51
|
Duchatel RJ, Jackson ER, Parackal SG, Kiltschewskij D, Findlay IJ, Mannan A, Staudt DE, Thomas BC, Germon ZP, Laternser S, Kearney PS, Jamaluddin MFB, Douglas AM, Beitaki T, McEwen HP, Persson ML, Hocke EA, Jain V, Aksu M, Manning EE, Murray HC, Verrills NM, Sun CX, Daniel P, Vilain RE, Skerrett-Byrne DA, Nixon B, Hua S, de Bock CE, Colino-Sanguino Y, Valdes-Mora F, Tsoli M, Ziegler DS, Cairns MJ, Raabe EH, Vitanza NA, Hulleman E, Phoenix TN, Koschmann C, Alvaro F, Dayas CV, Tinkle CL, Wheeler H, Whittle JR, Eisenstat DD, Firestein R, Mueller S, Valvi S, Hansford JR, Ashley DM, Gregory SG, Kilburn LB, Nazarian J, Cain JE, Dun MD. PI3K/mTOR is a therapeutically targetable genetic dependency in diffuse intrinsic pontine glioma. J Clin Invest 2024; 134:e170329. [PMID: 38319732 PMCID: PMC10940093 DOI: 10.1172/jci170329] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.
Collapse
Affiliation(s)
- Ryan J. Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Evangeline R. Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Sarah G. Parackal
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Dylan Kiltschewskij
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Izac J. Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Abdul Mannan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana E. Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Bryce C. Thomas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Zacary P. Germon
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Sandra Laternser
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, Zurich, Switzerland
| | - Padraic S. Kearney
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - M. Fairuz B. Jamaluddin
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alicia M. Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Tyrone Beitaki
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Holly P. McEwen
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mika L. Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Emily A. Hocke
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael Aksu
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth E. Manning
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Heather C. Murray
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Nicole M. Verrills
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Claire Xin Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Ricardo E. Vilain
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - David A. Skerrett-Byrne
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Susan Hua
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Charles E. de Bock
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Yolanda Colino-Sanguino
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Fatima Valdes-Mora
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Maria Tsoli
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Murray J. Cairns
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eric H. Raabe
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas A. Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, Washington, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Carl Koschmann
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank Alvaro
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- John Hunter Children’s Hospital, New Lambton Heights, New South Wales, Australia
| | - Christopher V. Dayas
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Christopher L. Tinkle
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Helen Wheeler
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- The Brain Cancer group, St Leonards, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - James R. Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David D. Eisenstat
- Children’s Cancer Centre, The Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
- Neuro-Oncology Laboratory, Murdoch Children’s Research Institute, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Sabine Mueller
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, Zurich, Switzerland
- Department of Neurology, Neurosurgery, and Pediatrics, University of California, San Francisco, California, USA
| | - Santosh Valvi
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, Washington, Australia
- Brain Tumour Research Laboratory, Telethon Kids Institute, Nedlands, Washington, Australia
- Division of Paediatrics, University of Western Australia Medical School, Nedlands, Western Australia, Australia
| | - Jordan R. Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - David M. Ashley
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Lindsay B. Kilburn
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Javad Nazarian
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, Zurich, Switzerland
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Jason E. Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| |
Collapse
|
52
|
Perry JR, Genenger B, Thind AS, Ashford B, Ranson M. PIK Your Poison: The Effects of Combining PI3K and CDK Inhibitors against Metastatic Cutaneous Squamous Cell Carcinoma In Vitro. Cancers (Basel) 2024; 16:370. [PMID: 38254859 PMCID: PMC10814950 DOI: 10.3390/cancers16020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a very common skin malignancy with poor prognosis for patients with locally advanced or metastatic cSCC (mcSCC). PI3K/AKT/mTOR and cell cycle signalling pathways are often dysregulated in mcSCC. A combination drug approach has been theorised to overcome the underwhelming clinical performance of targeted inhibitors as single agents. This study investigates the potential of targeted inhibition of the p110α-subunit of PI3K with PIK-75 or BGT226 (P13Ki), and of CDK1/2/5/9 with dinaciclib (CDKi) as single agents and in combination. The patient-derived mcSCC cell lines, UW-CSCC1 and UW-CSCC2, were used to assess cell viability, migration, cell signalling, cell cycle distribution, and apoptosis. PIK-75, BGT226, and dinaciclib exhibited strong cytotoxic potency as single agents. Notably, the non-malignant HaCaT cell line was unaffected. In 2D cultures, PIK-75 synergistically enhanced the cytotoxic effects of dinaciclib in UW-CSCC2, but not UW-CSCC1. Interestingly, this pattern was reversed in 3D spheroid models. Despite the combination of PIK-75 and dinaciclib resulting in an increase in cell cycle arrest and apoptosis, and reduced cell motility, these differences were largely negligible compared to their single-agent counterpart. The differential responses between the cell lines correlated with driver gene mutation profiles. These findings suggest that personalised medicine approaches targeting PI3K and CDK pathways in combination may yield some benefit for mcSCC, and that more complex 3D models should be considered for drug responsiveness studies in this disease.
Collapse
Affiliation(s)
- Jay R. Perry
- School of Chemistry and Molecular Bioscience, Molecular Horizon, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; (B.G.); (A.S.T.)
| | - Benjamin Genenger
- School of Chemistry and Molecular Bioscience, Molecular Horizon, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; (B.G.); (A.S.T.)
| | - Amarinder Singh Thind
- School of Chemistry and Molecular Bioscience, Molecular Horizon, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; (B.G.); (A.S.T.)
- Illawarra Shoalhaven Local Health District, Wollongong, NSW 2500, Australia;
| | - Bruce Ashford
- Illawarra Shoalhaven Local Health District, Wollongong, NSW 2500, Australia;
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, Molecular Horizon, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; (B.G.); (A.S.T.)
| |
Collapse
|
53
|
Trigueiros BAFDS, Santos IJS, Pimenta FP, Ávila AR. A Long Way to Go: A Scenario for Clinical Trials of PI3K Inhibitors in Treating Cancer. Cancer Control 2024; 31:10732748241238047. [PMID: 38494880 PMCID: PMC10946074 DOI: 10.1177/10732748241238047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Alterations in PI3K function are directly related to cancer, making PI3K inhibitors suitable options for anticancer therapies. Information on therapy using different types of PI3K inhibitors is available in literature, providing indications of trends in developing new therapies. Although some studies on PI3K inhibitors for cancer treatment provide clinical evidence, they do not allow a careful search for potential PI3K inhibitors conducted by development indicators. Here, we performed a foresight study of clinical trials involving PI3K inhibitors from the past 11 years using indicators of clinical evolution to identify technological trends and provide data for supporting recommendations for new study designs. METHODS A comprehensive foresight study was designed based on documents from clinical trials on PI3K inhibitors to perform a systematic and comparative analysis, in order to identify technological trends on new cancer therapies. RESULTS Our results demonstrate that total number of clinical trials has decreased over the years and, currently, there is a clear prevalence of studies using isoform-specific inhibitors in combined interventions. Clinical trials in Phases I and II were the most frequently found in the database, whereas Phase III trials correspond to 7% of studies. The measurement of clinical trials progression using indicators (drugs in Phase III profile, top-10 drugs, and top-10 combined drugs) demonstrated that the 3 new medicines BKM120, IBI-376, and PF-05212384 have a high potential to provide more efficient cancer treatment in combined interventions. These data also include the groups of targets for each drug, providing a useful and reliable source for design new combinations to overcome the resistance and the poor tolerability observed in some PI3K therapies. CONCLUSIONS The establishment of development indicators based on clinical trials for cancer treatment was useful to highlight the clinical investment in 3 new PI3K drugs and the advantages of combine therapy using FDA-approved drugs.
Collapse
Affiliation(s)
| | | | - Fabricia Pires Pimenta
- Instituto Carlos Chagas - Fiocruz Paraná, Fundação Oswaldo Cruz - Fiocruz, Curitiba, Brasil
| | - Andréa Rodrigues Ávila
- Instituto Carlos Chagas - Fiocruz Paraná, Fundação Oswaldo Cruz - Fiocruz, Curitiba, Brasil
| |
Collapse
|
54
|
Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajeh S. The Role of Tissue Factor In Signaling Pathways of Pathological Conditions and Angiogenesis. Curr Mol Med 2024; 24:1135-1151. [PMID: 37817529 DOI: 10.2174/0115665240258746230919165935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023]
Abstract
Tissue factor (TF) is an integral transmembrane protein associated with the extrinsic coagulation pathway. TF gene expression is regulated in response to inflammatory cytokines, bacterial lipopolysaccharides, and mechanical injuries. TF activity may be affected by phosphorylation of its cytoplasmic domain and alternative splicing. TF acts as the primary initiator of physiological hemostasis, which prevents local bleeding at the injury site. However, aberrant expression of TF, accompanied by the severity of diseases and infections under various pathological conditions, triggers multiple signaling pathways that support thrombosis, angiogenesis, inflammation, and metastasis. Protease-activated receptors (PARs) are central in the downstream signaling pathways of TF. In this study, we have reviewed the TF signaling pathways in different pathological conditions, such as wound injury, asthma, cardiovascular diseases (CVDs), viral infections, cancer and pathological angiogenesis. Angiogenic activities of TF are critical in the repair of wound injuries and aggressive behavior of tumors, which are mainly performed by the actions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF1-α). Pro-inflammatory effects of TF have been reported in asthma, CVDs and viral infections, including COVID-19, which result in tissue hypertrophy, inflammation, and thrombosis. TF-FVII induces angiogenesis via clotting-dependent and -independent mechanisms. Clottingdependent angiogenesis is induced via the generation of thrombin and cross-linked fibrin network, which facilitate vessel infiltration and also act as a reservoir for endothelial cells (ECs) growth factors. Expression of TF in tumor cells and ECs triggers clotting-independent angiogenesis through induction of VEGF, urokinase-type plasminogen activator (uPAR), early growth response 1 (EGR1), IL8, and cysteine-rich angiogenic inducer 61 (Cyr61).
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
55
|
Nayak N, Mukherjee T, Pattnaik A. Comprehensive Role of GDF15 in Inhibiting Adipogenesis and Hyperlipidemia, Enhancing Cardiovascular Health and Alleviating Inflammation in Metabolic Disorders. Curr Pharm Des 2024; 30:2387-2399. [PMID: 38934286 DOI: 10.2174/0113816128318741240611114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Growth Differentiation Factor 15 (GDF15) has emerged as a pivotal signaling molecule implicated in diverse physiological processes, spanning metabolic regulation, inflammation, and cardiovascular health. This study provides a comprehensive exploration of GDF15's multifaceted role, primarily focusing on its association with obesity-related complications and therapeutic potential. GDF15's involvement in energy homeostasis, specifically its regulation of body weight and appetite through hindbrain neuron activation and the GFRAL-RET signaling pathway, underscores its significance as an appetite-regulating hormone. GDF15's intricate modulation within adipose tissue dynamics in response to dietary changes and obesity, coupled with its influence on insulin sensitivity, highlights its critical role in metabolic health. The manuscript delves into the intricate crosstalk between GDF15 and pathways related to insulin sensitivity, macrophage polarization, and adipose tissue function, elucidating its potential as a therapeutic target for metabolic disorders associated with obesity. GDF15's association with chronic low-grade inflammation and its impact on cardiovascular health, particularly during hyperlipidemia and ischemic events, are explored. The intricate relationship between GDF15 and cardiovascular diseases, including its effects on endothelial function, cardiac hypertrophy, and heart failure, emphasizes its multifaceted nature in maintaining overall cardiovascular well-being. Challenges regarding the therapeutic application of GDF15, such as long-term safety concerns and ongoing clinical investigations, are discussed. Lastly, future research directions exploring GDF15's potential in addressing obesity-related complications and cardiovascular risks are proposed, highlighting its promising role as a therapeutic target in reshaping treatment strategies for obesity and associated health conditions.
