51
|
Elrakaybi A, Ruess DA, Lübbert M, Quante M, Becker H. Epigenetics in Pancreatic Ductal Adenocarcinoma: Impact on Biology and Utilization in Diagnostics and Treatment. Cancers (Basel) 2022; 14:cancers14235926. [PMID: 36497404 PMCID: PMC9738647 DOI: 10.3390/cancers14235926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with high potential of metastases and therapeutic resistance. Although genetic mutations drive PDAC initiation, they alone do not explain its aggressive nature. Epigenetic mechanisms, including aberrant DNA methylation and histone modifications, significantly contribute to inter- and intratumoral heterogeneity, disease progression and metastasis. Thus, increased understanding of the epigenetic landscape in PDAC could offer new potential biomarkers and tailored therapeutic approaches. In this review, we shed light on the role of epigenetic modifications in PDAC biology and on the potential clinical applications of epigenetic biomarkers in liquid biopsy. In addition, we provide an overview of clinical trials assessing epigenetically targeted treatments alone or in combination with other anticancer therapies to improve outcomes of patients with PDAC.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Dietrich A. Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Quante
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Department of Gastroenterology and Hepatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Heiko Becker
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-270-36000
| |
Collapse
|
52
|
Mutant p53 gain of function mediates cancer immune escape that is counteracted by APR-246. Br J Cancer 2022; 127:2060-2071. [PMID: 36138076 PMCID: PMC9681866 DOI: 10.1038/s41416-022-01971-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND p53 mutants contribute to the chronic inflammatory tumour microenvironment (TME). In this study, we address the mechanism of how p53 mutants lead to chronic inflammation in tumours and how to transform it to restore cancer immune surveillance. METHODS Our analysis of RNA-seq data from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) project revealed that mutant p53 (mtp53) cancers correlated with chronic inflammation. We used cell-based assays and a mouse model to discover a novel gain of function of mtp53 and the effect of the mtp53 reactivating compound APR-246 on the anti-tumour immune response. RESULTS We found that tumour samples from patients with breast carcinoma carrying mtp53 showed elevated Interferon (IFN) signalling, Tumour Inflammation Signature (TIS) score and infiltration of CD8+ T cells compared to wild type p53 (wtp53) tumours. We showed that the expression of IFN and immune checkpoints were elevated in tumour cells in a mtp53-dependent manner, suggesting a novel gain of function. Restoration of wt function to mtp53 by APR-246 induced the expression of endogenous retroviruses, IFN signalling and repressed immune checkpoints. Moreover, APR-246 promoted CD4+ T cells infiltration and IFN signalling and prevented CD8+ T cells exhaustion within the TME in vivo. CONCLUSIONS Breast carcinomas with mtp53 displayed enhanced inflammation. APR-246 boosted the interferon response or represses immune checkpoints in p53 mutant tumour cells, and restores cancer immune surveillance in vivo.
Collapse
|
53
|
Al-Akkad W, Acedo P, Vilia MG, Frenguelli L, Ney A, Rodriguez-Hernandez I, Labib PL, Tamburrino D, Spoletini G, Hall AR, Canestrari S, Osnato A, Garcia-Bernardo J, Sejour L, Vassileva V, Vlachos IS, Fusai G, Luong TV, Whittaker SR, Pereira SP, Vallier L, Pinzani M, Rombouts K, Mazza G. Tissue-Specific Human Extracellular Matrix Scaffolds Promote Pancreatic Tumour Progression and Chemotherapy Resistance. Cells 2022; 11:3652. [PMID: 36429078 PMCID: PMC9688243 DOI: 10.3390/cells11223652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Over 80% of patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed at a late stage and are locally advanced or with concurrent metastases. The aggressive phenotype and relative chemo- and radiotherapeutic resistance of PDAC is thought to be mediated largely by its prominent stroma, which is supported by an extracellular matrix (ECM). Therefore, we investigated the impact of tissue-matched human ECM in driving PDAC and the role of the ECM in promoting chemotherapy resistance. Decellularized human pancreata and livers were recellularized with PANC-1 and MIA PaCa-2 (PDAC cell lines), as well as PK-1 cells (liver-derived metastatic PDAC cell line). PANC-1 cells migrated into the pancreatic scaffolds, MIA PaCa-2 cells were able to migrate into both scaffolds, whereas PK-1 cells were able to migrate into the liver scaffolds only. These differences were supported by significant deregulations in gene and protein expression between the pancreas scaffolds, liver scaffolds, and 2D culture. Moreover, these cell lines were significantly more resistant to gemcitabine and doxorubicin chemotherapy treatments in the 3D models compared to 2D cultures, even after confirmed uptake by confocal microscopy. These results suggest that tissue-specific ECM provides the preserved native cues for primary and metastatic PDAC cells necessary for a more reliable in vitro cell culture.
Collapse
Affiliation(s)
- Walid Al-Akkad
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Pilar Acedo
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Maria-Giovanna Vilia
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Luca Frenguelli
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Alexander Ney
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | | | - Peter L. Labib
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Domenico Tamburrino
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Gabriele Spoletini
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Andrew R. Hall
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Simone Canestrari
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Anna Osnato
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, UK
| | | | - Leinal Sejour
- Cancer Research Institute, HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vessela Vassileva
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Ioannis S. Vlachos
- Cancer Research Institute, HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giuseppe Fusai
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Tu Vinh Luong
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Steven R. Whittaker
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Ludovic Vallier
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, UK
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Krista Rombouts
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Giuseppe Mazza
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| |
Collapse
|
54
|
LaPlante EL, Liu D, Petrosyan V, Yao Q, Milosavljevic A. XDec-CHI reveals immunosuppressive interactions in pancreatic ductal adenocarcinoma. iScience 2022; 25:105249. [PMID: 36274954 PMCID: PMC9579012 DOI: 10.1016/j.isci.2022.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Most cancers harbor a diverse collection of cell types including a typically heterogeneous cancer cell fraction. To reconstruct cell-intrinsic and heterotypic interactions driving tumor progression, we combine the XDec deconvolution method with cell-type-specific gene expression correlation analysis into the XDec-CHI method. XDec-CHI identifies intra- and inter-cellular pathways using correlation and places them in the context of specific tumor subtypes, as defined by the state of constituent cancer cells. We make the method web-accessible for analysis of publicly accessible pancreatic ductal adenocarcinoma, breast, head and neck, glioblastoma, and glioma tumors. We apply the method to TCGA and ICGC datasets to identify immune-suppressive interactions within PDAC tumors that are relevant for immunotherapies targeting PD-L1. Subtype-specific interactions derived from correlative analyses validated in co-culture experiments suggest PDAC subtypes have distinct therapeutic weaknesses, with Basal-like and MSLN-high Classical B tumors most likely to respond to therapies targeting PD-L1.
