51
|
Cytoskeleton deregulation and impairment in amino acids and energy metabolism in early atherosclerosis at aortic tissue with reflection in plasma. Biochim Biophys Acta Mol Basis Dis 2016; 1862:725-732. [DOI: 10.1016/j.bbadis.2015.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
|
52
|
Yuan TH, Chung MK, Lin CY, Chen ST, Wu KY, Chan CC. Metabolic profiling of residents in the vicinity of a petrochemical complex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 548-549:260-269. [PMID: 26802354 DOI: 10.1016/j.scitotenv.2016.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 05/24/2023]
Abstract
No previous studies have simultaneously measured the biomarkers of environmental exposure and metabolome perturbation in residents affected by industrial pollutants. This study aimed to investigate the metabolic effects of environmental pollutants such as vanadium and polycyclic aromatic hydrocarbons (PAHs) on residents in the vicinity of a petrochemical complex. The study subjects were 160 residents, including 80 high-exposure subjects exposed to high levels of vanadium and PAHs and 80 age- and gender-matched low-exposure subjects living within a 40-km radius of a petrochemical complex. The exposure biomarkers vanadium and 1-hydroxypyrene and four oxidative/nitrosative stress biomarkers were measured in these subjects. Plasma samples from the study subjects were also analyzed using (1)H NMR spectroscopy for metabolic profiling. The results showed that the urinary levels of vanadium and 1-hydroxypyrene in the high-exposure subjects were 40- and 20-fold higher, respectively, than those in the low-exposure subjects. Higher urinary levels of stress biomarkers, including 8-OHdG, HNE-MA, 8-isoPF2α, and 8-NO2Gua, were also observed among the high-exposure subjects compared with the low-exposure subjects. Partial least squares discriminant analysis of the plasma metabolome demonstrated a clear separation between the high- and low-exposure subjects; the intensities of amino acids and carbohydrate metabolites were lower in the high-exposure subjects compared with the low-exposure subjects. The exposure to vanadium and PAHs may cause a reduction in the levels of amino acids and carbohydrates by elevating PPAR and insulin signaling, as well as oxidative/nitrosative stress.
Collapse
Affiliation(s)
- Tzu-Hsuen Yuan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ming-Kei Chung
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shu-Ting Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chang-Chuan Chan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
53
|
The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch Biochem Biophys 2015; 591:111-31. [PMID: 26686737 DOI: 10.1016/j.abb.2015.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022]
Abstract
Atherosclerosis is the leading cause of morbidity and mortality in the U.S., and is a multifactorial disease that preferentially occurs in regions of the arterial tree exposed to disturbed blood flow. The detailed mechanisms by which d-flow induces atherosclerosis involve changes in the expression of genes, epigenetic patterns, and metabolites of multiple vascular cells, especially endothelial cells. This review presents an overview of endothelial mechanobiology and its relation to the pathogenesis of atherosclerosis with special reference to the anatomy of the artery and the underlying fluid mechanics, followed by a discussion of a variety of experimental models to study the role of fluid mechanics and atherosclerosis. Various in vitro and in vivo models to study the role of flow in endothelial biology and pathobiology are discussed in this review. Furthermore, strategies used for the global profiling of the genome, transcriptome, miR-nome, DNA methylome, and metabolome, as they are important to define the biological and pathophysiological mechanisms of atherosclerosis. These "omics" approaches, especially those which derive data based on a single animal model, provide unprecedented opportunities to not only better understand the pathophysiology of atherosclerosis development in a holistic and integrative manner, but also to identify novel molecular and diagnostic targets.
Collapse
|
54
|
Hanzawa H, Sakamoto T, Kaneko A, Manri N, Zhao Y, Zhao S, Tamaki N, Kuge Y. Combined Plasma and Tissue Proteomic Study of Atherogenic Model Mouse: Approach To Elucidate Molecular Determinants in Atherosclerosis Development. J Proteome Res 2015; 14:4257-69. [PMID: 26323832 DOI: 10.1021/acs.jproteome.5b00405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atherogenic cardiovascular diseases are the major cause of mortality. Prevention and prediction of incidents is important; however, biomarkers that directly reflect the disease progression remain poorly investigated. To elucidate molecular determinants of atherogenesis, proteomic approaches are advantageous by using model animals for comparing changes occurring systematically (bloodstream) and locally (lesion) in accordance with the disease progression stages. We conducted differential mass spectrometric analysis between apolipoprotein E deficient (apoED) and wild-type (wt) mice using the plasma and arterial tissue of both types of mice obtained at four pathognomonic time points of the disease. A total of 100 proteins in the plasma and 390 in the arterial tissues were continuously detected throughout the four time points; 29 were identified in common. Of those, 13 proteins in the plasma and 36 in the arterial tissues showed significant difference in abundance between the apoED and wt mice at certain time points. Importantly, we found that quantitative variation patterns regarding the pathognomonic time points did not always correspond between the plasma and arterial tissues, resulting in gaining insight into atherosclerotic plaque progression. These characteristic proteins were found to be components of inflammation, thrombus formation, and vascular remodeling, suggesting drastic and integrative alteration in accordance with atherosclerosis development.
Collapse
Affiliation(s)
- Hiroko Hanzawa
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd. , 350-0395 Hatoyama, Saitama Japan.,Central Institute of Isotope Science, Hokkaido University , 060-0814 Sapporo, Japan
| | - Takeshi Sakamoto
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi, Ltd. , 185-8601 Kokubunji, Japan.,Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University , 060-8638 Sapporo, Japan
| | - Akihito Kaneko
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi, Ltd. , 185-8601 Kokubunji, Japan
| | - Naomi Manri
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi, Ltd. , 185-8601 Kokubunji, Japan.,Central Institute of Isotope Science, Hokkaido University , 060-0814 Sapporo, Japan
| | - Yan Zhao
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University , 060-8638 Sapporo, Japan
| | - Songji Zhao
- Department of Tracer Kinetics & Bio-analysis, Graduate School of Medicine, Hokkaido University , 060-8638 Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University , 060-8638 Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University , 060-0814 Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University , 060-8638 Sapporo, Japan
| |
Collapse
|
55
|
Madrigal-Matute J, Fernandez-Garcia CE, Blanco-Colio LM, Burillo E, Fortuño A, Martinez-Pinna R, Llamas-Granda P, Beloqui O, Egido J, Zalba G, Martin-Ventura JL. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med 2015; 86:352-61. [PMID: 26117319 DOI: 10.1016/j.freeradbiomed.2015.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/13/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023]
Abstract
To assess the potential association between TRX-1/PRX-1 and NADPH oxidase (Nox) activity in vivo and in vitro, TRX-1/PRX-1 levels were assessed by ELISA in 84 asymptomatic subjects with known phagocytic NADPH oxidase activity and carotid intima-media thickness (IMT). We found a positive correlation between TRX-1/PRX-1 and NADPH oxidase-dependent superoxide production (r=0.48 and 0.47; p<0.001 for both) and IMT (r=0.31 and 0.36; p<0.01 for both) adjusted by age and sex. Moreover, asymptomatic subjects with plaques have higher PRX-1 and TRX plasma levels (p<0.01 for both). These data were confirmed in a second study in which patients with carotid atherosclerosis showed higher PRX-1 and TRX plasma levels than healthy subjects (p<0.001 for both). In human atherosclerotic plaques, the NADPH oxidase subunit p22phox colocalized with TRX-1/PRX-1 in macrophages (immunohistochemistry). In monocytes and macrophages, phorbol 12-myristate 13-acetate (PMA) induced NADPH activation and TRX-1/PRX-1 release to the extracellular medium, with a concomitant decrease in their intracellular levels, which was reversed by the NADPH inhibitor apocynin (Western blot). In loss-of-function experiments, genetic silencing of the NADPH oxidase subunit Nox2 blocked PMA-induced intracellular TRX-1/PRX-1 downregulation in macrophages. Furthermore, the PMA-induced release of TRX-1/PRX-1 involves the modulation of their redox status and exosome-like vesicles. TRX-1/PRX-1 levels are associated with NADPH oxidase-activity in vivo and in vitro. These data could suggest a coordinated antioxidant response to oxidative stress in atherothrombosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Luis Miguel Blanco-Colio
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Elena Burillo
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Ana Fortuño
- Division of Cardiovascular Sciences, Center for Applied Medical Research University of Navarra, Pamplona, Spain
| | - Roxana Martinez-Pinna
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Patricia Llamas-Granda
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain
| | - Oscar Beloqui
- Department of Internal Medicine, University Clinic, University of Navarra, Pamplona, Spain
| | - Jesus Egido
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Guillermo Zalba
- Division of Cardiovascular Sciences, Center for Applied Medical Research University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - José Luis Martin-Ventura
- Vascular Research Laboratory, ISS-Fundación Jimenez Diaz, Autonoma University, 28040 Madrid, Spain.
