trap sequences spliced to an exon, our method identifies insertions that lead to productive trapping. When applied to individual mutant clones, our method provides a fast and cost-effective way that not only identifies the insertion site but also reveals its impact on the expression of the trapped gene. As proof of principle, we conducted two independent screenings for resistance against 6-thioguanine and an ATR inhibitor, which identified mutations known to provide resistance to these reagents and revealed ECT2 as a novel determinant for the sensitivity to ATR inhibition.
Collapse
|
81
|
Arihara Y, Takada K, Kamihara Y, Hayasaka N, Nakamura H, Murase K, Ikeda H, Iyama S, Sato T, Miyanishi K, Kobune M, Kato J. Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma. Oncotarget 2017; 8:65889-65899. [PMID: 29029480 PMCID: PMC5630380 DOI: 10.18632/oncotarget.19508] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/29/2017] [Indexed: 01/23/2023] Open
Abstract
Reactive oxygen species (ROS) are normal byproducts of a wide variety of cellular processes. ROS have dual functional roles in cancer cell pathophysiology. At low to moderate levels, ROS act as signaling transducers to activate cell proliferation, migration, invasion, and angiogenesis. In contrast, high levels of ROS induce cell death. In multiple myeloma (MM), ROS overproduction is the trigger for apoptosis induced by several anticancer compounds, including proteasome inhibitors. However, no drugs for which oxidative stress is the main mechanism of action are currently used for treatment of MM in clinical situations. In this study, we demonstrate that the p53-activating small molecule CP-31398 (CP) effectively inhibits the growth of MM cell lines and primary MM isolates from patients. CP also suppresses the growth of MM xenografts in mice. Mechanistically, CP was found to induce intrinsic apoptosis in MM cells via increasing ROS production. Interestingly, CP-induced apoptosis occurs regardless of the p53 status, suggesting that CP has additional mechanisms of action. Our findings thus indicate that CP could be an attractive candidate for treatment of MM patients harboring p53 abnormalities; this satisfies an unmet clinical need, as such individuals currently have a poor prognosis.
Collapse
Affiliation(s)
- Yohei Arihara
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusuke Kamihara
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naotaka Hayasaka
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hajime Nakamura
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuyuki Murase
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ikeda
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Iyama
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsutomu Sato
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masayoshi Kobune
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junji Kato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
82
|
Marchesini M, Ogoti Y, Fiorini E, Aktas Samur A, Nezi L, D'Anca M, Storti P, Samur MK, Ganan-Gomez I, Fulciniti MT, Mistry N, Jiang S, Bao N, Marchica V, Neri A, Bueso-Ramos C, Wu CJ, Zhang L, Liang H, Peng X, Giuliani N, Draetta G, Clise-Dwyer K, Kantarjian H, Munshi N, Orlowski R, Garcia-Manero G, DePinho RA, Colla S. ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma. Cancer Cell 2017; 32:88-100.e6. [PMID: 28669490 PMCID: PMC5593798 DOI: 10.1016/j.ccell.2017.05.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/20/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage. The intimate link between 1q21-amplified ILF2 and the regulation of RNA splicing of DNA repair genes may be exploited to optimize the use of DNA-damaging agents in patients with high-risk MM.