Collapse
Affiliation(s)
- Emily L. LaPlante
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Varduhi Petrosyan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
55
|
Pitter KL, Grbovic-Huezo O, Joost S, Singhal A, Blum M, Wu K, Holm M, Ferrena A, Bhutkar A, Hudson A, Lecomte N, de Stanchina E, Chaligne R, Iacobuzio-Donahue CA, Pe’er D, Tammela T. Systematic Comparison of Pancreatic Ductal Adenocarcinoma Models Identifies a Conserved Highly Plastic Basal Cell State. Cancer Res 2022; 82:3549-3560. [PMID: 35952360 PMCID: PMC9532381 DOI: 10.1158/0008-5472.can-22-1742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
Intratumoral heterogeneity and cellular plasticity have emerged as hallmarks of cancer, including pancreatic ductal adenocarcinoma (PDAC). As PDAC portends a dire prognosis, a better understanding of the mechanisms underpinning cellular diversity in PDAC is crucial. Here, we investigated the cellular heterogeneity of PDAC cancer cells across a range of in vitro and in vivo growth conditions using single-cell genomics. Heterogeneity contracted significantly in two-dimensional and three-dimensional cell culture models but was restored upon orthotopic transplantation. Orthotopic transplants reproducibly acquired cell states identified in autochthonous PDAC tumors, including a basal state exhibiting coexpression and coaccessibility of epithelial and mesenchymal genes. Lineage tracing combined with single-cell transcriptomics revealed that basal cells display high plasticity in situ. This work defines the impact of cellular growth conditions on phenotypic diversity and uncovers a highly plastic cell state with the capacity to facilitate state transitions and promote intratumoral heterogeneity in PDAC. SIGNIFICANCE This work provides important insights into how different model systems of pancreatic ductal adenocarcinoma mold the phenotypic space of cancer cells, highlighting the power of in vivo models.
Collapse
Affiliation(s)
- Kenneth L. Pitter
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Current address: Department of Radiation Oncology, OSUCCC and Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210
| | - Olivera Grbovic-Huezo
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Simon Joost
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Anupriya Singhal
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Melissa Blum
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Katherine Wu
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Matilda Holm
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Alexander Ferrena
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02142, MA
| | - Anna Hudson
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Nicolas Lecomte
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Ronan Chaligne
- The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Christine A. Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe’er
- The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, NY 10065; Howard Hughes Medical Institute (HHMI), Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
56
|
Krebs N, Klein L, Wegwitz F, Espinet E, Maurer HC, Tu M, Penz F, Küffer S, Xu X, Bohnenberger H, Cameron S, Brunner M, Neesse A, Kishore U, Hessmann E, Trumpp A, Ströbel P, Brekken RA, Ellenrieder V, Singh SK. Axon guidance receptor ROBO3 modulates subtype identity and prognosis via AXL-associated inflammatory network in pancreatic cancer. JCI Insight 2022; 7:154475. [PMID: 35993361 PMCID: PMC9462476 DOI: 10.1172/jci.insight.154475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Metastatic pancreatic cancer (PDAC) has a poor clinical outcome with a 5-year survival rate below 3%. Recent transcriptome profiling of PDAC biopsies has identified 2 clinically distinct subtypes - the "basal-like" (BL) subtype with poor prognosis and therapy resistance compared with the less aggressive and drug-susceptible "classical" (CLA) subtype. However, the mechanistic events and environmental factors that promote the BL subtype identity are not very clear. Using preclinical models, patient-derived xenografts, and FACS-sorted PDAC patient biopsies, we report here that the axon guidance receptor, roundabout guidance receptor 3 (ROBO3), promotes the BL metastatic program via a potentially unique AXL/IL-6/phosphorylated STAT3 (p-STAT3) regulatory axis. RNA-Seq identified a ROBO3-mediated BL-specific gene program, while tyrosine kinase profiling revealed AXL as the key mediator of the p-STAT3 activation. CRISPR/dCas9-based ROBO3 silencing disrupted the AXL/p-STAT3 signaling axis, thereby halting metastasis and enhancing therapy sensitivity. Transcriptome analysis of resected patient tumors revealed that AXLhi neoplastic cells associated with the inflammatory stromal program. Combining AXL inhibitor and chemotherapy substantially restored a CLA phenotypic state and reduced disease aggressiveness. Thus, we conclude that a ROBO3-driven hierarchical network determines the inflammatory and prometastatic programs in a specific PDAC subtype.
Collapse
Affiliation(s)
- Niklas Krebs
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,HI-STEM: The Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Hans Carlo Maurer
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mengyu Tu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Frederike Penz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | | | - Xingbo Xu
- Department of Cardiology and Pneumology, and
| | | | - Silke Cameron
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Marius Brunner
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany.,HI-STEM: The Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Philipp Ströbel
- Institute of Pathology,,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research, Departments of Surgery and Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology and,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
57
|
Porter RL, Sun S, Flores MN, Berzolla E, You E, Phillips IE, KC N, Desai N, Tai EC, Szabolcs A, Lang ER, Pankaj A, Raabe MJ, Thapar V, Xu KH, Nieman LT, Rabe DC, Kolin DL, Stover EH, Pepin D, Stott SL, Deshpande V, Liu JF, Solovyov A, Matulonis UA, Greenbaum BD, Ting DT. Satellite repeat RNA expression in epithelial ovarian cancer associates with a tumor-immunosuppressive phenotype. J Clin Invest 2022; 132:e155931. [PMID: 35708912 PMCID: PMC9374379 DOI: 10.1172/jci155931] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Aberrant expression of viral-like repeat elements is a common feature of epithelial cancers, and the substantial diversity of repeat species provides a distinct view of the cancer transcriptome. Repeatome profiling across ovarian, pancreatic, and colorectal cell lines identifies distinct clustering independent of tissue origin that is seen with coding gene analysis. Deeper analysis of ovarian cancer cell lines demonstrated that human satellite II (HSATII) satellite repeat expression was highly associated with epithelial-mesenchymal transition (EMT) and anticorrelated with IFN-response genes indicative of a more aggressive phenotype. SATII expression - and its correlation with EMT and anticorrelation with IFN-response genes - was also found in ovarian cancer RNA-Seq data and was associated with significantly shorter survival in a second independent cohort of patients with ovarian cancer. Repeat RNAs were enriched in tumor-derived extracellular vesicles capable of stimulating monocyte-derived macrophages, demonstrating a mechanism that alters the tumor microenvironment with these viral-like sequences. Targeting of HSATII with antisense locked nucleic acids stimulated IFN response and induced MHC I expression in ovarian cancer cell lines, highlighting a potential strategy of modulating the repeatome to reestablish antitumor cell immune surveillance.
Collapse
Affiliation(s)
- Rebecca L. Porter
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Siyu Sun
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Micayla N. Flores
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Emily Berzolla
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eunae You
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Ildiko E. Phillips
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Neelima KC
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Niyati Desai
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eric C. Tai
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Annamaria Szabolcs
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Evan R. Lang
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Amaya Pankaj
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital
| | - Michael J. Raabe
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Vishal Thapar
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Katherine H. Xu
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Linda T. Nieman
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Daniel C. Rabe
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - David L. Kolin
- Department of Pathology, Brigham and Women’s Hospital, and
| | - Elizabeth H. Stover
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David Pepin
- Department of Surgery, Massachusetts General Hospital
| | - Shannon L. Stott
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joyce F. Liu
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alexander Solovyov
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ursula A. Matulonis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David T. Ting
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
58
|
Casamitjana J, Espinet E, Rovira M. Pancreatic Organoids for Regenerative Medicine and Cancer Research. Front Cell Dev Biol 2022; 10:886153. [PMID: 35592251 PMCID: PMC9110799 DOI: 10.3389/fcell.2022.886153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, the development of ex vivo organoid cultures has gained substantial attention as a model to study regenerative medicine and diseases in several tissues. Diabetes and pancreatic ductal adenocarcinoma (PDAC) are the two major devastating diseases affecting the pancreas. Suitable models for regenerative medicine in diabetes and to accurately study PDAC biology and treatment response are essential in the pancreatic field. Pancreatic organoids can be generated from healthy pancreas or pancreatic tumors and constitute an important translational bridge between in vitro and in vivo models. Here, we review the rapidly emerging field of pancreatic organoids and summarize the current applications of the technology to tissue regeneration, disease modelling, and drug screening.