| |
Collapse
|
56
|
|
57
|
Li D, Zhang L, Dong F, Liu Y, Li N, Li H, Lei H, Hao F, Wang Y, Zhu Y, Tang H. Metabonomic Changes Associated with Atherosclerosis Progression for LDLR(-/-) Mice. J Proteome Res 2015; 14:2237-54. [PMID: 25784267 DOI: 10.1021/acs.jproteome.5b00032] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atherosclerosis resulting from hyperlipidemia causes many serious cardiovascular diseases. To understand the systems changes associated with pathogenesis and progression of atherosclerosis, we comprehensively analyzed the dynamic metabonomic changes in multiple biological matrices of LDLR(-/-) mice using NMR and GC-FID/MS with gene expression, clinical chemistry, and histopathological data as well. We found that 12 week "Western-type" diet (WD) treatment caused obvious aortic lesions, macrophage infiltration, and collagen level elevation in LDLR(-/-) mice accompanied by up-regulation of inflammatory factors including aortic ICAM-1, MCP-1, iNOS, MMP2, and hepatic TNFα and IL-1β. The WD-induced atherosclerosis progression was accompanied by metabonomic changes in multiple matrices including biofluids (plasma, urine) and (liver, kidney, myocardial) tissues involving multiple metabolic pathways. These included disruption of cholesterol homeostasis, disturbance of biosynthesis of amino acids and proteins, altered gut microbiota functions together with metabolisms of vitamin-B3, choline, purines, and pyrimidines. WD treatment caused down-regulation of SCD1 and promoted oxidative stress reflected by urinary allantoin elevation and decreases in hepatic PUFA-to-MUFA ratio. When switching to normal diet, atherosclerotic LDLR(-/-) mice reprogrammed their metabolisms and reversed the atherosclerosis-associated metabonomic changes to a large extent, although aortic lesions, inflammation parameters, macrophage infiltration, and collagen content were only partially alleviated. We concluded that metabolisms of fatty acids and vitamin-B3 together with gut microbiota played crucially important roles in atherosclerosis development. These findings offered essential biochemistry details of the diet-induced atherosclerosis and demonstrated effectiveness of the integrated metabonomic analysis of multiple biological matrices for understanding the molecular aspects of cardiovascular diseases.
Collapse
Affiliation(s)
- Dan Li
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Lulu Zhang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fangcong Dong
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yan Liu
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Ning Li
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huihui Li
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hehua Lei
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuhua Hao
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yulan Wang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China.,∥Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhu
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China.,⊥Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Huiru Tang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China.,§State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
58
|
Vorkas PA, Shalhoub J, Isaac G, Want EJ, Nicholson JK, Holmes E, Davies AH. Metabolic Phenotyping of Atherosclerotic Plaques Reveals Latent Associations between Free Cholesterol and Ceramide Metabolism in Atherogenesis. J Proteome Res 2015; 14:1389-99. [DOI: 10.1021/pr5009898] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Panagiotis A. Vorkas
- Biomolecular
Medicine, Division of Computational and Systems Medicine, Department
of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Joseph Shalhoub
- Academic
Section of Vascular Surgery, Division of Surgery, Department of Surgery
and Cancer, Faculty of Medicine, Imperial College London, London W6 8RF, United Kingdom
| | - Giorgis Isaac
- Pharmaceutical
Discovery and Life Sciences, Waters Corporations, Milford, Massachusetts 01757, United States
| | - Elizabeth J. Want
- Biomolecular
Medicine, Division of Computational and Systems Medicine, Department
of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jeremy K. Nicholson
- Biomolecular
Medicine, Division of Computational and Systems Medicine, Department
of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Elaine Holmes
- Biomolecular
Medicine, Division of Computational and Systems Medicine, Department
of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alun H. Davies
- Academic
Section of Vascular Surgery, Division of Surgery, Department of Surgery
and Cancer, Faculty of Medicine, Imperial College London, London W6 8RF, United Kingdom
| |
Collapse
|
59
|
Go YM, Kim CW, Walker DI, Kang DW, Kumar S, Orr M, Uppal K, Quyyumi AA, Jo H, Jones DP. Disturbed flow induces systemic changes in metabolites in mouse plasma: a metabolomics study using ApoE⁻/⁻ mice with partial carotid ligation. Am J Physiol Regul Integr Comp Physiol 2015; 308:R62-72. [PMID: 25377480 PMCID: PMC4281678 DOI: 10.1152/ajpregu.00278.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/03/2014] [Indexed: 12/21/2022]
Abstract
Disturbed blood flow (d-flow) occurring in branched and curved arteries promotes endothelial dysfunction and atherosclerosis, in part, by altering gene expression and epigenomic profiles in endothelial cells. While a systemic metabolic change is known to play a role in atherosclerosis, it is unclear whether it can be regulated by local d-flow. Here, we tested this hypothesis by carrying out a metabolomics study using blood plasma samples obtained from ApoE(-/-) mice that underwent a partial carotid ligation surgery to induce d-flow. Mice receiving sham ligation were used as a control. To study early metabolic changes, samples collected from 1 wk after partial ligation when endothelial dysfunction occurs, but before atheroma develops, were analyzed by high-resolution mass spectrometry. A metabolome-wide association study showed that 128 metabolites were significantly altered in the ligated mice compared with the sham group. Of these, sphingomyelin (SM; m/z 703.5747), a common mammalian cell membrane sphingolipid, was most significantly increased in the ligated mice. Of the 128 discriminatory metabolites, 18 and 41 were positively and negatively correlated with SM, respectively. The amino acids methionine and phenylalanine were increased by d-flow, while phosphatidylcholine and phosphatidylethanolamine were decreased by d-flow, and these metabolites were correlated with SM. Other significantly affected metabolites included dietary and environmental agents. Pathway analysis showed that the metabolic changes of d-flow impacted broad functional networks. These results suggest that signaling from d-flow occurring in focal regions induces systemic metabolic changes associated with atherosclerosis.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Chan Woo Kim
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Douglas I Walker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia; Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts; and
| | - Dong Won Kang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Sandeep Kumar
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Michael Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Karan Uppal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Hanjoong Jo
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia;
| |
Collapse
|
60
|
Duthie SJ, Beattie JH, Gordon MJ, Pirie LP, Nicol F, Reid MD, Duncan GJ, Cantlay L, Horgan G, McNeil CJ. Nutritional B vitamin deficiency alters the expression of key proteins associated with vascular smooth muscle cell proliferation and migration in the aorta of atherosclerotic apolipoprotein E null mice. GENES AND NUTRITION 2014; 10:446. [PMID: 25446494 DOI: 10.1007/s12263-014-0446-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/21/2014] [Indexed: 12/11/2022]
Abstract
Low B vitamin status is linked with human vascular disease. We employed a proteomic and biochemical approach to determine whether nutritional folate deficiency and/or hyperhomocysteinemia altered metabolic processes linked with atherosclerosis in ApoE null mice. Animals were fed either a control fat (C; 4 % w/w lard) or a high-fat [HF; 21 % w/w lard and cholesterol (0/15 % w/w)] diet with different B vitamin compositions for 16 weeks. Aorta tissue was prepared and global protein expression, B vitamin, homocysteine and lipoprotein status measured. Changes in the expression of aorta proteins were detected in response to multiple B vitamin deficiency combined with a high-fat diet (P < 0.05) and were strongly linked with lipoprotein concentrations measured directly in the aorta adventitia (P < 0.001). Pathway analysis revealed treatment effects in the aorta-related primarily to cytoskeletal organisation, smooth muscle cell adhesion and invasiveness (e.g., fibrinogen, moesin, transgelin, vimentin). Combined B vitamin deficiency induced striking quantitative changes in the expression of aorta proteins in atherosclerotic ApoE null mice. Deregulated expression of these proteins is associated with human atherosclerosis. Cellular pathways altered by B vitamin status included cytoskeletal organisation, cell differentiation and migration, oxidative stress and chronic inflammation. These findings provide new insight into the molecular mechanisms through which B vitamin deficiency may accelerate atherosclerosis.
