51
|
Paniagua-Herranz L, Díaz-Tejeiro C, Sanvicente A, Bartolomé J, Nieto-Jiménez C, Ocana A. Overcoming limitations for antibody-based therapies targeting γδ T (Vg9Vd2) cells. Front Immunol 2024; 15:1432015. [PMID: 39144149 PMCID: PMC11321970 DOI: 10.3389/fimmu.2024.1432015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Therapeutic strategies targeting non-adaptive immune cells are currently in clinical development. γδT cells are a small subtype of T cells (1-10% of total T cells) that mediate their effector function without the necessity of the antigen presenting machinery, and also share functional properties with innate cells. Among the different γδT subtypes, antibodies against Vγ9Vδ2T have reported signs of clinical efficacy in early clinical studies. In this review we describe the biology of this subtype of non-conventional T cells and provide insights into the mechanism of action of novel antibodies that activate these cells. We will focus on antibodies targeting the BTN3A ligand and bi-specific γδT cell engagers. We will review in detail the advantages of these strategies including the potential for overcoming mechanisms of resistance to check point inhibitors, or the much more adequate safety profile compared with agents activating classical T cells. Limitations identified during the first studies in humans and strategies to overcome them will be revised and discussed. Finally, clinical options for future clinical development will be suggested.
Collapse
Affiliation(s)
- Lucía Paniagua-Herranz
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Cristina Díaz-Tejeiro
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Adrián Sanvicente
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Jorge Bartolomé
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Cristina Nieto-Jiménez
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Alberto Ocana
- Experimental Therapeutics Unit, Oncology Department, Hospital Clínico San Carlos (HCSC) Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| |
Collapse
|
52
|
Zeng J, Yang L, Zeng L, Feng C, Yang Y, Ye Y, Zhang W, He J, Zhang C. Visualizing cancer resistance via nano-quenching and recovery detector of CD44. J Nanobiotechnology 2024; 22:452. [PMID: 39080641 PMCID: PMC11289946 DOI: 10.1186/s12951-024-02732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Drug resistance to chemotherapy in cancers remains significant clinical challenges. CD44 modulates cellular adhesion, migration and growth, which plays a pivotal role in driving cancer resistance and even recurrence. Despite ongoing efforts, accurate, safe, and real-time dynamic monitoring techniques for CD44 expression remain inadequate in guiding the management of drug-resistant cancer treatment. In this study, we developed a nano-quenching and recovery detector of CD44 (Cy3-AptCD44@BPNSs) for visualizing cancer drug resistance. The fluorescence recovery of the detector is directly related to the CD44 expression level on cancer cells, which can be used to indicate the degree of drug resistance. It's confirmed that downregulating CD44 expression on cancer cells results in a corresponding decrease in the fluorescence intensity of the detector, which enables precise and dynamic monitoring of CD44. In addition, the Cy3-AptCD44@BPNSs also exhibited specificity in detecting CD44. This visualizing strategy may open up a wide range of possibilities for rapid recognition to cancer drug resistance, which is more efficient and flexible.
Collapse
Affiliation(s)
- Jialin Zeng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Lihua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Lingke Zeng
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Chengyu Feng
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yuepeng Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yingying Ye
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Wenxin Zhang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chao Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
53
|
Zahraeifard S, Xiao Z, So JY, Ahad A, Montoya S, Park WY, Sornapudi T, Andohkow T, Read A, Kedei N, Koparde V, Yang H, Lee M, Wong N, Cam M, Wang K, Ruppin E, Luo J, Hollander C, Yang L. Loss of tumor suppressors promotes inflammatory tumor microenvironment and enhances LAG3+T cell mediated immune suppression. Nat Commun 2024; 15:5873. [PMID: 38997291 PMCID: PMC11245525 DOI: 10.1038/s41467-024-50262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Low response rate, treatment relapse, and resistance remain key challenges for cancer treatment with immune checkpoint blockade (ICB). Here we report that loss of specific tumor suppressors (TS) induces an inflammatory response and promotes an immune suppressive tumor microenvironment. Importantly, low expression of these TSs is associated with a higher expression of immune checkpoint inhibitory mediators. Here we identify, by using in vivo CRISPR/Cas9 based loss-of-function screening, that NF1, TSC1, and TGF-β RII as TSs regulating immune composition. Loss of each of these three TSs leads to alterations in chromatin accessibility and enhances IL6-JAK3-STAT3/6 inflammatory pathways. This results in an immune suppressive landscape, characterized by increased numbers of LAG3+ CD8 and CD4 T cells. ICB targeting LAG3 and PD-L1 simultaneously inhibits metastatic progression in preclinical triple negative breast cancer (TNBC) mouse models of NF1-, TSC1- or TGF-β RII- deficient tumors. Our study thus reveals a role of TSs in regulating metastasis via non-cell-autonomous modulation of the immune compartment and provides proof-of-principle for ICB targeting LAG3 for patients with NF1-, TSC1- or TGF-β RII-inactivated cancers.
Collapse
Affiliation(s)
- Sara Zahraeifard
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhiguang Xiao
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jae Young So
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abdul Ahad
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Selina Montoya
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Woo Yong Park
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Trinadharao Sornapudi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiffany Andohkow
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abigail Read
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vishal Koparde
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nathan Wong
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Maggie Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kun Wang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christine Hollander
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
54
|
Abbasfard Z, Behzad-Behbahani A, Rastegari B, Naeimi S, Moghanibashi M, Safari F. Overcoming Breast Cancer Drug Resistance: A Novel Approach Using siRNA-Mediated P-glycoprotein Downregulation to Enhance Vinorelbine Efficacy. Adv Pharm Bull 2024; 14:445-452. [PMID: 39206391 PMCID: PMC11347736 DOI: 10.34172/apb.2024.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Cancer, the second leading cause of mortality worldwide, represents a global health challenge, primarily due to drug resistance. Vinorelbine is a chemotherapeutic agent that disrupts cancer cell growth by targeting microtubules and inducing apoptosis. However, drug resistance remains a formidable obstacle. This resistance is caused by various factors including genetic mutations, drug efflux mechanisms, and DNA repair systems. Resolution of this challenge requires an innovative approach. This study investigated the potential of small interfering RNA (siRNA) to target and downregulate a vinorelbine-resistant MCF-7/ADR breast cancer cell line. Methods Cells were cultured in Dulbecco's modified Eagle's medium (DMEM) 10% fetal bovine serum/penicillin/streptomycin. An siRNA targeting ABCB1 was designed and synthesized, and the cells were transfected with siRNA at final concentrations of 10, 20, and 30 nM. The3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess cell viability. ABCB1 mRNA expression levels were determined by real-time polymerase chain reaction (PCR). Results MCF-7 cells exhibited a higher sensitivity to vinorelbine than MCF-7/ADR cells. MCF-7/ADR cells exhibited resistance to vinorelbine at concentrations, 12.50 and 25.00 μM. Treatment with siRNA significantly reduced ABCB1 expression by 2.93-fold (P=0.0001). Similarly, co-treatment with siRNA and vinorelbine produced a substantial 2.89-fold decrease in ABCB1 gene expression in MCF-7 cells compared to that in MCF-7/ADR cells (P=0.0001). Conclusion The results of the present study indicate that the concurrent use of siRNA and vinorelbine holds substantial promise as a therapeutic approach to overcome ABCB1-mediated multidrug resistance (MDR) in breast cancer. It is necessary to conduct comprehensive clinical trials to determine the true effectiveness of this combination therapy.
Collapse
Affiliation(s)
- Zahra Abbasfard
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Banafshe Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sirous Naeimi
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
55
|
Dorighi KM, Zhu A, Fortin JP, Hung-Hao Lo J, Sudhamsu J, Wendorff TJ, Durinck S, Callow M, Foster SA, Haley B. Accelerated drug-resistant variant discovery with an enhanced, scalable mutagenic base editor platform. Cell Rep 2024; 43:114313. [PMID: 38838224 DOI: 10.1016/j.celrep.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Personalized cancer therapeutics bring directed treatment options to patients based on their tumor's genetic signature. Unfortunately, tumor genomes are remarkably adaptable, and acquired resistance through gene mutation frequently occurs. Identifying mutations that promote resistance within drug-treated patient populations can be cost, resource, and time intensive. Accordingly, base editing, enabled by Cas9-deaminase domain fusions, has emerged as a promising approach for rapid, large-scale gene variant screening in situ. Here, we adapt and optimize a conditional activation-induced cytidine deaminase (AID)-dead Cas9 (dCas9) system, which demonstrates greater heterogeneity of edits with an expanded footprint compared to the most commonly utilized cytosine base editor, BE4. In combination with a custom single guide RNA (sgRNA) library, we identify individual and compound variants in epidermal growth factor receptor (EGFR) and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) that confer resistance to established EGFR inhibitors. This system and analytical pipeline provide a simple, highly scalable platform for cis or trans drug-modifying variant discovery and for uncovering valuable insights into protein structure-function relationships.
Collapse
Affiliation(s)
- Kristel M Dorighi
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Anqi Zhu
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jean-Philippe Fortin
- Department of Data Science and Statistical Computing, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jerry Hung-Hao Lo
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Timothy J Wendorff
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steffen Durinck
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Marinella Callow
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Scott A Foster
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
56
|
Lu C, Gao Z, Wu D, Zheng J, Hu C, Huang D, He C, Liu Y, Lin C, Peng T, Dou Y, Zhang Y, Sun F, Jiang W, Yin G, Han R, He Y. Understanding the dynamics of TKI-induced changes in the tumor immune microenvironment for improved therapeutic effect. J Immunother Cancer 2024; 12:e009165. [PMID: 38908857 PMCID: PMC11328648 DOI: 10.1136/jitc-2024-009165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND The dynamic interplay between tyrosine kinase inhibitors (TKIs) and the tumor immune microenvironment (TME) plays a crucial role in the therapeutic trajectory of non-small cell lung cancer (NSCLC). Understanding the functional dynamics and resistance mechanisms of TKIs is essential for advancing the treatment of NSCLC. METHODS This study assessed the effects of short-term and long-term TKI treatments on the TME in NSCLC, particularly targeting epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutations. We analyzed changes in immune cell composition, cytokine profiles, and key proteins involved in immune evasion, such as laminin subunit γ-2 (LAMC2). We also explored the use of aspirin as an adjunct therapy to modulate the TME and counteract TKI resistance. RESULTS Short-term TKI treatment enhanced T cell-mediated tumor clearance, reduced immunosuppressive M2 macrophage infiltration, and downregulated LAMC2 expression. Conversely, long-term TKI treatment fostered an immunosuppressive TME, contributing to drug resistance and promoting immune escape. Differential responses were observed among various oncogenic mutations, with ALK-targeted therapies eliciting a stronger antitumor immune response compared with EGFR-targeted therapies. Notably, we found that aspirin has potential in overcoming TKI resistance by modulating the TME and enhancing T cell-mediated tumor clearance. CONCLUSIONS These findings offer new insights into the dynamics of TKI-induced changes in the TME, improving our understanding of NSCLC challenges. The study underscores the critical role of the TME in TKI resistance and suggests that adjunct therapies, like aspirin, may provide new strategies to enhance TKI efficacy and overcome resistance.
