51
|
Gunduz O, Yurtgezen ZG, Topuz RD, Sapmaz-Metin M, Kaya O, Orhan AE, Ulugol A. The therapeutic effects of transferring remote ischemic preconditioning serum in rats with neuropathic pain symptoms. Heliyon 2023; 9:e20954. [PMID: 37867836 PMCID: PMC10585389 DOI: 10.1016/j.heliyon.2023.e20954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Background and objectives Neuropathic pain is defined as pain caused by damage to the nerve as a result of a lesion or disease. It has been shown that ischemic preconditioning exerts a protective role in various tissue injuries; however, the effect of transplantation of remote ischemic preconditioning serum (RIPCs) on neuropathic pain symptoms has not been studied. The aim of this project is to investigate the effect of RIPCs transfusion by different routes of administration on neuropathic pain symptoms. Our secondary aim was to demonstrate the role of Schwann cells in the regeneration of sciatic nerve injury and to evaluate the change in the number of glial cells in the spinal cord dorsal horn. Methods The sciatic nerve partial ligation method was used to induce neuropathic pain. Changes in neuropathic pain symptoms were assessed by measuring thermal hyperalgesia and mechanical allodynia. To determine the possible therapeutic site, alterations in the number of spinal cord lumbar posterior horn microglia and astrocytes were evaluated by ionized calcium-binding adapter molecule 1 (iba1) and glial fibrillary acidic protein (GFAP) immunostaining. Myelin basic protein immunohistochemistry was also used to assess Schwann cell immunoreactivity in the sciatic nerve. Results In rats that underwent partial sciatic nerve ligation, neuropathic pain symptoms developed on average on day 12 and persisted up to day 21 (p < 0.0001). RIPCs administered intravenously for five days reduced thermal hyperalgesia more than intraperitoneal and subcutaneous administration (p < 0.05). Both central glial cells appear to play a role in the effect of RIPCs. RIPCs treatment increases Schwann cell remyelination. Conclusions Our results showed that intravenously administered RIPCs remarkably improved the neuropathic pain symptoms, thermal hyperalgesia and mechanical allodynia. Further studies are needed to evaluate the role of RIPCs transfusion on glial cells.
Collapse
Affiliation(s)
- Ozgur Gunduz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | | | - Ruhan Deniz Topuz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Melike Sapmaz-Metin
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Turkey
| | - Oktay Kaya
- Department of Physiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Abdullah Erkan Orhan
- Department of Plastic Surgery, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ahmet Ulugol
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
52
|
Zhao ZZ, Li E, Li XJ, Guo Q, Shi QB, Li MW. Effects of remote ischemic preconditioning on coronary blood flow and microcirculation. BMC Cardiovasc Disord 2023; 23:404. [PMID: 37592218 PMCID: PMC10433538 DOI: 10.1186/s12872-023-03419-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
This study aimed to determine the effect of short-term remote ischemic preconditioning (RIPC) on coronary blood flow and microcirculation function using the quantitative flow ratio (QFR) and index of microcirculatory resistance (IMR). We randomly divided 129 patients undergoing coronary angiography (CAG) into RIPC and control groups. Following the first CAG, we randomly divided the patients further into the unilateral upper limb and lower limb groups for four cycles of ischemia/reperfusion circulation; subsequently, we performed the second CAG. During each CAG, contrast-flow QFR (cQFR), fixed-flow QFR (fQFR), and IMR (in patients with cardiac syndrome X) were calculated and compared. We measured 253 coronary arteries in 129 patients. Compared to the control group, the average cQFR of the RIPC group increased significantly after RIPC. Additionally, 23 patients with cardiac syndrome X (IMR > 30) were included in this study. Compared to the control group, IMR and the difference between cQFR and fQFR (cQFR-fQFR) both decreased significantly after receiving RIPC. The application of RIPC can increase coronary blood flow and improve coronary microcirculation function.