Collapse
Affiliation(s)
- Matteo Marchesini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yamini Ogoti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elena Fiorini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil Aktas Samur
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Luigi Nezi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marianna D'Anca
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Storti
- Department of Clinical and Experimental Medicine, University of Parma, Parma 43100, Italy
| | - Mehmet Kemal Samur
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Teresa Fulciniti
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Nipun Mistry
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naran Bao
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Valentina Marchica
- Department of Clinical and Experimental Medicine, University of Parma, Parma 43100, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milano, Milan 20122, Italy
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Cancer Center, Houston, TX 77030, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinxin Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicola Giuliani
- Department of Clinical and Experimental Medicine, University of Parma, Parma 43100, Italy
| | - Giulio Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikhil Munshi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Robert Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Cancer Center, Houston, TX 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
83
|
Herrero AB, Gutiérrez NC. Targeting Ongoing DNA Damage in Multiple Myeloma: Effects of DNA Damage Response Inhibitors on Plasma Cell Survival. Front Oncol 2017; 7:98. [PMID: 28580318 PMCID: PMC5437203 DOI: 10.3389/fonc.2017.00098] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/01/2017] [Indexed: 11/20/2022] Open
Abstract
Human myeloma cell lines (HMCLs) and a subset of myeloma patients with poor prognosis exhibit high levels of replication stress (RS), leading to DNA damage. In this study, we confirmed the presence of DNA double-strand breaks (DSBs) in several HMCLs by measuring γH2AX and RAD51 foci and analyzed the effect of various inhibitors of the DNA damage response on MM cell survival. Inhibition of ataxia telangiectasia and Rad3-related protein (ATR), the main kinase mediating the response to RS, using the specific inhibitor VE-821 induced more cell death in HMCLs than in control lymphoblastoid cells and U266, an HMCL with a low level of DNA damage. The absence of ATR was partially compensated by ataxia telangiectasia-mutated protein (ATM), since chemical inhibition of both kinases using VE-821 and KU-55933 significantly increased the death of MM cells with DNA damage. We found that ATM and ATR are involved in DSB repair by homologous recombination (HR) in MM. Inhibition of both kinases resulted in a stronger inhibition that may underlie cell death induction, since abolition of HR using two different inhibitors severely reduced survival of HMCLs that exhibit DNA damage. On the other hand, inhibition of the other route involved in DSB repair, non-homologous end joining (NHEJ), using the DNA-PK inhibitor NU7441, did not affect MM cell viability. Interestingly, we found that NHEJ inhibition did not increase cell death when HR was simultaneously inhibited with the RAD51 inhibitor B02, but it clearly increased the level of cell death when HR was inhibited with the MRE11 inhibitor mirin, which interferes with recombination before DNA resection takes place. Taken together, our results demonstrate for the first time that MM cells with ongoing DNA damage rely on an intact HR pathway, which thereby suggests therapeutic opportunities. We also show that inhibition of HR after the initial step of end resection might be more appropriate for inducing MM cell death, since it prevents the occurrence of a compensatory NHEJ repair mechanism. These preclinical observations provide the rationale for its clinical evaluation.
Collapse
Affiliation(s)
- Ana Belén Herrero
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Norma Carmen Gutiérrez
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| |
Collapse
|
84
|
Das DS, Das A, Ray A, Song Y, Samur MK, Munshi NC, Chauhan D, Anderson KC. Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells. Clin Cancer Res 2017; 23:4280-4289. [PMID: 28270494 DOI: 10.1158/1078-0432.ccr-16-2692] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/04/2017] [Accepted: 03/01/2017] [Indexed: 11/16/2022]
Abstract
Purpose: The ubiquitin proteasome pathway is a validated therapeutic target in multiple myeloma. Deubiquitylating enzyme USP1 participates in DNA damage response and cellular differentiation pathways. To date, the role of USP1 in multiple myeloma biology is not defined. In the present study, we investigated the functional significance of USP1 in multiple myeloma using genetic and biochemical approaches.Experimental Design: To investigate the role of USP1 in myeloma, we utilized USP1 inhibitor SJB3-019A (SJB) for studies in myeloma cell lines and patient multiple myeloma cells.Results: USP1-siRNA knockdown decreases multiple myeloma cell viability. USP1 inhibitor SJB selectively blocks USP1 enzymatic activity without blocking other DUBs. SJB also decreases the viability of multiple myeloma cell lines and patient tumor cells, inhibits bone marrow plasmacytoid dendritic cell-induced multiple myeloma cell growth, and overcomes bortezomib resistance. SJB triggers apoptosis in multiple myeloma cells via activation of caspase-3, caspase-8, and caspase-9. Moreover, SJB degrades USP1 and downstream inhibitor of DNA-binding proteins as well as inhibits DNA repair via blockade of Fanconi anemia pathway and homologous recombination. SJB also downregulates multiple myeloma stem cell renewal/survival-associated proteins Notch-1, Notch-2, SOX-4, and SOX-2. Moreover, SJB induced generation of more mature and differentiated plasma cells. Combination of SJB and HDACi ACY-1215, bortezomib, lenalidomide, or pomalidomide triggers synergistic cytotoxicity.Conclusions: Our preclinical studies provide the framework for clinical evaluation of USP1 inhibitors, alone or in combination, as a potential novel multiple myeloma therapy. Clin Cancer Res; 23(15); 4280-9. ©2017 AACR.