Collapse
Affiliation(s)
- Joan Casamitjana
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Elisa Espinet
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
59
|
Huo Y, Yang J, Zheng J, Xu D, Yang M, Tao L, Yao H, Fu X, Yang J, Liu D, Hua R, Zhang J, Sun Y, Hu L, Liu W. Increased SPON1 promotes pancreatic ductal adenocarcinoma progression by enhancing IL-6 trans-signalling. Cell Prolif 2022; 55:e13237. [PMID: 35487760 PMCID: PMC9136514 DOI: 10.1111/cpr.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES This study investigated the specific molecular mechanism and the roles of extracellular matrix protein Spondin 1 (SPON1) in the development of pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS The expression pattern and clinical relevance of SPON1 was determined in GEO, Ren Ji and TCGA datasets, further validated by immunohistochemical staining and Kaplan-Meier analysis. Loss and gain of function experiments were employed to investigate the cellular function of SPON1 in vitro. Gene set enrichment analysis, luciferase assay, immunofluorescence and Western blot and immunoprecipitation were applied to reveal the underlying molecular mechanisms. Subcutaneous xenograft model was used to test the role of SPON1 in tumour growth and maintenance in vivo. RESULTS SPON1 is significantly upregulated in PDAC tumour tissues and correlated with progression of PDAC. Loss and gain of function experiments showed that SPON1 promotes the growth and colony formation ability of pancreatic cancer cells. Combining bioinformatics assays and experimental signalling evidences, we found that SPON1 can enhance the IL-6/JAK/STAT3 signalling. Mechanistically, SPON1 exerts its oncogenic roles in pancreatic cancer by maintaining IL-6R trans-signalling through stabilizing the interaction of soluble IL-6R (sIL-6R) and glycoprotein-130 (gp130) in PDAC cells. Furthermore, SPON1 depletion greatly reduced the tumour burden, exerted positive effect with gemcitabine, prolonging PDAC mice overall survival. CONCLUSIONS Our data indicate that SPON1 expression is dramatically increased in PDAC and that SPON1 promotes tumorigenicity by activating the sIL-6R/gp130/STAT3 axis. Collectively, our current work suggests SPON1 may be a potential therapy target for PDAC patient.
Collapse
Affiliation(s)
- Yanmiao Huo
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Jian Yang
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Jiahao Zheng
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Dapeng Xu
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Minwei Yang
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Lingye Tao
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Hongfei Yao
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Xueliang Fu
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Jianyu Yang
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Dejun Liu
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Rong Hua
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Junfeng Zhang
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Yongwei Sun
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Wei Liu
- Department of Biliary‐Pancreatic Surgery, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| |
Collapse
|
60
|
Simon T, Riemer P, Jarosch A, Detjen K, Di Domenico A, Bormann F, Menne A, Khouja S, Monjé N, Childs LH, Lenze D, Leser U, Rossner F, Morkel M, Blüthgen N, Pavel M, Horst D, Capper D, Marinoni I, Perren A, Mamlouk S, Sers C. DNA methylation reveals distinct cells of origin for pancreatic neuroendocrine carcinomas and pancreatic neuroendocrine tumors. Genome Med 2022; 14:24. [PMID: 35227293 PMCID: PMC8886788 DOI: 10.1186/s13073-022-01018-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Background Pancreatic neuroendocrine neoplasms (PanNENs) fall into two subclasses: the well-differentiated, low- to high-grade pancreatic neuroendocrine tumors (PanNETs), and the poorly-differentiated, high-grade pancreatic neuroendocrine carcinomas (PanNECs). While recent studies suggest an endocrine descent of PanNETs, the origin of PanNECs remains unknown. Methods We performed DNA methylation analysis for 57 PanNEN samples and found that distinct methylation profiles separated PanNENs into two major groups, clearly distinguishing high-grade PanNECs from other PanNETs including high-grade NETG3. DNA alterations and immunohistochemistry of cell-type markers PDX1, ARX, and SOX9 were utilized to further characterize PanNECs and their cell of origin in the pancreas. Results Phylo-epigenetic and cell-type signature features derived from alpha, beta, acinar, and ductal adult cells suggest an exocrine cell of origin for PanNECs, thus separating them in cell lineage from other PanNENs of endocrine origin. Conclusions Our study provides a robust and clinically applicable method to clearly distinguish PanNECs from G3 PanNETs, improving patient stratification. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01018-w.
Collapse
Affiliation(s)
- Tincy Simon
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Pamela Riemer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Armin Jarosch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Katharina Detjen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hepatology and Gastroenterology, Berlin, Germany
| | | | | | - Andrea Menne
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Slim Khouja
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Nanna Monjé
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Liam H Childs
- Humboldt-Universität zu Berlin, Knowledge Management in Bioinformatics, Berlin, Germany
| | - Dido Lenze
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulf Leser
- Humboldt-Universität zu Berlin, Knowledge Management in Bioinformatics, Berlin, Germany
| | - Florian Rossner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Markus Morkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Nils Blüthgen
- Integrative Research Institute (IRI) Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marianne Pavel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hepatology and Gastroenterology, Berlin, Germany
| | - David Horst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - David Capper
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neuropathology, Berlin, Germany.,German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Soulafa Mamlouk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany. .,German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany. .,German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
61
|
Integrated single-cell multiomics analysis reveals novel candidate markers for prognosis in human pancreatic ductal adenocarcinoma. Cell Discov 2022; 8:13. [PMID: 35165277 PMCID: PMC8844066 DOI: 10.1038/s41421-021-00366-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The epigenomic abnormality of pancreatic ductal adenocarcinoma (PDAC) has rarely been investigated due to its strong heterogeneity. Here, we used single-cell multiomics sequencing to simultaneously analyze the DNA methylome, chromatin accessibility and transcriptome in individual tumor cells of PDAC patients. We identified normal epithelial cells in the tumor lesion, which have euploid genomes, normal patterns of DNA methylation, and chromatin accessibility. Using all these normal epithelial cells as controls, we determined that DNA demethylation in the cancer genome was strongly enriched in heterochromatin regions but depleted in euchromatin regions. There were stronger negative correlations between RNA expression and promoter DNA methylation in cancer cells compared to those in normal epithelial cells. Through in-depth integrated analyses, a set of novel candidate biomarkers were identified, including ZNF667 and ZNF667-AS1, whose expressions were linked to a better prognosis for PDAC patients by affecting the proliferation of cancer cells. Our work systematically revealed the critical epigenomic features of cancer cells in PDAC patients at the single-cell level.