Collapse
Affiliation(s)
- Nikita Nayak
- Department of Pharmaceutical Sciences and Technology, Division of Pharmacology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Tuhin Mukherjee
- Department of Pharmaceutical Sciences and Technology, Division of Pharmacology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Ashok Pattnaik
- Department of Pharmaceutical Sciences and Technology, Division of Pharmacology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
56
|
Kale R, Samant C, Bokare A, Verma M, Nandakumar K, Bhonde M. Inhibition of SGK1 potentiates the anticancer activity of PI3K inhibitor in NSCLC cells through modulation of mTORC1, p‑ERK and β‑catenin signaling. Biomed Rep 2023; 19:94. [PMID: 37901878 PMCID: PMC10603377 DOI: 10.3892/br.2023.1676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the deadliest types of cancer with poor prognosis, accounting for 85% of all lung cancer cases. The phosphoinositide 3-kinase (PI3K) signaling pathway is most frequently altered in NSCLC; nonetheless, targeting this pathway yields limited success primarily because of drug-induced resistance. PI3K-independent activation of serum and glucocorticoid-induced kinase 1 (SGK1) is responsible for development of resistance to PI3K/AKT inhibitors in breast cancer. The present study investigated potential of inhibiting SGK1 activity for the potentiation of PI3K inhibitor activity in NSCLC cell lines using in vitro anti-proliferation assays, protein expression profiling using western blotting and cell cycle analysis. The findings revealed that combined inhibition of PI3K/AKT and SGK1 resulted in synergistic anticancer activity, with increased apoptosis, DNA damage and cell cycle arrest in G1 phase. Furthermore, high SGK1 protein expression in NSCLC cell lines was associated with increased resistance to PI3K inhibitors. Therefore, enhanced SGK1 expression may serve as a marker to predict therapeutic response to PI3K/AKT inhibitors. Profiling of downstream signaling proteins demonstrated that, at the molecular level SGK1-mediated sensitization of NSCLC cell lines to PI3K inhibitors was achieved via inhibition of mTORC1 signaling. Increased sensitivity of NSCLC cell lines was also mediated by other oncogenic pathways, such as Ras/MEK/ERK and Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Pune, Maharashtra 412115, India
| | - Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Pune, Maharashtra 412115, India
| | - Anand Bokare
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Pune, Maharashtra 412115, India
| | - Mahip Verma
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Pune, Maharashtra 412115, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development, Lupin Limited, Pune, Maharashtra 412115, India
| |
Collapse
|
57
|
Wu T, Chen Y, Yang C, Lu M, Geng F, Guo J, Pi Y, Ling Y, Xu J, Cai T, Lu L, Zhou Y. Systematical Evaluation of the Structure-Cardiotoxicity Relationship of 7-Azaindazole-based PI3K Inhibitors Designed by Bioisosteric Approach. Cardiovasc Toxicol 2023; 23:364-376. [PMID: 37787964 DOI: 10.1007/s12012-023-09809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
A growing concern of cardiotoxicity induced by PI3K inhibitors has raised the requirements to evaluate the structure-cardiotoxicity relationship (SCR) in the development process of novel inhibitors. Based on three bioisosteric 7-azaindazole-based candidate inhibitors namely FD269, FD268 and FD274 that give same order of inhibitory concentration 50% (IC50) magnitude against PI3Ks, in this work, we proposed to systematically evaluate the SCR of 7-azaindazole-based PI3K inhibitors designed by bioisosteric approach. The 24-h lethal concentrations 50% (LC50) of FD269, FD268 and FD274 against zebrafish embryos were 0.35, 4.82 and above 50 μM (not detected), respectively. Determination of the heart rate, pericardial and yolk-sac areas and vascular malformation confirmed the remarkable reduction in the cardiotoxicity of from FD269 to FD268 and to FD274. The IC50s of all three compounds against the hERG channel were tested on the CHO cell line that constitutively expressing hERG channel, which were all higher than 20 μM. The transcriptomic analysis revealed that FD269 and FD268 induced the up-regulation of noxo1b, which encodes a subunit of an NADPH oxidase evoking the oxidative stress. Furthermore, immunohistochemistry tests confirmed the structure-dependent attenuation of the overproduction of ROS and cardiac apoptosis. Our results verified the feasibility of bioisosteric replacement to attenuate the cardiotoxicity of 7-azaindazole-based PI3K inhibitors, suggesting that the screening for PI3K inhibitors with both high potency and low cardiotoxicity from bioisosteres would be a beneficial trial.
Collapse
Affiliation(s)
- Tianze Wu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yi Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Chengbin Yang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Fang Geng
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianhua Guo
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Pi
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jun Xu
- ABA Chemicals Co., Ltd, Taicang, 215400, Jiangsu, China
| | - Tong Cai
- ABA Chemicals Co., Ltd, Taicang, 215400, Jiangsu, China
| | - Lei Lu
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
58
|
Wang M, Liu J, Liao X, Yi Y, Xue Y, Yang L, Cheng H, Liu P. The SGK3-Catalase antioxidant signaling axis drives cervical cancer growth and therapy resistance. Redox Biol 2023; 67:102931. [PMID: 37866161 PMCID: PMC10623367 DOI: 10.1016/j.redox.2023.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer cells frequently exhibit aberrant redox homeostasis and adaptation to oxidative stress. Hence abrogation of redox adaptation in cancer cells can be exploited for therapeutic benefit. Here we report SGK3 functions as an anti-oxidative factor to promote cell growth and drug resistance in cervical cancers harboring PIK3CA helical domain mutations. Mechanistically, SGK3 is activated upon oxidative stress and exerts anti-ROS activity by stabilizing and activating the antioxidant enzyme catalase. SGK3 interacts with and phosphorylates catalase, promoting its tetrameric state and activity. Meanwhile, SGK3 phosphorylates GSK3β and protects catalase from GSK3β-β-TrCP mediated ubiquitination and proteasomal degradation. Furthermore, SGK3 inhibition not only potentiates CDK4/6 inhibitor Palbociclib-mediated cytotoxicity, but also overcomes cisplatin resistance through ROS-mediated mechanisms. These data uncover the role of SGK3 in maintaining redox homeostasis and suggest that the SGK3-catalase antioxidant signaling axis may be therapeutically targeted to improve treatment efficacy for cervical cancers carrying PIK3CA helical domain mutations.
Collapse
Affiliation(s)
- Min Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China
| | - Jiannan Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China
| | - Xingming Liao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yasong Yi
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China
| | - Yijue Xue
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Ling Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.
| | - Hailing Cheng
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China.
| | - Pixu Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
59
|
Buckbinder L, St. Jean DJ, Tieu T, Ladd B, Hilbert B, Wang W, Alltucker JT, Manimala S, Kryukov GV, Brooijmans N, Dowdell G, Jonsson P, Huff M, Guzman-Perez A, Jackson EL, Goncalves MD, Stuart DD. STX-478, a Mutant-Selective, Allosteric PI3Kα Inhibitor Spares Metabolic Dysfunction and Improves Therapeutic Response in PI3Kα-Mutant Xenografts. Cancer Discov 2023; 13:2432-2447. [PMID: 37623743 PMCID: PMC10618743 DOI: 10.1158/2159-8290.cd-23-0396] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
Phosphoinositide 3-kinase α (PIK3CA) is one of the most mutated genes across cancers, especially breast, gynecologic, and head and neck squamous cell carcinoma tumors. Mutations occur throughout the gene, but hotspot mutations in the helical and kinase domains predominate. The therapeutic benefit of isoform-selective PI3Kα inhibition was established with alpelisib, which displays equipotent activity against the wild-type and mutant enzyme. Inhibition of wild-type PI3Kα is associated with severe hyperglycemia and rash, which limits alpelisib use and suggests that selectively targeting mutant PI3Kα could reduce toxicity and improve efficacy. Here we describe STX-478, an allosteric PI3Kα inhibitor that selectively targets prevalent PI3Kα helical- and kinase-domain mutant tumors. STX-478 demonstrated robust efficacy in human tumor xenografts without causing the metabolic dysfunction observed with alpelisib. Combining STX-478 with fulvestrant and/or cyclin-dependent kinase 4/6 inhibitors was well tolerated and provided robust and durable tumor regression in ER+HER2- xenograft tumor models. SIGNIFICANCE These preclinical data demonstrate that the mutant-selective, allosteric PI3Kα inhibitor STX-478 provides robust efficacy while avoiding the metabolic dysfunction associated with the nonselective inhibitor alpelisib. Our results support the ongoing clinical evaluation of STX-478 in PI3Kα-mutated cancers, which is expected to expand the therapeutic window and mitigate counterregulatory insulin release. See related commentary by Kearney and Vasan, p. 2313. This article is featured in Selected Articles from This Issue, p. 2293.
Collapse
Affiliation(s)
| | - David J. St. Jean
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Trang Tieu
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Brendon Ladd
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Brendan Hilbert
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Weixue Wang
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | | | - Samantha Manimala
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | | | | | - Gregory Dowdell
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Philip Jonsson
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Michael Huff
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | | | - Erica L. Jackson
- Department of Biology, Scorpion Therapeutics, South San Francisco, California
| | - Marcus D. Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Darrin D. Stuart
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| |
Collapse
|
60
|
Tian H, You S, Xiong T, Ji M, Zhang K, Jiang L, Du T, Li Y, Liu W, Lin S, Chen X, Xu H. Discovery of a Novel Photocaged PI3K Inhibitor Capable of Real-Time Reporting of Drug Release. ACS Med Chem Lett 2023; 14:1100-1107. [PMID: 37583818 PMCID: PMC10424311 DOI: 10.1021/acsmedchemlett.3c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023] Open
Abstract
A novel photocaged PI3K inhibitor 2 was designed and synthesized by introducing a cascade photocaging group to block its key interaction with the kinase. Upon UV light irradiation, the photocaged compound released a highly potent PI3K inhibitor to recover its anticancer properties and a fluorescent dye for real-time reporting of drug release, providing a new approach for studying the PI3K signaling transduction pathway as well as developing precisely controlled cancer therapeutics.
Collapse
Affiliation(s)
- Hua Tian
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Shen You
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Tianning Xiong
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Ming Ji
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Kehui Zhang
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Lin Jiang
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Tingting Du
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Ying Li
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Wenqian Liu
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Songwen Lin
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| | - Heng Xu
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing
Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing 100050, China
- Key
Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100050, China
| |
Collapse
|
61
|
Nirala BK, Yamamichi T, Yustein JT. Deciphering the Signaling Mechanisms of Osteosarcoma Tumorigenesis. Int J Mol Sci 2023; 24:11367. [PMID: 37511127 PMCID: PMC10379831 DOI: 10.3390/ijms241411367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Osteosarcoma (OS) is the predominant primary bone tumor in the pediatric and adolescent populations. It has high metastatic potential, with the lungs being the most common site of metastasis. In contrast to many other sarcomas, OS lacks conserved translocations or genetic mutations; instead, it has heterogeneous abnormalities, including somatic DNA copy number alteration, ploidy, chromosomal amplification, and chromosomal loss and gain. Unfortunately, clinical outcomes have not significantly improved in over 30 years. Currently, no effective molecularly targeted therapies are available for this disease. Several genomic studies showed inactivation in the tumor suppressor genes, including p53, RB, and ATRX, and hyperactivation of the tumor promoter genes, including MYC and MDM2, in OS. Alterations in the major signaling pathways, including the PI3K/AKT/mTOR, JAK/STAT, Wnt/β-catenin, NOTCH, Hedgehog/Gli, TGF-β, RTKs, RANK/RANKL, and NF-κB signaling pathways, have been identified in OS development and metastasis. Although OS treatment is currently based on surgical excision and systematic multiagent therapies, several potential targeted therapies are in development. This review focuses on the major signaling pathways of OS, and we propose a biological rationale to consider novel and targeted therapies in the future.