Collapse
Affiliation(s)
- Zhen-Zhou Zhao
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China
| | - En Li
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China
| | - Xue-Jie Li
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China
| | - Quan Guo
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China
| | - Qing-Bo Shi
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China
| | - Mu-Wei Li
- Heart Center of Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
53
|
Abstract
Remote ischemic conditioning (RIC) has been investigated as a promising, safe, and well-tolerated nonpharmacological therapy for cardio-cerebrovascular disease over the past 3 decades; variable results have been found when it is used in cerebrovascular versus cardiovascular disease. For patients with cardiovascular disease, milestone studies suggest that the roles of RIC may be limited. Recently, however, 2 large trials investigating RIC in patients with cerebrovascular disease found promising results, which may reignite the field's research prospects after its setbacks in the cardiovascular field. This perspectives article highlights several important clinical trials of RIC in the cardio-cerebrovascular disease and describes the many challenges of RIC in clinical translation. Finally, based on the available evidence, several promising research directions such as chronic RIC, early initiation in target population, improvement of compliance, better understanding of dosing, and identification of specific biomarkers are proposed and should be investigated before RIC can become applied into clinical practice for patient benefit.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China (W.Z.)
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, United Kingdom (D.J.H., D.M.Y.)
- National Heart Research Institute Singapore, National Heart Centre Singapore (D.J.H.)
- Yong Loo Lin School of Medicine, National University Singapore (D.J.H.)
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (D.J.H.)
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University (D.C.H.)
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, United Kingdom (D.J.H., D.M.Y.)
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China (X.J.)
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, China (X.J.)
| |
Collapse
|
54
|
Morley WN, Murrant CL, Burr JF. Ergogenic effect of ischemic preconditioning is not directly conferred to isolated skeletal muscle via blood. Eur J Appl Physiol 2023; 123:1851-1861. [PMID: 37074464 DOI: 10.1007/s00421-023-05197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE Ischemic preconditioning (IPC) in humans has been demonstrated to confer ergogenic benefit to aerobic exercise performance, with an improvement in the response rate when the IPC stimulus is combined with concurrent exercise. Despite potential performance improvements, the nature of the neuronal and humoral mechanisms of conferral and their respective contributions to ergogenic benefit remain unclear. We sought to examine the effects of the humoral component of ischemic preconditioning on skeletal muscle tissue using preconditioned human serum and isolated mouse soleus. METHODS Isolated mouse soleus was electrically stimulated to contract while in human serum preconditioned with either traditional (IPC) or augmented (AUG) ischemic preconditioning compared to control (CON) and exercise (ERG) preconditioning. Force frequency (FF) curves, twitch responses, and a fatigue-recovery protocol were performed on muscles before and after the addition of serum. After preconditioning, human participants performed a 4 km cycling time trial in order to identify responders and non-responders to IPC. RESULTS No differences in indices of contractile function, fatiguability, nor recovery were observed between conditions in mouse soleus muscles. Further, no human participants improved performance in a 4-km cycling time trial in response to traditional nor augmented ischemic preconditioning compared to control or exercise conditions (CON 407.7 ± 41.1 s, IPC 411.6 ± 41.9 s, ERG 408.8 ± 41.4 s, AUG 414.1 ± 41.9 s). CONCLUSIONS Our findings do not support the conferral of ergogenic benefit via a humoral component of IPC at the intracellular level. Ischemic preconditioning may not manifest prominently at submaximal exercise intensities, and augmented ischemic preconditioning may have a hormetic relationship with performance improvements.
Collapse
Affiliation(s)
- William N Morley
- Human Performance & Health Research Laboratory, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jamie F Burr
- Human Performance & Health Research Laboratory, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
55
|
Lucius J, Jensen JO, Tasar RR, Schleusser S, Stang FH, Mailänder P, Kisch T. Acute Microcirculatory Effects of Remote Ischemic Conditioning in Superficial Partial Thickness Burn Wounds. J Burn Care Res 2023; 44:912-917. [PMID: 36326797 DOI: 10.1093/jbcr/irac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Microcirculation is a critical factor in burn wound healing. Remote ischemic conditioning (RIC) has been shown to improve microcirculation in healthy skin and demonstrated ischemic protective effects on heart, kidney, and liver cells. Therefore, we examined microcirculatory effects of RIC in partial thickness burn wounds. The hypothesis of this study is that RIC improves cutaneous microcirculation in partial thickness burn wounds. Twenty patients with partial thickness burn wounds within 48 hours after trauma were included in this study. RIC was performed with an upper arm blood pressure cuff on a healthy upper arm using three ischemia cycles (5 min inflation to 200 mm Hg) followed by 10-minute reperfusion phases. The third and final reperfusion phase lasted 20 minutes. Microcirculation of the remote (lower/upper extremities or torso) burn wound was continuously quantified, using a combined Laser Doppler and white light spectrometry. The capillary blood flow in the burn wounds increased by a maximum of 9.6% after RIC (percentage change from baseline; P < .01). Relative hemoglobin was increased by a maximum of 2.8% (vs. baseline; P < .01), while cutaneous tissue oxygen saturation remained constant (P > .05). RIC improves microcirculation in partial thickness burn wounds by improving blood flow and elevating relative hemoglobin.
