51
|
Mie T, Sasaki T, Okamoto T, Furukawa T, Takeda T, Kasuga A, Ozaka M, Sasahira N. Current Status of Targeted Therapy for Biliary Tract Cancer in the Era of Precision Medicine. Cancers (Basel) 2024; 16:879. [PMID: 38473240 PMCID: PMC10931393 DOI: 10.3390/cancers16050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
First-line chemotherapy has been established for advanced biliary tract cancer (BTC). However, few treatment options are available as second-line treatment. Advances in comprehensive genomic analysis revealed that nearly half of patients with BTC harbor targetable genetic alterations such as fibroblast growth factor receptor (FGFR), isocitrate dehydrogenase (IDH), BRAF, human epidermal growth factor receptor 2 (HER2), microsatellite instability (MSI)-high, neurotrophic tropomyosin receptor kinase (NTRK), rearranged during transfection (RET), and poly (adenosine diphosphate-ribose) polymerase (PARP). This review summarizes currently available options in precision medicine and clinical trials for patients with advanced BTC.
Collapse
Affiliation(s)
| | - Takashi Sasaki
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.M.); (T.O.)
| | | | | | | | | | | | | |
Collapse
|
52
|
Schönherr H, Ayaz P, Taylor AM, Casaletto JB, Touré BB, Moustakas DT, Hudson BM, Valverde R, Zhao S, O’Hearn PJ, Foster L, Sharon DA, Garfinkle S, Giordanetto F, Lescarbeau A, Kurukulasuriya R, Gerami-Moayed N, Maglic D, Bruderek K, Naik G, Gunaydin H, Mader MM, Boezio AA, McLean TH, Chen R, Wang Y, Shaw DE, Watters J, Bergstrom DA. Discovery of lirafugratinib (RLY-4008), a highly selective irreversible small-molecule inhibitor of FGFR2. Proc Natl Acad Sci U S A 2024; 121:e2317756121. [PMID: 38300868 PMCID: PMC10861881 DOI: 10.1073/pnas.2317756121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/23/2023] [Indexed: 02/03/2024] Open
Abstract
Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring FGFR2 alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures. In this study, aided by analysis of protein dynamics, we designed a selective, covalent FGFR2 inhibitor. In a key initial step, analysis of long-timescale molecular dynamics simulations of the FGFR1 and FGFR2 kinase domains allowed us to identify differential motion in their P-loops, which are located adjacent to the orthosteric site. Using this insight, we were able to design orthosteric binders that selectively and covalently engage the P-loop of FGFR2. Our drug discovery efforts culminated in the development of lirafugratinib (RLY-4008), a covalent inhibitor of FGFR2 that shows substantial selectivity over FGFR1 (~250-fold) and FGFR4 (~5,000-fold) in vitro, causes tumor regression in multiple FGFR2-altered human xenograft models, and was recently demonstrated to be efficacious in the clinic at doses that do not induce clinically significant hyperphosphatemia or diarrhea.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Rongfeng Chen
- Pharmaron Beijing Co., Ltd., Beijing100176, People’s Republic of China
| | - Yanxia Wang
- Pharmaron Beijing Co., Ltd., Beijing100176, People’s Republic of China
| | - David E. Shaw
- D. E. Shaw Research, New York, NY10036
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY10032
| | | | | |
Collapse
|
53
|
Fassan M, Angerilli V, Normanno N, Pruneri G, Marchetti A, Grillo F, Tonini G, Scarpa A, Rimassa L. Practical guidelines for molecular testing of cholangiocarcinoma in clinical practice: Italian experts' position paper. Crit Rev Oncol Hematol 2024; 194:104224. [PMID: 38211900 DOI: 10.1016/j.critrevonc.2023.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/13/2024] Open
Abstract
Biliary tract cancers (BTCs) represent a spectrum of malignancies associated with a dismal prognosis. Recent genomic profiling studies have provided a deeper understanding of the complex and heterogenous molecular landscape of BTCs, identifying several actionable genetic alterations, and expanding treatment options. Due to the high number and complexity of genetic alterations which require testing, next-generation sequencing (NGS) is currently the preferred approach over conventional methods (i.e., immunohistochemistry, fluorescence in-situ hybridization and PCR) for molecular profiling of BTCs and should be performed upfront in all BTC patients. However, BTC sampling often yields low tumor cellularity tissue, hampering NGS analysis. Future perspectives to overcome this obstacle include liquid biopsy and optimization of biopsy protocols. In this position paper, the authors discuss the current histopathologic, molecular, and therapeutic landscape of BTCs, provide a critical overview of the available testing methods for molecular diagnostics, and propose a practical diagnostic algorithm for molecular testing of BTC samples.