Collapse
Affiliation(s)
| | | | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA; (B.K.N.); (T.Y.)
| |
Collapse
|
62
|
Pang J, Zhu D, Liu Y, Liu D, Zhao C, Zhang J, Li S, Liu Z, Li X, Huang P, Wen S, Yang J. A Cyclodiaryliodonium NOX Inhibitor for the Treatment of Pancreatic Cancer via Enzyme-Activatable Targeted Delivery by Sulfated Glycosaminoglycan Derivatives. Adv Healthc Mater 2023; 12:e2203011. [PMID: 36841552 DOI: 10.1002/adhm.202203011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Pancreatic cancer renders a principal cause of cancer mortalities with a dismal prognosis, lacking sufficiently safe and effective therapeutics. Here, diversified cyclodiaryliodonium (CDAI) NADPH oxidase (NOX) inhibitors are rationally designed with tens of nanomolar optimal growth inhibition, and CD44-targeted delivery is implemented using synthesized sulfated glycosaminoglycan derivatives. The self-assembled nanoparticle-drug conjugate (NDC) enables hyaluronidase-activatable controlled release and facilitates cellular trafficking. NOX inhibition reprograms the metabolic phenotype by simultaneously impairing mitochondrial respiration and glycolysis. Moreover, the NDC selectively diminishes non-mitochondrial reactive oxygen species (ROS) but significantly elevates cytotoxic ROS through mitochondrial membrane depolarization. Transcriptomic profiling reveals perturbed p53, NF-κB, and GnRH signaling pathways interconnected with NOX inhibition. After being validated in patient-derived pancreatic cancer cells, the anticancer efficacy is further verified in xenograft mice bearing heterotopic and orthotopic pancreatic tumors, with extended survival and ameliorated systemic toxicity. It is envisaged that the translation of cyclodiaryliodonium inhibitors with an optimized molecular design can be expedited by enzyme-activatable targeted delivery with improved pharmacokinetic profiles and preserved efficacy.
Collapse
Affiliation(s)
- Jiadong Pang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Daqian Zhu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yang Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dingxin Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chunhua Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jianeng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaobing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|
63
|
Liu C, Ye D, Yang H, Chen X, Su Z, Li X, Ding M, Liu Y. RAS-targeted cancer therapy: Advances in drugging specific mutations. MedComm (Beijing) 2023; 4:e285. [PMID: 37250144 PMCID: PMC10225044 DOI: 10.1002/mco2.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Rat sarcoma (RAS), as a frequently mutated oncogene, has been studied as an attractive target for treating RAS-driven cancers for over four decades. However, it is until the recent success of kirsten-RAS (KRAS)G12C inhibitor that RAS gets rid of the title "undruggable". It is worth noting that the therapeutic effect of KRASG12C inhibitors on different RAS allelic mutations or even different cancers with KRASG12C varies significantly. Thus, deep understanding of the characteristics of each allelic RAS mutation will be a prerequisite for developing new RAS inhibitors. In this review, the structural and biochemical features of different RAS mutations are summarized and compared. Besides, the pathological characteristics and treatment responses of different cancers carrying RAS mutations are listed based on clinical reports. In addition, the development of RAS inhibitors, either direct or indirect, that target the downstream components in RAS pathway is summarized as well. Hopefully, this review will broaden our knowledge on RAS-targeting strategies and trigger more intensive studies on exploiting new RAS allele-specific inhibitors.
Collapse
Affiliation(s)
- Cen Liu
- Beijing University of Chinese MedicineBeijingChina
| | - Danyang Ye
- Beijing University of Chinese MedicineBeijingChina
| | - Hongliu Yang
- Beijing University of Chinese MedicineBeijingChina
| | - Xu Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Zhijun Su
- Beijing University of Chinese MedicineBeijingChina
| | - Xia Li
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mei Ding
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yonggang Liu
- Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
64
|
Hameed J S F, Devarajan A, M S DP, Bhattacharyya A, Shirude MB, Dutta D, Karmakar P, Mukherjee A. PTEN-negative endometrial cancer cells protect their genome through enhanced DDB2 expression associated with augmented nucleotide excision repair. BMC Cancer 2023; 23:399. [PMID: 37142958 PMCID: PMC10157935 DOI: 10.1186/s12885-023-10892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) arises from uterine endometrium tissue and is the most prevalent cancer of the female reproductive tract in developed countries. It has been predicted that the global prevalence of EC will increase in part because of its positive association with economic growth and lifestyle. The majority of EC presented with endometrioid histology and mutations in the tumor suppressor gene PTEN, resulting in its loss of function. PTEN negatively regulates the PI3K/Akt/mTOR axis of cell proliferation and thus serves as a tumorigenesis gatekeeper. Through its chromatin functions, PTEN is also implicated in genome maintenance procedures. However, our comprehension of how DNA repair occurs in the absence of PTEN function in EC is inadequate. METHODS We utilized The Cancer Genome Atlas (TCGA) data analysis to establish a correlation between PTEN and DNA damage response genes in EC, followed by a series of cellular and biochemical assays to elucidate a molecular mechanism utilizing the AN3CA cell line model for EC. RESULTS The TCGA analyses demonstrated an inverse correlation between the expression of the damage sensor protein of nucleotide excision repair (NER), DDB2, and PTEN in EC. The transcriptional activation of DDB2 is mediated by the recruitment of active RNA polymerase II to the DDB2 promoter in the PTEN-null EC cells, revealing a correlation between increased DDB2 expression and augmented NER activity in the absence of PTEN. CONCLUSION Our study indicated a causal relationship between NER and EC that may be exploited in disease management.
Collapse
Affiliation(s)
- Fathima Hameed J S
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anjali Devarajan
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Devu Priya M S
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Ahel Bhattacharyya
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Mayur Balkrishna Shirude
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, West Bengal, 700 032, India
| | - Ananda Mukherjee
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
65
|
Aguayo F, Perez-Dominguez F, Osorio JC, Oliva C, Calaf GM. PI3K/AKT/mTOR Signaling Pathway in HPV-Driven Head and Neck Carcinogenesis: Therapeutic Implications. BIOLOGY 2023; 12:biology12050672. [PMID: 37237486 DOI: 10.3390/biology12050672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
High-risk human papillomaviruses (HR-HPVs) are the causal agents of cervical, anogenital and a subset of head and neck carcinomas (HNCs). Indeed, oropharyngeal cancers are a type of HNC highly associated with HR-HPV infections and constitute a specific clinical entity. The oncogenic mechanism of HR-HPV involves E6/E7 oncoprotein overexpression for promoting cell immortalization and transformation, through the downregulation of p53 and pRB tumor suppressor proteins, among other cellular targets. Additionally, E6/E7 proteins are involved in promoting PI3K/AKT/mTOR signaling pathway alterations. In this review, we address the relationship between HR-HPV and PI3K/AKT/mTOR signaling pathway activation in HNC with an emphasis on its therapeutic importance.
Collapse
Affiliation(s)
- Francisco Aguayo
- Departamento de Biomedicina, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Perez-Dominguez
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Julio C Osorio
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Carolina Oliva
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
66
|
Auf der Maur P, Trefny MP, Baumann Z, Vulin M, Correia AL, Diepenbruck M, Kramer N, Volkmann K, Preca BT, Ramos P, Leroy C, Eichlisberger T, Buczak K, Zilli F, Okamoto R, Rad R, Jensen MR, Fritsch C, Zippelius A, Stadler MB, Bentires-Alj M. N-acetylcysteine overcomes NF1 loss-driven resistance to PI3Kα inhibition in breast cancer. Cell Rep Med 2023; 4:101002. [PMID: 37044095 PMCID: PMC10140479 DOI: 10.1016/j.xcrm.2023.101002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
A genome-wide PiggyBac transposon-mediated screen and a resistance screen in a PIK3CAH1047R-mutated murine tumor model reveal NF1 loss in mammary tumors resistant to the phosphatidylinositol 3-kinase α (PI3Kα)-selective inhibitor alpelisib. Depletion of NF1 in PIK3CAH1047R breast cancer cell lines and a patient-derived organoid model shows that NF1 loss reduces sensitivity to PI3Kα inhibition and correlates with enhanced glycolysis and lower levels of reactive oxygen species (ROS). Unexpectedly, the antioxidant N-acetylcysteine (NAC) sensitizes NF1 knockout cells to PI3Kα inhibition and reverts their glycolytic phenotype. Global phospho-proteomics indicates that combination with NAC enhances the inhibitory effect of alpelisib on mTOR signaling. In public datasets of human breast cancer, we find that NF1 is frequently mutated and that such mutations are enriched in metastases, an indication for which use of PI3Kα inhibitors has been approved. Our results raise the attractive possibility of combining PI3Kα inhibition with NAC supplementation, especially in patients with drug-resistant metastases associated with NF1 loss.
Collapse
Affiliation(s)
- Priska Auf der Maur
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Marcel P Trefny
- Cancer Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Zora Baumann
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Milica Vulin
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ana Luisa Correia
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Maren Diepenbruck
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nicolas Kramer
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katrin Volkmann
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Bogdan-Tiberius Preca
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Pedro Ramos
- Oncology Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Cedric Leroy
- Oncology Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Federica Zilli
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ryoko Okamoto
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, München, Germany; Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, München, Germany; Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Christine Fritsch
- Oncology Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Tumor Heterogeneity Metastasis and Resistance, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
67
|
Patel H, Mishra R, Wier A, Mokhtarpour N, Merino EJ, Garrett JT. RIDR-PI-103, ROS-activated prodrug PI3K inhibitor inhibits cell growth and impairs the PI3K/Akt pathway in BRAF and MEK inhibitor-resistant BRAF-mutant melanoma cells. Anticancer Drugs 2023; 34:519-531. [PMID: 36847042 PMCID: PMC9997637 DOI: 10.1097/cad.0000000000001500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Indexed: 03/01/2023]
Abstract
Reactive oxygen species (ROS) levels are elevated after acquisition of resistance to v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitors including dabrafenib and MEK inhibitors such as trametinib in BRAF-mutant melanoma. To circumvent toxicity to PI-103 (a pan PI3K inhibitor), we utilized a novel ROS-induced drug release (RIDR)-PI-103, with a self-cyclizing moiety linked to PI-103. Under high ROS conditions, RIDR-PI-103 releases PI-103, which inhibits conversion of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) to phosphatidylinositol 3,4,5-triphosphate (PIP 3 ). Previous findings demonstrate that trametinib and dabrafenib-resistant (TDR) cells maintain p-Akt levels compared to parental counterparts and have significantly higher ROS. This is a rationale to explore the efficacy RIDR-PI-103 in TDR cells. We tested the effect of RIDR-PI-103 on melanocytes and TDR cells. RIDR-PI-103 exhibited less toxicity compared to PI-103 at 5 µM in melanocytes. RIDR-PI-103 significantly inhibited TDR cell proliferation at 5 and 10 µM. Twenty-four hour treatment with RIDR-PI-103 inhibited p-Akt, p-S6 (Ser240/244) and p-S6 (Ser235/236). We assessed the mechanism of activation of RIDR-PI-103, using glutathione or t-butyl hydrogen peroxide (TBHP) on the TDR cells in the presence or absence of RIDR-PI-103. Addition of the ROS scavenger glutathione to RIDR-PI-103 significantly rescued the cell proliferation in TDR cell lines while addition of the ROS inducer TBHP and RIDR-PI-103 inhibited cell proliferation in WM115 and WM983B TDR cell lines. Examining the efficacy of RIDR-PI-103 on BRAF and MEK inhibitor-resistant cells will expand possible treatment options and open avenues for the development of new ROS-based treatment therapies for BRAF-mutant melanoma patients.