Collapse
Affiliation(s)
- Deepika Sharma Das
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Abhishek Das
- Program in Cellular and Molecular Medicine, Children's Hospital, Boston, Massachusetts
| | - Arghya Ray
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yan Song
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mehmet Kemal Samur
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dharminder Chauhan
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
85
|
RECQ1 helicase is involved in replication stress survival and drug resistance in multiple myeloma. Leukemia 2017; 31:2104-2113. [PMID: 28186131 PMCID: PMC5629372 DOI: 10.1038/leu.2017.54] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/29/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a plasma cell cancer with poor survival, characterized by the expansion of multiple myeloma cells (MMCs) in the bone marrow. Using a microarray-based genome-wide screen for genes responding to DNA methyltransferases (DNMT) inhibition in MM cells, we identified RECQ1 among the most downregulated genes. RecQ helicases are DNA unwinding enzymes involved in the maintenance of chromosome stability. Here we show that RECQ1 is significantly overexpressed in MMCs compared to normal plasma cells and that increased RECQ1 expression is associated with poor prognosis in three independent cohorts of patients. Interestingly, RECQ1 knockdown inhibits cells growth and induces apoptosis in MMCs. Moreover, RECQ1 depletion promotes the development of DNA double-strand breaks, as evidenced by the formation of 53BP1 foci and the phosphorylation of ataxia-telangiectasia mutated (ATM) and histone variant H2A.X (H2AX). In contrast, RECQ1 overexpression protects MMCs from melphalan and bortezomib cytotoxicity. RECQ1 interacts with PARP1 in MMCs exposed to treatment and RECQ1 depletion sensitizes MMCs to poly(ADP-ribose) polymerase (PARP) inhibitor. DNMT inhibitor treatment results in RECQ1 downregulation through miR-203 deregulation in MMC. Altogether, these data suggest that association of DNA damaging agents and/or PARP inhibitors with DNMT inhibitors may represent a therapeutic approach in patients with high RECQ1 expression associated with a poor prognosis.
Collapse
|
86
|
p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood 2017; 129:1308-1319. [PMID: 28082445 DOI: 10.1182/blood-2016-09-738500] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/28/2016] [Indexed: 12/26/2022] Open
Abstract
p53-related protein kinase (TP53RK, also known as PRPK) is an upstream kinase that phosphorylates (serine residue Ser15) and mediates p53 activity. Here we show that TP53RK confers poor prognosis in multiple myeloma (MM) patients, and, conversely, that TP53RK knockdown inhibits p53 phosphorylation and triggers MM cell apoptosis, associated with downregulation of c-Myc and E2F-1-mediated upregulation of pro-apoptotic Bim. We further demonstrate that TP53RK downregulation also triggers growth inhibition in p53-deficient and p53-mutant MM cell lines and identify novel downstream targets of TP53RK including ribonucleotide reductase-1, telomerase reverse transcriptase, and cyclin-dependent kinase inhibitor 2C. Our previous studies showed that immunomodulatory drugs (IMiDs) downregulate p21 and trigger apoptosis in wild-type-p53 MM.1S cells, Importantly, we demonstrate by pull-down, nuclear magnetic resonance spectroscopy, differential scanning fluorimetry, and isothermal titration calorimetry that IMiDs bind and inhibit TP53RK, with biologic sequelae similar to TP53RK knockdown. Our studies therefore demonstrate that either genetic or pharmacological inhibition of TP53RK triggers MM cell apoptosis via both p53-Myc axis-dependent and axis-independent pathways, validating TP53RK as a novel therapeutic target in patients with poor-prognosis MM.