Collapse
|
62
|
Luan Z, Morimoto Y, Fushimi A, Yamashita N, Suo W, Bhattacharya A, Hagiwara M, Jin C, Kufe D. MUC1-C dictates neuroendocrine lineage specification in pancreatic ductal adenocarcinomas. Carcinogenesis 2022; 43:67-76. [PMID: 34657147 PMCID: PMC8832436 DOI: 10.1093/carcin/bgab097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 01/16/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) and poorly differentiated pancreatic neuroendocrine (NE) carcinomas are KRAS mutant malignancies with a potential common cell of origin. PDAC ductal, but not NE, lineage traits have been associated with cell-intrinsic activation of interferon (IFN) pathways. The present studies demonstrate that the MUC1 C-terminal subunit (MUC1-C), which evolved to protect mammalian epithelia from loss of homeostasis, is aberrantly overexpressed in KRAS mutant PDAC tumors and cell lines. We show that MUC1-C is necessary for activation of the type I and II IFN pathways and for expression of the Yamanaka OCT4, SOX2, KLF4 and MYC (OSKM) pluripotency factors. Our results demonstrate that MUC1-C integrates IFN signaling and pluripotency with NE dedifferentiation by forming a complex with MYC and driving the (i) achaete-scute homolog 1 and BRN2/POU3F2 neural, and (ii) NOTCH1/2 stemness transcription factors. Of translational relevance, targeting MUC1-C genetically and pharmacologically in PDAC cells (i) suppresses OSKM, NE dedifferentiation and NOTCH1/2, and (ii) inhibits self-renewal capacity and tumorigenicity. In PDAC tumors, we show that MUC1 significantly associates with activation of IFN signaling, MYC and NOTCH, and that upregulation of the MUC1-C → MYC pathway confers a poor prognosis. These findings indicate that MUC1-C dictates PDAC NE lineage specification and is a potential target for the treatment of recalcitrant pancreatic carcinomas with NE dedifferentiation.
Collapse
Affiliation(s)
- Zhou Luan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Molecular Epidemiology, Jikei University School of Medicine, Tokyo, Japan
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Wenhao Suo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | | | - Masayuki Hagiwara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Urology, Keio University Medical School, Tokyo, Japan
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
63
|
Mao J, Zhang Q, Wang Y, Zhuang Y, Xu L, Ma X, Guan D, Zhou J, Liu J, Wu X, Liang Q, Wang M, Cong Y. TERT activates endogenous retroviruses to promote an immunosuppressive tumour microenvironment. EMBO Rep 2022; 23:e52984. [PMID: 35107856 PMCID: PMC8982579 DOI: 10.15252/embr.202152984] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Telomerase plays a pivotal role in tumorigenesis by both telomere-dependent and telomere-independent activities, although the underlying mechanisms are not completely understood. Using single-sample gene set enrichment analysis (ssGSEA) across 9,264 tumour samples, we observe that expression of telomerase reverse transcriptase (TERT) is closely associated with immunosuppressive signatures. We demonstrate that TERT can activate a subclass of endogenous retroviruses (ERVs) independent of its telomerase activity to form double-stranded RNAs (dsRNAs), which are sensed by the RIG-1/MDA5-MAVS signalling pathway and trigger interferon signalling in cancer cells. Furthermore, we show that TERT-induced ERV/interferon signalling stimulates the expression of chemokines, including CXCL10, which induces the infiltration of suppressive T-cell populations with increased percentage of CD4+ and FOXP3+ cells. These data reveal an unanticipated role for telomerase as a transcriptional activator of ERVs and provide strong evidence that TERT-mediated ERV/interferon signalling contributes to immune suppression in tumours.
Collapse
Affiliation(s)
- Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Yaxiang Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Yang Zhuang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Xiaohe Ma
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Di Guan
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Junzhi Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Jiang Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Xiaoying Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Qian Liang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Yu‐Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| |
Collapse
|
64
|
Versemann L, Hessmann E, Ulisse M. Epigenetic Therapeutic Strategies to Target Molecular and Cellular Heterogeneity in Pancreatic Cancer. Visc Med 2022; 38:11-19. [PMID: 35291698 PMCID: PMC8874235 DOI: 10.1159/000519859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains a major challenge in cancer medicine and is characterized by a 5-year survival rate of <10%. Compelling evidence suggests that the devastating disease outcome of PDAC patients is linked to a high degree of intra- and interindividual tumor heterogeneity, which is predominantly installed at the level of gene transcription. The cellular and molecular complexities of the disease explain the poor efficacy of "one-size-fits-all" therapeutic approaches in PDAC treatment and strongly argue for pursuing tailored therapeutic strategies to tackle PDAC. In a highly dynamic manner, a network of transcription factors and epigenetic regulatory proteins temporally and spatially control the diverse transcriptomic states determining PDAC heterogeneity. Given the reversibility of epigenetic processes, pharmacological intervention with key epigenetic drivers of PDAC heterogeneity appeals as a promising concept to shift the transcriptomic phenotype of PDAC toward a less aggressive and more chemosensible state. SUMMARY In this review, we discuss the chances and pitfalls of epigenetic treatment strategies in overcoming and shifting molecular and cellular PDAC heterogeneities in order to combat PDAC. To this end, we utilized the keywords "pancreatic cancer," "heterogeneity," and "epigenetics" to search for relevant articles on the database PubMed and selected interventional studies enrolling PDAC patients as displayed in clinicaltrails.gov to generate a synopsis of clinical trials involving epigenetic targeting. KEY MESSAGES Targeting epigenetic regulators in PDAC represents a promising concept to reprogram molecular and cellular tumor heterogeneities in the pancreas and hence to modulate the PDAC phenotype in favor of a less aggressive and more therapy susceptible disease course. However, we just start to understand the complex interactions of epigenetic regulators in controlling PDAC plasticity, and a clinical breakthrough utilizing epigenetic targeting in PDAC patients has not been achieved yet. Nevertheless, increasing translational efforts which consider the pleiotropic effects of targeting epigenetic regulation in different cellular compartments of the tumor and that focus on the utility and sequence of combinatory treatment approaches might pave the way toward novel epigenetic treatment strategies in PDAC therapy.
Collapse
Affiliation(s)
- Lennart Versemann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Ulisse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
65
|
Roalsø MTT, Hald ØH, Alexeeva M, Søreide K. Emerging Role of Epigenetic Alterations as Biomarkers and Novel Targets for Treatments in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14030546. [PMID: 35158814 PMCID: PMC8833770 DOI: 10.3390/cancers14030546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Epigenetic alterations cause changes in gene expression without affecting the DNA sequence and are found to affect several molecular pathways in pancreatic tumors. Such changes are reversible, making them potential drug targets. Furthermore, epigenetic alterations occur early in the disease course and may thus be explored for early detection. Hence, a deeper understanding of epigenetics in pancreatic cancer may lead to improved diagnostics, treatments, and prognostication. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited treatment options. Emerging evidence shows that epigenetic alterations are present in PDAC. The changes are potentially reversible and therefore promising therapeutic targets. Epigenetic aberrations also influence the tumor microenvironment with the potential to modulate and possibly enhance immune-based treatments. Epigenetic marks can also serve as diagnostic screening tools, as epigenetic changes occur at early stages of the disease. Further, epigenetics can be used in prognostication. The field is evolving, and this review seeks to provide an updated overview of the emerging role of epigenetics in the diagnosis, treatment, and prognostication of PDAC.