Collapse
Affiliation(s)
- Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy; Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | | | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Giancarlo Pruneri
- Pathology Unit 2, Department of Innovation Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; University of Milan, School of Medicine, Milan, Italy
| | - Antonio Marchetti
- Department of Medical, Oral and Biotechnological Sciences, Centre for Advanced Studies and Technology (CAST), University of Chieti, Chieti, Italy
| | - Federica Grillo
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Italy; IRCCS-Ospedale Policlinico San Martino, Genoa, Italy.
| | - Giuseppe Tonini
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy; Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Aldo Scarpa
- Section of Pathology, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
54
|
Abstract
Drug discovery is adapting to novel technologies such as data science, informatics, and artificial intelligence (AI) to accelerate effective treatment development while reducing costs and animal experiments. AI is transforming drug discovery, as indicated by increasing interest from investors, industrial and academic scientists, and legislators. Successful drug discovery requires optimizing properties related to pharmacodynamics, pharmacokinetics, and clinical outcomes. This review discusses the use of AI in the three pillars of drug discovery: diseases, targets, and therapeutic modalities, with a focus on small-molecule drugs. AI technologies, such as generative chemistry, machine learning, and multiproperty optimization, have enabled several compounds to enter clinical trials. The scientific community must carefully vet known information to address the reproducibility crisis. The full potential of AI in drug discovery can only be realized with sufficient ground truth and appropriate human intervention at later pipeline stages.
Collapse
Affiliation(s)
- Catrin Hasselgren
- Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Tudor I Oprea
- Expert Systems Inc., San Diego, California, USA;
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
55
|
Shan KS, Dalal S, Thaw Dar NN, McLish O, Salzberg M, Pico BA. Molecular Targeting of the Fibroblast Growth Factor Receptor Pathway across Various Cancers. Int J Mol Sci 2024; 25:849. [PMID: 38255923 PMCID: PMC10815772 DOI: 10.3390/ijms25020849] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that are involved in the regulation of cell proliferation, survival, and development. FGFR alterations including amplifications, fusions, rearrangements, and mutations can result in the downstream activation of tyrosine kinases, leading to tumor development. Targeting these FGFR alterations has shown to be effective in treating cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid neoplasms, and there are currently four FGFR inhibitors approved by the Food and Drug Administration (FDA). There have been developments in multiple agents targeting the FGFR pathway, including selective FGFR inhibitors, ligand traps, monoclonal antibodies, and antibody-drug conjugates. However, most of these agents have variable and low responses, with some intolerable toxicities and acquired resistances. This review will summarize previous clinical experiences and current developments in agents targeting the FGFR pathway, and will also discuss future directions for FGFR-targeting agents.
Collapse
Affiliation(s)
- Khine S. Shan
- Memorial Health Care, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (S.D.); (N.N.T.D.); (O.M.); (M.S.)