Collapse
Affiliation(s)
- Susan J Duthie
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Stachowicz A, Olszanecki R, Suski M, Wiśniewska A, Totoń-Żurańska J, Madej J, Jawień J, Białas M, Okoń K, Gajda M, Głombik K, Basta-Kaim A, Korbut R. Mitochondrial aldehyde dehydrogenase activation by Alda-1 inhibits atherosclerosis and attenuates hepatic steatosis in apolipoprotein E-knockout mice. J Am Heart Assoc 2014; 3:e001329. [PMID: 25392542 PMCID: PMC4338726 DOI: 10.1161/jaha.114.001329] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Mitochondrial dysfunction has been shown to play an important role in the development of atherosclerosis and nonalcoholic fatty liver disease (NAFLD). Mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme responsible for the detoxification of reactive aldehydes, is considered to exert protective function in mitochondria. We investigated the influence of Alda‐1, an activator of ALDH2, on atherogenesis and on the liver steatosis in apolipoprotein E knockout (apoE−/−) mice. Methods and Results Alda‐1 caused decrease of atherosclerotic lesions approximately 25% as estimated by “en face” and “cross‐section” methods without influence on plasma lipid profile, atherosclerosis‐related markers of inflammation, and macrophage and smooth muscle content in the plaques. Plaque nitrotyrosine was not changed upon Alda‐1 treatment, and there were no changes in aortic mRNA levels of factors involved in antioxidative defense, regulation of apoptosis, mitogenesis, and autophagy. Hematoxylin/eosin staining showed decrease of steatotic changes in liver of Alda‐1‐treated apoE−/− mice. Alda‐1 attenuated formation of 4‐hydroxy‐2‐nonenal (4‐HNE) protein adducts and decreased triglyceride content in liver tissue. Two‐dimensional electrophoresis coupled with mass spectrometry identified 20 differentially expressed mitochondrial proteins upon Alda‐1 treatment in liver of apoE−/− mice, mostly proteins related to metabolism and oxidative stress. The most up‐regulated were the proteins that participated in beta oxidation of fatty acids. Conclusions Collectively, Alda‐1 inhibited atherosclerosis and attenuated NAFLD in apoE−/− mice. The pattern of changes suggests a beneficial effect of Alda‐1 in NAFLD; however, the exact liver functional consequences of the revealed alterations as well as the mechanism(s) of antiatherosclerotic Alda‐1 action require further investigation.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Rafał Olszanecki
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Anna Wiśniewska
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Justyna Totoń-Żurańska
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Józef Madej
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Jacek Jawień
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| | - Magdalena Białas
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland (M.B., K.O.)
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland (M.B., K.O.)
| | - Mariusz Gajda
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland (M.G.)
| | - Katarzyna Głombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland (K., A.B.K.)
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland (K., A.B.K.)
| | - Ryszard Korbut
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland (A.S., R.O., M.S., A.W., J.T., M., J.J., R.K.)
| |
Collapse
|
62
|
Yang Y, Liu Y, Zheng L, Wu T, Li J, Zhang Q, Li X, Yuan F, Wang L, Guo J. Serum metabonomic analysis of apoE−/−mice reveals progression axes for atherosclerosis based on NMR spectroscopy. ACTA ACUST UNITED AC 2014; 10:3170-8. [DOI: 10.1039/c4mb00334a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
63
|
Kang DH, Kang SW. Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease. Biomol Ther (Seoul) 2014; 21:89-96. [PMID: 24009865 PMCID: PMC3762320 DOI: 10.4062/biomolther.2013.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/12/2013] [Indexed: 02/04/2023] Open
Abstract
Atherosclerotic vascular dysfunction is a chronic inflammatory process that spreads from the fatty streak and foam cells through lesion progression. Therefore, its early diagnosis and prevention is unfeasible. Reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerotic vascular disease. Intracellular redox status is tightly regulated by oxidant and antioxidant systems. Imbalance in these systems causes oxidative or reductive stress which triggers cellular damage or aberrant signaling, and leads to dysregulation. Paradoxically, large clinical trials have shown that non-specific ROS scavenging by antioxidant vitamins is ineffective or sometimes harmful. ROS production can be locally regulated by cellular antioxidant enzymes, such as superoxide dismutases, catalase, glutathione peroxidases and peroxiredoxins. Therapeutic approach targeting these antioxidant enzymes might prove beneficial for prevention of ROS-related atherosclerotic vascular disease. Conversely, the development of specific antioxidant enzyme-mimetics could contribute to the clinical effectiveness.
Collapse
Affiliation(s)
- Dong Hoon Kang
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | |
Collapse
|
64
|
Brown NK, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman DT, Chen YE, Chang L. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol 2014; 34:1621-30. [PMID: 24833795 DOI: 10.1161/atvbaha.114.303029] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perivascular adipose tissue (PVAT), long assumed to be nothing more than vessel-supporting connective tissue, is now understood to be an important, active component of the vasculature, with integral roles in vascular health and disease. PVAT is an adipose tissue with similarities to both brown and white adipose tissue, although recent evidence suggests that PVAT develops from its own precursors. Like other adipose tissue depots, PVAT secretes numerous biologically active substances that can act in both autocrine and paracrine fashion. PVAT has also proven to be involved in vascular inflammation. Although PVAT can support inflammation during atherosclerosis via macrophage accumulation, emerging evidence suggests that PVAT also has antiatherosclerotic properties related to its abilities to induce nonshivering thermogenesis and metabolize fatty acids. We here discuss the accumulated knowledge of PVAT biology and related research on models of hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Nicholas K Brown
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Zhou Zhou
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Jifeng Zhang
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Rong Zeng
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Jiarui Wu
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Daniel T Eitzman
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.)
| | - Y Eugene Chen
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.).
| | - Lin Chang
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.).
| |
Collapse
|
65
|
Shi Q, Zhao H, Chen J, Li Y, Li Z, Wang J, Wang W. Study on qi deficiency syndrome identification modes of coronary heart disease based on metabolomic biomarkers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:281829. [PMID: 24795766 PMCID: PMC3985201 DOI: 10.1155/2014/281829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/11/2014] [Indexed: 12/30/2022]
Abstract
Coronary heart disease (CHD) is one of the most important types of heart disease because of its high incidence and mortality. With the era of systems biology bursting into reality, the analysis of the whole biological systems whether they are cells, tissues, organs, or the whole organisms has now become the norm of biological researches. Metabolomics is the branch of science concerned with the quantitative understandings of the metabolite complement of integrated living systems and their dynamic responses to the changes of both endogenous and exogenous factors. The aim of this study is to discuss the characteristics of plasma metabolites in CHD patients and CHD Qi deficiency syndrome patients and explore the composition and concentration changes of the plasma metabolomic biomarkers. The results show that 25 characteristic metabolites related to the CHD patients comparing with the healthy people, and 4 identifiable variables had significant differences between Qi deficiency and non-Qi deficiency patients. On the basis of identifying the different plasma endogenous metabolites between CHD patients and healthy people, we further prompted the metabolic rules, pathogenesis, and biological essence in Qi deficiency syndrome patients.
Collapse
Affiliation(s)
- Qi Shi
- The Key Institute of State Administration of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Huihui Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Youlin Li
- The Key Institute of State Administration of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhongfeng Li
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juan Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
66
|
D’Alessandro A, Zolla L. The SODyssey: superoxide dismutases from biochemistry, through proteomics, to oxidative stress, aging and nutraceuticals. Expert Rev Proteomics 2014; 8:405-21. [DOI: 10.1586/epr.11.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
67
|
Lv X, Ai J, Li M, Wang H, Chen T, Fang Y, Liu Y, Zhou P, Chen M, Tan R, Liu Y, Yang Y, Zhou Q. Comparative proteomics and correlated signaling network of kidney in ApoE
deficient mouse. Proteomics Clin Appl 2013; 7:829-38. [PMID: 23687078 DOI: 10.1002/prca.201200112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaoyan Lv
- Department of Dermatology, West China Hospital, West China Medical School; Sichuan University; Chengdu P. R. China
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Jianzhong Ai
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Mi Li
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Honglian Wang
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Tielin Chen
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Yin Fang
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Yunhong Liu
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Puhui Zhou
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Mianzhi Chen
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Ruizhi Tan
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Yuhang Liu
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Yang Yang
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| | - Qin Zhou
- Core Facility of Genetically Engineered Mice, West China Hospital, West China School of Medicine; Sichuan University; Chengdu P. R. China
| |
Collapse
|
68
|
Kaga E, Karademir B, Baykal AT, Ozer NK. Identification of differentially expressed proteins in atherosclerotic aorta and effect of vitamin E. J Proteomics 2013; 92:260-73. [DOI: 10.1016/j.jprot.2013.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
|
69
|
Barallobre-Barreiro J, Chung YL, Mayr M. La proteómica y la metabolómica: los mecanismos de la enfermedad cardiovascular y el descubrimiento de biomarcadores. Rev Esp Cardiol 2013. [DOI: 10.1016/j.recesp.2013.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
70
|
Barallobre-Barreiro J, Chung YL, Mayr M. Proteomics and metabolomics for mechanistic insights and biomarker discovery in cardiovascular disease. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2013; 66:657-61. [PMID: 24776335 DOI: 10.1016/j.rec.2013.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 04/18/2013] [Indexed: 01/24/2023]
Abstract
In the last decade, proteomics and metabolomics have contributed substantially to our understanding of cardiovascular diseases. The unbiased assessment of pathophysiological processes without a priori assumptions complements other molecular biology techniques that are currently used in a reductionist approach. In this review, we highlight some of the "omics" methods used to assess protein and metabolite changes in cardiovascular disease. A discrete biological function is very rarely attributed to a single molecule; more often it is the combined input of many proteins. In contrast to the reductionist approach, in which molecules are studied individually, "omics" platforms allow the study of more complex interactions in biological systems. Combining proteomics and metabolomics to quantify changes in metabolites and their corresponding enzymes will advance our understanding of pathophysiological mechanisms and aid the identification of novel biomarkers for cardiovascular disease.