Collapse
Affiliation(s)
- Hima Patel
- UT Southwestern Medical Center, Harold C. Simmons Cancer Center, Dallas
| | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Adam Wier
- Department of Chemistry, Hillsdale College, Hillsdale, Michigan
| | | | - Edward J. Merino
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
68
|
Butel-Simoes LE, Haw TJ, Williams T, Sritharan S, Gadre P, Herrmann SM, Herrmann J, Ngo DTM, Sverdlov AL. Established and Emerging Cancer Therapies and Cardiovascular System: Focus on Hypertension-Mechanisms and Mitigation. Hypertension 2023; 80:685-710. [PMID: 36756872 PMCID: PMC10023512 DOI: 10.1161/hypertensionaha.122.17947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cardiovascular disease and cancer are 2 of the leading causes of death worldwide. Although improvements in outcomes have been noted for both disease entities, the success of cancer therapies has come at the cost of at times very impactful adverse events such as cardiovascular events. Hypertension has been noted as both, a side effect as well as a risk factor for the cardiotoxicity of cancer therapies. Some of these dynamics are in keeping with the role of hypertension as a cardiovascular risk factor not only for heart failure, but also for the development of coronary and cerebrovascular disease, and kidney disease and its association with a higher morbidity and mortality overall. Other aspects such as the molecular mechanisms underlying the amplification of acute and long-term cardiotoxicity risk of anthracyclines and increase in blood pressure with various cancer therapeutics remain to be elucidated. In this review, we cover the latest clinical data regarding the risk of hypertension across a spectrum of novel anticancer therapies as well as the underlying known or postulated pathophysiological mechanisms. Furthermore, we review the acute and long-term implications for the amplification of the development of cardiotoxicity with drugs not commonly associated with hypertension such as anthracyclines. An outline of management strategies, including pharmacological and lifestyle interventions as well as models of care aimed to facilitate early detection and more timely management of hypertension in patients with cancer and survivors concludes this review, which overall aims to improve both cardiovascular and cancer-specific outcomes.
Collapse
Affiliation(s)
- Lloyd E Butel-Simoes
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Tatt Jhong Haw
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Trent Williams
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Shanathan Sritharan
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Payal Gadre
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55902, USA
| | - Doan TM Ngo
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Aaron L Sverdlov
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| |
Collapse
|
69
|
Sivakumar S, Jin DX, Rathod R, Ross J, Cantley LC, Scaltriti M, Chen JW, Hutchinson KE, Wilson TR, Sokol ES, Vasan N. Genetic Heterogeneity and Tissue-specific Patterns of Tumors with Multiple PIK3CA Mutations. Clin Cancer Res 2023; 29:1125-1136. [PMID: 36595567 PMCID: PMC10011881 DOI: 10.1158/1078-0432.ccr-22-2270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE To comprehensively characterize tissue-specific and molecular subclasses of multiple PIK3CA (multi-PIK3CA) mutations and assess their impact on potential therapeutic outcomes. EXPERIMENTAL DESIGN We profiled a pan-cancer cohort comprised of 352,392 samples across 66 tumor types using a targeted hybrid capture-based next-generation sequencing panel covering at least 324 cancer-related genes. Molecularly defined subgroups, allelic configuration, clonality, and mutational signatures were identified and tested for association with PI3K inhibitor therapeutic response. RESULTS Multi-PIK3CA mutations are found in 11% of all PIK3CA-mutant tumors, including 9% of low tumor mutational burden (TMB) PIK3CA-mutant tumors, and are enriched in breast and gynecologic cancers. Multi-PIK3CA mutations are frequently clonal and in cis on the same allele and occur at characteristic positions across tumor types. These mutations tend to be mutually exclusive of mutations in other driver genes, and of genes in the PI3K pathway. Among PIK3CA-mutant tumors with a high TMB, 18% are multi-PIK3CA mutant and often harbor an apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational signature. Despite large differences in specific allele combinations comprising multi-PIK3CA mutant tumors, especially across cancer types, patients with different classes of multi-PIK3CA mutant estrogen receptor-positive, HER2-negative breast cancers respond similarly to PI3K inhibition. CONCLUSIONS Our pan-tumor study provides biological insights into the genetic heterogeneity and tissue specificities of multi-PIK3CA mutations, with potential clinical utility to guide PI3K inhibition strategies.
Collapse
Affiliation(s)
| | | | - Ruchita Rathod
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, New York
| | - Jeffrey Ross
- Foundation Medicine, Cambridge, Massachusetts.,Departments of Pathology and Urology, Upstate Medical University, Syracuse, New York
| | | | | | - Jessica W Chen
- Oncology Biomarker Development, Genentech, South San Francisco, California
| | | | - Timothy R Wilson
- Oncology Biomarker Development, Genentech, South San Francisco, California
| | | | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
70
|
Yu M, Chen J, Xu Z, Yang B, He Q, Luo P, Yan H, Yang X. Development and safety of PI3K inhibitors in cancer. Arch Toxicol 2023; 97:635-650. [PMID: 36773078 PMCID: PMC9968701 DOI: 10.1007/s00204-023-03440-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signalling pathway regulates cell survival, proliferation, migration, metabolism and other vital cellular life processes. In addition, activation of the PI3K signalling pathway is important for cancer development. As a result, a variety of PI3K inhibitors have been clinically developed to treat malignancies. Although several PI3K inhibitors have received approval from the Food and Drug Administration (FDA) for significant antitumour activity, frequent and severe adverse effects have greatly limited their clinical application. These toxicities are mostly on-target and immune-mediated; nevertheless, the underlying mechanisms are still unclear. Current management usually involves intervention through symptomatic treatment, with discontinuation if toxicity persists. Therefore, it is necessary to comprehensively understand these adverse events and ensure the clinical safety application of PI3K inhibitors by establishing the most effective management guidelines, appropriate intermittent dosing regimens and new combination administration. Here, the focus is on the development of PI3K inhibitors in cancer therapy, with particular emphasis on isoform-specific PI3K inhibitors. The most common adverse effects of PI3K inhibitors are also covered, as well as potential mechanisms and management approaches.
Collapse
Affiliation(s)
- Miaomiao Yu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Zijingang Campus, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
71
|
Isoyama S, Tamaki N, Noguchi Y, Okamura M, Yoshimatsu Y, Kondo T, Suzuki T, Yaguchi SI, Dan S. Subtype-selective induction of apoptosis in translocation-related sarcoma cells induced by PUMA and BIM upon treatment with pan-PI3K inhibitors. Cell Death Dis 2023; 14:169. [PMID: 36849535 PMCID: PMC9971170 DOI: 10.1038/s41419-023-05690-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Translocation-related sarcomas (TRSs) harbor an oncogenic fusion gene generated by chromosome translocation and account for approximately one-third of all sarcomas; however, effective targeted therapies have yet to be established. We previously reported that a pan-phosphatidylinositol 3-kinase (PI3K) inhibitor, ZSTK474, was effective for the treatment of sarcomas in a phase I clinical trial. We also demonstrated the efficacy of ZSTK474 in a preclinical model, particularly in cell lines from synovial sarcoma (SS), Ewing's sarcoma (ES) and alveolar rhabdomyosarcoma (ARMS), all of which harbor chromosomal translocations. ZSTK474 selectively induced apoptosis in all these sarcoma cell lines, although the precise mechanism underlying the induction of apoptosis remained unclear. In the present study, we aimed to determine the antitumor effect of PI3K inhibitors, particularly with regards to the induction of apoptosis, against various TRS subtypes using cell lines and patient-derived cells (PDCs). All of the cell lines derived from SS (six), ES (two) and ARMS (one) underwent apoptosis accompanied by the cleavage of poly-(ADP-ribose) polymerase (PARP) and the loss of mitochondrial membrane potential. We also observed apoptotic progression in PDCs from SS, ES and clear cell sarcoma (CCS). Transcriptional analyses revealed that PI3K inhibitors triggered the induction of PUMA and BIM and the knockdown of these genes by RNA interference efficiently suppressed apoptosis, suggesting their functional involvement in the progression of apoptosis. In contrast, TRS-derived cell lines/PDCs from alveolar soft part sarcoma (ASPS), CIC-DUX4 sarcoma and dermatofibrosarcoma protuberans failed to undergo apoptosis nor induce PUMA and BIM expression, as well as cell lines derived from non-TRSs and carcinomas. Thus, we conclude that PI3K inhibitors induce apoptosis in selective TRSs such as ES and SS via the induction of PUMA and BIM and the subsequent loss of mitochondrial membrane potential. This represents proof of concept for PI3K-targeted therapy, particularly such TRS patients.
Collapse
Affiliation(s)
- Sho Isoyama
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Naomi Tamaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yutaka Noguchi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Mutsumi Okamura
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yuki Yoshimatsu
- Department of Patient-derived Cancer Model, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shin-Ichi Yaguchi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
- OHARA Pharmaceutical Co., Ltd., 36F St. Luke's Tower, 8-1 Akashi-cho, Chuo-ku, Tokyo, 104-6591, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
72
|
Peixoto A, Cirnes L, Carvalho AL, Andrade MJ, Brito MJ, Borralho P, Coimbra N, Borralho PM, Carneiro AS, Castro L, Correia L, Dionísio MR, Faria C, Figueiredo P, Gomes A, Paixão J, Pinheiro M, Prazeres H, Ribeiro J, Salgueiro N, Schmitt FC, Silva F, Silvestre AR, Sousa AC, Almeida-Tavares J, Teixeira MR, André S, Machado JC. Evaluation of PIK3CA mutations in advanced ER+/HER2-breast cancer in Portugal - U-PIK Project. Front Mol Biosci 2023; 10:1082915. [PMID: 36825198 PMCID: PMC9941536 DOI: 10.3389/fmolb.2023.1082915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Around 40% of ER+/HER2-breast carcinomas (BC) present mutations in the PIK3CA gene. Assessment of PIK3CA mutational status is required to identify patients eligible for treatment with PI3Kα inhibitors, with alpelisib currently the only approved tyrosine kinase inhibitor in this setting. U-PIK project aimed to conduct a ring trial to validate and implement the PIK3CA mutation testing in several Portuguese centers, decentralizing it and optimizing its quality at national level. Methods: Eight Tester centers selected two samples of patients with advanced ER+/HER2- BC and generated eight replicates of each (n = 16). PIK3CA mutational status was assessed in two rounds. Six centers used the cobas® PIK3CA mutation test, and two used PCR and Sanger sequencing. In parallel, two reference centers (IPATIMUP and the Portuguese Institute of Oncology [IPO]-Porto) performed PIK3CA mutation testing by NGS in the two rounds. The quality of molecular reports describing the results was also assessed. Testing results and molecular reports were received and analyzed by U-PIK coordinators: IPATIMUP, IPO-Porto, and IPO-Lisboa. Results: Overall, five centers achieved a concordance rate with NGS results (allele frequency [AF] ≥5%) of 100%, one of 94%, one of 93%, and one of 87.5%, considering the overall performance in the two testing rounds. NGS reassessment of discrepancies in the results of the methods used by the Tester centers and the reference centers identified one probable false positive and two mutations with low AF (1-3%, at the analytical sensitivity threshold), interpreted as subclonal variants with heterogeneous representation in the tissue sections processed by the respective centers. The analysis of molecular reports revealed the need to implement the use of appropriate sequence variant nomenclature with the identification of reference sequences (HGVS-nomenclature) and to state the tumor cell content in each sample. Conclusion: The concordance rates between the method used by each tester center and NGS validate the use of the PIK3CA mutational status test performed at these centers in clinical practice in patients with advanced ER+/HER2- BC.