Collapse
|
87
|
Wang Y, Chang J, Liu X, Zhang X, Zhang S, Zhang X, Zhou D, Zheng G. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY) 2016; 8:2915-2926. [PMID: 27913811 PMCID: PMC5191878 DOI: 10.18632/aging.101100] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/04/2016] [Indexed: 04/16/2023]
Abstract
Accumulating evidence indicates that senescent cells play an important role in many age-associated diseases. The pharmacological depletion of senescent cells (SCs) with a "senolytic agent", a small molecule that selectively kills SCs, is a potential novel therapeutic approach for these diseases. Recently, we discovered ABT-263, a potent and highly selective senolytic agent, by screening a library of rationally-selected compounds. With this screening approach, we also identified a second senolytic agent called piperlongumine (PL). PL is a natural product that is reported to have many pharmacological effects, including anti-tumor activity. We show here that PL preferentially killed senescent human WI-38 fibroblasts when senescence was induced by ionizing radiation, replicative exhaustion, or ectopic expression of the oncogene Ras. PL killed SCs by inducing apoptosis, and this process did not require the induction of reactive oxygen species. In addition, we found that PL synergistically killed SCs in combination with ABT-263, and initial structural modifications to PL identified analogs with improved potency and/or selectivity in inducing SC death. Overall, our studies demonstrate that PL is a novel lead for developing senolytic agents.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jianhui Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xingui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xuan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Suping Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xin Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
88
|
Anderson KC. Progress and Paradigms in Multiple Myeloma. Clin Cancer Res 2016; 22:5419-5427. [PMID: 28151709 PMCID: PMC5300651 DOI: 10.1158/1078-0432.ccr-16-0625] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
Remarkable progress has been achieved in multiple myeloma, and patient median survival has been extended 3- to 4-fold. Specifically, there have been 18 newly approved treatments for multiple myeloma in the past 12 years, including seven in 2015, and the treatment paradigm and patient outcome have been transformed. The definition of patients benefitting from these therapies has been broadened. Response criteria now include minimal residual disease (MRD), assessed in bone marrow by multicolor flow cytometry or sequencing, and by imaging for extramedullary disease. Initial therapy for transplant candidates is a triplet incorporating novel therapies-that is, lenalidomide, bortezomib, and dexamethasone or cyclophosphamide, bortezomib, and dexamethasone. Lenalidomide maintenance until progression can prolong progression-free and overall survival in standard-risk multiple myeloma, with incorporation of proteasome inhibitor for high-risk disease. Studies are evaluating the value of early versus late transplant and MRD as a therapeutic goal to inform therapy. In nontransplant patients, triplet therapies are also preferred, with doublet therapy reserved for frail patients, and maintenance as described above. The availability of second-generation proteasome inhibitors (carfilzomib and ixazomib), immunomodulatory drugs (pomalidomide), histone deacetylase inhibitors (panobinostat), and monoclonal antibodies (elotuzumab and daratumumab) allows for effective combination therapies of relapsed disease as well. Finally, novel therapies targeting protein degradation, restoring autologous memory anti-multiple myeloma immunity, and exploiting genetic vulnerabilities show promise to improve patient outcome even further. Clin Cancer Res; 22(22); 5419-27. ©2016 AACR SEE ALL ARTICLES IN THIS CCR FOCUS SECTION, "MULTIPLE MYELOMA MULTIPLYING THERAPIES".