Collapse
Affiliation(s)
| | - Yuen-Li Chung
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College of London, London, United Kingdom.
| |
Collapse
|
71
|
Du F, Virtue A, Wang H, Yang XF. Metabolomic analyses for atherosclerosis, diabetes, and obesity. Biomark Res 2013; 1:17. [PMID: 24252331 PMCID: PMC4177614 DOI: 10.1186/2050-7771-1-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/07/2013] [Indexed: 02/02/2023] Open
Abstract
Insulin resistance associated with type 2 diabetes mellitus (T2DM), obesity, and atherosclerosis is a global health problem. A portfolio of abnormalities of metabolic and vascular homeostasis accompanies T2DM and obesity, which are believed to conspire to lead to accelerated atherosclerosis and premature death. The complexity of metabolic changes in the diseases presents challenges for a full understanding of the molecular pathways contributing to the development of these diseases. The recent advent of new technologies in this area termed “Metabolomics” may aid in comprehensive metabolic analysis of these diseases. Therefore, metabolomics has been extensively applied to the metabolites of T2DM, obesity, and atherosclerosis not only for the assessment of disease development and prognosis, but also for the biomarker discovery of disease diagnosis. Herein, we summarize the recent applications of metabolomics technology and the generated datasets in the metabolic profiling of these diseases, in particular, the applications of these technologies to these diseases at the cellular, animal models, and human disease levels. In addition, we also extensively discuss the mechanisms linking the metabolic profiling in insulin resistance, T2DM, obesity, and atherosclerosis, with a particular emphasis on potential roles of increased production of reactive oxygen species (ROS) and mitochondria dysfunctions.
Collapse
Affiliation(s)
- Fuyong Du
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
72
|
Song X, Wang J, Wang P, Tian N, Yang M, Kong L. ¹H NMR-based metabolomics approach to evaluate the effect of Xue-Fu-Zhu-Yu decoction on hyperlipidemia rats induced by high-fat diet. J Pharm Biomed Anal 2013; 78-79:202-10. [PMID: 23501440 DOI: 10.1016/j.jpba.2013.02.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/09/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
An NMR-based metabolomics approach was conducted to holisticly explore the effect of XFZYD (a traditional Chinese medicine formula) on high-fat diet induced hyperlipidemia rats with one of the commonly used antihyperlipidemic agents, simvastatin as the positive control. NMR spectra from blood plasma combined with statistical analysis revealed compounds distinguishing hyperlipidemia rats from normal control rats. XFZYD could ameliorate hyperlipidemia by intervening in some major metabolic pathways, such as decreasing the accumulation of ketone body (β-hydroxybutyrate) and acetyl-glycoproteins, enhancing glutathione (GSH) biosynthesis, partially reversing energy and lipid metabolism disturbance. Oral administration of XFZYD could also be helpful to hyperlipidemia rats in bettering the serum chemistry profile. The combined results demonstrated that XFZYD could ameliorate the hyperlipidemic symptoms in a global scale and restore the abnormal metabolic state to a near normal level in a time-dependent pattern.
Collapse
Affiliation(s)
- Xingfang Song
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
The conventional reductionist approach to cardiovascular research investigates individual candidate factors or linear signalling pathways but ignores more complex interactions in biological systems. The advent of molecular profiling technologies that focus on a global characterization of whole complements allows an exploration of the interconnectivity of pathways during pathophysiologically relevant processes, but has brought about the issue of statistical analysis and data integration. Proteins identified by differential expression as well as those in protein–protein interaction networks identified through experiments and through computational modelling techniques can be used as an initial starting point for functional analyses. In combination with other ‘-omics’ technologies, such as transcriptomics and metabolomics, proteomics explores different aspects of disease, and the different pillars of observations facilitate the data integration in disease-specific networks. Ultimately, a systems biology approach may advance our understanding of cardiovascular disease processes at a ‘biological pathway’ instead of a ‘single molecule’ level and accelerate progress towards disease-modifying interventions.
Collapse
Affiliation(s)
- Sarah R Langley
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | | | |
Collapse
|
74
|
Proteomic analysis for anti-atherosclerotic effect of tetrahydroxystilbene glucoside in rats. Biomed Pharmacother 2012. [PMID: 23206751 DOI: 10.1016/j.biopha.2012.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) extracted from Polygonum multiflorum (a traditional Chinese medicinal herb) has been proved to exhibit significant anti-atherosclerotic activity. In this study, we firstly used proteomic analyses to investigate the molecular events occurring in the atherosclerotic rats after TSG treatment. Aortic samples were collected from the atherosclerotic rat group and the TSG-treated group, and its proteome was analyzed by two-dimensional gel electrophoresis (2-DE). Proteins showing significant changes in expression were identified and analyzed by matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). As a result, 21 protein spots were found with significant differential expression after the treatment with TSG. A total of 18 spots were identified by database searching, and 17 spots matched with known proteins. Among these proteins (11 proteins up-regulated and six proteins down-regulated), five proteins were mainly involved in inflammation, cholesterol transport, cell apoptosis and adhesion. TSG treatment enhanced the expression of HSP 70, lipocortin 1 and Apo A-I, and inhibited the expression of calreticulin, vimentin. Furthermore, we randomly selected four proteins and confirmed the results of proteomic analysis by RT-PCR and western blotting. In conclusion, TSG treatment suppresses atherosclerosis by altering the expression of different proteins. Calreticulin, vimentin, HSP 70, lipocortin 1, and Apo A-I, are key proteins that may be novel molecular targets responsible for atherogenesis suppression induced by TSG treatment.
Collapse
|
75
|
Viiri LE, Full LE, Navin TJ, Begum S, Didangelos A, Astola N, Berge RK, Seppälä I, Shalhoub J, Franklin IJ, Perretti M, Lehtimäki T, Davies AH, Wait R, Monaco C. Smooth muscle cells in human atherosclerosis: proteomic profiling reveals differences in expression of Annexin A1 and mitochondrial proteins in carotid disease. J Mol Cell Cardiol 2012; 54:65-72. [PMID: 23154128 DOI: 10.1016/j.yjmcc.2012.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 11/17/2022]
Abstract
Smooth muscle cells (SMC) contribute to the development and stability of atherosclerotic lesions. The molecular mechanisms that mediate their properties are incompletely defined. We employed proteomics and in vitro functional assays to identify the unique characteristics of intimal SMC isolated from human carotid endarterectomy specimens and medial SMC from thoracic aortas and carotids. We verified our findings in the Tampere Vascular Study. Human atheroma-derived SMC exhibit decreased expression of mitochondrial proteins ATP Synthase subunit-beta and Aldehyde dehydrogenase 2, and decreased mitochondrial activity when compared to control SMC. Moreover, a comparison between plaque-derived SMC isolated from patients with or without recent acute cerebrovascular symptoms uncovered an increase in Annexin A1, an endogenous anti-inflammatory protein, in the asymptomatic group. The deletion of Annexin A1 or the blockade of its signaling in SMC resulted in increased cytokine production at baseline and after stimulation with the pro-inflammatory cytokine Tumor Necrosis Factor α. In summary, our proteomics and biochemical analysis revealed mitochondrial damage in human plaque-derived SMC as well as a role of Annexin A1 in reducing the production of pro-inflammatory mediators in SMC.