Collapse
Affiliation(s)
- Ana Peixoto
- Serviço de Genética Laboratorial, Instituto Português de Oncologia do Porto Francisco Gentil (IPO Porto), Porto, Portugal
| | - Luís Cirnes
- IPATIMUP - Instituto de Patologia e Imunologia da Universidade do Porto, Porto, Portugal
| | - Ana Luísa Carvalho
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | | | - Maria José Brito
- Unidade de Mama, Centro Clínico Champalimaud, Fundação Champalimaud, Lisboa, Portugal
| | - Paula Borralho
- Serviço de Anatomia Patológica, Hospital CUF Descobertas, Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Coimbra
- Serviço de Anatomia Patológica, Instituto Português de Oncologia do Porto Francisco Gentil (IPO Porto), Porto, Portugal
| | - Pedro M. Borralho
- Novartis Farma - Produtos Farmacêuticos, S.A., Porto Salvo, Portugal
| | - Ana Sofia Carneiro
- Serviço de Anatomia Patológica, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Lisandra Castro
- Departamento de Genética Molecular, SYNLAB Genética Médica, S.A., Porto, Portugal
| | - Lurdes Correia
- Serviço de Anatomia Patológica, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
- Instituto de Anatomia Patológica, Lisboa, Portugal
| | | | - Carlos Faria
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - Ana Gomes
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joana Paixão
- Serviço de Anatomia Patológica, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Manuela Pinheiro
- Serviço de Genética Laboratorial, Instituto Português de Oncologia do Porto Francisco Gentil (IPO Porto), Porto, Portugal
| | - Hugo Prazeres
- Serviço de Anatomia Patológica, IPO Coimbra, Coimbra, Portugal
| | - Joana Ribeiro
- Unidade de Mama, Centro Clínico Champalimaud, Fundação Champalimaud, Lisboa, Portugal
| | - Natália Salgueiro
- Departamento de Genética Molecular, SYNLAB Genética Médica, S.A., Porto, Portugal
| | - Fernando C. Schmitt
- IPATIMUP - Instituto de Patologia e Imunologia da Universidade do Porto, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Fátima Silva
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Escola Superior de Tecnologia da Saúde de Coimbra, Coimbra, Portugal
- Associação Portuguesa de Técnicas de Anatomia Patológica, Porto, Portugal
| | - Ana Rita Silvestre
- Serviço de Anatomia Patológica, Hospital CUF Descobertas, Lisboa, Portugal
| | - Ana Carla Sousa
- GenoMed – Diagnósticos de Medicina Molecular, S.A., Lisboa, Portugal
| | - Joana Almeida-Tavares
- Serviço de Anatomia Patológica, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Manuel R. Teixeira
- Serviço de Genética Laboratorial, Instituto Português de Oncologia do Porto Francisco Gentil (IPO Porto), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Saudade André
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - José Carlos Machado
- IPATIMUP - Instituto de Patologia e Imunologia da Universidade do Porto, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
73
|
Sirico M, D’Angelo A, Gianni C, Casadei C, Merloni F, De Giorgi U. Current State and Future Challenges for PI3K Inhibitors in Cancer Therapy. Cancers (Basel) 2023; 15:703. [PMID: 36765661 PMCID: PMC9913212 DOI: 10.3390/cancers15030703] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The phosphoinositide 3 kinase (PI3K)-protein kinase B (PKB/AKT)-mammalian target of the rapamycin (mTOR) axis is a key signal transduction system that links oncogenes and multiple receptor classes which are involved in many essential cellular functions. Aberrant PI3K signalling is one of the most commonly mutated pathways in cancer. Consequently, more than 40 compounds targeting key components of this signalling network have been tested in clinical trials among various types of cancer. As the oncogenic activation of the PI3K/AKT/mTOR pathway often occurs alongside mutations in other signalling networks, combination therapy should be considered. In this review, we highlight recent advances in the knowledge of the PI3K pathway and discuss the current state and future challenges of targeting this pathway in clinical practice.
Collapse
Affiliation(s)
- Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alberto D’Angelo
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
- Department of Oncology, Royal United Hospital, Bath BA1 3NG, UK
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
74
|
VanLandingham NK, Nazarenko A, Grandis JR, Johnson DE. The mutational profiles and corresponding therapeutic implications of PI3K mutations in cancer. Adv Biol Regul 2023; 87:100934. [PMID: 36402737 PMCID: PMC9992323 DOI: 10.1016/j.jbior.2022.100934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Genetic alterations of the PIK3CA gene, encoding the p110α catalytic subunit of PI3Kα enzyme, are found in a broad spectrum of human cancers. Many cancer-associated PIK3CA mutations occur at 3 hotspot locations and are termed canonical mutations. Canonical mutations result in hyperactivation of PI3K and promote oncogenesis via the PI3K/AKT/mTOR and PI3K/COX-2/PGE2 signaling pathways. These mutations also may serve as predictive biomarkers of response to PI3K inhibitors, as well as NSAID therapy. A large number of non-canonical PIK3CA mutations have also been identified in human tumors, but their functional properties are poorly understood. Here we review the landscape of PIK3CA mutations in different cancers and efforts underway to define the functional properties of non-canonical PIK3CA mutations. In addition, we summarize what has been learned from clinical trials of PI3K inhibitors as well as current trials incorporating these molecular targeting agents.
Collapse
Affiliation(s)
- Nathan K VanLandingham
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
75
|
Ma XB, Wang Y, Jia YJ, Liu YJ, Tian YQ, Liu Y, Hou GQ, Xu YC, Liu HM. Upregulation of PIK3IP1 monitors the anti-cancer activity of PI3Kα inhibitors in gastric cancer cells. Biochem Pharmacol 2023; 207:115380. [PMID: 36521557 DOI: 10.1016/j.bcp.2022.115380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Gastric cancer remains one of the most malignant cancers in the world. The target-based drugs approved by FDA for gastric cancer treatment include only three targets and benefit a small portion of gastric cancer patients. PIK3CA, a confirmed oncogene, mutates in 7-25% gastric cancer patients. PI3Kα inhibitor BYL719 has been approved for treating specific breast cancer. However, there is no comprehensive study about PI3Kα inhibitor in gastric cancer. In this study, we found pharmacological inhibition or knockdown of PI3Kα effectively inhibited the proliferation of partial gastric cancer cells. Then, we systematically explored the potential biomarkers for predicting or monitoring treatment response according to previous reports and found that basal expression of several receptor tyrosine kinases were related with the sensitivity of gastric cancer cells to BYL719. Next, RNA-seq technique was utilized and showed that BYL719 inhibited Myc targets V2 gene set in sensitive gastric cancer cells, and western blotting further verified that c-Myc was only inhibited in sensitive gastric cancer cells. More importantly, we firstly found BYL719 significantly elevated the expression of PIK3IP1 in sensitive gastric cancer cells, which was also observed in NCI-N87 cell derived xenograft mice models. Meanwhile, knockdown of PIK3IP1 partially rescued the cell growth inhibited by BYL719 in sensitive gastric cancer cells, suggesting the important role of PIK3IP1 in the antitumor activity of BYL719. In conclusion, our study provides biological evidence that PI3Kα is a promising target in specific gastric cancer and the elevation of PIK3IP1 could supply as a biomarker that monitoring treatment response.
Collapse
Affiliation(s)
- Xu-Bin Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Yang Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ying-Jie Jia
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ya-Jie Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ying-Qi Tian
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Gui-Qin Hou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Yi-Chao Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China..
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China..
| |
Collapse
|
76
|
Necchi A, Spiess PE, Bandini M, Basile G, Grivas P, Bratslavsky G, Jacob J, Danziger N, Lin D, Decker B, Sokol ES, Huang RSP, Kulkarni SB, Ross JS. Advanced Squamous Cell Carcinomas of the Pelvic and Perineal Region: A Comprehensive Genomic Profiling Study. Oncologist 2022; 27:1016-1024. [PMID: 35881043 DOI: 10.1093/oncolo/oyac144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Advanced pelvic squamous cell carcinoma (pSCC) is a broad category of cancers affecting different pelvic organs and usually featuring unfavorable clinical outcomes. Thus, we aimed to assess genomic differences among pSCC cases and learn whether pSCC could potentially benefit from targeted therapies and/or immunotherapy. MATERIALS AND METHODS A total of 1917 advanced pSCCs, including penile (penSCC), male urethral (murthSCC), male anal (manSCC), female urethral (furthSCC), vulvar (vulSCC), cervical (crvSCC), female anal (fanSCC), and vaginal (vagSCC), underwent comprehensive genomic profiling (CGP). We used hybrid capture-based CGP to evaluate recurrent genomic alterations (GAs). Tumor mutational burden (TMB) was determined on up to 1.1 Mb of sequenced DNA and microsatellite instability (MSI) was determined on up to 95 loci. Programmed cell-death-ligand-1 (PD-L1) expression was determined by immunohistochemistry (IHC; Dako 22C3). RESULTS PIK3CA was the most frequently identified potentially "actionable" GA (22%-43%), followed by mTOR pathway [PTEN (0%-18%), FBXW7 (7%-29%)], and cell-cycle GAs. DNA-damage response (DDR) GAs and receptor-tyrosine kinase (RTK) targeted options were uncommon. NOTCH1 GAs were present in >15% of penSCC and vulvSCC. TMB ≥10 mut/Mb was >15% in manSCC, fanSCC, crvSCC, and vagSCC. PD-L1 high expression was >18% in all pSCC except urthSCC, manSCC, and vagSCC. HPV-16/18 detection was highest in manSCC, fanSCC, and crvSCC. CONCLUSION Despite similar histology, pSCCs can differ in GAs and HPV status. Overall, PIK3CA is the most frequent potentially "targetable" GA followed by mTOR and cell cycle pathway. RTK and DDR GAs are rare in pSCC. Immunotherapy could be considered for pSCC management based on TMB and PD-L1 expression.
Collapse
Affiliation(s)
- Andrea Necchi
- IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | - Marco Bandini
- IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giuseppe Basile
- IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Petros Grivas
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Joseph Jacob
- SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Douglas Lin
- Foundation Medicine, Inc., Cambridge, MA, USA
| | | | | | | | | | - Jeffrey S Ross
- Foundation Medicine, Inc., Cambridge, MA, USA.,SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
77
|
Kirchenwitz M, Stahnke S, Grunau K, Melcher L, van Ham M, Rottner K, Steffen A, Stradal TEB. The autophagy inducer SMER28 attenuates microtubule dynamics mediating neuroprotection. Sci Rep 2022; 12:17805. [PMID: 36284196 PMCID: PMC9596692 DOI: 10.1038/s41598-022-20563-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/15/2022] [Indexed: 01/19/2023] Open
Abstract
SMER28 originated from a screen for small molecules that act as modulators of autophagy. SMER28 enhanced the clearance of autophagic substrates such as mutant huntingtin, which was additive to rapamycin-induced autophagy. Thus, SMER28 was established as a positive regulator of autophagy acting independently of the mTOR pathway, increasing autophagosome biosynthesis and attenuating mutant huntingtin-fragment toxicity in cellular- and fruit fly disease models, suggesting therapeutic potential. Despite many previous studies, molecular mechanisms mediating SMER28 activities and its direct targets have remained elusive. Here we analyzed the effects of SMER28 on cells and found that aside from autophagy induction, it significantly stabilizes microtubules and decelerates microtubule dynamics. Moreover, we report that SMER28 displays neurotrophic and neuroprotective effects at the cellular level by inducing neurite outgrowth and protecting from excitotoxin-induced axon degeneration. Finally, we compare the effects of SMER28 with other autophagy-inducing or microtubule-stabilizing drugs: whereas SMER28 and rapamycin both induce autophagy, the latter does not stabilize microtubules, and whereas both SMER28 and epothilone B stabilize microtubules, epothilone B does not stimulate autophagy. Thus, the effect of SMER28 on cells in general and neurons in particular is based on its unique spectrum of bioactivities distinct from other known microtubule-stabilizing or autophagy-inducing drugs.