Collapse
Affiliation(s)
- Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Ziyuan Gao
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Chen Hu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Daijuan Huang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Chao He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Tao Peng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yimin Zhang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Fenfen Sun
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Weiling Jiang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Guoqing Yin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
57
|
Zhang G, Lu S, Ren Z, Wei L, Chen C, Tao P, Pan X. SIRT2 as a Potential Biomarker in Lung Adenocarcinoma: Implications for Immune Infiltration. Mol Biotechnol 2024:10.1007/s12033-024-01198-3. [PMID: 38902578 DOI: 10.1007/s12033-024-01198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
SIRT2 play important roles in cell cycle and cellular metabolism in the development of non-small cell lung cancer (NSCLC), and SIRT2 exhibits its therapeutic effect on NSCLC tumors with high expression of SIRT2. Nevertheless, the clinical relevance of SIRT2 in lung adenocarcinoma (LUAD), particularly its impact on tumor growth and prognostic implications, remains obscure. This investigation entailed a comprehensive analysis of SIRT2 mRNA and protein expression levels in diverse tumor and corresponding healthy tissues, utilizing databases such as TIMER 2.0, UALCAN, and HPA. Prognostic correlations of SIRT2 expression in LUAD patients, stratified by distinct clinicopathological characteristics, were evaluated using the KM Plotter database. Additionally, the TCGA and TIMER 2.0 databases were employed to assess the relationship between SIRT2 and immune infiltration, as well as to calculate immunity, stromal, and estimation scores, thus elucidating the role of SIRT2 in modulating tumor immunotherapy responses. Furthermore, Gene Set Enrichment Analysis (GSEA) was utilized to elucidate SIRT2's biological functions in pan-cancer cells. Our findings revealed a marked reduction in both mRNA and protein levels of SIRT2 in LUAD tumors relative to healthy tissue. Survival analysis indicated that diminished SIRT2 expression correlates with adverse prognostic outcomes in LUAD. Furthermore, SIRT2 expression demonstrated a significant association with various clinicopathologic attributes of LUAD patients, influencing survival outcomes across different clinicopathologic states. Functional enrichment analyses highlighted SIRT2's involvement in cell cycle regulation and immune response. Notably, SIRT2 exhibited a positive correlation with immune cell infiltration, including natural killer (NK) cells, macrophages, and dendritic cells (DCs). In summary, SIRT2 was a potential prognostic biomarker for LUAD and and a new immunotherapy target.
Collapse
Affiliation(s)
- Guining Zhang
- Department of Scientific Research, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Shuyu Lu
- Department of Anaesthesia, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning, 530007, Guangxi, China
| | - Zhiling Ren
- Department of Mental Health, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Lijuan Wei
- Graduate School, Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Chunxi Chen
- Graduate School, Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Pinyue Tao
- Department of Anaesthesia, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning, 530007, Guangxi, China.
| | - Xiao Pan
- The Second Ward of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning, 530007, Guangxi, China.
| |
Collapse
|
58
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
59
|
Noblejas-López MDM, García-Gil E, Pérez-Segura P, Pandiella A, Győrffy B, Ocaña A. T-reg transcriptomic signatures identify response to check-point inhibitors. Sci Rep 2024; 14:10396. [PMID: 38710724 DOI: 10.1038/s41598-024-60819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
Regulatory T cells (Tregs) is a subtype of CD4+ T cells that produce an inhibitory action against effector cells. In the present work we interrogated genomic datasets to explore the transcriptomic profile of breast tumors with high expression of Tregs. Only 0.5% of the total transcriptome correlated with the presence of Tregs and only four transcripts, BIRC6, MAP3K2, USP4 and SMG1, were commonly shared among the different breast cancer subtypes. The combination of these genes predicted favorable outcome, and better prognosis in patients treated with checkpoint inhibitors. Twelve up-regulated genes coded for proteins expressed at the cell membrane that included functions related to neutrophil activation and regulation of macrophages. A positive association between MSR1 and CD80 with macrophages in basal-like tumors and between OLR1, ABCA1, ITGAV, CLEC5A and CD80 and macrophages in HER2 positive tumors was observed. Expression of some of the identified genes correlated with favorable outcome and response to checkpoint inhibitors: MSR1, CD80, OLR1, ABCA1, TMEM245, and ATP13A3 predicted outcome to anti PD(L)1 therapies, and MSR1, CD80, OLR1, ANO6, ABCA1, TMEM245, and ATP13A3 to anti CTLA4 therapies, including a subgroup of melanoma treated patients. In this article we provide evidence of genes strongly associated with the presence of Tregs that modulates the response to check point inhibitors.
Collapse
Affiliation(s)
- María Del Mar Noblejas-López
- Translational Research Unit, Translational Oncology Laboratory, Albacete University Hospital, 02008, Albacete, Spain
- Unidad nanoDrug, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02008, Albacete, Spain
- Departamento Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia de Albacete-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Castilla-La Mancha, 02008, Albacete, Spain
| | - Elena García-Gil
- Translational Research Unit, Translational Oncology Laboratory, Albacete University Hospital, 02008, Albacete, Spain
| | - Pedro Pérez-Segura
- Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040, Madrid, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, 37007, Salamanca, Spain
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó U. 7-9, Budapest, 1094, Hungary
- Research Centre for Natural Sciences, Hungarian Research Network, Magyar Tudosok Korutja 2, Budapest, 1117, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, 7624, Hungary
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico Universitario San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC) and CIBERONC and Fundación Jiménez Díaz, Unidad START Madrid, Calle Del Prof Martín Lagos, S/N, 28040, Madrid, Spain.
| |
Collapse
|
60
|
Song W, Fu J, Wu J, Ren J, Xiang R, Kong C, Fu T. CircFBXW4 Suppresses Colorectal Cancer Progression by Regulating the MiR-338-5p/SLC5A7 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300129. [PMID: 38461489 PMCID: PMC11095154 DOI: 10.1002/advs.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/04/2024] [Indexed: 03/12/2024]
Abstract
Dysregulated circular RNAs (circRNAs) contribute to tumourigenesis and cancer progression. However, the expression patterns and biological functions of circRNAs in colorectal cancer (CRC) remain elusive. Here, RNA sequencing and bioinformatics analyses are applied to screen for aberrantly expressed circRNAs. The expression of circFBXW4 in CRC tissues and cell lines is determined by quantitative real-time PCR. A series of in vitro and in vivo biological function assays are implemented to assess the functions of circFBXW4. The regulatory mechanisms linking circFBXW4, miR-338-5p, and SLC5A7 are explored by western blotting, dual luciferase reporter assays, and RNA pull-down assays. CircFBXW4 is dramatically downregulated in CRC tissues and cell lines. circFBXW4 downregulation is clearly correlated with malignant features and patient overall survival in CRC. Functionally, ectopic expression of circFBXW4 strikingly impairs the proliferation, migration, and invasion capacities of CRC cells in vitro and in vivo, whereas circFBXW4 knockdown has the opposite effects. Mechanistically, circFBXW4 competitively binds to miR-338-5p and prevents it from interacting with and repressing its target SLC5A7, thus suppressing the progression of CRC. This study reveals the specific critical role of circFBXW4 in inhibiting CRC progression via the miR-338-5p/SLC5A7 axis and provides an additional target for eradicating CRC.
Collapse
Affiliation(s)
- Wei Song
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Jincheng Fu
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
- Department of General SurgeryQingdao Municipal HospitalQingdao266071P. R. China
| | - Jing Wu
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Jun Ren
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Rensheng Xiang
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Can Kong
- Department of Gastrointestinal Surgery IIRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Tao Fu
- Department of General SurgeryQingdao Municipal HospitalQingdao266071P. R. China
| |
Collapse
|
61
|
Ren S, Feng L, Liu H, Mao Y, Yu Z. Gut microbiome affects the response to immunotherapy in non-small cell lung cancer. Thorac Cancer 2024; 15:1149-1163. [PMID: 38572783 DOI: 10.1111/1759-7714.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Immunotherapy has revolutionized cancer treatment. Recent studies have suggested that the efficacy of immunotherapy can be further enhanced by the influence of gut microbiota. In this study, we aimed to investigate the impact of bacteria on the effectiveness of cancer immunotherapy by combining analysis of clinical samples with validation in animal models. METHODS In order to characterize the diversity and composition of microbiota and its relationship with response to immune checkpoint inhibitors (ICIs), 16S ribosomal RNA (rRNA) and GC-MS sequencing was performed on 71 stool samples from patients with advanced non-small cell lung cancer (NSCLC) prior to treatment with immune checkpoint blockade (ICB). Furthermore, fecal microbiota transplantation (FMT) was performed from different patients into mice and a subcutaneous tumor model established using the Lewis lung cancer cell line to evaluate the therapeutic effect of PD-1 on mice with varying gut microbiota. RESULTS The results demonstrated a significant association between elevated gut microbiota diversity and response to treatment with ICIs, p < 0.05. Faecalibacterium was markedly increased in the gut microbiota of responders (R), accompanied by increased short-chain fatty acid (SCFA) levels, especially butanoic acid, acetic acid and hexanoic acid, p < 0.05. Additionally, FMT from R and nonresponders (NR) could promote an anticancer effect and reduce the expression of Ki-67 cells in tumors in mice, p < 0.05. Moreover, R and NR FMT did not alter PD-L1 expression in the tumor tissues of mice, p > 0.05. The diversity of gut microbiota consistently correlated with an optimistic prognosis in NSCLC patients with immunotherapy, which could be functionally mediated by SCFAs. CONCLUSION The findings of the present study indicated that the diversity of gut microbiota and SCFAs is related to the efficacy of immunotherapy. FMT can effectively delay tumor progression, and enhance the effect of immunotherapy, thus providing evidence for improving the efficacy of immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Shengnan Ren
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingxin Feng
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haoran Liu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuke Mao
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhuang Yu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
62
|
Aya F, Lanuza-Gracia P, González-Pérez A, Bonnal S, Mancini E, López-Bigas N, Arance A, Valcárcel J. Genomic deletions explain the generation of alternative BRAF isoforms conferring resistance to MAPK inhibitors in melanoma. Cell Rep 2024; 43:114048. [PMID: 38614086 DOI: 10.1016/j.celrep.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/15/2024] Open
Abstract
Resistance to MAPK inhibitors (MAPKi), the main cause of relapse in BRAF-mutant melanoma, is associated with the production of alternative BRAF mRNA isoforms (altBRAFs) in up to 30% of patients receiving BRAF inhibitor monotherapy. These altBRAFs have been described as being generated by alternative pre-mRNA splicing, and splicing modulation has been proposed as a therapeutic strategy to overcome resistance. In contrast, we report that altBRAFs are generated through genomic deletions. Using different in vitro models of altBRAF-mediated melanoma resistance, we demonstrate the production of altBRAFs exclusively from the BRAF V600E allele, correlating with corresponding genomic deletions. Genomic deletions are also detected in tumor samples from melanoma and breast cancer patients expressing altBRAFs. Along with the identification of altBRAFs in BRAF wild-type and in MAPKi-naive melanoma samples, our results represent a major shift in our understanding of mechanisms leading to the generation of BRAF transcripts variants associated with resistance in melanoma.
Collapse
Affiliation(s)
- Francisco Aya
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Institut de Investigacions Biomedicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Lanuza-Gracia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Abel González-Pérez
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria López-Bigas
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ana Arance
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Institut de Investigacions Biomedicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
63
|
Meng Q, Han J, Wang P, Jia C, Guan M, Zhang B, Zhao W. BMS-794833 reduces anlotinib resistance in osteosarcoma by targeting the VEGFR/Ras/CDK2 pathway. J Bone Oncol 2024; 45:100594. [PMID: 38532893 PMCID: PMC10963651 DOI: 10.1016/j.jbo.2024.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Background Osteosarcoma, a tumor that originates from bone cells, has a poor prognosis and a high degree of malignancy. Anlotinib, a small-molecule multi-target tyrosine kinase inhibitor (TKI), is the first-line drug in treating osteosarcoma, especially in late-stage osteosarcoma. However, patients often develop resistance after using anlotinib for a certain period, which poses a challenge to its further clinical application. Recently, several TKIs, for instance regorafenib and cabozantinib, have showed clinical interest in treating osteosarcoma and target both vascular endothelial growth factor receptor (VEGFR) and mesenchymal epithelial transition factor (c-MET). Therefore, the identification of new TKI warrants further investigation. Methods We performed CCK8 aasays to confirm that BMS-794833 sensitization osteosarcoma cells to anlotinib. Bioinformatics analysis and rescue experiments showed that the reduce of resistance were dependent on the VEGFR/Ras/CDK2 pathway. Cell line based xenograft model were used to demonstrate that BMS-794833 and anlotinib could synergistically treat OS. Results Here, we found that BMS-794833 reduced anlotinib resistance in osteosarcoma by targeting the VEGFR/Ras/CDK2 pathway. CCK8 assay showed that BMS-794833 significantly improved the resistance of osteosarcoma cells to anlotinib. The results of rescue experiments showed that the regulatory effects of BMS-794833 on the proliferation and drug resistance of osteosarcoma cells were dependent on the VEGFR/Ras/CDK2 pathway. In addition, BMS-794833 affected the resistance of osteosarcoma cells to anlotinib through epithelial-mesenchymal transition (EMT) and apoptosis pathways. More importantly, BMS-794833 and anlotinib exerted synergistic therapeutic effects against osteosarcoma in vivo. Conclusion Altogether, this study reveals a new (VEGFR)-targeting drug that can be combined with anlotinib for the treatment of osteosarcoma, which provides an important theoretical basis for overcoming anlotinib resistance.