Collapse
Affiliation(s)
- Kenneth C Anderson
- Division of Hematologic Malignancy, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
89
|
Wu K, Li L, Thakur C, Lu Y, Zhang X, Yi Z, Chen F. Proteomic Characterization of the World Trade Center dust-activated mdig and c-myc signaling circuit linked to multiple myeloma. Sci Rep 2016; 6:36305. [PMID: 27833099 PMCID: PMC5105131 DOI: 10.1038/srep36305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/12/2016] [Indexed: 12/30/2022] Open
Abstract
Several epidemiological studies suggested an increased incidence rate of multiple myeloma (MM) among first responders and other individuals who exposed to World Trade Center (WTC) dust. In this report, we provided evidence showing that WTC dust is potent in inducing mdig protein and/or mRNA in bronchial epithelial cells, B cells and MM cell lines. An increased mdig expression in MM bone marrow was observed, which is associated with the disease progression and prognosis of the MM patients. Through integrative genomics and proteomics approaches, we further demonstrated that mdig directly interacts with c-myc and JAK1 in MM cell lines, which contributes to hyperactivation of the IL-6-JAK-STAT3 signaling important for the pathogenesis of MM. Genetic silencing of mdig reduced activity of the major downstream effectors in the IL-6-JAK-STAT3 pathway. Taken together, these data suggest that WTC dust may be one of the key etiological factors for those who had been exposed for the development of MM by activating mdig and c-myc signaling circuit linked to the IL-6-JAK-STAT3 pathway essential for the tumorigenesis of the malignant plasma cells.
Collapse
Affiliation(s)
- Kai Wu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| |
Collapse
|
90
|
Morgado-Palacin I, Day A, Murga M, Lafarga V, Anton ME, Tubbs A, Chen HT, Ergan A, Anderson R, Bhandoola A, Pike KG, Barlaam B, Cadogan E, Wang X, Pierce AJ, Hubbard C, Armstrong SA, Nussenzweig A, Fernandez-Capetillo O. Targeting the kinase activities of ATR and ATM exhibits antitumoral activity in mouse models of MLL-rearranged AML. Sci Signal 2016; 9:ra91. [PMID: 27625305 DOI: 10.1126/scisignal.aad8243] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Among the various subtypes of acute myeloid leukemia (AML), those with chromosomal rearrangements of the MLL oncogene (AML-MLL) have a poor prognosis. AML-MLL tumor cells are resistant to current genotoxic therapies because of an attenuated response by p53, a protein that induces cell cycle arrest and apoptosis in response to DNA damage. In addition to chemicals that damage DNA, efforts have focused on targeting DNA repair enzymes as a general chemotherapeutic approach to cancer treatment. Here, we found that inhibition of the kinase ATR, which is the primary sensor of DNA replication stress, induced chromosomal breakage and death of mouse AML(MLL) cells (with an MLL-ENL fusion and a constitutively active N-RAS independently of p53. Moreover, ATR inhibition as a single agent exhibited antitumoral activity, both reducing tumor burden after establishment and preventing tumors from growing, in an immunocompetent allograft mouse model of AML(MLL) and in xenografts of a human AML-MLL cell line. We also found that inhibition of ATM, a kinase that senses DNA double-strand breaks, also promoted the survival of the AML(MLL) mice. Collectively, these data indicated that ATR or ATM inhibition represent potential therapeutic strategies for the treatment of AML, especially MLL-driven leukemias.
Collapse
Affiliation(s)
- Isabel Morgado-Palacin
- Genomic Instability Group; Spanish National Cancer Research Center (CNIO); Madrid 28029, Spain
| | - Amanda Day
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Matilde Murga
- Genomic Instability Group; Spanish National Cancer Research Center (CNIO); Madrid 28029, Spain
| | - Vanesa Lafarga
- Genomic Instability Group; Spanish National Cancer Research Center (CNIO); Madrid 28029, Spain
| | - Marta Elena Anton
- Genomic Instability Group; Spanish National Cancer Research Center (CNIO); Madrid 28029, Spain
| | - Anthony Tubbs
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Hua Tang Chen
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Aysegul Ergan
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Rhonda Anderson
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | | | | | | | - Xi Wang
- Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | - Chad Hubbard
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Scott A Armstrong
- Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group; Spanish National Cancer Research Center (CNIO); Madrid 28029, Spain.,Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Solna, Sweden
| |
Collapse
|
91
|
Ray A, Das DS, Song Y, Nordström E, Gullbo J, Richardson PG, Chauhan D, Anderson KC. A novel alkylating agent Melflufen induces irreversible DNA damage and cytotoxicity in multiple myeloma cells. Br J Haematol 2016; 174:397-409. [PMID: 27098276 PMCID: PMC4961600 DOI: 10.1111/bjh.14065] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/03/2016] [Indexed: 12/22/2022]
Abstract
Our prior study utilized both in vitro and in vivo multiple myeloma (MM) xenograft models to show that a novel alkylator melphalan-flufenamide (Melflufen) is a more potent anti-MM agent than melphalan and overcomes conventional drug resistance. Here we examined whether this potent anti-MM activity of melflufen versus melphalan is due to their differential effect on DNA damage and repair signalling pathways via γ-H2AX/ATR/CHK1/Ku80. Melflufen-induced apoptosis was associated with dose- and time-dependent rapid phosphorylation of γ-H2AX. Melflufen induces γ-H2AX, ATR, and CHK1 as early as after 2 h exposure in both melphalan-sensitive and -resistant cells. However, melphalan induces γ-H2AX in melphalan-sensitive cells at 6 h and 24 h; no γ-H2AX induction was observed in melphalan-resistant cells even after 24 h exposure. Similar kinetics was observed for ATR and CHK1 in meflufen- versus melphalan-treated cells. DNA repair is linked to melphalan-resistance; and importantly, we found that melphalan, but not melflufen, upregulates Ku80 that repairs DNA double-strand breaks. Washout experiments showed that a brief (2 h) exposure of MM cells to melflufen is sufficient to initiate an irreversible DNA damage and cytotoxicity. Our data therefore suggest that melflufen triggers a rapid, robust, and an irreversible DNA damage which may account for its ability to overcome melphalan-resistance in MM cells.
Collapse
Affiliation(s)
- Arghya Ray
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Deepika Sharma Das
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yan Song
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Eva Nordström
- Oncopeptides AB, Karolinska Institutet Science Park, Solna, Sweden
| | - Joachim Gullbo
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, 751 85 Uppsala, Sweden
| | - Paul G. Richardson
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Dharminder Chauhan
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Kenneth C. Anderson
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
92
|
Jackson RA, Chen ES. Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs. Pharmacol Ther 2016; 162:69-85. [DOI: 10.1016/j.pharmthera.2016.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
93
|
A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance in multiple myeloma cells. Leukemia 2016; 30:2187-2197. [PMID: 27118403 PMCID: PMC5093055 DOI: 10.1038/leu.2016.96] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/26/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
The hypoxic bone-marrow (BM) microenvironment confers growth/survival and drug-resistance in multiple myeloma (MM) cells. Novel therapies targeting the MM cell in its hypoxic-BM milieu may overcome drug resistance. Recent studies led to the development of a novel molecule RRx-001 with hypoxia-selective epigenetic and Nitric Oxide-donating properties. Here we demonstrate that RRx-001 decreases the viability of MM cell lines and primary patient cells, as well as overcomes drug-resistance. RRx-001 inhibits MM cell growth in the presence of BM stromal cells. RRx-001 induced apoptosis is associated with: 1) activation of caspases; 2) release of ROS and nitrogen-species; 3) induction of DNA damage via ATM/γ-H2AX; and 4) decrease in DNA methytransferase (DNMT) and global methylation. RNA interference study shows a predominant role of DNMT1 in MM cell survival versus DNMT3a or DNMT3b. Deubiquitylating enzyme USP7 stimulates DNMT1 activity; and conversely, USP7-siRNA reduced DNMT1 activity and decreased MM cell viability. RRx-001 plus USP7 inhibitor P5091 triggered synergistic anti-MM activity. MM xenograft studies show that RRx-001 is well tolerated, inhibits tumor growth, and enhances survival. Combining RRx-001 with pomalidomide, bortezomib or SAHA induces synergistic anti-MM activity. Our results provide the rationale for translation of RRx-001, either alone or in combination, to clinical evaluation in MM.