Collapse
Affiliation(s)
- Marco Kirchenwitz
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Stephanie Stahnke
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kyra Grunau
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Lars Melcher
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco van Ham
- grid.7490.a0000 0001 2238 295XCellular Proteome Research, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Anika Steffen
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E. B. Stradal
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
78
|
Kotzampasi DM, Premeti K, Papafotika A, Syropoulou V, Christoforidis S, Cournia Z, Leondaritis G. The orchestrated signaling by PI3Kα and PTEN at the membrane interface. Comput Struct Biotechnol J 2022; 20:5607-5621. [PMID: 36284707 PMCID: PMC9578963 DOI: 10.1016/j.csbj.2022.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The oncogene PI3Kα and the tumor suppressor PTEN represent two antagonistic enzymatic activities that regulate the interconversion of the phosphoinositide lipids PI(4,5)P2 and PI(3,4,5)P3 in membranes. As such, they are defining components of phosphoinositide-based cellular signaling and membrane trafficking pathways that regulate cell survival, growth, and proliferation, and are often deregulated in cancer. In this review, we highlight aspects of PI3Kα and PTEN interplay at the intersection of signaling and membrane trafficking. We also discuss the mechanisms of PI3Kα- and PTEN- membrane interaction and catalytic activation, which are fundamental for our understanding of the structural and allosteric implications on signaling at the membrane interface and may aid current efforts in pharmacological targeting of these proteins.
Collapse
Affiliation(s)
- Danai Maria Kotzampasi
- Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
- Department of Biology, University of Crete, Heraklion 71500, Greece
| | - Kyriaki Premeti
- Laboratory of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Alexandra Papafotika
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology, Ioannina 45110, Greece
| | - Vasiliki Syropoulou
- Laboratory of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Savvas Christoforidis
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology, Ioannina 45110, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - George Leondaritis
- Laboratory of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
- Institute of Biosciences, University Research Center of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
79
|
Yang J, Liu Y, Lan S, Yu S, Ma X, Luo D, Shan H, Zhong X, Yan G, Li R. Discovery of 2-Methyl-2-(4-(2-methyl-8-(1 H-pyrrolo[2,3- b]pyridin-6-yl)-1 H-naphtho[1,2- d]imidazol-1-yl)phenyl)propanenitrile as a Novel PI3K/mTOR Inhibitor with Enhanced Antitumor Efficacy In Vitro and In Vivo. J Med Chem 2022; 65:12781-12801. [PMID: 36191148 DOI: 10.1021/acs.jmedchem.2c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PI3K/Akt/mTOR signaling pathway is a validated drug target for cancer treatment that plays a critical role in controlling tumor growth, proliferation, and apoptosis. However, no FDA-approved PI3K/mTOR dual inhibitor exists. Thus, a candidate with a better curative effect and lower toxicity is still urgently needed. Herein, we design, synthesize, and evaluate compounds belonging to a novel series of 2-methyl-1H-imidazo[4,5-c]quinoline scaffold derivatives as PI3K/mTOR dual inhibitors. Among them, compound 8o was identified as a novel candidate with excellent kinase selectivity. It manifested remarkable antiproliferative activities against SW620 and HeLa cells. Western blot and immunohistochemical analysis results proved that 8o could regulate the PI3K/AKT/mTOR signaling pathway by inhibiting the phosphorylation of AKT and S6 proteins. Additionally, 8o presented a favorable pharmacokinetic property (oral bioavailability of 76.8%) and significant antitumor efficacy in vivo without obvious toxicity. Collectively, these results indicated that 8o is a promising agent for cancer treatment and merits further development.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China.,Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuanyuan Liu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Suke Lan
- College of Chemistry & Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China
| | - Su Yu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xinyu Ma
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Luo
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Huifang Shan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xinxin Zhong
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Guoyi Yan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rui Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
80
|
Cho YS, Kim HR, Park SJ, Chung SW, Ko YG, Yeo JH, Lee J, Kim SK, Choi JU, Kim SY, Byun Y. Sustained potentiation of bystander killing via PTEN-loss driven macropinocytosis targeted peptide-drug conjugate therapy in metastatic triple-negative breast cancer. Biomaterials 2022; 289:121783. [DOI: 10.1016/j.biomaterials.2022.121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
|
81
|
Rani I, Goyal A, Sharma M. Computational Design of Phosphatidylinositol 3-Kinase Inhibitors. Assay Drug Dev Technol 2022; 20:317-337. [PMID: 36269231 DOI: 10.1089/adt.2022.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
One of the most sought-after therapeutic targets for treating human cancers is the phosphoinositide 3-kinase; PI3k is an integral part of the PI3K/protein kinase B signaling arcade. This pathway is frequently activated in malignancies. Drug resistance and dose-limiting adverse effects are currently associated challenges with the existing anticancer chemotherapy. Therefore, in this research, a series of pyrimidine derivatives were designed and evaluated against human PI3K by using molecular docking analysis. The docking results were further verified by molecular dynamic simulation, which analyzed the strength of the macromolecular complex with respect to time. Compounds IV and XIV were found to be the most potent inhibitors of the human PI3K receptor with a high degree of stability within the active site of the target receptor for a timeframe of 50 ns. Thus, both of these compounds could be important drug candidates for the development of PI3K inhibitors as a prospective anticancer agent.
Collapse
Affiliation(s)
- Isha Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Department of Pharmaceutical Chemistry, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Anju Goyal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - M Sharma
- Institute of Advanced Research (IAR), Gandhinagar, India
| |
Collapse
|
82
|
Chakraborty G, Nandakumar S, Hirani R, Nguyen B, Stopsack KH, Kreitzer C, Rajanala SH, Ghale R, Mazzu YZ, Pillarsetty NVK, Mary Lee GS, Scher HI, Morris MJ, Traina T, Razavi P, Abida W, Durack JC, Solomon SB, Vander Heiden MG, Mucci LA, Wibmer AG, Schultz N, Kantoff PW. The Impact of PIK3R1 Mutations and Insulin-PI3K-Glycolytic Pathway Regulation in Prostate Cancer. Clin Cancer Res 2022; 28:3603-3617. [PMID: 35670774 PMCID: PMC9438279 DOI: 10.1158/1078-0432.ccr-21-4272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncogenic alterations of the PI3K/AKT pathway occur in >40% of patients with metastatic castration-resistant prostate cancer, predominantly via PTEN loss. The significance of other PI3K pathway components in prostate cancer is largely unknown. EXPERIMENTAL DESIGN Patients in this study underwent tumor sequencing using the MSK-IMPACT clinical assay to capture single-nucleotide variants, insertions, and deletions; copy-number alterations; and structural rearrangements, or were profiled through The Cancer Genome Atlas. The association between PIK3R1 alteration/expression and survival was evaluated using univariable and multivariable Cox proportional-hazards regression models. We used the siRNA-based knockdown of PIK3R1 for functional studies. FDG-PET/CT examinations were performed with a hybrid positron emission tomography (PET)/CT scanner for some prostate cancer patients in the MSK-IMPACT cohort. RESULTS Analyzing 1,417 human prostate cancers, we found a significant enrichment of PIK3R1 alterations in metastatic cancers compared with primary cancers. PIK3R1 alterations or reduced mRNA expression tended to be associated with worse clinical outcomes in prostate cancer, particularly in primary disease, as well as in breast, gastric, and several other cancers. In prostate cancer cell lines, PIK3R1 knockdown resulted in increased cell proliferation and AKT activity, including insulin-stimulated AKT activity. In cell lines and organoids, PIK3R1 loss/mutation was associated with increased sensitivity to AKT inhibitors. PIK3R1-altered patient prostate tumors had increased uptake of the glucose analogue 18F-fluorodeoxyglucose in PET imaging, suggesting increased glycolysis. CONCLUSIONS Our findings describe a novel genomic feature in metastatic prostate cancer and suggest that PIK3R1 alteration may be a key event for insulin-PI3K-glycolytic pathway regulation in prostate cancer.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rahim Hirani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bastien Nguyen
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Konrad H. Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christoph Kreitzer
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Romina Ghale
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Z. Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Gwo-Shu Mary Lee
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA
| | - Howard I. Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J. Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tiffany Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeremy C. Durack
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen B. Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andreas G. Wibmer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Philip W. Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
83
|
Hou Y, Zhang F, Min W, Yuan K, Kuang W, Wang X, Zhu Y, Sun C, Xia F, Wang Y, Zhang H, Wang L, Yang P. Discovery of Novel Phosphoinositide-3-Kinase α Inhibitors with High Selectivity, Excellent Bioavailability, and Long-Acting Efficacy for Gastric Cancer. J Med Chem 2022; 65:9873-9892. [PMID: 35834807 DOI: 10.1021/acs.jmedchem.2c00549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphoinositide-3-kinase (PI3K) overexpressed in many tumors is a promising target for cancer therapy. However, due to toxicity from the ubiquitous expression of PI3K in many tissues, the development of PI3K inhibitors with high selectivity and low toxicity has become an urgent need for tumor treatment. Herein, based on the HipHop, we designed and synthesized a series of 6-(4,6-dimorpholino-1,3,5-triazin-2-yl)benzo[d]oxazol-2-amine derivatives as potent, selective, and long-acting PI3Kα inhibitors. Compound 27 was determined with potent PI3Kα inhibitory activity (IC50 = 4.4 nM), which exhibited excellent selectivity for homologous PI3K enzymes and a 370 kinome panel. Meanwhile, 27 featured favorable stability (T1/2 > 10 h) and high bioavailability (130%). Importantly, compound 27 exerted great antigastric cancer activity in vivo when combined with taxol. Collectively, these characteristics suggested 27 to be a promising PI3K agent for cancer treatment.