Collapse
Affiliation(s)
- Qingtao Meng
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian 116028, China
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Jian Han
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Peng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chenxu Jia
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Mingyang Guan
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Bolun Zhang
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian 116091, China
| | - Wenzhi Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian 116028, China
| |
Collapse
|
64
|
Page A, Chuvin N, Valladeau-Guilemond J, Depil S. Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol 2024; 21:315-331. [PMID: 38443448 PMCID: PMC10978891 DOI: 10.1038/s41423-024-01145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Natural killer (NK) cell-based immunotherapies are attracting increasing interest in the field of cancer treatment. Early clinical trials have shown promising outcomes, alongside satisfactory product efficacy and safety. Recent developments have greatly increased the therapeutic potential of NK cells by endowing them with enhanced recognition and cytotoxic capacities. This review focuses on surface receptor engineering in NK cell therapy and discusses its impact, challenges, and future directions.Most approaches are based on engineering with chimeric antigen receptors to allow NK cells to target specific tumor antigens independent of human leukocyte antigen restriction. This approach has increased the precision and potency of NK-mediated recognition and elimination of cancer cells. In addition, engineering NK cells with T-cell receptors also mediates the recognition of intracellular epitopes, which broadens the range of target peptides. Indirect tumor peptide recognition by NK cells has also been improved by optimizing immunoglobulin constant fragment receptor expression and signaling. Indeed, engineered NK cells have an improved ability to recognize and destroy target cells coated with specific antibodies, thereby increasing their antibody-dependent cellular cytotoxicity. The ability of NK cell receptor engineering to promote the expansion, persistence, and infiltration of transferred cells in the tumor microenvironment has also been explored. Receptor-based strategies for sustained NK cell functionality within the tumor environment have also been discussed, and these strategies providing perspectives to counteract tumor-induced immunosuppression.Overall, receptor engineering has led to significant advances in NK cell-based cancer immunotherapies. As technical challenges are addressed, these innovative treatments will likely reshape cancer immunotherapy.
Collapse
Affiliation(s)
- Audrey Page
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France.
| | | | - Jenny Valladeau-Guilemond
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France.
- ErVimmune, Lyon, France.
- Centre Léon Bérard, Lyon, France.
- Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
65
|
Saw SPL, Le X, Hendriks LEL, Remon J. New Treatment Options for Patients With Oncogene-Addicted Non-Small Cell Lung Cancer Focusing on EGFR-Mutant Tumors. Am Soc Clin Oncol Educ Book 2024; 44:e432516. [PMID: 38560815 DOI: 10.1200/edbk_432516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Druggable oncogene-driven non-small cell lung cancer has led to innovative systemic treatment options, improving patients' outcome. This benefit is not only achieved in the metastatic setting but also in the postsurgical setting, such as in lung cancers harboring a common sensitizing EGFR mutation or ALK-rearrangement. To enhance the outcome of these patients, we need to understand the mechanisms of acquired resistance and evaluate the role of new drugs with novel mechanisms of action in the treatment landscape. In this chapter, we review treatment strategies of EGFR-mutant tumors in all stages, the mechanisms of acquired strategies, and novel therapies in this subset.
Collapse
Affiliation(s)
- Stephanie P L Saw
- Department of Medical Oncology, National Cancer Centre Singapore, Duke-NUS Oncology Academic Clinical Programme, Singapore
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Centre, GROW School for Oncology and Reproduction, Maastricht, the Netherlands
| | - Jordi Remon
- Department of Medical Oncology, National Cancer Centre Singapore, Duke-NUS Oncology Academic Clinical Programme, Singapore
| |
Collapse
|
66
|
Luo J, Florez N, Donnelly A, Lou Y, Lu K, Ma PC, Spira AI, Ryan D, Husain H. Adagrasib Treatment After Sotorasib-Related Hepatotoxicity in Patients With KRASG12C-Mutated Non-Small Cell Lung Cancer: A Case Series and Literature Review. JCO Precis Oncol 2024; 8:e2300644. [PMID: 38579193 PMCID: PMC11018165 DOI: 10.1200/po.23.00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 04/07/2024] Open
Abstract
PURPOSE KRAS is the most commonly mutated driver oncogene in non-small cell lung cancer (NSCLC). Sotorasib and adagrasib, KRASG12C inhibitors, have been granted accelerated US approval; however, hepatotoxicity is a common side effect with higher rates in patients treated with sotorasib proximal to checkpoint inhibitor (CPI) therapy. The aim of this study was to assess the feasibility and safety of adagrasib after discontinuation of sotorasib because of treatment-related grade 3 hepatotoxicity through real-world and clinical cases. METHODS Medical records from five patients treated in real-world settings were retrospectively reviewed. Patients had locally advanced or metastatic KRASG12C-mutated NSCLC and received adagrasib after sotorasib in the absence of extracranial disease progression. Additional data were collected for 12 patients with KRASG12C-mutated NSCLC enrolled in a phase Ib cohort of the KRYSTAL-1 study and previously treated with sotorasib. The end points associated with both drugs included timing and severity of hepatotoxicity, best overall response, and duration of therapy. RESULTS All patients were treated with CPIs followed by sotorasib (initiated 0-64 days after CPI). All five real-world patients experienced hepatotoxicity with sotorasib that led to treatment discontinuation, whereas none experienced treatment-related hepatotoxicity with subsequent adagrasib treatment. Three patients from KRYSTAL-1 transitioned from sotorasib to adagrasib because of hepatotoxicity; one experienced grade 3 ALT elevation on adagrasib that resolved with therapy interruption and dose reduction. CONCLUSION Adagrasib may have a distinct hepatotoxicity profile from sotorasib and is more easily combined with CPIs either sequentially or concurrently. These differences may be used to inform clinical decisions regarding an initial KRASG12C inhibitor for patients who recently discontinued a CPI or experience hepatotoxicity on sotorasib.
Collapse
Affiliation(s)
- Jia Luo
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Narjust Florez
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Anjali Donnelly
- University of Michigan, Ann Arbor, MI
- Virginia Cancer Specialists, Fairfax, VA
| | | | - Kevin Lu
- Moores Cancer Center at UC San Diego Health, La Jolla, CA
| | | | - Alexander I. Spira
- Virginia Cancer Specialists, Fairfax, VA
- NEXT Oncology, Fairfax, VA
- US Oncology Research, The Woodlands, TX
| | | | - Hatim Husain
- Moores Cancer Center at UC San Diego Health, La Jolla, CA
| |
Collapse
|
67
|
Zhang L, Zhang X, Shi Y, Ni Y, Fei J, Jin Z, Li W, Wang X, Wu N. Role and potential therapeutic value of histone methyltransferases in drug resistance mechanisms in lung cancer. Front Oncol 2024; 14:1376916. [PMID: 38525426 PMCID: PMC10957659 DOI: 10.3389/fonc.2024.1376916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Lung cancer, ranking second globally in both incidence and high mortality among common malignant tumors, presents a significant challenge with frequent occurrences of drug resistance despite the continuous emergence of novel therapeutic agents. This exacerbates disease progression, tumor recurrence, and ultimately leads to poor prognosis. Beyond acquired resistance due to genetic mutations, mounting evidence suggests a critical role of epigenetic mechanisms in this process. Numerous studies have indicated abnormal expression of Histone Methyltransferases (HMTs) in lung cancer, with the abnormal activation of certain HMTs closely linked to drug resistance. HMTs mediate drug tolerance in lung cancer through pathways involving alterations in cellular metabolism, upregulation of cancer stem cell-related genes, promotion of epithelial-mesenchymal transition, and enhanced migratory capabilities. The use of HMT inhibitors also opens new avenues for lung cancer treatment, and targeting HMTs may contribute to reversing drug resistance. This comprehensive review delves into the pivotal roles and molecular mechanisms of HMTs in drug resistance in lung cancer, offering a fresh perspective on therapeutic strategies. By thoroughly examining treatment approaches, it provides new insights into understanding drug resistance in lung cancer, supporting personalized treatment, fostering drug development, and propelling lung cancer therapy into novel territories.
Collapse
Affiliation(s)
- Linxiang Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xueying Zhang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yan Shi
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuhan Ni
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jiaojiao Fei
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhixin Jin
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenjuan Li
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Nan Wu
- Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The Department of Pulmonary Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Joint Research Center for Regional Diseases of Institute of Health and Medicine (IHM), The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
68
|
Pandithar S, Galke D, Akume A, Belyakov A, Lomonaco D, Guerra AA, Park J, Reff O, Jin K. The role of CXCL1 in crosstalk between endocrine resistant breast cancer and fibroblast. Mol Biol Rep 2024; 51:331. [PMID: 38393465 PMCID: PMC10891235 DOI: 10.1007/s11033-023-09119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 12/06/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND ER positive breast cancer is currently targeted using various endocrine therapies. Despite the proven therapeutic efficacy, resistance to the drug and reoccurrence of tumor appears to be a complication that many patients deal with. Molecular pathways underlying the development of resistance are being widely studied. METHODS AND RESULTS In this study, using four established endocrine resistant breast cancer (ERBC) cell lines, we characterized CXCL1 as a secreted factor in crosstalk between ERBC cells and fibroblasts. Protein array revealed upregulation of CXCL1 and we confirmed the CXCL1 expression by real-time qRT-PCR and U-Plex assay. Co-culturing ERBC cells with fibroblasts enhanced the cell growth and migration compared to monoculture. The crosstalk of ERBC cells with fibroblasts significantly activates ERK/MAPK signaling pathway while reparixin, CXCR1/2 receptor inhibitor, attenuates the activity. Reparixin displayed the ERBC cell growth inhibition and the combination treatment with reparixin and CDK4/6 inhibitor (palbociclib and ribociclib) increased these inhibitory effect. CONCLUSIONS Taken together, our study implicates CXCL1 as a critical role in ERBC growth and metastasis via crosstalk with fibroblast and cotargeting CXCR1/2 and CDK4/6 could potentially overcome endocrine resistant breast cancer.