| | | | | | | | | | | |
Collapse
|
56
|
Sreekumar A, Lu M, Choudhury B, Pan TC, Pant DK, Lawrence-Paul MR, Sterner CJ, Belka GK, Toriumi T, Benz BA, Escobar-Aguirre M, Marino FE, Esko JD, Chodosh LA. B3GALT6 promotes dormant breast cancer cell survival and recurrence by enabling heparan sulfate-mediated FGF signaling. Cancer Cell 2024; 42:52-69.e7. [PMID: 38065100 PMCID: PMC10872305 DOI: 10.1016/j.ccell.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
Breast cancer mortality results from incurable recurrences thought to be seeded by dormant, therapy-refractory residual tumor cells (RTCs). Understanding the mechanisms enabling RTC survival is therefore essential for improving patient outcomes. Here, we derive a dormancy-associated RTC signature that mirrors the transcriptional response to neoadjuvant therapy in patients and is enriched for extracellular matrix-related pathways. In vivo CRISPR-Cas9 screening of dormancy-associated candidate genes identifies the galactosyltransferase B3GALT6 as a functional regulator of RTC fitness. B3GALT6 is required for glycosaminoglycan (GAG) linkage to proteins to generate proteoglycans, and its germline loss of function in patients causes skeletal dysplasias. We find that B3GALT6-mediated biosynthesis of heparan sulfate GAGs predicts poor patient outcomes and promotes tumor recurrence by enhancing dormant RTC survival in multiple contexts, and does so via a B3GALT6-heparan sulfate/HS6ST1-heparan 6-O-sulfation/FGF1-FGFR2 signaling axis. These findings implicate B3GALT6 in cancer and nominate FGFR2 inhibition as a promising approach to eradicate dormant RTCs and prevent recurrence.
Collapse
Affiliation(s)
- Amulya Sreekumar
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Lu
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Biswa Choudhury
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tien-Chi Pan
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dhruv K Pant
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Lawrence-Paul
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Sterner
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George K Belka
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Toriumi
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian A Benz
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matias Escobar-Aguirre
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco E Marino
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lewis A Chodosh
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
57
|
Wu Q, Ellis H, Siravegna G, Michel AG, Norden BL, Fece de la Cruz F, Balasooriya ER, Zhen Y, Silveira VS, Che J, Corcoran RB, Bardeesy N. Landscape of Clinical Resistance Mechanisms to FGFR Inhibitors in FGFR2-Altered Cholangiocarcinoma. Clin Cancer Res 2024; 30:198-208. [PMID: 37843855 PMCID: PMC10767308 DOI: 10.1158/1078-0432.ccr-23-1317] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE FGFR inhibitors are effective in FGFR2-altered cholangiocarcinoma, leading to approval of reversible FGFR inhibitors, pemigatinib and infigratinib, and an irreversible inhibitor, futibatinib. However, acquired resistance develops, limiting clinical benefit. Some mechanisms of resistance have been reported, including secondary FGFR2 kinase domain mutations. Here, we sought to establish the landscape of acquired resistance to FGFR inhibition and to validate findings in model systems. EXPERIMENTAL DESIGN We examined the spectrum of acquired resistance mechanisms detected in circulating tumor DNA or tumor tissue upon disease progression following FGFR inhibitor therapy in 82 FGFR2-altered cholangiocarcinoma patients from 12 published reports. Functional studies of candidate resistance alterations were performed. RESULTS Overall, 49 of 82 patients (60%) had one or more detectable secondary FGFR2 kinase domain mutations upon acquired resistance. N550 molecular brake and V565 gatekeeper mutations were most common, representing 63% and 47% of all FGFR2 kinase domain mutations, respectively. Functional studies showed different inhibitors displayed unique activity profiles against FGFR2 mutations. Interestingly, disruption of the cysteine residue covalently bound by futibatinib (FGFR2 C492) was rare, observed in 1 of 42 patients treated with this drug. FGFR2 C492 mutations were insensitive to inhibition by futibatinib but showed reduced signaling activity, potentially explaining their low frequency. CONCLUSIONS These data support secondary FGFR2 kinase domain mutations as the primary mode of acquired resistance to FGFR inhibitors, most commonly N550 and V565 mutations. Thus, development of combination strategies and next-generation FGFR inhibitors targeting the full spectrum of FGFR2 resistance mutations will be critical.