Collapse
Affiliation(s)
- Leena E Viiri
- Kennedy Institute of Rheumatology, Kennedy Institute, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, 65 Aspenlea Road, W6 8LH London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Pula G, Perera S, Prokopi M, Sidibe A, Boulanger CM, Mayr M. Proteomic analysis of secretory proteins and vesicles in vascular research. Proteomics Clin Appl 2012; 2:882-91. [PMID: 21136886 DOI: 10.1002/prca.200800040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The release of proteins and membrane vesicles in the bloodstream regulates diverse vascular processes, both physiological, such as angiogenesis and haemostasis, and pathological, such as atherosclerosis and atherothrombosis. Proteomics, beside its canonical application for the expression profiling in cells and organs, can be applied to the study of secreted proteins and microvesicles, which play a significant role in the homeostasis of the vasculature, and the development of the atherosclerotic disease.
Collapse
Affiliation(s)
- Giordano Pula
- Cardiovascular Division, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
77
|
Lönn ME, Dennis JM, Stocker R. Actions of "antioxidants" in the protection against atherosclerosis. Free Radic Biol Med 2012; 53:863-84. [PMID: 22664312 DOI: 10.1016/j.freeradbiomed.2012.05.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/05/2012] [Accepted: 05/16/2012] [Indexed: 02/07/2023]
Abstract
This review addresses the role of oxidative processes in atherosclerosis and its resulting cardiovascular disease by focusing on the outcome of antioxidant interventions. Although there is unambiguous evidence for the presence of heightened oxidative stress and resulting damage in atherosclerosis, it remains to be established whether this represents a cause or a consequence of the disease. This critical question is complicated further by the increasing realization that oxidative processes, including those related to signaling, are part of normal cell function. Overall, the results from animal interventions suggest that antioxidants provide benefit neither generally nor consistently. Where benefit is observed, it appears to be achieved at least in part via modulation of biological processes such as increase in nitric oxide bioavailability and induction of protective enzymes such as heme oxygenase-1, rather than via inhibition of oxidative processes and lipid oxidation in the arterial wall. Exceptions to this may be situations of multiple/excessive stress, the relevance of which for humans is not clear. This interpretation is consistent with the overall disappointing outcome of antioxidant interventions in humans and can be rationalized by the spatial compartmentalization of cellular oxidative signaling and/or damage, complex roles of oxidant-producing enzymes, and the multifactorial nature of atherosclerosis.
Collapse
Affiliation(s)
- Maria E Lönn
- Centre for Vascular Research, School of Medical Sciences (Pathology), and Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
78
|
Fujieda M, Karasawa R, Takasugi H, Yamamoto M, Kataoka K, Yudoh K, Kato T, Ozaki S, Wakiguchi H. A novel anti-peroxiredoxin autoantibody in patients with Kawasaki disease. Microbiol Immunol 2012; 56:56-61. [PMID: 22003971 DOI: 10.1111/j.1348-0421.2011.00393.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibodies to the anti-oxidative peroxiredoxin (Prx) enzymes occur in both systemic autoimmune disease and vasculitis in adulthood. Because increased oxidative stress induces vasculitis in Kawasaki disease (KD), autoimmunity to Prxs in patients with KD was investigated. The presence of antibodies to Prx 1, 2 and 4 was analyzed by ELISA and Western blot. Of 30 patients with KD, 13 (43.3%) possessed antibodies to Prx 2, whereas these antibodies were present in only 1 of 10 patients (10.0%) with sepsis (4 with purulent meningitis and 6 with septicemia). In contrast, antibodies to Prx 1 and 4 were not detected in either group. There was no significant correlation among the titers of the three antibodies. Clinical parameters were compared between anti-Prx 2-positive and -negative patients. The presence of anti-Prx 2 antibodies correlated with a longer period of fever and poor response to high-dose γ-globulin therapy in patients with KD. Anti-Prx 2-positive patients had significantly greater excretion of urinary 8-isoprostaglandin than did anti-Prx 2-negative patients. These results provide the first evidence for an antibody to Prx 2 in patients with KD. They also suggest that this antibody might serve as a marker of disease severity and be involved in the pathophysiology of vasculitis in some patients with KD.
Collapse
Affiliation(s)
- Mikiya Fujieda
- Department of Pediatrics, Kochi Medical School, Kochi University, Kochi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Didangelos A, Mayr U, Monaco C, Mayr M. Novel role of ADAMTS-5 protein in proteoglycan turnover and lipoprotein retention in atherosclerosis. J Biol Chem 2012; 287:19341-5. [PMID: 22493487 PMCID: PMC3365970 DOI: 10.1074/jbc.c112.350785] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Atherosclerosis is initiated by the retention of lipoproteins on proteoglycans in the arterial intima. However, the mechanisms leading to proteoglycan accumulation and lipoprotein retention are poorly understood. In this study, we set out to investigate the role of ADAMTS-5 (a disintegrin and metalloprotease with thrombospondin motifs-5) in the vasculature. ADAMTS-5 was markedly reduced in atherosclerotic aortas of apolipoprotein E-null (apoE−/−) mice. The reduction of ADAMTS-5 was accompanied by accumulation of biglycan and versican, the major lipoprotein-binding proteoglycans, in atherosclerosis. ADAMTS-5 activity induced the release of ADAMTS-specific versican (DPEAAE441) and aggrecan (374ALGS) fragments as well as biglycan and link protein from the aortic wall. Fibroblast growth factor 2 (FGF-2) inhibited ADAMTS-5 expression in isolated aortic smooth muscle cells and blocked the spontaneous release of ADAMTS-generated versican and aggrecan fragments from aortic explants. In aortas of ADAMTS-5-deficient mice, DPEAAE441 versican neoepitopes were not detectable. Instead, biglycan levels were increased, highlighting the role of ADAMTS-5 in the catabolism of vascular proteoglycans. Importantly, ADAMTS-5 proteolytic activity reduced the LDL binding ability of biglycan and released LDL from human aortic lesions. This study provides the first evidence implicating ADAMTS-5 in the regulation of proteoglycan turnover and lipoprotein retention in atherosclerosis.
Collapse
Affiliation(s)
- Athanasios Didangelos
- King's British Heart Foundation Centre, King's College London, London SE5 9NU, United Kingdom
| | | | | | | |
Collapse
|
80
|
Rodger EJ, Suetani RJ, Jones GT, Kleffmann T, Carne A, Legge M, McCormick SPA. Proteomic analysis of aortae from human lipoprotein(a) transgenic mice shows an early metabolic response independent of atherosclerosis. PLoS One 2012; 7:e30383. [PMID: 22276189 PMCID: PMC3261968 DOI: 10.1371/journal.pone.0030383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/15/2011] [Indexed: 01/23/2023] Open
Abstract
Background Elevated low density lipoprotein (LDL) and lipoprotein(a) are independent risk factors for the development of atherosclerosis. Using a proteomic approach we aimed to determine early changes in arterial protein expression in transgenic mice containing both human LDL and lipoprotein(a) in circulation. Methods and Results Plasma lipid analyses showed the lipoprotein(a) transgenic mice had significantly higher lipid levels than wildtype, including a much increased LDL and high density lipoprotein (HDL) cholesterol. Analysis of aortae from lipoprotein(a) mice showed lipoprotein(a) accumulation but no lipid accumulation or foam cells, leaving the arteries essentially atherosclerosis free. Using two-dimensional gel electrophoresis and mass spectrometry, we identified 34 arterial proteins with significantly altered abundance (P<0.05) in lipoprotein(a) transgenic mice compared to wildtype including 17 that showed a ≥2 fold difference. Some proteins of interest showed a similarly altered abundance at the transcript level. These changes collectively indicated an initial metabolic response that included a down regulation in energy, redox and lipid metabolism proteins and changes in structural proteins at a stage when atherosclerosis had not yet developed. Conclusions Our study shows that human LDL and lipoprotein(a) promote changes in the expression of a unique set of arterial proteins which may be early indicators of the metabolic disturbances preceding atherosclerosis.