Collapse
Affiliation(s)
- Sneha Pandithar
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Daniel Galke
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Ahone Akume
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Artem Belyakov
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Dominick Lomonaco
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Amirah A Guerra
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Jay Park
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Olivia Reff
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA
| | - Kideok Jin
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, BRB Room 105B, Albany, NY, 12208, USA.
| |
Collapse
|
69
|
Msaouel P, Sheth RA. Locoregional Therapies in Immunologically "Cold" Tumors: Opportunities and Clinical Trial Design Considerations. J Vasc Interv Radiol 2024; 35:198-202. [PMID: 38272640 DOI: 10.1016/j.jvir.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 01/27/2024] Open
Abstract
Immunotherapy has revolutionized cancer management, but many tumors, particularly immunologically "cold" tumors, remain resistant to the therapy. The combination of conventional systemic immunotherapies and locoregional interventional radiology approaches is being explored to transform these cold tumors into immunologically active "hot" ones. The present article uses the example of chromophobe renal cell carcinoma (ChRCC), a renal cell carcinoma subtype resistant to current systemic immunotherapies, to address practical and conceptual challenges that have prevented the activation of clinical trials specifically designed for this malignancy to date. The practical framework discussed herein can help overcome logistic and funding limitations and facilitate the development of biology-informed clinical trials tailored to specific rare diseases such as ChRCC.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas; David H. Koch Center for Applied Research of Genitourinary Cancers, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
70
|
Lei H, Fang F, Yang C, Chen X, Li Q, Shen X. Lifting the veils on transmembrane proteins: Potential anticancer targets. Eur J Pharmacol 2024; 963:176225. [PMID: 38040080 DOI: 10.1016/j.ejphar.2023.176225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Cancer, as a prevalent cause of mortality, poses a substantial global health burden and hinders efforts to enhance life expectancy. Nevertheless, the prognosis of patients with malignant tumors remains discouraging, owing to the lack of specific diagnostic and therapeutic targets. Therefore, the development of early diagnostic indicators and novel therapeutic drugs for the prevention and treatment of cancer is essential. Transmembrane proteins (TMEMs) are a class of proteins that can span the phospholipid bilayer and are stably anchored. They are associated with fibrotic diseases, neurodegenerative diseases, autoimmune diseases, developmental disorders, and cancer. It has been found that the expression levels of TMEMs were elevated or reduced in cancer cells, exerting pro/anticancer effects. These aberrant expression levels have also been linked to the prognostic and clinicopathological features of diverse tumors. In this review, the structures, functions, and roles of TMEMs in cancer were discussed, and the scientific perspectives were described. This review also explored the potential of TMEMs as tumor drug candidates from the perspective of targeted therapies, and the challenges that need to be overcome in a wide range of preclinical and clinical anticancer research were summarized.
Collapse
Affiliation(s)
- Huan Lei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Fujin Fang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Chuanli Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaowei Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Qiong Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
71
|
Zhang H, Hu Y, Wu T, Chen Y, Yang B, Xie T. Clinical characteristics and novel strategies of immune checkpoint inhibitor rechallenge therapy for non-small cell lung cancer: a comprehensive review. Front Immunol 2024; 14:1309055. [PMID: 38283354 PMCID: PMC10811167 DOI: 10.3389/fimmu.2023.1309055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Treatment of non-small-cell lung cancer (NSCLC) has entered the immunotherapy era, marked by significant survival improvements due to the use of immune checkpoint inhibitors (ICIs). However, owing to factors, such as disease progression, long-term use, and side effects, some patients discontinue immunotherapy, resulting in limited subsequent treatment option and a negative impact on their survival and quality of life. We have collected relevant data which reveal that ICI rechallenge may be an effective clinical strategy. However, many factors affect the efficacy of rechallenge, including patient characteristics, initial treatment drugs, treatment duration, efficacy, toxicity, and side effects. Additionally, the side effects of rechallenge and mechanisms of reversing drug resistance play crucial roles. Identifying suitable candidates, optimizing treatment plans and duration, enhancing treatment efficacy, and minimizing toxicity and adverse effects in rechallenges are pressing clinical needs. Addressing these issues can provide guidance for the clinical use of immunotherapy rechallenges to better serve patients. This review focuses on the clinical considerations and strategies for immune therapy rechallenges in NSCLC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujun Hu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tingting Wu
- Department of Health Management, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yeshan Chen
- Institute of Radiation Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Yang
- Department of Thoracic Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Xie
- Department of Radiation Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
72
|
Li S, Wang L, Shi J, Chen Y, Xiao A, Huo B, Tian W, Zhang S, Yang G, Gong W, Zhang H. Chromatin accessibility complex subunit 1 enhances tumor growth by regulating the oncogenic transcription of YAP in breast and cervical cancer. PeerJ 2024; 12:e16752. [PMID: 38223760 PMCID: PMC10787542 DOI: 10.7717/peerj.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
Background As a component of chromatin remodeling complex, chromatin accessibility complex subunit 1 (CHRAC1) is critical in transcription and DNA replication. However, the significance of CHRAC1 in cancer progression has not been investigated extensively. This research aimed to determine the function of CHRAC1 in breast and cervical cancer and elucidate the molecular mechanism. Methods The Bio-ID method was used to identify the interactome of transcriptional activator Yes-associated protein (YAP) and the binding between YAP and CHRAC1 was verified by immunofluorescence. CCK8, colony formation and subcutaneous xenograft assays were conducted to explore the function of CHRAC1 in cancer cell proliferation. RNA-seq analysis and RT-PCR were used to analyze the transcription program change after CHRAC1 ablation. The diagnostic value of CHRAC1 was analyzed by TCGA database and further validated by immunohistochemistry staining. Results In the current study, we found that the chromatin remodeler CHRAC1 was a potential YAP interactor. CHRAC1 depletion suppressed breast and cervical cancer cell proliferation and tumor growth. The potential mechanism may be that CHRAC1 interacts with YAP to facilitate oncogenic transcription of YAP target genes in Hippo pathway, thereby promoting tumorigenesis. CHRAC1 was elevated in cervical and breast cancer biopsies and the upregulation correlated with shorter survival, poor pathological stages and metastasis of cancer patients. Moreover, CHRAC1 expression was statistically associated with YAP in breast and cervical cancer biopsies. Conclusions These findings highlight that CHRAC1 contributes to cancer progression through regulating the oncogenic transcription of YAP, which makes it a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shasha Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Shi
- Xiangyang Center for Disease Control and Prevention, Xiangyang, China
| | - Yi Chen
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ang Xiao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyue Huo
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Tian
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shilu Zhang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Yang
- Xiangyang Center for Disease Control and Prevention, Xiangyang, China
| | - Wensheng Gong
- Xiangyang Center for Disease Control and Prevention, Xiangyang, China
| | - Huixia Zhang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
73
|
Borghaei H, de Marinis F, Dumoulin D, Reynolds C, Theelen WSME, Percent I, Gutierrez Calderon V, Johnson ML, Madroszyk-Flandin A, Garon EB, He K, Planchard D, Reck M, Popat S, Herbst RS, Leal TA, Shazer RL, Yan X, Harrigan R, Peters S. SAPPHIRE: phase III study of sitravatinib plus nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. Ann Oncol 2024; 35:66-76. [PMID: 37866811 DOI: 10.1016/j.annonc.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Checkpoint inhibitor (CPI) therapy revolutionized treatment for advanced non-small-cell lung cancer (NSCLC); however, most patients progress due to primary or acquired resistance. Sitravatinib is a receptor tyrosine kinase inhibitor that can shift the immunosuppressive tumor microenvironment toward an immunostimulatory state. Combining sitravatinib with nivolumab (sitra + nivo) may potentially overcome initial CPI resistance. PATIENTS AND METHODS In the phase III SAPPHIRE study, patients with advanced non-oncogenic driven, nonsquamous NSCLC who initially benefited from (≥4 months on CPI without progression) and subsequently experienced disease progression on or after CPI combined with or following platinum-based chemotherapy were randomized 1 : 1 to sitra (100 mg once daily administered orally) + nivo (240 mg every 2 weeks or 480 mg every 4 weeks administered intravenously) or docetaxel (75 mg/m2 every 3 weeks administered intravenously). The primary endpoint was overall survival (OS). The secondary endpoints included progression-free survival (PFS), objective response rate (ORR), clinical benefit rate (CBR), duration of response (DOR; all assessed by blinded independent central review), and safety. RESULTS A total of 577 patients included randomized: sitra + nivo, n = 284; docetaxel, n = 293 (median follow-up, 17.1 months). Sitra + nivo did not significantly improve OS versus docetaxel [median, 12.2 versus 10.6 months; hazard ratio (HR) 0.86, 95% confidence interval (CI) 0.70-1.05; P = 0.144]. The median PFS was 4.4 versus 5.4 months, respectively (HR 1.08, 95% CI 0.89-1.32; P = 0.452). The ORR was 15.6% for sitra + nivo and 17.2% for docetaxel (P = 0.597); CBR was 75.5% and 64.5%, respectively (P = 0.004); median DOR was 7.4 versus 7.1 months, respectively (P = 0.924). Grade ≥3 treatment-related adverse events were observed in 53.0% versus 66.7% of patients receiving sitra + nivo versus docetaxel, respectively. CONCLUSIONS Although median OS was numerically longer with sitra + nivo, the primary endpoint was not met in patients with previously treated advanced nonsquamous NSCLC. The safety profiles demonstrated were consistent with previous reports.
Collapse
Affiliation(s)
- H Borghaei
- Hematology and Oncology Department, Fox Chase Cancer Center, Philadelphia, USA.
| | - F de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - D Dumoulin
- Department of Pulmonary Medicine, Erasmus Medisch Centrum, Rotterdam, the Netherlands
| | - C Reynolds
- Ocala Cancer Center, Florida Cancer Specialists and Research Institute - North Region (SCRI), Ocala, USA
| | - W S M E Theelen
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - I Percent
- North Port Cancer Center, Florida Cancer Specialists and Research Institute - South Region (SCRI), Port Charlotte, USA
| | - V Gutierrez Calderon
- Department of Medical Oncology, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - M L Johnson
- Department of Medical Oncology, Sarah Cannon Research Institute, Tennessee Oncology, Nashville, USA
| | | | - E B Garon
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles
| | - K He
- Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, USA
| | - D Planchard
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France
| | - M Reck
- Department of Thoracic Oncology, LungenClinic, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - S Popat
- Lung Unit, Department of Medicine, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - R S Herbst
- Section of Medical Oncology, Yale University, New Haven
| | - T A Leal
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta
| | - R L Shazer
- Department of Clinical Research and Development, Mirati Therapeutics, Inc., San Diego, USA
| | - X Yan
- Department of Clinical Research and Development, Mirati Therapeutics, Inc., San Diego, USA
| | - R Harrigan
- Department of Clinical Research and Development, Mirati Therapeutics, Inc., San Diego, USA
| | - S Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
74
|
Zhai Y, Du Y, Li G, Yu M, Hu H, Pan C, Wang D, Shi Z, Yan X, Li X, Jiang T, Zhang W. Trogocytosis of CAR molecule regulates CAR-T cell dysfunction and tumor antigen escape. Signal Transduct Target Ther 2023; 8:457. [PMID: 38143263 PMCID: PMC10749292 DOI: 10.1038/s41392-023-01708-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has demonstrated clinical response in treating both hematologic malignancies and solid tumors. Although instances of rapid tumor remissions have been observed in animal models and clinical trials, tumor relapses occur with multiple therapeutic resistance mechanisms. Furthermore, while the mechanisms underlying the long-term therapeutic resistance are well-known, short-term adaptation remains less understood. However, more views shed light on short-term adaptation and hold that it provides an opportunity window for long-term resistance. In this study, we explore a previously unreported mechanism in which tumor cells employ trogocytosis to acquire CAR molecules from CAR-T cells, a reversal of previously documented processes. This mechanism results in the depletion of CAR molecules and subsequent CAR-T cell dysfunction, also leading to short-term antigen loss and antigen masking. Such type of intercellular communication is independent of CAR downstream signaling, CAR-T cell condition, target antigen, and tumor cell type. However, it is mainly dependent on antigen density and CAR sensitivity, and is associated with tumor cell cholesterol metabolism. Partial mitigation of this trogocytosis-induced CAR molecule transfer can be achieved by adaptively administering CAR-T cells with antigen density-individualized CAR sensitivities. Together, our study reveals a dynamic process of CAR molecule transfer and refining the framework of clinical CAR-T therapy for solid tumors.
Collapse
Affiliation(s)
- You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yicong Du
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, PR China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Xu Yan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, PR China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China.
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China.
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, PR China.
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China.
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China.