Collapse
Affiliation(s)
- Marcus T. T. Roalsø
- Department of Quality and Health Technology, University of Stavanger, 4036 Stavanger, Norway;
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
| | - Øyvind H. Hald
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway;
| | - Marina Alexeeva
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
| | - Kjetil Søreide
- HPB Unit, Department of Gastrointestinal Surgery, Stavanger University Hospital, 4068 Stavanger, Norway;
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, 4068 Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Correspondence:
| |
Collapse
|
66
|
Abt ER, Le TM, Dann AM, Capri JR, Poddar S, Lok V, Li L, Liang K, Creech AL, Rashid K, Kim W, Wu N, Cui J, Cho A, Lee HR, Rosser EW, Link JM, Czernin J, Wu TT, Damoiseaux R, Dawson DW, Donahue TR, Radu CG. Reprogramming of nucleotide metabolism by interferon confers dependence on the replication stress response pathway in pancreatic cancer cells. Cell Rep 2022; 38:110236. [PMID: 35021095 PMCID: PMC8893345 DOI: 10.1016/j.celrep.2021.110236] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023] Open
Abstract
We determine that type I interferon (IFN) response biomarkers are enriched in a subset of pancreatic ductal adenocarcinoma (PDAC) tumors; however, actionable vulnerabilities associated with IFN signaling have not been systematically defined. Integration of a phosphoproteomic analysis and a chemical genomics synergy screen reveals that IFN activates the replication stress response kinase ataxia telangiectasia and Rad3-related protein (ATR) in PDAC cells and sensitizes them to ATR inhibitors. IFN triggers cell-cycle arrest in S-phase, which is accompanied by nucleotide pool insufficiency and nucleoside efflux. In combination with IFN, ATR inhibitors induce lethal DNA damage and downregulate nucleotide biosynthesis. ATR inhibition limits the growth of PDAC tumors in which IFN signaling is driven by stimulator of interferon genes (STING). These results identify a cross talk between IFN, DNA replication stress response networks, and nucleotide metabolism while providing the rationale for targeted therapeutic interventions that leverage IFN signaling in tumors.
Collapse
Affiliation(s)
- Evan R Abt
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Amanda M Dann
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph R Capri
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Vincent Lok
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Luyi Li
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Keke Liang
- Department of General Surgery/Pancreatic and Thyroid Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Amanda L Creech
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Khalid Rashid
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Woosuk Kim
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Nanping Wu
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Jing Cui
- Department of Pancreatic Surgery, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hailey Rose Lee
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Ethan W Rosser
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason M Link
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy R Donahue
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Theranostics Division, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
67
|
Dreyer SB, Upstill-Goddard R, Legrini A, Biankin AV, Jamieson NB, Chang DK, Jamieson NB, Chang DK. Genomic and Molecular Analyses Identify Molecular Subtypes of Pancreatic Cancer Recurrence. Gastroenterology 2022; 162:320-324.e4. [PMID: 34534536 PMCID: PMC8721486 DOI: 10.1053/j.gastro.2021.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Stephan B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom.
| | - Rosie Upstill-Goddard
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom
| | - Assya Legrini
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom and West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom
| | - Nigel B Jamieson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom.
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom.
| | - Nigel B Jamieson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom and West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom.
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland, United Kingdom and West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
68
|
Backx E, Coolens K, Van den Bossche JL, Houbracken I, Espinet E, Rooman I. On the Origin of Pancreatic Cancer: Molecular Tumor Subtypes in Perspective of Exocrine Cell Plasticity. Cell Mol Gastroenterol Hepatol 2021; 13:1243-1253. [PMID: 34875393 PMCID: PMC8881661 DOI: 10.1016/j.jcmgh.2021.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating type of cancer. While many studies have shed light into the pathobiology of PDAC, the nature of PDAC's cell of origin remains under debate. Studies in adult pancreatic tissue have unveiled a remarkable exocrine cell plasticity including transitional states, mostly exemplified by acinar to ductal cell metaplasia, but also with recent evidence hinting at duct to basal cell transitions. Single-cell RNA sequencing has further revealed intrapopulation heterogeneity among acinar and duct cells. Transcriptomic and epigenomic relationships between these exocrine cell differentiation states and PDAC molecular subtypes have started to emerge, suggesting different ontogenies for different tumor subtypes. This review sheds light on these diverse aspects with particular focus on studies with human cells. Understanding the "masked ball" of exocrine cells at origin of PDAC and leaving behind the binary acinar vs duct cell classification may significantly advance our insights in PDAC biology.
Collapse
Affiliation(s)
- Elyne Backx
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katarina Coolens
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan-Lars Van den Bossche
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Houbracken
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elisa Espinet
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Ilse Rooman
- Laboratory of Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
69
|
Malinova A, Veghini L, Real FX, Corbo V. Cell Lineage Infidelity in PDAC Progression and Therapy Resistance. Front Cell Dev Biol 2021; 9:795251. [PMID: 34926472 PMCID: PMC8675127 DOI: 10.3389/fcell.2021.795251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
Infidelity to cell fate occurs when differentiated cells lose their original identity and either revert to a more multipotent state or transdifferentiate into a different cell type, either within the same embryonic lineage or in an entirely different one. Whilst in certain circumstances, such as in wound repair, this process is beneficial, it can be hijacked by cancer cells to drive disease initiation and progression. Cell phenotype switching has been shown to also serve as a mechanism of drug resistance in some epithelial cancers. In pancreatic ductal adenocarcinoma (PDAC), the role of lineage infidelity and phenotype switching is still unclear. Two consensus molecular subtypes of PDAC have been proposed that mainly reflect the existence of cell lineages with different degrees of fidelity to pancreatic endodermal precursors. Indeed, the classical subtype of PDAC is characterised by the expression of endodermal lineage specifying transcription factors, while the more aggressive basal-like/squamous subtype is defined by epigenetic downregulation of endodermal genes and alterations in chromatin modifiers. Here, we summarise the current knowledge of mechanisms (genetic and epigenetic) of cell fate switching in PDAC and discuss how pancreatic organoids might help increase our understanding of both cell-intrinsic and cell-extrinsic factors governing lineage infidelity during the distinct phases of PDAC evolution.