Collapse
Affiliation(s)
- Euan J. Rodger
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Rachel J. Suetani
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gregory T. Jones
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Centre for Protein Research, University of Otago, Dunedin, New Zealand
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Michael Legge
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
81
|
PEREIRA SS, TEIXEIRA LG, AGUILAR EC, MATOSO RO, SOARES FLP, FERREIRA AVM, ALVAREZ-LEITE JI. Differences in adipose tissue inflammation and oxidative status in C57BL/6 and ApoE−/− mice fed high fat diet. Anim Sci J 2011; 83:549-55. [DOI: 10.1111/j.1740-0929.2011.00982.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
Mercier N, Kiviniemi TO, Saraste A, Miiluniemi M, Silvola J, Jalkanen S, Yegutkin GG. Impaired ATP-induced coronary blood flow and diminished aortic NTPDase activity precede lesion formation in apolipoprotein E-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:419-28. [PMID: 22074736 DOI: 10.1016/j.ajpath.2011.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/21/2011] [Accepted: 10/04/2011] [Indexed: 02/02/2023]
Abstract
Intravascular ATP and ADP are important regulators of vascular tone, thrombosis, inflammation, and angiogenesis. This study was undertaken to evaluate the contribution of purinergic signaling to disturbed vasodilation and vascular remodeling during atherosclerosis progression. We used apolipoprotein E-deficient (Apoe(-/-)) mice as an appropriate experimental model for atherosclerosis. Noninvasive transthoracic Doppler echocardiography imaging with adenosine, ATP, and other nucleotides and nonhydrolyzable P2 receptor agonists and antagonists suggests that ATP regulates coronary blood flow in mice through activation of P2Y (most likely, endothelial ATP/UTP-selective P2Y(2)) receptors, rather than via its dephosphorylation to adenosine. Strikingly, compared to age-matched wild-type controls, young (10- to 15-week-old) Apoe(-/-) mice displayed diminished coronary reactivity in response to ATP but not adenosine. The impaired hyperemic response to ATP persisted in older (20- to 30-week-old) Apoe(-/-) mice, which were additionally characterized by mild atherosclerosis (as ascertained by aortic Oil Red O staining) and a systemic increase in plasma ATP and ADP levels. Concurrent thin-layer chromatographic analysis of nucleoside triphosphate diphosphohydrolase (NTPDase) and ecto-5'-nucleotidase/CD73 activities in thoracic aortas, lymph nodes, spleen, and serum revealed that aortic NTPDase was decreased by 40% to 50% in a tissue-specific manner both in young and mature Apoe(-/-) mice. Collectively, disordered purinergic signaling in Apoe(-/-) mice may serve as important prerequisite for impaired blood flow, local accumulation of ATP and ADP at sites of atherogenesis, and eventually, the exacerbation of atherosclerosis.
Collapse
Affiliation(s)
- Nathalie Mercier
- Medicity Research Laboratory and the Department of Medical Microbiology, University of Turku, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
83
|
Wu DJ, Zhu BJ, Wang XD. Metabonomics-based omics study and atherosclerosis. J Clin Bioinforma 2011; 1:30. [PMID: 22040517 PMCID: PMC3222604 DOI: 10.1186/2043-9113-1-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 10/31/2011] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis results from dyslipidemia and systemic inflammation, associated with the strong metabolism and interaction between diet and disease. Strategies based on the global profiling of metabolism would be important to define the mechanisms involved in pathological alterations. Metabonomics is the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification. Metabonomics has been used in combination with proteomics and transcriptomics as the part of a systems biology description to understand the genome interaction with the development of atherosclerosis. The present review describes the application of metabonomics to explore the potential role of metabolic disturbances and inflammation in the initiation and development of atherosclerosis. Metabonomics-based omics study offers a new potential for biomarker discovery by disentangling the impacts of diet, environment and lifestyle.
Collapse
Affiliation(s)
- Duo-Jiao Wu
- Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, China.
| | | | | |
Collapse
|
84
|
Didangelos A, Stegemann C, Mayr M. The -omics era: proteomics and lipidomics in vascular research. Atherosclerosis 2011; 221:12-7. [PMID: 22024275 DOI: 10.1016/j.atherosclerosis.2011.09.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022]
Abstract
A main limitation of the current approaches to atherosclerosis research is the focus on the investigation of individual factors, which are presumed to be involved in the pathophysiology and whose biological functions are, at least in part, understood. These molecules are investigated extensively while others are not studied at all. In comparison to our detailed knowledge about the role of inflammation in atherosclerosis, little is known about extracellular matrix remodelling and the retention of individual lipid species rather than lipid classes in early and advanced atherosclerotic lesions. The recent development of mass spectrometry-based methods and advanced analytical tools are transforming our ability to profile extracellular proteins and lipid species in animal models and clinical specimen with the goal of illuminating pathological processes and discovering new biomarkers.
Collapse
|
85
|
Integration of metabolomics in heart disease and diabetes research: current achievements and future outlook. Bioanalysis 2011; 3:2205-22. [DOI: 10.4155/bio.11.223] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
86
|
Metabolomics of oxidative stress in recent studies of endogenous and exogenously administered intermediate metabolites. Int J Mol Sci 2011; 12:6469-501. [PMID: 22072900 PMCID: PMC3210991 DOI: 10.3390/ijms12106469] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 09/21/2011] [Indexed: 11/19/2022] Open
Abstract
Aerobic metabolism occurs in a background of oxygen radicals and reactive oxygen species (ROS) that originate from the incomplete reduction of molecular oxygen in electron transfer reactions. The essential role of aerobic metabolism, the generation and consumption of ATP and other high energy phosphates, sustains a balance of approximately 3000 essential human metabolites that serve not only as nutrients, but also as antioxidants, neurotransmitters, osmolytes, and participants in ligand-based and other cellular signaling. In hypoxia, ischemia, and oxidative stress, where pathological circumstances cause oxygen radicals to form at a rate greater than is possible for their consumption, changes in the composition of metabolite ensembles, or metabolomes, can be associated with physiological changes. Metabolomics and metabonomics are a scientific disciplines that focuse on quantifying dynamic metabolome responses, using multivariate analytical approaches derived from methods within genomics, a discipline that consolidated innovative analysis techniques for situations where the number of biomarkers (metabolites in our case) greatly exceeds the number of subjects. This review focuses on the behavior of cytosolic, mitochondrial, and redox metabolites in ameliorating or exacerbating oxidative stress. After reviewing work regarding a small number of metabolites—pyruvate, ethyl pyruvate, and fructose-1,6-bisphosphate—whose exogenous administration was found to ameliorate oxidative stress, a subsequent section reviews basic multivariate statistical methods common in metabolomics research, and their application in human and preclinical studies emphasizing oxidative stress. Particular attention is paid to new NMR spectroscopy methods in metabolomics and metabonomics. Because complex relationships connect oxidative stress to so many physiological processes, studies from different disciplines were reviewed. All, however, shared the common goal of ultimately developing “omics”-based, diagnostic tests to help influence therapies.
Collapse
|
87
|
Abstract
Metabolomics represents a paradigm shift in metabolic research, away from approaches that focus on a limited number of enzymatic reactions or single pathways, to approaches that attempt to capture the complexity of metabolic networks. Additionally, the high-throughput nature of metabolomics makes it ideal to perform biomarker screens for diseases or follow drug efficacy. In this Review, we explore the role of metabolomics in gaining mechanistic insight into cardiac disease processes, and in the search for novel biomarkers. High-resolution NMR spectroscopy and mass spectrometry are both highly discriminatory for a range of pathological processes affecting the heart, including cardiac ischemia, myocardial infarction, and heart failure. We also discuss the position of metabolomics in the range of functional-genomic approaches, being complementary to proteomic and transcriptomic studies, and having subdivisions such as lipidomics (the study of intact lipid species). In addition to techniques that monitor changes in the total sizes of pools of metabolites in the heart and biofluids, the role of stable-isotope methods for monitoring fluxes through pathways is examined. The use of these novel functional-genomic tools to study metabolism provides a unique insight into cardiac disease progression.
Collapse
Affiliation(s)
- Julian L Griffin
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK. jules.griffin@ mrc-hnr.cam.ac.uk
| | | | | | | |
Collapse
|
88
|
Teul J, Garcia A, Tuñón J, Martin-Ventura JL, Tarín N, Bescós LL, Egido J, Barbas C, Rupérez FJ. Targeted and non-targeted metabolic time trajectory in plasma of patients after acute coronary syndrome. J Pharm Biomed Anal 2011; 56:343-51. [DOI: 10.1016/j.jpba.2011.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/27/2011] [Accepted: 05/15/2011] [Indexed: 02/06/2023]
|
89
|
Mayr M, May D, Gordon O, Madhu B, Gilon D, Yin X, Xing Q, Drozdov I, Ainali C, Tsoka S, Xu Q, Griffiths J, Horrevoets A, Keshet E. Metabolic homeostasis is maintained in myocardial hibernation by adaptive changes in the transcriptome and proteome. J Mol Cell Cardiol 2011; 50:982-90. [PMID: 21354174 PMCID: PMC3107937 DOI: 10.1016/j.yjmcc.2011.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/31/2011] [Accepted: 02/14/2011] [Indexed: 11/18/2022]
Abstract
A transgenic mouse model for conditional induction of long-term hibernation via myocardium-specific expression of a VEGF-sequestering soluble receptor allowed the dissection of the hibernation process into an initiation and a maintenance phase. The hypoxic initiation phase was characterized by peak levels of K(ATP) channel and glucose transporter 1 (GLUT1) expression. Glibenclamide, an inhibitor of K(ATP) channels, blocked GLUT1 induction. In the maintenance phase, tissue hypoxia and GLUT1 expression were reduced. Thus, we employed a combined "-omics" approach to resolve this cardioprotective adaptation process. Unguided bioinformatics analysis on the transcriptomic, proteomic and metabolomic datasets confirmed that anaerobic glycolysis was affected and that the observed enzymatic changes in cardiac metabolism were directly linked to hypoxia-inducible factor (HIF)-1 activation. Although metabolite concentrations were kept relatively constant, the combination of the proteomic and transcriptomic dataset improved the statistical confidence of the pathway analysis by 2 orders of magnitude. Importantly, proteomics revealed a reduced phosphorylation state of myosin light chain 2 and cardiac troponin I within the contractile apparatus of hibernating hearts in the absence of changes in protein abundance. Our study demonstrates how combining different "-omics" datasets aids in the identification of key biological pathways: chronic hypoxia resulted in a pronounced adaptive response at the transcript and the protein level to keep metabolite levels steady. This preservation of metabolic homeostasis is likely to contribute to the long-term survival of the hibernating myocardium.