Collapse
Affiliation(s)
- Qibiao Wu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Haley Ellis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Giulia Siravegna
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Alexa G. Michel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Bryanna L. Norden
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Ferran Fece de la Cruz
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Eranga Roshan Balasooriya
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Yuanli Zhen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Vanessa S. Silveira
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Jianwe Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ryan B. Corcoran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
58
|
Lamarca A, Vogel A. Futibatinib: second EMA approval for FGFR inhibitor in cholangiocarcinoma. ESMO Open 2023; 8:102049. [PMID: 37922686 PMCID: PMC10651450 DOI: 10.1016/j.esmoop.2023.102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- A Lamarca
- Department of Medical Oncology - OncoHealth Institute, Fundación Jiménez Díaz University Hospital, Madrid, Spain; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
| | - A Vogel
- Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, Canada; Medical Oncology, Margaret Cancer Centre, Toronto, Canada
| |
Collapse
|
59
|
Lamarca A, Moreno V, Gambardella V, Cervantes A. In the literature: September 2023. ESMO Open 2023; 8:102032. [PMID: 37852035 PMCID: PMC10590842 DOI: 10.1016/j.esmoop.2023.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Affiliation(s)
- A Lamarca
- Department of Medical Oncology - Oncohealth Institute, Fundación Jiménez Díaz University Hospital, Madrid, Spain; Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - V Moreno
- START-FJD Phase I Unit, Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, Madrid
| | - V Gambardella
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario, Universidad de Valencia, Valencia; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - A Cervantes
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario, Universidad de Valencia, Valencia; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
60
|
Khoury R, Khalife N, Ibrahim R, Saleh K. Futibatinib: new targeted therapy in intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr 2023; 12:923-926. [PMID: 38115933 PMCID: PMC10727814 DOI: 10.21037/hbsn-23-476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Rita Khoury
- International Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nadine Khalife
- Head and Neck Oncology Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rebecca Ibrahim
- International Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
61
|
Saridogan T, Akcakanat A, Zhao M, Evans KW, Yuca E, Scott S, Kirby BP, Zheng X, Ha MJ, Chen H, Ng PKS, DiPeri TP, Mills GB, Rodon Ahnert J, Damodaran S, Meric-Bernstam F. Efficacy of futibatinib, an irreversible fibroblast growth factor receptor inhibitor, in FGFR-altered breast cancer. Sci Rep 2023; 13:20223. [PMID: 37980453 PMCID: PMC10657448 DOI: 10.1038/s41598-023-46586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
Several alterations in fibroblast growth factor receptor (FGFR) genes have been found in breast cancer; however, they have not been well characterized as therapeutic targets. Futibatinib (TAS-120; Taiho) is a novel, selective, pan-FGFR inhibitor that inhibits FGFR1-4 at nanomolar concentrations. We sought to determine futibatinib's efficacy in breast cancer models. Nine breast cancer patient-derived xenografts (PDXs) with various FGFR1-4 alterations and expression levels were treated with futibatinib. Antitumor efficacy was evaluated by change in tumor volume and time to tumor doubling. Alterations indicating sensitization to futibatinib in vivo were further characterized in vitro. FGFR gene expression between patient tumors and matching PDXs was significantly correlated; however, overall PDXs had higher FGFR3-4 expression. Futibatinib inhibited tumor growth in 3 of 9 PDXs, with tumor stabilization in an FGFR2-amplified model and prolonged regression (> 110 days) in an FGFR2 Y375C mutant/amplified model. FGFR2 overexpression and, to a greater extent, FGFR2 Y375C expression in MCF10A cells enhanced cell growth and sensitivity to futibatinib. Per institutional and public databases, FGFR2 mutations and amplifications had a population frequency of 1.1%-2.6% and 1.5%-2.5%, respectively, in breast cancer patients. FGFR2 alterations in breast cancer may represent infrequent but highly promising targets for futibatinib.
Collapse
Affiliation(s)
- Turcin Saridogan
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Basic Oncology, Graduate School of Health Sciences, Hacettepe University, Ankara, 06100, Turkey
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Stephen Scott
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Bryce P Kirby
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Jin Ha
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patrick K S Ng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Timothy P DiPeri
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Precision Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Senthil Damodaran
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA.