Collapse
|
94
|
Mandato E, Manni S, Zaffino F, Semenzato G, Piazza F. Targeting CK2-driven non-oncogene addiction in B-cell tumors. Oncogene 2016; 35:6045-6052. [PMID: 27041560 DOI: 10.1038/onc.2016.86] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 12/14/2022]
Abstract
Genetic mutations of oncogenes often underlie deranged cell growth and altered differentiation pathways leading to malignant transformation of B-lymphocytes. However, addiction to oncogenes is not the only drive to lymphoid tumor pathogenesis. Dependence on non-oncogenes, which act by propelling basic mechanisms of cell proliferation and survival, has also been recognized in the pathobiology of lymphoid leukemias, lymphomas and multiple myeloma. Among the growing number of molecules that may uphold non-oncogene addiction, a key place is increasingly being recognized to the serine-threonine kinase CK2. This enzyme is overexpressed and overactive in B-acute lymphoblastic leukemia, multiple myeloma, chronic lymphocytic leukemia and non-Hodgkin lymphomas, such as mantle cell, follicular, Burkitt's and diffuse large B-cell lymphomas. In these tumors, CK2 may serve the activity of oncogenes, similar to BCR-ABL and c-MYC, control the activation of critical signaling cascades, such as NF-κB (nuclear factor-κB), STAT3 (signal transducer and activator of transcription 3) and PTEN/PI3K/AKT (phosphatase and tensin homolog protein/phosphoinositide 3-kinase/AKR thymoma), and sustain multiple cellular stress-elicited pathways, such as the proteotoxic stress, unfolded protein and DNA-damage responses. CK2 has also been shown to have an essential role in tuning signals derived from the stromal tumor microenvironment. Not surprisingly, targeting CK2 in lymphoid tumor cell lines or mouse xenograft models can boost the cytotoxic effects of both conventional chemotherapeutics and novel agents, similar to heat-shock protein 90, proteasome and tyrosine kinases inhibitors. In this review, we summarize the evidence indicating how CK2 embodies most of the features of a cancer growth-promoting non-oncogene, focusing on lymphoid tumors. We further discuss the preclinical data of the use of small ATP-competitive CK2 inhibitors, which hold the promise to be additional options in novel drug combinations for the therapy of lymphoid and plasmacellular malignancies.
Collapse
Affiliation(s)
- E Mandato
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - S Manni
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - F Zaffino
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - G Semenzato
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - F Piazza
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
95
|
Viziteu E, Kassambara A, Pasero P, Klein B, Moreaux J. RECQ helicases are deregulated in hematological malignancies in association with a prognostic value. Biomark Res 2016; 4:3. [PMID: 26877874 PMCID: PMC4752763 DOI: 10.1186/s40364-016-0057-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND RECQ helicase family members act as guardians of the genome to assure proper DNA metabolism in response to genotoxic stress. Hematological malignancies are characterized by genomic instability that is possibly related to underlying defects in DNA repair of genomic stability maintenance. METHODS We have investigated the expression of RECQ helicases in different hematological malignancies and in their normal counterparts using publicly available gene expression data. Furthermore, we explored whether RECQ helicases expression could be associated with tumor progression and prognosis. RESULTS Expression of at least one RECQ helicase family member was found significantly deregulated in all hematological malignancies investigated when compared to their normal counterparts. In addition, RECQ helicase expression was associated with a prognostic value in acute myeloid leukemia, chronic lymphocytic leukemia, lymphoma and multiple myeloma. CONCLUSION RECQ helicase expression is deregulated in hematological malignancies compared to their normal counterparts in association with a prognostic value. Deregulation of RECQ helicases appears to play a role in tumorigenesis and represent potent therapeutic targets for synthetic lethal approaches in hematological malignancies.
Collapse
Affiliation(s)
- Elena Viziteu
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Alboukadel Kassambara
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Philippe Pasero
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Bernard Klein
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
- />University of Montpellier 1, UFR de Médecine, Montpellier, France
| | - Jerome Moreaux
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
- />University of Montpellier 1, UFR de Médecine, Montpellier, France
| |
Collapse
|
96
|
Di Martino MT, Arbitrio M, Guzzi PH, Cannataro M, Tagliaferri P, Tassone P. Experimental treatment of multiple myeloma in the era of precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1142356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|