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China.
| |
Collapse
|
75
|
Russo A, Scilla KA, Mehra R, Gittens A, McCusker MG, de Miguel-Perez D, Gomez JE, Peleg A, Del Re M, Rolfo CD. Tracking Clonal Evolution of EGFR-Mutated Non-Small Cell Lung Cancer Through Liquid Biopsy: Management of C797S Acquired Mutation. Clin Lung Cancer 2023; 24:660-665. [PMID: 37487787 DOI: 10.1016/j.cllc.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Affiliation(s)
- Alessandro Russo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Department of Onco-Hematology, Papardo Hospital, Messina, Italy
| | - Katherine A Scilla
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Allison Gittens
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Michael G McCusker
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Shenandoah Oncology Associates, Oncology Department, Winchester, VA
| | - Diego de Miguel-Perez
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Center for Thoracic Oncology, Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jorge E Gomez
- Center for Thoracic Oncology, Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ariel Peleg
- Center for Thoracic Oncology, Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marzia Del Re
- Center for Thoracic Oncology, Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY; Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Christian D Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
76
|
Furugaki K, Fujimura T, Mizuta H, Yoshimoto T, Asakawa T, Yoshimura Y, Yoshiura S. FGFR blockade inhibits targeted therapy-tolerant persister in basal FGFR1- and FGF2-high cancers with driver oncogenes. NPJ Precis Oncol 2023; 7:107. [PMID: 37880373 PMCID: PMC10600219 DOI: 10.1038/s41698-023-00462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Cancer cell resistance arises when tyrosine kinase inhibitor (TKI)-targeted therapies induce a drug-tolerant persister (DTP) state with growth via genetic aberrations, making DTP cells potential therapeutic targets. We screened an anti-cancer compound library and identified fibroblast growth factor receptor 1 (FGFR1) promoting alectinib-induced anaplastic lymphoma kinase (ALK) fusion-positive DTP cell's survival. FGFR1 signaling promoted DTP cell survival generated from basal FGFR1- and fibroblast growth factor 2 (FGF2)-high protein expressing cells, following alectinib treatment, which is blocked by FGFR inhibition. The hazard ratio for progression-free survival of ALK-TKIs increased in patients with ALK fusion-positive non-small cell lung cancer with FGFR1- and FGF2-high mRNA expression at baseline. The combination of FGFR and targeted TKIs enhanced cell growth inhibition and apoptosis induction in basal FGFR1- and FGF2-high protein expressing cells with ALK-rearranged and epidermal growth factor receptor (EGFR)-mutated NSCLC, human epidermal growth factor receptor 2 (HER2)-amplified breast cancer, or v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutated melanoma by preventing compensatory extracellular signal-regulated kinase (ERK) reactivation. These results suggest that a targeted TKI-induced DTP state results from an oncogenic switch from activated oncogenic driver signaling to the FGFR1 pathway in basal FGFR1- and FGF2-high expressing cancers and initial dual blockade of FGFR and driver oncogenes based on FGFR1 and FGF2 expression levels at baseline is a potent treatment strategy to prevent acquired drug resistance to targeted TKIs through DTP cells regardless of types of driver oncogenes.
Collapse
Affiliation(s)
- Koh Furugaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Takaaki Fujimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Hayato Mizuta
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Takuya Yoshimoto
- Biometrics Department, Chugai Pharmaceutical Co., Ltd., 2-1-1 Nihonbashi-muromachi, Chuo-ku, Tokyo, 103-8324, Japan
| | - Takashi Asakawa
- Biometrics Department, Chugai Pharmaceutical Co., Ltd., 2-1-1 Nihonbashi-muromachi, Chuo-ku, Tokyo, 103-8324, Japan
| | - Yasushi Yoshimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Shigeki Yoshiura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan.
| |
Collapse
|
77
|
Rios-Hoyo A, Arriola E. Immunotherapy and brain metastasis in lung cancer: connecting bench side science to the clinic. Front Immunol 2023; 14:1221097. [PMID: 37876939 PMCID: PMC10590916 DOI: 10.3389/fimmu.2023.1221097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Brain metastases (BMs) are the most common form of intracranial malignant neoplasms in adults, with a profound impact on quality of life and traditionally associated with a dismal prognosis. Lung cancer accounts for approximately 40%-50% of BM across different tumors. The process leading to BMs is complex and includes local invasion, intravasation, tumor cells circulation into the bloodstream, disruption of the blood-brain barrier, extravasation of tumor cells into the brain parenchyma, and interaction with cells of the brain microenvironment, among others. Once the tumor cells have seeded in the brain parenchyma, they encounter different glial cells of the brain, as well as immune cells. The interaction between these cells and tumor cells is complex and is associated with both antitumoral and protumoral effects. To overcome the lethal prognosis associated with BMs, different treatment strategies have been developed, such as immunotherapy with immune checkpoint inhibitors, particularly inhibitors of the PD-1/PD-L1 axis, which have demonstrated to be an effective treatment in both non-small cell lung cancer and small cell lung cancer. These antibodies have shown to be effective in the treatment of BM, alone or in combination with chemotherapy or radiotherapy. However, many unsolved questions remain to be answered, such as the sequencing of immunotherapy and radiotherapy, the optimal management in symptomatic BMs, the role of the addition of anti-CTLA-4 antibodies, and so forth. The complexity in the management of BMs in the era of immunotherapy requires a multidisciplinary approach to adequately treat this devastating event. The aim of this review is to summarize evidence regarding epidemiology of BM, its pathophysiology, current approach to treatment strategies, as well as future perspectives.
Collapse
Affiliation(s)
- Alejandro Rios-Hoyo
- Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Edurne Arriola
- Department of Medical Oncology, Hospital del Mar-CIBERONC (Centro de Investigación Biomédica en Red de Oncología), Barcelona, Spain
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), Barcelona, Spain
| |
Collapse
|
78
|
Aldea M, Friboulet L, Apcher S, Jaulin F, Mosele F, Sourisseau T, Soria JC, Nikolaev S, André F. Precision medicine in the era of multi-omics: can the data tsunami guide rational treatment decision? ESMO Open 2023; 8:101642. [PMID: 37769400 PMCID: PMC10539962 DOI: 10.1016/j.esmoop.2023.101642] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/30/2023] Open
Abstract
Precision medicine for cancer is rapidly moving to an approach that integrates multiple dimensions of the biology in order to model mechanisms of cancer progression in each patient. The discovery of multiple drivers per tumor challenges medical decision that faces several treatment options. Drug sensitivity depends on the actionability of the target, its clonal or subclonal origin and coexisting genomic alterations. Sequencing has revealed a large diversity of drivers emerging at treatment failure, which are potential targets for clinical trials or drug repurposing. To effectively prioritize therapies, it is essential to rank genomic alterations based on their proven actionability. Moving beyond primary drivers, the future of precision medicine necessitates acknowledging the intricate spatial and temporal heterogeneity inherent in cancer. The advent of abundant complex biological data will make artificial intelligence algorithms indispensable for thorough analysis. Here, we will discuss the advancements brought by the use of high-throughput genomics, the advantages and limitations of precision medicine studies and future perspectives in this field.
Collapse
Affiliation(s)
- M Aldea
- Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif.
| | | | - S Apcher
- PRISM, INSERM, Gustave Roussy, Villejuif
| | - F Jaulin
- PRISM, INSERM, Gustave Roussy, Villejuif
| | - F Mosele
- Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif
| | | | - J-C Soria
- Paris Saclay University, Orsay; Drug Development Department, Gustave Roussy, Villejuif, France
| | - S Nikolaev
- PRISM, INSERM, Gustave Roussy, Villejuif
| | - F André
- Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif; Paris Saclay University, Orsay
| |
Collapse
|
79
|
Zubaľ M, Výmolová B, Matrasová I, Výmola P, Vepřková J, Syrůček M, Tomáš R, Vaníčková Z, Křepela E, Konečná D, Bušek P, Šedo A. Fibroblast activation protein as a potential theranostic target in brain metastases of diverse solid tumours. Pathology 2023; 55:806-817. [PMID: 37419841 DOI: 10.1016/j.pathol.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 07/09/2023]
Abstract
Brain metastases are a very common and serious complication of oncological diseases. Despite the vast progress in multimodality treatment, brain metastases significantly decrease the quality of life and prognosis of patients. Therefore, identifying new targets in the microenvironment of brain metastases is desirable. Fibroblast activation protein (FAP) is a transmembrane serine protease typically expressed in tumour-associated stromal cells. Due to its characteristic presence in the tumour microenvironment, FAP represents an attractive theranostic target in oncology. However, there is little information on FAP expression in brain metastases. In this study, we quantified FAP expression in samples of brain metastases of various primary origin and characterised FAP-expressing cells. We have shown that FAP expression is significantly higher in brain metastases in comparison to non-tumorous brain tissues, both at the protein and enzymatic activity levels. FAP immunopositivity was localised in regions rich in collagen and containing blood vessels. We have further shown that FAP is predominantly confined to stromal cells expressing markers typical of cancer-associated fibroblasts (CAFs). We have also observed FAP immunopositivity on tumour cells in a portion of brain metastases, mainly originating from melanoma, lung, breast, and renal cancer, and sarcoma. There were no significant differences in the quantity of FAP protein, enzymatic activity, and FAP+ stromal cells among brain metastasis samples of various origins, suggesting that there is no association of FAP expression and/or presence of FAP+ stromal cells with the histological type of brain metastases. In summary, we are the first to establish the expression of FAP and characterise FAP-expressing cells in the microenvironment of brain metastases. The frequent upregulation of FAP and its presence on both stromal and tumour cells support the use of FAP as a promising theranostic target in brain metastases.
Collapse
Affiliation(s)
- Michal Zubaľ
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Výmolová
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Matrasová
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Výmola
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Vepřková
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Syrůček
- Department of Pathology, Na Homolce Hospital, Prague, Czech Republic
| | - Robert Tomáš
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Zdislava Vaníčková
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Evžen Křepela
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dora Konečná
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic; Departments of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
| | - Petr Bušek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Aleksi Šedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
80
|
Sampetrean A, Aldea M, Mateus C. Precision medicine's new frontier: integrating palliative care at the right time. ESMO Open 2023; 8:101632. [PMID: 37757666 PMCID: PMC10534217 DOI: 10.1016/j.esmoop.2023.101632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Affiliation(s)
- A Sampetrean
- Palliative Care Unit, Interdisciplinary Department for the Organization of Patient Course (DIOPP), Gustave Roussy, Villejuif
| | - M Aldea
- Department of Medical Oncology, Precision Medicine Group, Gustave Roussy, Villejuif; Faculty of Medicine, Paris-Saclay University, Kremlin-Bicetre, France
| | - C Mateus
- Palliative Care Unit, Interdisciplinary Department for the Organization of Patient Course (DIOPP), Gustave Roussy, Villejuif.
| |
Collapse
|
81
|
Erenpreisa J, Giuliani A, Cragg MS. Special Issue "Advances in Genome Regulation in Cancer". Int J Mol Sci 2023; 24:14567. [PMID: 37834014 PMCID: PMC10572122 DOI: 10.3390/ijms241914567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is globally increasing [...].