Collapse
Affiliation(s)
- Yi Hou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yasheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fei Xia
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanyin Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haolin Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Linping Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
84
|
Vasan N, Cantley LC. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat Rev Clin Oncol 2022; 19:471-485. [PMID: 35484287 PMCID: PMC11215755 DOI: 10.1038/s41571-022-00633-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Numerous agents targeting various phosphatidylinositol 3-kinase (PI3K) pathway components, including PI3K, AKT and mTOR, have been tested in oncology clinical trials, resulting in regulatory approvals for the treatment of selected patients with breast cancer, certain other solid tumours or particular haematological malignancies. However, given the prominence of PI3K signalling in cancer and the crucial role of this pathway in linking cancer growth with metabolism, these clinical results could arguably be improved upon. In this Review, we discuss past and present efforts to overcome the somewhat limited clinical efficacy of PI3Kα pathway inhibitors, including optimization of inhibitor specificity, patient selection and biomarkers across cancer types, with a focus on breast cancer, as well as identification and abrogation of signalling-related and metabolic mechanisms of resistance, and interventions to improve management of prohibitive adverse events. We highlight the advantages and limitations of laboratory-based model systems used to study the PI3K pathway, and propose technologies and experimental inquiries to guide the future clinical deployment of PI3K pathway inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
85
|
Yang Q, Ma X, Xiao Y, Zhang T, Yang L, Yang S, Liang M, Wang S, Wu Z, Xu Z, Sun Z. Engineering prodrug nanomicelles as pyroptosis inducer for codelivery of PI3K/mTOR and CDK inhibitors to enhance antitumor immunity. Acta Pharm Sin B 2022; 12:3139-3155. [PMID: 35865097 PMCID: PMC9293721 DOI: 10.1016/j.apsb.2022.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/02/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Aberrant activation of oncogenic signaling pathways in tumors can promote resistance to the antitumor immune response. However, single blockade of these pathways is usually ineffective because of the complex crosstalk and feedback among oncogenic signaling pathways. The enhanced toxicity of free small molecule inhibitor combinations is considered an insurmountable barrier to their clinical applications. To circumvent this issue, we rationally designed an effective tumor microenvironment-activatable prodrug nanomicelle (PNM) for cancer therapy. PNM was engineered by integrating the PI3K/mTOR inhibitor PF-04691502 (PF) and the broad spectrum CDK inhibitor flavopiridol (Flav) into a single nanoplatform, which showed tumor-specific accumulation, activation and deep penetration in response to the high glutathione (GSH) tumoral microenvironment. The codelivery of PF and Flav could trigger gasdermin E (GSDME)-based immunogenic pyroptosis of tumor cells to elicit a robust antitumor immune response. Furthermore, the combination of PNM-induced immunogenic pyroptosis with anti-programmed cell death-1 (αPD-1) immunotherapy further boosted the antitumor effect and prolonged the survival time of mice. Collectively, these results indicated that the pyroptosis-induced nanoplatform codelivery of PI3K/mTOR and CDK inhibitors can reprogram the immunosuppressive tumor microenvironment and efficiently improve checkpoint blockade cancer immunotherapy.
Collapse
Affiliation(s)
- Qichao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
| | - Leilei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shaochen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Mengyun Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhizhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
86
|
Gerds AT, Bartalucci N, Assad A, Yacoub A. Targeting the PI3K pathway in myeloproliferative neoplasms. Expert Rev Anticancer Ther 2022; 22:835-843. [PMID: 35763287 DOI: 10.1080/14737140.2022.2093192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Decreasing efficacy over time and initial suboptimal response to Janus kinase (JAK) inhibitors such as ruxolitinib in a subset of patients are critical clinical challenges associated with myeloproliferative neoplasms (MPNs), primarily myelofibrosis. AREAS COVERED The role of phosphatidylinositol-3 kinase (PI3K) in MPN disease progression and treatment resistance and as a potential therapeutic target in patients who experience loss of response to JAK inhibition is discussed. Understanding the complex signaling networks involved in the pathogenesis of MPNs has identified potentially novel therapeutic targets and treatment strategies, such as inhibiting other signaling pathways in addition to the JAK/signal transducer and activator of transcription (STAT) pathway. PI3K plays a crucial role downstream of JAK signaling in rescuing tumor cell proliferation, with PI3Kδ being particularly important in hematologic malignancies. Concurrent targeting of both PI3K and JAK/STAT pathways may offer an innovative therapeutic strategy to maximize efficacy. EXPERT OPINION Based on our understanding of the underlying mechanisms and the role of PI3K pathway signaling in the loss of response or resistance to JAK inhibitor treatment and initial results from clinical studies, the combination of parsaclisib (PI3Kδ inhibitor) and ruxolitinib holds great clinical potential. If confirmed in larger clinical trials, parsaclisib may provide more treatment options and improve clinical outcomes for patients with MPNs.
Collapse
Affiliation(s)
- Aaron T Gerds
- Cleveland Clinic Taussig Cancer Institute Cleveland, Cleveland, OH, USA
| | | | | | | |
Collapse
|
87
|
Labrie M, Brugge JS, Mills GB, Zervantonakis IK. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer 2022; 22:323-339. [PMID: 35264777 PMCID: PMC9149051 DOI: 10.1038/s41568-022-00454-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 02/08/2023]
Abstract
Normal cells explore multiple states to survive stresses encountered during development and self-renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. Cancer cells co-opt normal stress mitigation pathways to survive stresses that accompany tumour initiation, progression, metastasis and immune evasion. Cancer therapies accentuate cancer cell stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and thus represent key targetable resistance mechanisms. In this Review, we describe mechanisms by which tumour ecosystems, including cancer cells, immune cells and stroma, adapt to therapeutic stresses and describe three different approaches to exploit stress mitigation processes: (1) interdict stress mitigation to induce cell death; (2) increase stress to induce cellular catastrophe; and (3) exploit emergent vulnerabilities in cancer cells and cells of the tumour microenvironment. We review challenges associated with tumour heterogeneity, prioritizing actionable adaptive responses for optimal therapeutic outcomes, and development of an integrative framework to identify and target vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. Finally, we discuss the need to monitor adaptive responses across multiple scales and translation of combination therapies designed to take advantage of adaptive responses and stress mitigation pathways to the clinic.
Collapse
Affiliation(s)
- Marilyne Labrie
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Obstetrics and Gynecology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Ioannis K Zervantonakis
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
88
|
Rinne N, Christie EL, Ardasheva A, Kwok CH, Demchenko N, Low C, Tralau-Stewart C, Fotopoulou C, Cunnea P. Targeting the PI3K/AKT/mTOR pathway in epithelial ovarian cancer, therapeutic treatment options for platinum-resistant ovarian cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:573-595. [PMID: 35582310 PMCID: PMC9019160 DOI: 10.20517/cdr.2021.05] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
The survival rates for women with ovarian cancer have shown scant improvement in recent years, with a 5-year survival rate of less than 40% for women diagnosed with advanced ovarian cancer. High-grade serous ovarian cancer (HGSOC) is the most lethal subtype where the majority of women develop recurrent disease and chemotherapy resistance, despite over 70%-80% of patients initially responding to platinum-based chemotherapy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway regulates many vital processes such as cell growth, survival and metabolism. However, this pathway is frequently dysregulated in cancers including different subtypes of ovarian cancer, through amplification or somatic mutations of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), amplification of AKT isoforms, or deletion or inactivation of PTEN. Further evidence indicates a role for the PI3K/AKT/mTOR pathway in the development of chemotherapy resistance in ovarian cancer. Thus, targeting key nodes of the PI3K/AKT/mTOR pathway is a potential therapeutic prospect. In this review, we outline dysregulation of PI3K signaling in ovarian cancer, with a particular emphasis on HGSOC and platinum-resistant disease. We review pre-clinical evidence for inhibitors of the main components of the PI3K pathway and highlight past, current and upcoming trials in ovarian cancers for different inhibitors of the pathway. Whilst no inhibitors of the PI3K/AKT/mTOR pathway have thus far advanced to the clinic for the treatment of ovarian cancer, several promising compounds which have the potential to restore platinum sensitivity and improve clinical outcomes for patients are under evaluation and in various phases of clinical trials.
Collapse
Affiliation(s)
- Natasha Rinne
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | | | - Anastasia Ardasheva
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Chun Hei Kwok
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Nikita Demchenko
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Caroline Low
- Department of Metabolism Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Catherine Tralau-Stewart
- Takeda Academic Innovation, Center for External Innovation, Takeda California, San Diego, CA 92121, USA
| | - Christina Fotopoulou
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| | - Paula Cunnea
- Department of Surgery & Cancer, Imperial College London, Hammersmith campus, London W12 0NN, UK
| |
Collapse
|
89
|
Chen CT, Ford JM. A Novel Framework for the Next Generation of Precision Oncology Targets. JAMA Oncol 2022; 8:974-976. [PMID: 35587343 DOI: 10.1001/jamaoncol.2022.0760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Christopher T Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | - James M Ford
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
90
|
Rangwala AM, Mingione VR, Georghiou G, Seeliger MA. Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome. Biomolecules 2022; 12:biom12050685. [PMID: 35625613 PMCID: PMC9138534 DOI: 10.3390/biom12050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation facilitates the regulation of all fundamental biological processes, which has triggered extensive research of protein kinases and their roles in human health and disease. In addition to their phosphotransferase activity, certain kinases have evolved to adopt additional catalytic functions, while others have completely lost all catalytic activity. We searched the Universal Protein Resource Knowledgebase (UniProtKB) database for bifunctional protein kinases and focused on kinases that are critical for bacterial and human cellular homeostasis. These kinases engage in diverse functional roles, ranging from environmental sensing and metabolic regulation to immune-host defense and cell cycle control. Herein, we describe their dual catalytic activities and how they contribute to disease pathogenesis.
Collapse
|
91
|
Demir M, Cizmecioglu O. ZAP70 Activation Compensates for Loss of Class IA PI3K Isoforms Through Activation of the JAK-STAT3 Pathway. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:391-404. [PMID: 35530641 PMCID: PMC9066532 DOI: 10.21873/cdp.10122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Tyrosine kinases have crucial functions in cell signaling and proliferation. The phosphatidylinositol 3-kinase (PI3K) pathway is frequently deregulated in human cancer and is an essential regulator of cellular proliferation. We aimed to determine which tyrosine kinases contribute to resistance elicited by PI3K silencing and inhibition. MATERIALS AND METHODS To mimic catalytic inactivation of p110α/β, specific p110α (BYL719) and p110β (KIN193) inhibitors were used in addition to genetic knock-out in in vitro assays. Cell viability was assessed using crystal violet staining, whereas cellular transformation ability was analyzed by soft-agar growth assays. RESULTS Activated zeta chain of T-cell receptor-associated protein kinase 70 (ZAP70) generated resistance to PI3K inhibition. This resistance was via activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) axis. We demonstrated that activated ZAP70 has a high transforming capability associated with the formation of malignant phenotype in untransformed cells and has the potential to be a tumor-initiating factor in cancer cells. CONCLUSION ZAP70 may be a potent driver of proliferation and transformation in untransformed cells and is implicated in resistance to PI3K inhibitors in cancer cells.