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
62
|
Ratti M, Orlandi E, Hahne JC, Vecchia S, Citterio C, Anselmi E, Toscani I, Ghidini M. Targeting FGFR Pathways in Gastrointestinal Cancers: New Frontiers of Treatment. Biomedicines 2023; 11:2650. [PMID: 37893023 PMCID: PMC10603875 DOI: 10.3390/biomedicines11102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
In carcinogenesis of the gastrointestinal (GI) tract, the deregulation of fibroblast growth factor receptor (FGFR) signaling plays a critical role. The aberrant activity of this pathway is described in approximately 10% of gastric cancers and its frequency increases in intrahepatic cholangiocarcinomas (iCCAs), with an estimated frequency of 10-16%. Several selective FGFR inhibitors have been developed in the last few years with promising results. For example, targeting the FGFR pathway is now a fundamental part of clinical practice when treating iCCA and many clinical trials are ongoing to test the safety and efficacy of anti-FGFR agents in gastric, colon and pancreatic cancer, with variable results. However, the response rates of anti-FGFR drugs are modest and resistances emerge rapidly, limiting their efficacy and causing disease progression. In this review, we aim to explore the landscape of anti-FGFR inhibitors in relation to GI cancer, with particular focus on selective FGFR inhibitors and drug combinations that may lead to overcoming resistance mechanisms and drug-induced toxicities.
Collapse
Affiliation(s)
- Margherita Ratti
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Elena Orlandi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Jens Claus Hahne
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
| | - Stefano Vecchia
- Pharmacy Unit, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Chiara Citterio
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Elisa Anselmi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Ilaria Toscani
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
63
|
Abstract
SUMMARY Facchinetti and colleagues provide key insights into the evolution of resistance to fibroblast growth factor receptor (FGFR) inhibitors, including the development of kinase domain mutations and activation of the PI3K-AKT signaling axis. In a separate study, Subbiah and colleagues report extensive preclinical data and initial clinical data for RLY-4008, an FGFR2-selective inhibitor that is poised to minimize toxicity and overcome resistance through greater potency and selectivity. See related article by Facchinetti et al., p. 1998 (5). See related article by Subbiah et al., p. 2012 (7).
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Daneng Li
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Sumanta K Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
64
|
Amadeo E, Rossari F, Vitiello F, Burgio V, Persano M, Cascinu S, Casadei-Gardini A, Rimini M. Past, present, and future of FGFR inhibitors in cholangiocarcinoma: from biological mechanisms to clinical applications. Expert Rev Clin Pharmacol 2023; 16:631-642. [PMID: 37387533 DOI: 10.1080/17512433.2023.2232302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Biliary tract carcinoma (BTC) is a heterogenous group of aggressive hepatic malignancies, second to hepatocellular carcinoma per prevalence. Despite clinical research advancement, the overall 5-year survival rate is just above 2%. With the identification of somatic core mutations in half of cholangiocarcinomas. In the intrahepatic subtype (iCCA), it is possible to target mutational pathways of pharmacological interest. AREAS COVERED Major attention has been drawn to fibroblast growth factor receptor (FGFR), especially the type 2 (FGFR2), found mutated in 10-15% of iCCAs. FGFR2 fusions became the target of novel tyrosine-kinase inhibitors investigated in clinical studies, showing promising results so as to gain regulatory approval by American and European committees in recent years. Such drugs demonstrated a better impact on the quality of life compared to standard chemotherapy; however, side effects including hyperphosphatemia, gastrointestinal, eye, and nail disorders are common although mostly manageable. EXPERT OPINION As FGFR inhibitors may soon become the new alternative to standard chemotherapy in FGFR-mutated cholangiocarcinoma, accurate molecular testing and monitoring of acquired resistance mechanisms will be essential. The possible application of FGFR inhibitors in first-line treatment, as well as in combination with current standard treatments, remains the next step to be taken.
Collapse
Affiliation(s)
- Elisabeth Amadeo
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Valentina Burgio
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Stefano Cascinu
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|