Collapse
Affiliation(s)
- Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Mark Steven Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| |
Collapse
|
82
|
Zhang S, Yuan L, Danilova L, Mo G, Zhu Q, Deshpande A, Bell ATF, Elisseeff J, Popel AS, Anders RA, Jaffee EM, Yarchoan M, Fertig EJ, Kagohara LT. Spatial transcriptomics analysis of neoadjuvant cabozantinib and nivolumab in advanced hepatocellular carcinoma identifies independent mechanisms of resistance and recurrence. Genome Med 2023; 15:72. [PMID: 37723590 PMCID: PMC10506285 DOI: 10.1186/s13073-023-01218-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Novel immunotherapy combination therapies have improved outcomes for patients with hepatocellular carcinoma (HCC), but responses are limited to a subset of patients. Little is known about the inter- and intra-tumor heterogeneity in cellular signaling networks within the HCC tumor microenvironment (TME) that underlie responses to modern systemic therapy. METHODS We applied spatial transcriptomics (ST) profiling to characterize the tumor microenvironment in HCC resection specimens from a prospective clinical trial of neoadjuvant cabozantinib, a multi-tyrosine kinase inhibitor that primarily blocks VEGF, and nivolumab, a PD-1 inhibitor in which 5 out of 15 patients were found to have a pathologic response at the time of resection. RESULTS ST profiling demonstrated that the TME of responding tumors was enriched for immune cells and cancer-associated fibroblasts (CAF) with pro-inflammatory signaling relative to the non-responders. The enriched cancer-immune interactions in responding tumors are characterized by activation of the PAX5 module, a known regulator of B cell maturation, which colocalized with spots with increased B cell marker expression suggesting strong activity of these cells. HCC-CAF interactions were also enriched in the responding tumors and were associated with extracellular matrix (ECM) remodeling as there was high activation of FOS and JUN in CAFs adjacent to the tumor. The ECM remodeling is consistent with proliferative fibrosis in association with immune-mediated tumor regression. Among the patients with major pathologic responses, a single patient experienced early HCC recurrence. ST analysis of this clinical outlier demonstrated marked tumor heterogeneity, with a distinctive immune-poor tumor region that resembles the non-responding TME across patients and was characterized by HCC-CAF interactions and expression of cancer stem cell markers, potentially mediating early tumor immune escape and recurrence in this patient. CONCLUSIONS These data show that responses to modern systemic therapy in HCC are associated with distinctive molecular and cellular landscapes and provide new targets to enhance and prolong responses to systemic therapy in HCC.
Collapse
Affiliation(s)
- Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Long Yuan
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ludmila Danilova
- Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Guanglan Mo
- Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Qingfeng Zhu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander T F Bell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Elisseeff
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A Anders
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA.
- Department of Applied Mathematics and Statistics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Luciane T Kagohara
- Bloomberg-Kimmel Immunotherapy Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
83
|
Marín A, Al Mamun A, Patel H, Akamatsu H, Ye D, Sudhan DR, Eli L, Marcelain K, Brown BP, Meiler J, Arteaga CL, Hanker AB. Acquired Secondary HER2 Mutations Enhance HER2/MAPK Signaling and Promote Resistance to HER2 Kinase Inhibition in Breast Cancer. Cancer Res 2023; 83:3145-3158. [PMID: 37404061 PMCID: PMC10530374 DOI: 10.1158/0008-5472.can-22-3617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023]
Abstract
HER2 mutations drive the growth of a subset of breast cancers and are targeted with HER2 tyrosine kinase inhibitors (TKI) such as neratinib. However, acquired resistance is common and limits the durability of clinical responses. Most HER2-mutant breast cancers progressing on neratinib-based therapy acquire secondary mutations in HER2. It is unknown whether these secondary HER2 mutations, other than the HER2T798I gatekeeper mutation, are causal to neratinib resistance. Herein, we show that secondary acquired HER2T862A and HER2L755S mutations promote resistance to HER2 TKIs via enhanced HER2 activation and impaired neratinib binding. While cells expressing each acquired HER2 mutation alone were sensitive to neratinib, expression of acquired double mutations enhanced HER2 signaling and reduced neratinib sensitivity. Computational structural modeling suggested that secondary HER2 mutations stabilize the HER2 active state and reduce neratinib binding affinity. Cells expressing double HER2 mutations exhibited resistance to most HER2 TKIs but retained sensitivity to mobocertinib and poziotinib. Double-mutant cells showed enhanced MEK/ERK signaling, which was blocked by combined inhibition of HER2 and MEK. Together, these findings reveal the driver function of secondary HER2 mutations in resistance to HER2 inhibition and provide a potential treatment strategy to overcome acquired resistance to HER2 TKIs in HER2-mutant breast cancer. SIGNIFICANCE HER2-mutant breast cancers acquire secondary HER2 mutations that drive resistance to HER2 tyrosine kinase inhibitors, which can be overcome by combined inhibition of HER2 and MEK.
Collapse
Affiliation(s)
- Arnaldo Marín
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Doctoral Program in Medical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 838045, Chile
- These authors contributed equally: Arnaldo Marin, Abdullah Al Mamun
| | - Abdullah Al Mamun
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- These authors contributed equally: Arnaldo Marin, Abdullah Al Mamun
| | - Hima Patel
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 838045, Chile
| | - Hiroaki Akamatsu
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Current Address: Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| | - Dan Ye
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
| | - Dhivya R. Sudhan
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
| | - Lisa Eli
- Puma Biotechnology, Inc., Los Angeles, CA 90024, USA
| | - Katherine Marcelain
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 838045, Chile
| | - Benjamin P. Brown
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, 04103, Germany
| | - Carlos L. Arteaga
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ariella B. Hanker
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
84
|
Page A, Delles M, Nègre D, Costa C, Fusil F, Cosset FL. Engineering B cells with customized therapeutic responses using a synthetic circuit. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:1-14. [PMID: 37359346 PMCID: PMC10285500 DOI: 10.1016/j.omtn.2023.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The expansion of genetic engineering has brought a new dimension for synthetic immunology. Immune cells are perfect candidates because of their ability to patrol the body, interact with many cell types, proliferate upon activation, and differentiate in memory cells. This study aimed at implementing a new synthetic circuit in B cells, allowing the expression of therapeutic molecules in a temporally and spatially restricted manner that is induced by the presence of specific antigens. This should enhance endogenous B cell functions in terms of recognition and effector properties. We developed a synthetic circuit encoding a sensor (a membrane-anchored B cell receptor targeting a model antigen), a transducer (a minimal promoter induced by the activated sensor), and effector molecules. We isolated a 734-bp-long fragment of the NR4A1 promoter, specifically activated by the sensor signaling cascade in a fully reversible manner. We demonstrate full antigen-specific circuit activation as its recognition by the sensor induced the activation of the NR4A1 promoter and the expression of the effector. Overall, such novel synthetic circuits offer huge possibilities for the treatment of many pathologies, as they are completely programmable; thus, the signal-specific sensors and effector molecules can be adapted to each disease.
Collapse
Affiliation(s)
- Audrey Page
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| | - Marie Delles
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| | - Didier Nègre
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| | - Caroline Costa
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| | - Floriane Fusil
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| | - François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| |
Collapse
|
85
|
Parisi C, Tagliamento M, Belcaid L, Aldea M, Bayle A, Remon-Masip J, Italiano A, Planchard D, Besse B, Barlesi F. Circulating tumor DNA in clinical trials for solid tumors: Challenges and current applications. THE JOURNAL OF LIQUID BIOPSY 2023; 1:100007. [PMID: 40027283 PMCID: PMC11863815 DOI: 10.1016/j.jlb.2023.100007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 03/05/2025]
Abstract
Tumor derived biomarkers including circulating tumor DNA (ctDNA) and/or circulating tumors cells (CTCs) may be detected and quantified through liquid biopsy (LB). ctDNA analysis through LB is a validated tool for monitoring response to systemic treatment and detecting molecular mechanisms of resistance at the time of progression of advanced stage malignancies. Several applications of ctDNA have been investigated in the diagnostic phase of cancer or in the post-curative treatment surveillance phase (e.g., minimal residual disease assessment after neoadjuvant or adjuvant therapy). Recently, the improvement of ctDNA technology and its implementation have affected early phase trials design, with significant changes in the inclusion and randomization phases. Implementation of LB has resulted in large-scale development of academic programs aimed at exploiting all the potential applications of ctDNA, such as patients extended molecular screening, molecular oriented treatment decision making, monitoring of anti-cancer treatments response. In this rapid evolving field, the challenge is no longer the technique, but the evaluation of the results and the interpretation of their impact on diagnosis, prognosis, or therapeutic decision. Leading research cancer centers may favor education for scientific community, by capturing data on this evolving technology and sharing knowledge. In this review we summarize the main applications and challenges of ctDNA genotyping in clinical trials, with special focus on ongoing studies. We finally describe the most important next generation academic and industry-sponsored programs addressing early cancer detection and prevention in high-risk populations through ctDNA genotyping.
Collapse
Affiliation(s)
- Claudia Parisi
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
- Department of Medical and Surgical Sciences and Translational Medicine, St Andrea University Hospital, Sapienza University, Rome, Italy
| | - Marco Tagliamento
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
- Department of Internal Medicine and Medical Specialties, University of Genova, Genova, Italy
| | - Laila Belcaid
- Department of Oncology, Copenaghen University Hospital, Rigshospitalet, Denmark
| | - Mihaela Aldea
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
- Paris-Saclay University, Orsay, France
| | - Arnaud Bayle
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | | | - Antoine Italiano
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
- Medical Oncology Department, Institute Bergonié, Bordeaux, France
| | - David Planchard
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
- Paris-Saclay University, Orsay, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
- Paris-Saclay University, Orsay, France
| | - Fabrice Barlesi
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
- Paris-Saclay University, Orsay, France
| |
Collapse
|
86
|
Ganesan S. Treating Early and Often: Targeted Therapeutics in the Adjuvant Setting. JCO Precis Oncol 2023; 7:e2300551. [PMID: 38096471 PMCID: PMC10730077 DOI: 10.1200/po.23.00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Department of Medicine and Pharmacology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ
| |
Collapse
|
87
|
Konda P, Garinet S, Van Allen EM, Viswanathan SR. Genome-guided discovery of cancer therapeutic targets. Cell Rep 2023; 42:112978. [PMID: 37572322 DOI: 10.1016/j.celrep.2023.112978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
The success of precision oncology-which aims to match the right therapies to the right patients based on molecular status-is predicated on a robust pipeline of molecular targets against which therapies can be developed. Recent advances in genomics and functional genetics have enabled the unbiased discovery of novel molecular targets at scale. We summarize the promise and challenges in integrating genomic and functional genetic landscapes of cancer to establish the next generation of cancer targets.
Collapse
Affiliation(s)
- Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Simon Garinet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
88
|
Wang W, Li M, Wang L, Chen L, Goh BC. Curcumin in cancer therapy: Exploring molecular mechanisms and overcoming clinical challenges. Cancer Lett 2023; 570:216332. [PMID: 37541540 DOI: 10.1016/j.canlet.2023.216332] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Cancer poses a significant global health burden, necessitating the widespread use of chemotherapy and radiotherapy as conventional frontline interventions. Although targeted therapy and immunotherapy have shown remarkable advancements, the challenges of resistance development and severe side effects persist in cancer treatment. Consequently, researchers have actively sought more effective alternatives with improved safety profiles. In recent years, curcumin, a natural polyphenolic phytoalexin, has garnered considerable attention due to its broad spectrum of biological effects. This concise review provides valuable insights into the role of curcumin in cancer therapy, with a focus on elucidating its molecular mechanisms in inducing programmed cell death of tumor cells and suppressing tumor cell metastasis potential. Additionally, we discuss the challenges associated with the clinical application of curcumin and explore current endeavors aimed at overcoming these limitations. By shedding light on the promising potential of curcumin, this review contributes to the advancement of cancer treatment strategies.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mingqin Li
- Department of Medical Cardiology, Zhongxiang TCM Hospital of Hubei, Zhongxiang, 431900, China
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; National University Cancer Institute, National University of Singapore, 119074, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; National University Cancer Institute, National University of Singapore, 119074, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
89
|
Urbanska EM, Grauslund M, Koffeldt PR, Truelsen SLB, Löfgren JO, Costa JC, Melchior LC, Sørensen JB, Santoni-Rugiu E. Real-World Data on Combined EGFR-TKI and Crizotinib Treatment for Acquired and De Novo MET Amplification in Patients with Metastatic EGFR-Mutated NSCLC. Int J Mol Sci 2023; 24:13077. [PMID: 37685884 PMCID: PMC10487649 DOI: 10.3390/ijms241713077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Amplification of the mesenchymal epithelial transition (MET) gene is a mechanism of acquired resistance to epidermal growth factor receptor (EGFR)-tyrosine-kinase-inhibitors (TKIs) in over 20% of patients with advanced EGFR-mutated (EGFRm+) non-small lung cancer (NSCLC). However, it may also occur de novo in 2-8% of EGFRm+ NSCLC cases as a potential mechanism of intrinsic resistance. These patients represent a group with unmet needs, since there is no standard therapy currently approved. Several new MET inhibitors are being investigated in clinical trials, but the results are awaited. Meanwhile, as an alternative strategy, combinations of EGFR-TKIs with the MET/ALK/ROS1-TKI Crizotinib may be used in this setting, despite this use is principally off-label. Thus, we studied five of these MET amplified cases receiving EGFR-TKI and Crizotinib doublet after progression on EGFR-TKI treatment to assess the benefits and challenges related to this combination and the possible occurrence of genomic and phenotypic co-alterations. Furthermore, we compared our cases with other real-world reports on Crizotinib/EGFR-TKI combinations, which appeared effective, especially in patients with high-level MET amplification. Yet, we observed that the co-occurrence of other genomic and phenotypical alterations may affect the response to combined EGFR-TKI and Crizotinib. Finally, given the heterogeneity of MET amplification, the diagnostic methods for assessing it may be discrepant. In this respect, we observed that for optimal detection, immunohistochemistry, fluorescence in situ hybridization, and next-generation sequencing should be used together, as these methods possess different sensitivities and complement each other in characterizing MET amplification. Additionally, we addressed the issue of managing EGFR-mutated NSCLC patients with de novo MET amplification causing primary EGFR-TKI resistance. We conclude that, while data from clinical trials with new MET inhibitors are still pending, adding Crizotinib to EGFR-TKI in NSCLC patients acquiring MET amplification at progression on EGFR-TKI monotherapy is a reasonable approach, with a progression-free survival of 3-19 months.