Collapse
Affiliation(s)
- Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Didangelos A, Yin X, Mandal K, Saje A, Smith A, Xu Q, Jahangiri M, Mayr M. Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach. Mol Cell Proteomics 2011; 10:M111.008128. [PMID: 21593211 PMCID: PMC3149094 DOI: 10.1074/mcp.m111.008128] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abdominal aortic aneurysms (AAA) are characterized by pathological remodeling of the aortic extracellular matrix (ECM). However, besides the well-characterized elastolysis and collagenolysis little is known about changes in other ECM proteins. Previous proteomics studies on AAA focused on cellular changes without emphasis on the ECM. In the present study, ECM proteins and their degradation products were selectively extracted from aneurysmal and control aortas using a solubility-based subfractionation methodology and analyzed by gel-liquid chromatography-tandem MS and label-free quantitation. The proteomics analysis revealed novel changes in the ECM of AAA, including increased expression as well as degradation of collagen XII, thrombospondin 2, aortic carboxypeptidase-like protein, periostin, fibronectin and tenascin. Proteomics also confirmed the accumulation of macrophage metalloelastase (MMP-12). Incubation of control aortic tissue with recombinant MMP-12 resulted in the extensive fragmentation of these glycoproteins, most of which are novel substrates of MMP-12. In conclusion, our proteomics methodology allowed the first detailed analysis of the ECM in AAA and identified markers of pathological ECM remodeling related to MMP-12 activity.
Collapse
|
91
|
Karasawa R, Kurokawa MS, Yudoh K, Masuko K, Ozaki S, Kato T. Peroxiredoxin 2 is a novel autoantigen for anti-endothelial cell antibodies in systemic vasculitis. Clin Exp Immunol 2011; 161:459-70. [PMID: 20646000 DOI: 10.1111/j.1365-2249.2010.04218.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Anti-endothelial cell antibodies (AECA) have been frequently detected in systemic vasculitis, which affects blood vessels of various sizes. To understand the pathogenic roles of AECA in systemic vasculitis, we attempted to identify target antigens for AECA comprehensively by a proteomic approach. Proteins extracted from human umbilical vein endothelial cells (HUVEC) were separated by two-dimensional electrophoresis, and Western blotting was subsequently conducted using sera from patients with systemic vasculitis. As a result, 53 autoantigenic protein spots for AECA were detected, nine of which were identified by mass spectrometry. One of the identified proteins was peroxiredoxin 2 (Prx2), an anti-oxidant enzyme. Frequency of anti-Prx2 autoantibodies, measured by enzyme-linked immunosorbent assay (ELISA), was significantly higher in systemic vasculitis (60%) compared to those in collagen diseases without clinical vasculitis (7%, P < 0·01) and healthy individuals (0%, P < 0·01). Further, the titres changed in parallel with the disease activity during time-courses. The presence of anti-Prx2 autoantibodies correlated significantly with elevation of serum d-dimers and thrombin-antithrombin complex (P < 0·05). Immunocytochemical analysis revealed that live endothelial cells expressed Prx2 on their surface. Interestingly, stimulation of HUVEC with rabbit anti-Prx2 antibodies increased secretion of interleukin (IL)-6, IL-1β, IL-1ra, growth regulated oncogene (GRO)-α, granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), IL-8 and monocyte chemoattractant protein (MCP)-1 more than twofold compared to that of with rabbit immunoglobulin (Ig)G. Taken together, our data suggest that anti-Prx2 autoantibodies would be a useful marker for systemic vasculitis and would be involved in the inflammatory processes of systemic vasculitis.
Collapse
Affiliation(s)
- R Karasawa
- Department of Frontier Medicine, Institute of Medical Science, St Marianna University Graduate School of Medicine, Miyamae-ku, Kawasaki, Japan
| | | | | | | | | | | |
Collapse
|
92
|
Martinez-Pinna R, Barbas C, Blanco-Colio LM, Tunon J, Ramos-Mozo P, Lopez JA, Meilhac O, Michel JB, Egido J, Martin-Ventura JL. Proteomic and metabolomic profiles in atherothrombotic vascular disease. Curr Atheroscler Rep 2010; 12:202-8. [PMID: 20425260 DOI: 10.1007/s11883-010-0102-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atherothrombosis remains a major cause of morbidity and mortality in the western world. The underlying processes associated with clinical expression of atherothrombosis include oxidative stress and proteolysis in relation to neovascularisation and intraplaque hemorrhages, leading to immuno-inflammatory response, cell death, and extracellular matrix breakdown. The complex biological multifactorial nature of atherothrombosis requires the development of novel technologies that allow the analysis of cellular and molecular processes responsible for the transition to disease phenotypes and the discovery of new diagnostic and prognostic biomarkers. In the present article, we have reviewed recent advances in the application of proteomic and metabolomic techniques to the study of atherothrombosis. We have focused on recent studies analyzing cells involved in hemo-thrombus formation (platelets, red blood cells, and polymorphonuclear cells), as well as tissues, tissue-conditioned media, and plasma of atherothrombotic patients. In the future, the application of these high-throughput technologies, along with imaging techniques, in systems biology approaches will help to individualize medicine.
Collapse
Affiliation(s)
- Roxana Martinez-Pinna
- Vascular Research Laboratory, Instituto de Investigacion Sanitaria, Fundación Jimenez Diaz, Autonoma University, Av. Reyes Católicos 2, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Lin YP, Hsu ME, Chiou YY, Hsu HY, Tsai HC, Peng YJ, Lu CY, Pan CY, Yu WC, Chen CH, Chi CW, Lin CH. Comparative proteomic analysis of rat aorta in a subtotal nephrectomy model. Proteomics 2010; 10:2429-43. [PMID: 20405472 DOI: 10.1002/pmic.200800658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although accelerated atherosclerosis and arteriosclerosis are the main causes of cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients, the molecular pathogenesis remains largely obscure. Our study of the aortic function in a typical CKD model of subtotal nephrectomy (SNX) rats demonstrated phenotypes that resemble CKD patients with aortic stiffness. The 2-DE analysis of rat aortas followed by MS identified 29 up-regulated and 53 down-regulated proteins in SNX rats. Further Western blot and immunohistochemistry analyses validated the decreased HSP27 and increased milk fat globule epidermal growth factor-8 (MFG-E8) in SNX rats. Functional classification of differential protein profiles using KOGnitor revealed that the two major categories involved in aortic stiffness are posttranslational modification, protein turnover, chaperones (23%) and cytoskeleton (21%). Ingenuity Pathway Analysis highlighted cellular assembly and organization, and cardiovascular system development and function as the two most relevant pathways. Among the identified proteins, the clinical significance of the secreted protein MFG-E8 was confirmed in 50 CKD patients, showing that increased serum MFG-E8 level is positively related to aortic stiffness and renal function impairment. Drug interventions with an inhibitor of the angiotensin converting enzyme, enalapril, in SNX rats improved aortic stiffness and decreased MFG-E8 depositions. Together, our studies provide a repertoire of potential biomarkers related to the aortic stiffness in CKD.