Collapse
Affiliation(s)
- Melike Demir
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
92
|
Zhang MH, Liu J. Cleavage stimulation factor 2 promotes malignant progression of liver hepatocellular carcinoma by activating phosphatidylinositol 3'-kinase/protein kinase B/mammalian target of rapamycin pathway. Bioengineered 2022; 13:10047-10060. [PMID: 35412944 PMCID: PMC9161829 DOI: 10.1080/21655979.2022.2063100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is the most common type, comprising 75-85% of all liver malignancies. We investigated the roles of cleavage stimulation factor 2 (CSTF2) in LIHC and explored the underlying mechanisms. CSTF2 expression and its association with LIHC patient survival probability were analyzed with The Cancer Genome Atlas. CSTF2 expression in LIHC cells was assessed using western blot and quantitative real-time PCR. Alterations in CSTF2 expression were induced by cell transfection. Cell colony formation, apoptosis, proliferation, invasion, and migration were assessed using colony formation, flow cytometry, 5-ethynyl-2'-deoxyuridine, and transwell assays. Pathway enrichment analysis was performed using gene set enrichment analysis (GSEA). The expression of apoptosis-, metastasis-, and pathway-associated factors was determined via western blot. The pathway rescue assay was further performed using 740Y-P or Wortmannin. CSTF2 upregulation was observed in LIHC tissues and cells. Patients with high CSTF2 expression had a lower probability of overall survival. CSTF2 overexpression enhanced colony formation, proliferation, invasion and migration, while repressing apoptosis in LIHC cells. GSEA revealed that CSTF2 was mainly enriched in the phosphatidylinositol 3'-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Western blot analysis proved that CSTF2 overexpression activated this pathway. CSTF2 knockdown yielded the opposite effects. 740Y-P, a PI3K activator, reversed the CSTF2 knockdown-triggered effects on cell proliferation, apoptosis, invasion, and migration. Moreover, Wortmannin, a PI3K inhibitor, also reversed the CSTF2 overexpression-induced effects on cell proliferation, apoptosis, invasion, and migration. These results indicated that CSTF2 overexpression might exacerbate the malignant phenotypes of LIHC cells via activation of PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Meng-Hui Zhang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of General Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
93
|
Heynen GJJE, Lisek K, Vogel R, Wulf-Goldenberg A, Alcaniz J, Montaudon E, Marangoni E, Birchmeier W. Targeting SHP2 phosphatase in breast cancer overcomes RTK-mediated resistance to PI3K inhibitors. Breast Cancer Res 2022; 24:23. [PMID: 35365185 PMCID: PMC8974145 DOI: 10.1186/s13058-022-01521-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background PI3K signaling is frequently activated in breast cancer and is targeted by PI3K inhibitors. However, resistance of tumor cells to PI3K inhibition, often mediated by activated receptor tyrosine kinases, is commonly observed and reduces the potency of PI3K inhibitors. Therefore, new treatment strategies to overcome resistance to PI3K inhibitors are urgently needed to boost their efficacy. The phosphatase SHP2, which plays a crucial role in mediating signal transduction between receptor tyrosine kinases and both the PI3K and MAPK pathways, is a potential target for combination treatment. Methods We tested combinations of PI3K and SHP2 inhibitors in several experimental breast cancer models that are resistant to PI3K inhibition. Using cell culturing, biochemical and genetic approaches, we evaluated tumor cell proliferation and signaling output in cells treated with PI3K and SHP2 inhibitors. Results Combination treatment with PI3K and SHP2 inhibitors counteracted both acquired and intrinsic breast cancer cell resistance to PI3K inhibition that is mediated by activated receptor tyrosine kinases. Dual PI3K and SHP2 inhibition blocked proliferation and led to sustained inactivation of PI3K and MAPK signaling, where resistant cells rapidly re-activated these pathways upon PI3K inhibitor monotreatment. In addition, we demonstrate that overexpression of SHP2 induced resistance to PI3K inhibition, and that SHP2 was frequently activated during the development of PI3K inhibitor resistance after prolonged treatment of sensitive cells. Conclusions Our results highlight the importance of SHP2 as a player in resistance to PI3K inhibitors. Combination treatment with PI3K and SHP2 inhibitors could pave the way for significant improvements in therapies for breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01521-3.
Collapse
Affiliation(s)
- Guus J J E Heynen
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Kamil Lisek
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Regina Vogel
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Annika Wulf-Goldenberg
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Joshua Alcaniz
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Elodie Montaudon
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Elisabetta Marangoni
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
94
|
Hu F, Santagostino SF, Danilenko DM, Tseng M, Brumm J, Zehnder P, Wu KC. Assessment of Skin Toxicity in an in Vitro Reconstituted Human Epidermis Model Using Deep Learning. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:687-700. [PMID: 35063406 DOI: 10.1016/j.ajpath.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Skin toxicity is a common safety concern associated with drugs that inhibit epidermal growth factor receptors as well as other targets involved in epidermal growth and differentiation. Recently, the use of a three-dimensional reconstructed human epidermis model enabled large-scale drug screening and showed potential for predicting skin toxicity. Although a decrease in epidermal thickness was often observed when the three-dimensional reconstructed tissues were exposed to drugs causing skin toxicity, the thickness evaluation of epidermal layers from a pathologist was subjective and not easily reproducible or scalable. In addition, the subtle differences in thickness among tissues, as well as the large number of samples tested, made cross-study comparison difficult when a manual evaluation strategy was used. The current study used deep learning and image-processing algorithms to measure the viable epidermal thickness from multiple studies and found that the measured thickness was not only significantly correlated with a pathologist's semi-quantitative evaluation but was also in close agreement with the quantitative measurement performed by pathologists. Moreover, a sensitivity of 0.8 and a specificity of 0.75 were achieved when predicting the toxicity of 18 compounds with clinical observations with these epidermal thickness algorithms. This approach is fully automated, reproducible, and highly scalable. It not only shows reasonable accuracy in predicting skin toxicity but also enables cross-study comparison and high-throughput compound screening.
Collapse
Affiliation(s)
- Fangyao Hu
- Department of Safety Assessment, Genentech, South San Francisco, California.
| | | | | | - Min Tseng
- Department of Safety Assessment, Genentech, South San Francisco, California
| | - Jochen Brumm
- Department of Nonclinical Biostatistics, Genentech, South San Francisco, California
| | - Philip Zehnder
- Department of Safety Assessment, Genentech, South San Francisco, California
| | - Kai Connie Wu
- Department of Safety Assessment, Genentech, South San Francisco, California.
| |
Collapse
|
95
|
Immunosuppressive Signaling Pathways as Targeted Cancer Therapies. Biomedicines 2022. [DOI: 10.3390/biomedicines10030682
expr 829797163 + 949875436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Immune response has been shown to play an important role in defining patient prognosis and response to cancer treatment. Tumor-induced immunosuppression encouraged the recent development of new chemotherapeutic agents that assists in the augmentation of immune responses. Molecular mechanisms that tumors use to evade immunosurveillance are attributed to their ability to alter antigen processing/presentation pathways and the tumor microenvironment. Cancer cells take advantage of normal molecular and immunoregulatory machinery to survive and thrive. Cancer cells constantly adjust their genetic makeup using several mechanisms such as nucleotide excision repair as well as microsatellite and chromosomal instability, thus giving rise to new variants with reduced immunogenicity and the ability to continue to grow without restrictions. This review will focus on the central molecular signaling pathways involved in immunosuppressive cells and briefly discuss how cancer cells evade immunosurveillance by manipulating antigen processing cells and related proteins. Secondly, the review will discuss how these pathways can be utilized for the implementation of precision medicine and deciphering drug resistance.
Collapse
|
96
|
Setlai BP, Hull R, Bida M, Durandt C, Mulaudzi TV, Chatziioannou A, Dlamini Z. Immunosuppressive Signaling Pathways as Targeted Cancer Therapies. Biomedicines 2022; 10:682. [PMID: 35327484 PMCID: PMC8945019 DOI: 10.3390/biomedicines10030682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Immune response has been shown to play an important role in defining patient prognosis and response to cancer treatment. Tumor-induced immunosuppression encouraged the recent development of new chemotherapeutic agents that assists in the augmentation of immune responses. Molecular mechanisms that tumors use to evade immunosurveillance are attributed to their ability to alter antigen processing/presentation pathways and the tumor microenvironment. Cancer cells take advantage of normal molecular and immunoregulatory machinery to survive and thrive. Cancer cells constantly adjust their genetic makeup using several mechanisms such as nucleotide excision repair as well as microsatellite and chromosomal instability, thus giving rise to new variants with reduced immunogenicity and the ability to continue to grow without restrictions. This review will focus on the central molecular signaling pathways involved in immunosuppressive cells and briefly discuss how cancer cells evade immunosurveillance by manipulating antigen processing cells and related proteins. Secondly, the review will discuss how these pathways can be utilized for the implementation of precision medicine and deciphering drug resistance.
Collapse
Affiliation(s)
- Botle Precious Setlai
- Department of Surgery, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa;
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| | - Meshack Bida
- Department of Anatomical Pathology, National Health Laboratory Service (NHLS), University of Pretoria, Hatfield 0028, South Africa;
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa;
| | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Str., 115 27 Athens, Greece;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa;
| |
Collapse
|
97
|
Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat Rev Drug Discov 2022; 21:440-462. [PMID: 35292771 DOI: 10.1038/s41573-022-00415-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the clinical management of multiple tumours. However, only a few patients respond to ICIs, which has generated considerable interest in the identification of resistance mechanisms. One such mechanism reflects the ability of various oncogenic pathways, as well as stress response pathways required for the survival of transformed cells (a situation commonly referred to as 'non-oncogene addiction'), to support tumour progression not only by providing malignant cells with survival and/or proliferation advantages, but also by establishing immunologically 'cold' tumour microenvironments (TMEs). Thus, both oncogene and non-oncogene addiction stand out as promising targets to robustly inflame the TME and potentially enable superior responses to ICIs.
Collapse
|
98
|
Targeting metabolism to overcome cancer drug resistance: A promising therapeutic strategy for diffuse large B cell lymphoma. Drug Resist Updat 2022; 61:100822. [DOI: 10.1016/j.drup.2022.100822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 02/07/2023]
|
99
|
CTCFL regulates the PI3K-Akt pathway and it is a target for personalized ovarian cancer therapy. NPJ Syst Biol Appl 2022; 8:5. [PMID: 35132075 PMCID: PMC8821627 DOI: 10.1038/s41540-022-00214-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSC) is the most lethal gynecologic malignancy due to the lack of reliable biomarkers, effective treatment, and chemoresistance. Improving the diagnosis and the development of targeted therapies is still needed. The molecular pathomechanisms driving HGSC progression are not fully understood though crucial for effective diagnosis and identification of novel targeted therapy options. The oncogene CTCFL (BORIS), the paralog of CTCF, is a transcriptional factor highly expressed in ovarian cancer (but in rarely any other tissue in females) with cancer-specific characteristics and therapeutic potential. In this work, we seek to understand the regulatory functions of CTCFL to unravel new target genes with clinical relevance. We used in vitro models to evaluate the transcriptional changes due to the presence of CTCFL, followed by a selection of gene candidates using de novo network enrichment analysis. The resulting mechanistic candidates were further assessed regarding their prognostic potential and druggability. We show that CTCFL-driven genes are involved in cytoplasmic membrane functions; in particular, the PI3K-Akt initiators EGFR1 and VEGFA, as well as ITGB3 and ITGB6 are potential drug targets. Finally, we identified the CTCFL targets ACTBL2, MALT1 and PCDH7 as mechanistic biomarkers to predict survival in HGSC. Finally, we elucidated the value of CTCFL in combination with its targets as a prognostic marker profile for HGSC progression and as putative drug targets.
Collapse
|
100
|
Lin MT, Zheng G, Rodriguez E, Tseng LH, Parini V, Xian R, Zou Y, Gocke CD, Eshleman JR. Double PIK3CA Alterations and Parallel Evolution in Colorectal Cancers. Am J Clin Pathol 2022; 157:244-251. [PMID: 34519764 DOI: 10.1093/ajcp/aqab119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To demonstrate clinicopathologic features and evaluate the clonality of double PIK3CA alterations in colorectal cancers (CRCs). METHODS Clonality was examined in 13 CRCs with double PIK3CA alterations (1.7% of CRCs or 9.6% of PIK3CA-mutated CRCs). Multiregional analyses were performed to confirm subclonal PIK3CA alterations. RESULTS PIK3CA alterations were detected within exon 9 (51%), exon 20 (23%), exon 1 (15%), and exon 7 (6.0%). CRCs with exon 7 alterations showed a significantly higher incidence of double PIK3CA alterations. Most double PIK3CA alterations consisted of a hotpsot alteration and an uncommon alteration; they were often clonal and present within a single tumor population. Multiregional analyses of CRCs with predicted subclonal double-alterations revealed multiclonal CRCs with divergent PIK3CA variant status originating from a common APC- and KRAS-mutated founder lineage of adenoma. CONCLUSIONS The findings supported multiclonal CRCs resulting from parallel evolution during the progression from adenoma to adenocarcinoma within the mitogen-activated protein kinase pathway, as previously demonstrated, or the mammalian target of rapamycin pathway. Further studies are warranted to elucidate clinical significance and potential targeted therapy for CRC patients with double PIK3CA alterations and impacts on clinical decision-making in patients with multiclonal CRCs harboring divergent PIK3CA mutational status.
Collapse
Affiliation(s)
- Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gang Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Erika Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li-Hui Tseng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Vamsi Parini
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rena Xian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying Zou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|