Collapse
Affiliation(s)
- Edyta M. Urbanska
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark;
| | - Morten Grauslund
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.G.); (P.R.K.); (S.L.B.T.); (L.C.M.)
| | - Peter R. Koffeldt
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.G.); (P.R.K.); (S.L.B.T.); (L.C.M.)
| | - Sarah L. B. Truelsen
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.G.); (P.R.K.); (S.L.B.T.); (L.C.M.)
| | - Johan O. Löfgren
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark;
| | - Junia C. Costa
- Department of Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark;
| | - Linea C. Melchior
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.G.); (P.R.K.); (S.L.B.T.); (L.C.M.)
| | - Jens B. Sørensen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.G.); (P.R.K.); (S.L.B.T.); (L.C.M.)
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
90
|
Pandiella A, Calvo E, Moreno V, Amir E, Templeton A, Ocana A. Considerations for the clinical development of immuno-oncology agents in cancer. Front Immunol 2023; 14:1229575. [PMID: 37638048 PMCID: PMC10451075 DOI: 10.3389/fimmu.2023.1229575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Targeting of the immune system has shown to be a successful therapeutic approach in cancer, with the development of check point inhibitors (ICI) or T-cell engagers (TCE). As immuno-oncology agents modulate the immune system to attack cancer cells and do not act directly on oncogenic vulnerabilities, specific characteristics of these compounds should be taken in consideration during clinical development. In this review we will discuss relevant concepts including limitations of preclinical models, special pharmacologic boundaries, clinical development strategies such as the selection of clinical indication, line of treatment and backbone partner, as well as the endpoints and expected magnitude of benefit required at different stages of the drug development. In addition, future directions for early and late trial designs will be reviewed. Examples from approved drugs or those currently in clinical development will be discussed and options to overcome these limitations will be provided.
Collapse
Affiliation(s)
- Atanasio Pandiella
- Centro de Investigación del Cáncer, CIC-CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Emiliano Calvo
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC), Early Phase Program, HM Sanchinarro University Hospital, Madrid, Spain
| | - Victor Moreno
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Eitan Amir
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | - Arnoud Templeton
- Department of Medical Oncology, St. Claraspital, Basel, Switzerland
| | - Alberto Ocana
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, Madrid, Spain
- Experimental Therapeutics Unit, Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| |
Collapse
|
91
|
Minchom A, Popat S. Sitravatinib and Acquired Immune Checkpoint Inhibitor Resistance: A Gem for the Future? J Thorac Oncol 2023; 18:830-833. [PMID: 37348988 DOI: 10.1016/j.jtho.2023.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Anna Minchom
- Section of Clinical Trials, Institute of Cancer Research, London, United Kingdom; Lung Unit, Royal Marsden Hospital, London, United Kingdom
| | - Sanjay Popat
- Section of Clinical Trials, Institute of Cancer Research, London, United Kingdom; Lung Unit, Royal Marsden Hospital, London, United Kingdom.
| |
Collapse
|
92
|
Dogan S, Xu B, Rana S, Chen H, Ghossein RA, Berger MF, Ho AL, Katabi N. Loss of CDKN2A/B is a Molecular Marker of High-grade Histology and is Associated with Aggressive Behavior in Acinic Cell Carcinoma. Mod Pathol 2023; 36:100150. [PMID: 36841437 PMCID: PMC10447625 DOI: 10.1016/j.modpat.2023.100150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Acinic cell carcinoma (AciCC) is a rare salivary gland cancer with excellent prognosis in most cases. However, a subset of patients will develop distant metastasis and die of disease. Recently, a 2-tiered grading scheme in AciCC was proposed to recognize patients at risk of poor outcome. We performed a genetic analysis of AciCC to explore the underlying molecular correlates of the tumor grade and examined programmed death ligand 1 (PD-L1) expression to identify potential candidates for immunotherapy. A retrospective cohort of 55 patients included 34 high-grade (HG) and 21 low-grade AciCCs. Forty-three cases were subjected to targeted exome sequencing by Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets. PD-L1 immunohistochemistry was performed in 33 cases. Tumor mutation burden was low with a median of 1 and 2 mutations in low-grade and HG AciCCs, respectively. CDKN2A/B was the most frequently altered gene, and loss-of-function mutations were found only in HG but not in low-grade AciCCs (18/31 [58.1%] vs 0/12 [0%], P < .001). CDKN2A/B alterations were significantly associated with distant metastasis, which occurred in 16/18 (88.9%) CDKN2A/B mutants versus 11/25 (44%) wild-type cases (P = .004, Fisher exact test). Sequential profiling of multiple temporally distant samples from the same patient demonstrated intratumor heterogeneity, including the detection of CDKN2A/B deletion in the second, in HG metastasis only. ATM and PTEN mutations were detected in 6/31 (19.4%) and 5/31 (16.1%); ARID2, BIRC3, and FBXW7 mutations each in 4/31 (12.9%); and TP53, MTAP, and FAT1 each in 3/31 (9.7%) HG AciCC. PD-L1-positive labeling was more common in HG AciCC (9/17, 52.9% vs 3/16, 18.9%, P = .071). CDKN2A/B mutations in AciCC represent a molecular marker of HG histology and disease progression, providing a rationale for further studies to determine their prognostic and therapeutic significance in this salivary gland cancer. AciCC with ATM mutations may be amenable to targeted therapy. Immunotherapy can be considered to be a treatment option for a subset of patients with AciCC.
Collapse
Affiliation(s)
- Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Satshil Rana
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hui Chen
- Department of Pathology, MD Anderson Cancer Center, Houston, Texas
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
93
|
He K, Berz D, Gadgeel SM, Iams WT, Bruno DS, Blakely CM, Spira AI, Patel MR, Waterhouse DM, Richards DA, Pham A, Jotte R, Hong DS, Garon EB, Traynor A, Olson P, Latven L, Yan X, Shazer R, Leal TA. MRTX-500 Phase 2 Trial: Sitravatinib With Nivolumab in Patients With Nonsquamous NSCLC Progressing On or After Checkpoint Inhibitor Therapy or Chemotherapy. J Thorac Oncol 2023; 18:907-921. [PMID: 36842467 PMCID: PMC10330304 DOI: 10.1016/j.jtho.2023.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
INTRODUCTION Sitravatinib, a receptor tyrosine kinase inhibitor targeting TYRO3, AXL, MERTK receptors, and vascular epithelial growth factor receptor 2, can shift the tumor microenvironment toward an immunostimulatory state. Combining sitravatinib with checkpoint inhibitors (CPIs) may augment antitumor activity. METHODS The phase 2 MRTX-500 study evaluated sitravatinib (120 mg daily) with nivolumab (every 2 or 4 wk) in patients with advanced nonsquamous NSCLC who progressed on or after previous CPI (CPI-experienced) or chemotherapy (CPI-naive). CPI-experienced patients had a previous clinical benefit (PCB) (complete response, partial response, or stable disease for at least 12 weeks then disease progression) or no PCB (NPCB) from CPI. The primary end point was objective response rate (ORR); secondary objectives included safety and secondary efficacy end points. RESULTS Overall, 124 CPI-experienced (NPCB, n = 35; PCB, n = 89) and 32 CPI-naive patients were treated. Investigator-assessed ORR was 11.4% in patients with NPCB, 16.9% with PCB, and 25.0% in CPI-naive. The median progression-free survival was 3.7, 5.6, and 7.1 months with NPCB, PCB, and CPI-naive, respectively; the median overall survival was 7.9 and 13.6 months with NPCB and PCB, respectively (not reached in CPI-naive patients; median follow-up 20.4 mo). Overall, (N = 156), any grade treatment-related adverse events (TRAEs) occurred in 93.6%; grade 3/4 in 58.3%. One grade 5 TRAE occurred in a CPI-naive patient. TRAEs led to treatment discontinuation in 14.1% and dose reduction or interruption in 42.9%. Biomarker analyses supported an immunostimulatory mechanism of action. CONCLUSIONS Sitravatinib with nivolumab had a manageable safety profile. Although ORR was not met, this combination exhibited antitumor activity and encouraged survival in CPI-experienced patients with nonsquamous NSCLC.
Collapse
Affiliation(s)
- Kai He
- Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio.
| | - David Berz
- Department of Cellular Therapeutics, Beverly Hills Cancer Center, Beverly Hills, California; Current Affiliation: Valkyrie Clinical Trials, Los Angeles, California
| | - Shirish M Gadgeel
- Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan
| | - Wade T Iams
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Debora S Bruno
- University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Collin M Blakely
- Department of Medicine, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Alexander I Spira
- Virginia Cancer Specialists, Fairfax, Virginia; US Oncology Network, The Woodlands, Texas
| | - Manish R Patel
- Division Of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - David M Waterhouse
- US Oncology Network, The Woodlands, Texas; Department of Clinical Research, Oncology Hematology Care, Cincinnati, Ohio; Current affiliation: Dana-Farber/Brigham and Women's Cancer Center at Milford Regional Medical Center, Milford, Massachusetts
| | - Donald A Richards
- US Oncology Network, The Woodlands, Texas; Texas Oncology, Tyler, Texas
| | | | - Robert Jotte
- US Oncology Network, The Woodlands, Texas; Rocky Mountain Cancer Centers, Denver, Colorado
| | - David S Hong
- MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Edward B Garon
- Department Of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Anne Traynor
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, California
| | - Lisa Latven
- Mirati Therapeutics, Inc., San Diego, California
| | - Xiaohong Yan
- Mirati Therapeutics, Inc., San Diego, California
| | | | - Ticiana A Leal
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin; Current Affiliation: Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
94
|
Vidal-Cruchez O, Nicolini VJ, Rete T, Jacquet K, Rezzonico R, Lacoux C, Domdom MA, Roméo B, Roux J, Hubstenberger A, Mari B, Mograbi B, Hofman P, Brest P. KRAS and NRAS Translation Is Increased upon MEK Inhibitors-Induced Processing Bodies Dissolution. Cancers (Basel) 2023; 15:3078. [PMID: 37370689 DOI: 10.3390/cancers15123078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Overactivation of the mitogen-activated protein kinase (MAPK) pathway is a critical driver of many human cancers. However, therapies directly targeting this pathway lead to cancer drug resistance. Resistance has been linked to compensatory RAS overexpression, but the mechanisms underlying this response remain unclear. Here, we find that MEK inhibitors (MEKi) are associated with an increased translation of the KRAS and NRAS oncogenes through a mechanism involving dissolution of processing body (P-body) biocondensates. This effect is seen across different cell types and is extremely dynamic since removal of MEKi and ERK reactivation result in reappearance of P-bodies and reduced RAS-dependent signaling. Moreover, we find that P-body scaffold protein levels negatively impact RAS expression. Overall, we describe a new feedback loop mechanism involving biocondensates such as P-bodies in the translational regulation of RAS proteins and MAPK signaling.