Collapse
Affiliation(s)
- Antonia Malinova
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Lisa Veghini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francisco X. Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre, Madrid, Spain
- CIBERONC, Madrid, Spain
- Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-Net Research Centre, University of Verona, Verona, Italy
| |
Collapse
|
70
|
Xu Z, Hu K, Bailey P, Springfeld C, Roth S, Kurilov R, Brors B, Gress T, Buchholz M, An J, Wei K, Peccerella T, Büchler MW, Hackert T, Neoptolemos JP. Clinical Impact of Molecular Subtyping of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:743908. [PMID: 34805152 PMCID: PMC8603393 DOI: 10.3389/fcell.2021.743908] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is a highly lethal malignancy, which has now become the seventh most common cause of cancer death in the world, with the highest mortality rates in Europe and North America. In the past 30 years, there has been some progress in 5-year survival (rates increasing from 2.5 to 10%), but this is still extremely poor compared to all other common cancer types. Targeted therapies for advanced pancreatic cancer based on actionable mutations have been disappointing, with only 3–5% showing even a short clinical benefit. There is, however, a molecular diversity beyond mutations in genes responsible for producing classical canonical signaling pathways. Pancreatic cancer is almost unique in promoting an excess production of other components of the stroma, resulting in a complex tumor microenvironment that contributes to tumor development, progression, and response to treatment. Various transcriptional subtypes have also been described. Most notably, there is a strong alignment between the Classical/Pancreatic progenitor and Quasi-mesenchymal/Basal-like/Squamous subtype signatures of Moffit, Collinson, Bailey, Puleo, and Chan-Seng-Yue, which have potential clinical impact. Sequencing of epithelial cell populations enriched by laser capture microscopy combined with single-cell RNA sequencing has revealed the potential genomic evolution of pancreatic cancer as being a consequence of a gene expression continuum from mixed Basal-like and Classical cell populations within the same tumor, linked to allelic imbalances in mutant KRAS, with metastatic tumors being more copy number-unstable compared to primary tumors. The Basal-like subtype appears more chemoresistant with reduced survival compared to the Classical subtype. Chemotherapy and/or chemoradiation will also enrich the Basal-like subtype. Squamous/Basal-like programs facilitate immune infiltration compared with the Classical-like programs. The immune infiltrates associated with Basal and Classical type cells are distinct, potentially opening the door to differential strategies. Single-cell and spatial transcriptomics will now allow single cell profiling of tumor and resident immune cell populations that may further advance subtyping. Multiple clinical trials have been launched based on transcriptomic response signatures and molecular subtyping including COMPASS, Precision Promise, ESPAC6/7, PREDICT-PACA, and PASS1. We review several approaches to explore the clinical relevance of molecular profiling to provide optimal bench-to-beside translation with clinical impact.
Collapse
Affiliation(s)
- Zhou Xu
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Kai Hu
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Bailey
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Susanne Roth
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Roma Kurilov
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Benedikt Brors
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Gress
- Department of Gastroenterology and Endocrinology, Philipps University of Marburg, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology and Endocrinology, Philipps University of Marburg, Marburg, Germany
| | - Jingyu An
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Kongyuan Wei
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Teresa Peccerella
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Section of Surgical Research, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
71
|
Tu M, Klein L, Espinet E, Georgomanolis T, Wegwitz F, Li X, Urbach L, Danieli-Mackay A, Küffer S, Bojarczuk K, Mizi A, Günesdogan U, Chapuy B, Gu Z, Neesse A, Kishore U, Ströbel P, Hessmann E, Hahn SA, Trumpp A, Papantonis A, Ellenrieder V, Singh SK. TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. NATURE CANCER 2021; 2:1185-1203. [PMID: 35122059 DOI: 10.1038/s43018-021-00258-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
Large-scale genomic profiling of pancreatic cancer (PDAC) has revealed two distinct subtypes: 'classical' and 'basal-like'. Their variable coexistence within the stromal immune microenvironment is linked to differential prognosis; however, the extent to which these neoplastic subtypes shape the stromal immune landscape and impact clinical outcome remains unclear. By combining preclinical models, patient-derived xenografts, as well as FACS-sorted PDAC patient biopsies, we show that the basal-like neoplastic state is sustained via BRD4-mediated cJUN/AP1 expression, which induces CCL2 to recruit tumor necrosis factor (TNF)-α-secreting macrophages. TNF-α+ macrophages force classical neoplastic cells into an aggressive phenotypic state via lineage reprogramming. Integration of ATAC-, ChIP- and RNA-seq data revealed distinct JUNB/AP1 (classical) and cJUN/AP1 (basal-like)-driven regulation of PDAC subtype identity. Pharmacological inhibition of BRD4 led to suppression of the BRD4-cJUN-CCL2-TNF-α axis, restoration of classical subtype identity and a favorable prognosis. Hence, patient-tailored therapy for a cJUNhigh/TNF-αhigh subtype is paramount in overcoming highly inflamed and aggressive PDAC states.
Collapse
Affiliation(s)
- Mengyu Tu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbh), Heidelberg, Germany
| | | | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaojuan Li
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Laura Urbach
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Adi Danieli-Mackay
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kamil Bojarczuk
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Ufuk Günesdogan
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Zuguang Gu
- Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany
- Division of Cancer Epigenomics, DKFZ, Heidelberg, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan A Hahn
- Faculty of Medicine, Department of Molecular GI Oncology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbh), Heidelberg, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
72
|
Miquel M, Zhang S, Pilarsky C. Pre-clinical Models of Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:748631. [PMID: 34778259 PMCID: PMC8578999 DOI: 10.3389/fcell.2021.748631] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a hostile solid malignancy coupled with an extremely high mortality rate. Metastatic disease is already found in most patients at the time of diagnosis, resulting in a 5-year survival rate below 5%. Improved comprehension of the mechanisms leading to metastasis is pivotal for the development of new targeted therapies. A key field to be improved are modeling strategies applied in assessing cancer progression, since traditional platforms fail in recapitulating the complexity of PDAC. Consequently, there is a compelling demand for new preclinical models that mirror tumor progression incorporating the pressure of the immune system, tumor microenvironment, as well as molecular aspects of PDAC. We suggest the incorporation of 3D organoids derived from genetically engineered mouse models or patients as promising new tools capable to transform PDAC pre-clinical modeling and access new frontiers in personalized medicine.
Collapse
Affiliation(s)
- Maria Miquel
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shuman Zhang
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
73
|
Chen R, Ishak CA, De Carvalho DD. Endogenous Retroelements and the Viral Mimicry Response in Cancer Therapy and Cellular Homeostasis. Cancer Discov 2021; 11:2707-2725. [PMID: 34649957 DOI: 10.1158/2159-8290.cd-21-0506] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Features of the cancer epigenome distinguish cancers from their respective cell of origin and establish therapeutic vulnerabilities that can be exploited through pharmacologic inhibition of DNA- or histone-modifying enzymes. Epigenetic therapies converge with cancer immunotherapies through "viral mimicry," a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons. This review describes the initial characterization and expansion of viral mimicry-inducing approaches as well as features that "prime" cancers for viral mimicry induction. Increased understanding of viral mimicry in therapeutic contexts suggests potential physiologic roles in cellular homeostasis. SIGNIFICANCE: Recent literature establishes elevated cytosolic double strand RNA (dsRNA) levels as a cancer-specific therapeutic vulnerability that can be elevated by viral mimicry-inducing therapies beyond tolerable thresholds to induce antiviral signaling and increase dependence on dsRNA stress responses mediated by ADAR1. Improved understanding of viral mimicry signaling and tolerance mechanisms reveals synergistic treatment combinations with epigenetic therapies that include inhibition of BCL2, ADAR1, and immune checkpoint blockade. Further characterization of viral mimicry tolerance may identify contexts that maximize efficacy of conventional cancer therapies.