Collapse
Affiliation(s)
- Yao-Ping Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Dursun E, Monari E, Cuoghi A, Bergamini S, Ozben B, Suleymanlar G, Tomasi A, Ozben T. Proteomic profiling during atherosclerosis progression using SELDI-TOF-MS: effect of darbepoetin treatment. Acta Histochem 2010; 112:432-43. [PMID: 19500820 DOI: 10.1016/j.acthis.2009.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 03/19/2009] [Accepted: 04/04/2009] [Indexed: 11/26/2022]
Abstract
Narrowing of the arteries due to atherosclerosis may lead to congestive heart failure (CHF). It is advantageous to perform atherosclerosis studies in apolipoprotein E-deficient (Apo E(-/-)) mice models, which develop atherosclerosis very rapidly in comparison to humans. Darbepoetin is a synthetic erythropoietin analogue and stimulates erythropoiesis. The aim of this study was to explore the effect of 16 weeks of darbepoetin treatment on serum protein profiles in Apo E(-/-) mice during atherosclerosis progression. Serum proteomic analyses were performed using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) in the darbepoetin-treated and non-treated (control) Apo E(-/-) mice groups. The protein profiles obtained using three different chips, CM-10 (weak cation exchange), H50 (reversed-phase) and IMAC-30 (immobilized metal affinity capture), were statistically analyzed using the ProteinChip data manager 3.0 program. At the end of 16 weeks of darbepoetin treatment, there was no significant difference in the size and degree of atherosclerotic lesions between the darbepoetin and control mice groups. In contrast, 145 protein/peptide-clustering peaks, >5 kDa, had statistically significant differences in their peak intensities between the darbepoetin and control mice groups (p<0.05). That the proteomic profiles of darbepoetin-treated Apo E(-/-) mice were found to differ from those of the control group indicates a potential beneficial role of darbepoetin in atherosclerosis. Our study contributes to understanding the effects of darbepoetin on protein/peptide expressions during atherosclerosis development.
Collapse
|
95
|
Wu X, Kang J, Xie C, Burris R, Ferguson ME, Badger TM, Nagarajan S. Dietary blueberries attenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzyme expression. J Nutr 2010; 140:1628-32. [PMID: 20660283 DOI: 10.3945/jn.110.123927] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protective effects of blueberries (BB) against atherosclerosis and potential underlying mechanisms in reducing oxidative stress were examined in apoE-deficient (apoE(-/-)) mice. ApoE(-/-) mice were fed an AIN-93G diet (CD) or CD formulated to contain 1% freeze-dried whole BB for 20 wk. The mean lesion area for apoE(-/-) mice fed BB was reduced by 39% (P < 0.001) in the aorta sinus and 58% (P < 0.001) in the descending aorta compared with CD-fed mice. These atheroprotective effects were independent of the serum lipid profile or total antioxidant capacity (as measured by oxygen radical absorbance capacity). The concentration of a biomarker of lipid peroxidation, F(2)-isoprostane, was lower in liver of BB-fed mice (P < 0.05). Genes analyzed by RT-PCR array showed that 4 major antioxidant enzymes in aorta [superoxide dismutase (SOD) 1, SOD2, glutathione reductase (GSR), and thioredoxin reductase 1] were upregulated in BB-fed mice. Enzyme activities of SOD and GSR were greater (P < 0.05) in liver and/or serum of BB-fed mice than those of CD-fed mice. In addition, serum paraoxonase 1 activity in serum of BB-fed mice was also greater than that of CD-fed mice (P < 0.05) at the end of the study. These results suggest a protective effectiveness of BB against atherosclerosis in this apoE(-/-) mouse model. The potential mechanisms may involve reduction in oxidative stress by both inhibition of lipid peroxidation and enhancement of antioxidant defense.
Collapse
Affiliation(s)
- Xianli Wu
- USDA Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Metabolites reflect the dynamic processes underlying cellular homeostasis. Recent advances in analytical chemistry and molecular biology have set the stage for metabolite profiling to help us understand complex molecular processes and physiology. Metabolomics is the comparative analysis of metabolite flux and how it relates to biological phenotypes. As an intermediate phenotype, metabolite signatures capture a unique aspect of cellular dynamics that is not typically interrogated, providing a distinct perspective on cellular homeostasis. To date, there have been only a few metabolomics studies investigating cardiovascular diseases. In this review, we explore the principles of metabolomics and how it can provide further insight into the mechanisms of cardiovascular physiology and ultimately lead to improved diagnostic and therapeutic options for patients with cardiovascular disease.
Collapse
|
97
|
Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 2010; 40:387-426. [PMID: 20717559 DOI: 10.1039/b906712b] [Citation(s) in RCA: 575] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The study of biological systems in a holistic manner (systems biology) is increasingly being viewed as a necessity to provide qualitative and quantitative descriptions of the emergent properties of the complete system. Systems biology performs studies focussed on the complex interactions of system components; emphasising the whole system rather than the individual parts. Many perturbations to mammalian systems (diet, disease, drugs) are multi-factorial and the study of small parts of the system is insufficient to understand the complete phenotypic changes induced. Metabolomics is one functional level tool being employed to investigate the complex interactions of metabolites with other metabolites (metabolism) but also the regulatory role metabolites provide through interaction with genes, transcripts and proteins (e.g. allosteric regulation). Technological developments are the driving force behind advances in scientific knowledge. Recent advances in the two analytical platforms of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have driven forward the discipline of metabolomics. In this critical review, an introduction to metabolites, metabolomes, metabolomics and the role of MS and NMR spectroscopy will be provided. The applications of metabolomics in mammalian systems biology for the study of the health-disease continuum, drug efficacy and toxicity and dietary effects on mammalian health will be reviewed. The current limitations and future goals of metabolomics in systems biology will also be discussed (374 references).
Collapse
Affiliation(s)
- Warwick B Dunn
- Manchester Centre for Integrative Systems Biology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | | | | | |
Collapse
|
98
|
Integrated Development of Metabonomics and Its New Progress. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60057-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
99
|
Didangelos A, Yin X, Mandal K, Baumert M, Jahangiri M, Mayr M. Proteomics characterization of extracellular space components in the human aorta. Mol Cell Proteomics 2010; 9:2048-62. [PMID: 20551380 PMCID: PMC2938114 DOI: 10.1074/mcp.m110.001693] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The vascular extracellular matrix (ECM) is essential for the structural integrity of the vessel wall and also serves as a substrate for the binding and retention of secreted products of vascular cells as well as molecules coming from the circulation. Although proteomics has been previously applied to vascular tissues, few studies have specifically targeted the vascular ECM and its associated proteins. Thus, its detailed composition remains to be characterized. In this study, we describe a methodology for the extraction of extracellular proteins from human aortas and their identification by proteomics. The approach is based on (a) effective decellularization to enrich for scarce extracellular proteins, (b) successful solubilization and deglycosylation of ECM proteins, and (c) relative estimation of protein abundance using spectral counting. Our three-step extraction approach resulted in the identification of 103 extracellular proteins of which one-third have never been reported in the proteomics literature of vascular tissues. In particular, three glycoproteins (podocan, sclerostin, and agrin) were identified for the first time in human aortas at the protein level. We also identified extracellular adipocyte enhancer-binding protein 1, the cartilage glycoprotein asporin, and a previously hypothetical protein, retinal pigment epithelium (RPE) spondin. Moreover, our methodology allowed us to screen for proteolysis in the aortic samples based on the identification of proteolytic enzymes and their corresponding degradation products. For instance, we were able to detect matrix metalloproteinase-9 by mass spectrometry and relate its presence to degradation of fibronectin in a clinical specimen. We expect this proteomics methodology to further our understanding of the composition of the vascular extracellular environment, shed light on ECM remodeling and degradation, and provide insights into important pathological processes, such as plaque rupture, aneurysm formation, and restenosis.
Collapse
|
100
|
Dursun E, Ozben B, Monari E, Cuoghi A, Tomasi A, Ozben T. Proteomic profiling in apolipoprotein E-deficient mice during atherosclerosis progression. Acta Histochem 2010; 112:178-88. [PMID: 19230958 DOI: 10.1016/j.acthis.2008.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/27/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
Atherosclerosis and related complications are a major worldwide cause of human morbidity and mortality. It is advantageous to perform atherosclerosis studies in the apolipoprotein E-deficient (Apo E(-/-)) mouse model, which develops atherosclerosis very fast in comparison to humans. The aim of this study was to compare serum protein profiles in Apo E(-/-) mice during atherosclerosis progression with the data of control C57BL/6 mice. Serum proteomic analyses were performed using surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF-MS). The protein profiles obtained using three different chips, CM-10 (weak cation exchange), H50 (reversed-phase) and IMAC-30 (immobilized metal affinity capture) were statistically analyzed using the ProteinChip data manager 3.0 program. At 20 weeks of age, all Apo E(-/-) mice developed early atherosclerotic lesions. The peak intensities of 742 serum protein/peptide clusters were found to be different between the atherosclerotic and control mice groups, and the differences reached statistical significance for 107 serum protein/peptide clusters (p<0.05). This study contributes to understanding the changes in serum protein/peptide profiles during atherosclerosis development and may inform discovery of new protein biomarkers for early diagnosis of atherosclerosis.
Collapse
|