Collapse
Affiliation(s)
- Olivia Vidal-Cruchez
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Victoria J Nicolini
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Tifenn Rete
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Karine Jacquet
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Roger Rezzonico
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
- Université Côte d'Azur, CNRS, INSERM, CNRS UMR7275, IPMC, 06560 Valbonne, France
| | - Caroline Lacoux
- Université Côte d'Azur, CNRS UMR7275, IPMC, 06560 Valbonne, France
| | - Marie-Angela Domdom
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Barnabé Roméo
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
- Université Côte d'Azur, CNRS UMR7275, IPMC, 06560 Valbonne, France
| | - Arnaud Hubstenberger
- Université Côte d'Azur, Institut Biologie Valrose (IBV), CNRS, Inserm, 06108 Nice, France
| | - Bernard Mari
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
- Université Côte d'Azur, CNRS UMR7275, IPMC, 06560 Valbonne, France
| | - Baharia Mograbi
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
- Université Côte d'Azur, CHU-Nice, Pasteur Hospital, Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), 06001 Nice, France
| | - Patrick Brest
- Université Côte d'Azur, Institute of Research on Cancer and Aging of Nice (IRCAN), CNRS, INSERM, Centre Antoine Lacassagne, 28, Avenue de Valombrose, 06107 Nice, France
- FHU-OncoAge, IHU-RESPIRera, 06001 Nice, France
| |
Collapse
|
95
|
Tang Q, Wang X, Zhou Q, Li Q, Yang X, Xu M, Wang R, Chen J, Wu W, Wang S. Fuzheng Kang-Ai inhibits NSCLC cell proliferation via regulating hsa_circ_0048091/hsa-miR-378g/ARRDC3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154819. [PMID: 37062135 DOI: 10.1016/j.phymed.2023.154819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Current treatments for lung cancer have their own deficiencies, such as severe adverse effect. Therefore, more safe and effective drugs are needed. PURPOSE Fuzheng Kang-Ai (FZKA for short) has been applied as an adjuvant treatment in advanced Non-Small Cell Lung Cancer (NSCLC) patients for decades in China, showing a definitive effect with minimal toxicities. However, the underlying mechanism is yet to be identified. STUDY DESIGN Both in vitro and in vivo experiments were performed in this study to identify the exact mechanism by which FZKA inhibits NSCLC cell proliferation. METHODS MTT and CCK-8 assays were used to detect cell viability. Xenograft model was performed for in vivo experiments. CircRNA and miRNA sequencing were used to find the differentially expressed circRNAs and miRNAs, respectively. qRT-PCR was performed to check the expression levels of circRNA, miRNA and mRNA. BaseScope was carried out to observe the expression of circRNA in situ. Actinomycin D and RNase R experiments were done to show the stability of circRNA. Nuclear-cytoplasmic fractionation and FISH were used to identify the localization of circRNA and miRNA. Pull-down, RIP, and luciferase activity assays were performed to show the biding ability of circRNA, miRNA and target proteins. Flow cytometry was done to observe cell apoptosis. Western blot and IHC were done to detect the protein expression. TCGA database was used to analyze the survival rate. RESULTS FZKA inhibits NSCLC cell proliferation both in vitro and in vivo. Hsa_circ_0048091 and hsa-miR-378g were the most differentially expressed circRNA and miRNA, respectively, after FZKA treatment. Silencing hsa_circ_0048091 and overexpressing hsa-miR-378g promoted cell proliferation and reversed the inhibition effect of FZKA on NSCLC, respectively. Hsa-miR-378g was sponged by hsa_circ_0048091, and the overexpression of miR-378g reversed the inhibition effect of hsa_ circ_0048091 on NSCLC. ARRDC3, as a target of hsa-miR-378g, was increased by FZKA treatment. Silencing ARRDC3 reversed both the inhibition effect of FZKA and miR-378g inhibitor on NSCLC. CONCLUSION This study, for the first time, has established the function of hsa_circ_0048091, hsa- miR-378g, and ARRDC3 in lung cancer. It also shows that FZKA inhibits NSCLC cell proliferation through hsa_circ_0048091/hsa-miR-378g/ARRDC3 pathway, uncovering a novel mechanism by which FZKA controls human NSCLC cell growth.
Collapse
Affiliation(s)
- Qing Tang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xi Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qichun Zhou
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Qiuping Li
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Xiaobing Yang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Mengfei Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Rui Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Jixin Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| | - Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
96
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
97
|
Laface C, Maselli FM, Santoro AN, Iaia ML, Ambrogio F, Laterza M, Guarini C, De Santis P, Perrone M, Fedele P. The Resistance to EGFR-TKIs in Non-Small Cell Lung Cancer: From Molecular Mechanisms to Clinical Application of New Therapeutic Strategies. Pharmaceutics 2023; 15:1604. [PMID: 37376053 DOI: 10.3390/pharmaceutics15061604] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Almost 17% of Western patients affected by non-small cell lung cancer (NSCLC) have an activating epidermal growth factor receptor (EGFR) gene mutation. Del19 and L858R are the most-common ones; they are positive predictive factors for EGFR tyrosine kinase inhibitors (TKIs). Currently, osimertinib, a third-generation TKI, is the standard first-line therapy for advanced NSCLC patients with common EGFR mutations. This drug is also administered as a second-line treatment for those patients with the T790M EGFR mutation and previously treated with first- (erlotinib, gefitinib) or second- (afatinib) generation TKIs. However, despite the high clinical efficacy, the prognosis remains severe due to intrinsic or acquired resistance to EGRF-TKIs. Various mechanisms of resistance have been reported including the activation of other signalling pathways, the development of secondary mutations, the alteration of the downstream pathways, and phenotypic transformation. However, further data are needed to achieve the goal of overcoming resistance to EGFR-TKIs, hence the necessity of discovering novel genetic targets and developing new-generation drugs. This review aimed to deepen the knowledge of intrinsic and acquired molecular mechanisms of resistance to EGFR-TKIs and the development of new therapeutic strategies to overcome TKIs' resistance.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | | | | | - Maria Laura Iaia
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Marigia Laterza
- Division of Cardiac Surgery, University of Bari, 70124 Bari, Italy
| | - Chiara Guarini
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Pierluigi De Santis
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
98
|
Xi Y, Chen H, Xi Y, Hai W, Qu Q, Zhang M, Li B. Visualization research on ENT1/NIS dual-function gene therapy to reverse drug resistance mediated by MUC1 in GEM-resistant pancreatic cancer. Nucl Med Biol 2023; 120-121:108350. [PMID: 37229950 DOI: 10.1016/j.nucmedbio.2023.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE To use bifunctional target genes to increase the intracellular transport of gemcitabine (GEM) to reverse chemotherapy resistance and to simultaneously use reporter gene imaging to localize therapeutic genes. The therapeutic effect was evaluated by [18F]FLT PET/CT to visualize the effect of gene therapy. METHODS A viral gene vector containing the pancreatic cancer-targeting promoter MUC1 for specific transcription of equilibrative nucleoside transporter 1 (ENT1) and NIS (nuclide transport channel) was employed. [125I]NaI uptake tests and [131I]NaI SPECT imaging were performed to verify the function of NIS and the target function of MUC1. The correlation between [18F]FLT uptake and GEM resistance were assessed, and the influence ENT1 and thymidine kinase 1 (TK1) expression on [18F]FLT micro-PET/CT was measured, which provides a theoretical basis for the use of [18F]FLT micro-PET/CT to evaluate the efficacy of gene therapy. RESULTS First, functions of gene therapy were confirmed: ENT1 reversed the drug resistance of GEM-resistant pancreatic cancer cells by increasing GEM intracellular transport; MUC1 drove NIS target gene expression in pancreatic cancer; and therapeutic genes could be localized using [131I]NaI SPECT reporter gene imaging. Second, the [18F]FLT uptake ratio was affected by drug resistance and GEM treatment. The mechanism underlying this effect was related to ENT1 and TK1. Increased expression of ENT1 inhibited the expression of TK1 after GEM chemotherapy to reduce the uptake of [18F]FLT. Finally, micro-PET/CT indicated that the SUVmax of [18F]FLT could predict survival time. SUVmax exhibited an increasing trend in resistant pancreatic cancer but a trend of inhibition after upregulation of ENT1, which was more significant after GEM treatment. CONCLUSIONS Bifunctional targeted genes can localize therapeutic genes through reporter gene imaging, reverse the drug resistance of GEM-resistant pancreatic cancer and be visually evaluated through [18F]FLT micro-PET/CT.
Collapse
Affiliation(s)
- Yun Xi
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Hong Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yue Xi
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Qian Qu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China.
| | - Biao Li
- Department of Nuclear Medicine, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China.
| |
Collapse
|
99
|
Dougan M. Weighing Antitumor Immunity against Life-threatening Myocarditis from Immune-Checkpoint Inhibitors. Cancer Discov 2023; 13:1040-1042. [PMID: 37139724 DOI: 10.1158/2159-8290.cd-23-0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
SUMMARY In this issue of Cancer Discovery, Salem and colleagues report a combination therapy for immune-checkpoint inhibitor (ICI) myocarditis using high-dose glucocorticoids, abatacept, and the JAK inhibitor ruxolitinib. The apparent efficacy of their strategy and an accompanying animal model provide further evidence for common immune mechanisms underlying ICI toxicities. See related article by Salem et al., p. 1100 (2).
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
100
|
Bao Y, Zhang S, Zhang X, Pan Y, Yan Y, Wang N, Ren Y, Zuo J, Zong WX, Wang Z, Wang Y. RBM10 Loss Promotes EGFR-Driven Lung Cancer and Confers Sensitivity to Spliceosome Inhibition. Cancer Res 2023; 83:1490-1502. [PMID: 36853175 DOI: 10.1158/0008-5472.can-22-1549] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
In lung adenocarcinoma (LUAD), loss-of-function mutations in the splicing factor RBM10 frequently co-occur with oncogenic EGFR mutations. A detailed understanding of the functional consequences and therapeutic impact of RBM10 loss in EGFR-mutant LUAD could help identify more effective treatment strategies. Here, analysis of LUAD data sets indicated that RBM10 mutations are mutually exclusive with mutations in the tumor suppressor gene TP53. In an EGFR-driven LUAD mouse model, lung-specific ablation of either Rbm10 or Trp53 similarly promoted tumor development, leading to overlapping gene expression changes enriched in cancer-related pathways. RBM10 loss induced key RNA splicing changes concordant in mice and LUAD patients. Importantly, RBM10 deficiency conferred high sensitivity to spliceosome inhibition in EGFR-mutated LUAD cells. Combined treatment with spliceosome inhibitor improved the therapeutic efficacy of EGFR tyrosine kinase inhibitor osimertinib and overcame drug resistance, especially in RBM10-deficient LUAD. Together, this study establishes RBM10 as a tumor suppressor akin to p53 and provides a therapeutic strategy of targeting the splicing machinery in EGFR-driven LUAD. SIGNIFICANCE Loss of the splicing factor RBM10 is mutually exclusive with p53 mutations, promotes tumorigenesis, and enhances the efficacy of spliceosome inhibition in EGFR-driven lung cancer.
Collapse
Affiliation(s)
- Yufang Bao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Sirui Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yunjian Pan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yueren Yan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|