Collapse
Affiliation(s)
- Raymond Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
74
|
Watt DM, Morton JP. Heterogeneity in Pancreatic Cancer Fibroblasts-TGFβ as a Master Regulator? Cancers (Basel) 2021; 13:4984. [PMID: 34638468 PMCID: PMC8508541 DOI: 10.3390/cancers13194984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 02/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is an aggressive disease for which there are very few available therapies. It is notable for its high degree of tumour complexity, with the tumour microenvironment often accounting for the majority of the tumour volume. Until recently, the biology of the stroma was poorly understood, particularly in terms of heterogeneity. Recent research, however, has shed light on the intricacy of signalling within the stroma and particularly the molecular and functional heterogeneity of the cancer associated fibroblasts. In this review, we summarise the recent improvements in our understanding of the different fibroblast populations within PDAC, with a focus on the role TGFβ plays to dictate their formation and function. These studies have highlighted some of the reasons for the failure of trials targeting the tumour stroma, however, there are still considerable gaps in our knowledge, and more work is needed to make effective fibroblast targeting a reality in the clinic.
Collapse
Affiliation(s)
- Dale M. Watt
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK;
| | - Jennifer P. Morton
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
75
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
76
|
Hessmann E, Schneider G. New Insights Into Pancreatic Cancer: Notes from a Virtual Meeting. Gastroenterology 2021; 161:785-791. [PMID: 34089734 DOI: 10.1053/j.gastro.2021.04.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
Pancreatic ductal adenocarcinoma remains a major challenge in cancer medicine. Given the increase in incidence and mortality, interdisciplinary research is necessary to translate basic knowledge into therapeutic strategies improving the outcome of patients. On the 4th and 5th of February 2021, three German pancreatic cancer research centers, the Clinical Research Unit 5002 from Göttingen, the Collaborative Research Center 1321 from Munich, and Clinical Research Unit 325 from Marburg organized the 1st Virtual Göttingen-Munich-Marburg Pancreatic Cancer Meeting in order to foster scientific exchange. This report summarizes current research and proceedings presented during that meeting.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany.
| | - Günter Schneider
- Medical Clinic and Policlinic II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
77
|
Martens S, Coolens K, Van Bulck M, Arsenijevic T, Casamitjana J, Fernandez Ruiz A, El Kaoutari A, Martinez de Villareal J, Madhloum H, Esni F, Heremans Y, Leuckx G, Heimberg H, Bouwens L, Jacquemin P, De Paep DL, In't Veld P, D'Haene N, Bouchart C, Dusetti N, Van Laethem JL, Waelput W, Lefesvre P, Real FX, Rovira M, Rooman I. Discovery and 3D imaging of a novel ΔNp63-expressing basal cell type in human pancreatic ducts with implications in disease. Gut 2021; 71:gutjnl-2020-322874. [PMID: 34330784 PMCID: PMC9484383 DOI: 10.1136/gutjnl-2020-322874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aggressive basal-like molecular subtype of pancreatic ductal adenocarcinoma (PDAC) harbours a ΔNp63 (p40) gene expression signature reminiscent of a basal cell type. Distinct from other epithelia with basal tumours, ΔNp63+ basal cells reportedly do not exist in the normal pancreas. DESIGN We evaluated ΔNp63 expression in human pancreas, chronic pancreatitis (CP) and PDAC. We further studied in depth the non-cancerous tissue and developed a three-dimensional (3D) imaging protocol (FLIP-IT, Fluorescence Light sheet microscopic Imaging of Paraffin-embedded or Intact Tissue) to study formalin-fixed paraffin-embedded samples at single cell resolution. Pertinent mouse models and HPDE cells were analysed. RESULTS In normal human pancreas, rare ΔNp63+ cells exist in ducts while their prevalence increases in CP and in a subset of PDAC. In non-cancer tissue, ΔNp63+ cells are atypical KRT19+ duct cells that overall lack SOX9 expression while they do express canonical basal markers and pertain to a niche of cells expressing gastrointestinal stem cell markers. 3D views show that the basal cells anchor on the basal membrane of normal medium to large ducts while in CP they exist in multilayer dome-like structures. In mice, ΔNp63 is not found in adult pancreas nor in selected models of CP or PDAC, but it is induced in organoids from larger Sox9low ducts. In HPDE, ΔNp63 supports a basal cell phenotype at the expense of a classical duct cell differentiation programme. CONCLUSION In larger human pancreatic ducts, basal cells exist. ΔNp63 suppresses duct cell identity. These cells may play an important role in pancreatic disease, including PDAC ontogeny, but are not present in mouse models.
Collapse
Affiliation(s)
- Sandrina Martens
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Katarina Coolens
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Mathias Van Bulck
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Bruxelles, Belgium
- Hopital Erasme Service de Gastroenterologie d'Hepato-Pancreatologie et d'Oncologie Digestive, Bruxelles, Belgium
| | - Joan Casamitjana
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Angel Fernandez Ruiz
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Abdessamad El Kaoutari
- Centre de Recherche en Cancérologie de Marseille - CRCM, INSERM UMR1068, CRCM, Marseille, France
- COMPO Unit, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | | | - Hediel Madhloum
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Farzad Esni
- Division of Pediatric General and Thoracic Surgery, University of Pittsburgh Department of Surgery, Pittsburgh, Pennsylvania, USA
| | - Yves Heremans
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Gunter Leuckx
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Harry Heimberg
- Laboratory of Beta Cell Neogenesis, Vrije Universiteit Brussel, Brussel, Belgium
| | - Luc Bouwens
- Cell Differentiation Laboratory, Vrije Universiteit Brussel, Brussel, Belgium
| | - Patrick Jacquemin
- Institut de Duve, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Peter In't Veld
- Diabetes Research Center, Vrije Universiteit Brussel, Brussel, Belgium
| | - Nicky D'Haene
- Department of Pathology, Hopital Erasme, Bruxelles, Belgium
| | - Christelle Bouchart
- Department of Radiation-Oncology, Jules Bordet Institute, Bruxelles, Belgium
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille - CRCM, INSERM UMR1068, CRCM, Marseille, France
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Bruxelles, Belgium
- Hopital Erasme Service de Gastroenterologie d'Hepato-Pancreatologie et d'Oncologie Digestive, Bruxelles, Belgium
| | - Wim Waelput
- Department of Pathology, UZ Brussel, Brussel, Belgium
- Department of Pathology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Pierre Lefesvre
- Department of Pathology, UZ Brussel, Brussel, Belgium
- Department of Pathology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre, Madrid, Spain
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, P-CMR[C], Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Ilse Rooman
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussel, Belgium
| |
Collapse
|
78
|
Epigenetic Alterations in Pancreatic Cancer Metastasis. Biomolecules 2021; 11:biom11081082. [PMID: 34439749 PMCID: PMC8394313 DOI: 10.3390/biom11081082] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the United States. Pancreatic ductal adenocarcinoma (PDA) is the most common (90%) and aggressive type of pancreatic cancer. Genomic analyses of PDA specimens have identified the recurrent genetic mutations that drive PDA initiation and progression. However, the underlying mechanisms that further drive PDA metastasis remain elusive. Despite many attempts, no recurrent genetic mutation driving PDA metastasis has been found, suggesting that PDA metastasis is driven by epigenetic fluctuations rather than genetic factors. Therefore, establishing epigenetic mechanisms of PDA metastasis would facilitate the development of successful therapeutic interventions. In this review, we provide a comprehensive overview on the role of epigenetic mechanisms in PDA as a critical contributor on PDA progression and metastasis. In particular, we explore the recent advancements elucidating the role of nucleosome remodeling, histone modification, and DNA methylation in the process of cancer metastasis.
Collapse
|
79
|
Abstract
The GNA15 gene is ectopically expressed in human pancreatic ductal adenocarcinoma cancer cells. The encoded Gα15 protein can promiscuously redirect GPCR signaling toward pathways with oncogenic potential. We sought to describe the distribution of GNA15 in adenocarcinoma from human pancreatic specimens and to analyze the mechanism driving abnormal expression and the consequences on signaling and clinical follow-up. We detected GNA15 expression in pre-neoplastic pancreatic lesions and throughout progression. The analysis of biological data sets, primary and xenografted human tumor samples, and clinical follow-up shows that elevated expression is associated with poor prognosis for GNA15, but not any other GNA gene. Demethylation of the 5′ GNA15 promoter region was associated with ectopic expression of Gα15 in pancreatic neoplastic cells, but not in adjacent dysplastic or non-transformed tissue. Down-modulation of Gα15 by shRNA or CRISPR/Cas9 affected oncogenic signaling, and reduced adenocarcimoma cell motility and invasiveness. We conclude that de novo expression of wild-type GNA15 characterizes transformed pancreatic cells. The methylation pattern of GNA15 changes in preneoplastic lesions coincident with the release a transcriptional blockade that allows ectopic expression to persist throughout PDAC progression. Elevated GNA15 mRNA correlates with poor prognosis. In addition, ectopic Gα15 signaling provides an unprecedented mechanism in the early steps of pancreas carcinogenesis distinct from classical G protein oncogenic mutations described previously in GNAS and GNAQ/GNA11.
Collapse
|
80
|
Li R, He Y, Zhang H, Wang J, Liu X, Liu H, Wu H, Liang Z. Identification and Validation of Immune Molecular Subtypes in Pancreatic Ductal Adenocarcinoma: Implications for Prognosis and Immunotherapy. Front Immunol 2021; 12:690056. [PMID: 34335594 PMCID: PMC8320597 DOI: 10.3389/fimmu.2021.690056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) remains treatment refractory. Immunotherapy has achieved success in the treatment of multiple malignancies. However, the efficacy of immunotherapy in PDAC is limited by a lack of promising biomarkers. In this research, we aimed to identify robust immune molecular subtypes of PDAC to facilitate prognosis prediction and patient selection for immunotherapy. Methods A training cohort of 149 PDAC samples from The Cancer Genome Atlas (TCGA) with mRNA expression data was analyzed. By means of non-negative matrix factorization (NMF), we virtually dissected the immune-related signals from bulk gene expression data. Detailed immunogenomic and survival analyses of the immune molecular subtypes were conducted to determine their biological and clinical relevance. Validation was performed in five independent datasets on a total of 615 samples. Results Approximately 31% of PDAC samples (46/149) had higher immune cell infiltration, more active immune cytolytic activity, higher activation of the interferon pathway, a higher tumor mutational burden (TMB), and fewer copy number alterations (CNAs) than the other samples (all P < 0.001). This new molecular subtype was named Immune Class, which served as an independent favorable prognostic factor for overall survival (hazard ratio, 0.56; 95% confidence interval, 0.33-0.97). Immune Class in cooperation with previously reported tumor and stroma classifications had a cumulative effect on PDAC prognostic stratification. Moreover, programmed cell death-1 (PD-1) inhibitors showed potential efficacy for Immune Class (P = 0.04). The robustness of our immune molecular subtypes was further verified in the validation cohort. Conclusions By capturing immune-related signals in the PDAC tumor microenvironment, we reveal a novel molecular subtype, Immune Class. Immune Class serves as an independent favorable prognostic factor for overall survival in PDAC patients.
Collapse
Affiliation(s)
- Ruiyu Li
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yangzhige He
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hui Zhang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoding Liu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hangqi Liu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
81
|
Scheller M, Ludwig AK, Göllner S, Rohde C, Krämer S, Stäble S, Janssen M, Müller JA, He L, Bäumer N, Arnold C, Gerß J, Schönung M, Thiede C, Niederwieser C, Niederwieser D, Serve H, Berdel WE, Thiem U, Hemmerling I, Leuschner F, Plass C, Schlesner M, Zaugg J, Milsom MD, Trumpp A, Pabst C, Lipka DB, Müller-Tidow C. Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response. NATURE CANCER 2021; 2:527-544. [PMID: 35122024 DOI: 10.1038/s43018-021-00213-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/19/2021] [Indexed: 02/04/2023]
Abstract
Somatic mutations in DNA methyltransferase 3A (DNMT3A) are among the most frequent alterations in clonal hematopoiesis (CH) and acute myeloid leukemia (AML), with a hotspot in exon 23 at arginine 882 (DNMT3AR882). Here, we demonstrate that DNMT3AR882H-dependent CH and AML cells are specifically susceptible to the hypomethylating agent azacytidine (AZA). Addition of AZA to chemotherapy prolonged AML survival solely in individuals with DNMT3AR882 mutations, suggesting its potential as a predictive marker for AZA response. AML and CH mouse models confirmed AZA susceptibility specifically in DNMT3AR882H-expressing cells. Hematopoietic stem cells (HSCs) and progenitor cells expressing DNMT3AR882H exhibited cell autonomous viral mimicry response as a result of focal DNA hypomethylation at retrotransposon sequences. Administration of AZA boosted hypomethylation of retrotransposons specifically in DNMT3AR882H-expressing cells and maintained elevated levels of canonical interferon-stimulated genes (ISGs), thus leading to suppressed protein translation and increased apoptosis.
Collapse
Affiliation(s)
- Marina Scheller
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany. .,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.
| | - Anne Kathrin Ludwig
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Stefanie Göllner
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Rohde
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Stephen Krämer
- Bioinformatics and Omics Data Analytics Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Sina Stäble
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Maike Janssen
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - James-Arne Müller
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lixiazi He
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Bäumer
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Christian Arnold
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Joachim Gerß
- Institute of Biostatistics and Clinical Research, WWU Münster, Münster, Germany
| | - Maximilian Schönung
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Christian Thiede
- Department of Medicine, University Hospital Dresden, Dresden, Germany
| | - Christian Niederwieser
- Interdisziplinäre Klinik und Poliklinik für Stammzelltransplantation, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Hubert Serve
- Department of Medicine II, University of Frankfurt, Frankfurt, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Ulrich Thiem
- Geriatrics and Gerontology, University of Hamburg, Hamburg, Germany
| | - Inga Hemmerling
- Department of Medicine, Cardiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Florian Leuschner
- Department of Medicine, Cardiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Judith Zaugg
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Caroline Pabst
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany. .,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| |
Collapse
|