Collapse
Affiliation(s)
- Julia Lucius
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Jan-Oluf Jensen
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Raphael R Tasar
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Sophie Schleusser
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Felix H Stang
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Peter Mailänder
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Tobias Kisch
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| |
Collapse
|
56
|
Farkašová F, Kindernay L, Ferko M, Rajtík T, Szobi A, Ravingerová T. Age-Dependent Effects of Remote Preconditioning in Hypertensive Rat Hearts are Associated With Activation of RISK Signaling. Physiol Res 2023; 72:S11-S22. [PMID: 37294114 DOI: 10.33549/physiolres.935019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) represents one of the forms of innate cardioprotection. While being effective in animal models, its application in humans has not been always beneficial, which might be attributed to the presence of various comorbidities, such as hypertension, or being related to the confounding factors, such as patients' sex and age. RIPC has been shown to mediate its cardioprotective effects through the activation of Reperfusion Injury Salvage Kinase (RISK) pathway in healthy animals, however, scarce evidence supports this effect of RIPC in the hearts of spontaneously hypertensive (SHR) rats, in particular, in relationship with aging. The study aimed to investigate the effectiveness of RIPC in male SHR rats of different age and to evaluate the role of RISK pathway in the effect of RIPC on cardiac ischemic tolerance. RIPC was performed using three cycles of inflation/deflation of the pressure cuff placed on the hind limb of anesthetized rats aged three, five and eight months. Subsequently, hearts were excised, Langendorff-perfused and exposed to 30-min global ischemia and 2-h reperfusion. Infarct-sparing and antiarrhythmic effects of RIPC were observed only in three and five months-old animals but not in eight months-old rats. Beneficial effects of RIPC were associated with increased activity of RISK and decreased apoptotic signaling only in three and five months-old animals. In conclusion, RIPC showed cardioprotective effects in SHR rats that were partially age-dependent and might be attributed to the differences in the activation of RISK pathway and various aspects of ischemia/reperfusion injury in aging animals.
Collapse
Affiliation(s)
- Farkašová Farkašová
- Institute for Heart Research, Centre of Experimental Medicine Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
57
|
Ganji N, Biouss G, Sabbatini S, Li B, Lee C, Pierro A. Remote ischemic conditioning in necrotizing enterocolitis. Semin Pediatr Surg 2023; 32:151312. [PMID: 37295298 DOI: 10.1016/j.sempedsurg.2023.151312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating intestinal inflammatory disorder, most prevalent in premature infants, and associated with a high mortality rate that has remained unchanged in the past two decades. NEC is characterized by inflammation, ischemia, and impaired microcirculation in the intestine. Preclinical studies by our group have led to the discovery of remote ischemic conditioning (RIC) as a promising non-invasive intervention in protecting the intestine against ischemia-induced damage during early-stage NEC. RIC involves the administration of brief reversible cycles of ischemia and reperfusion in a limb (similar to taking standard blood pressure measurement) which activate endogenous protective signaling pathways that are conveyed to distant organs such as the intestine. RIC targets the intestinal microcirculation and by improving blood flow to the intestine, reduces the intestinal damage of experimental NEC and prolongs survival. A recent Phase I safety study by our group demonstrated that RIC was safe in preterm infants with NEC. A phase II feasibility randomized controlled trial involving 12 centers in 6 countries is currently underway, to investigate the feasibility of RIC as a treatment for early-stage NEC in preterm neonates. This review provides a brief background on RIC as a therapeutic strategy and summarizes the progression of RIC as a treatment for NEC from preclinical investigation to clinical evaluation.
Collapse
Affiliation(s)
- Niloofar Ganji
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - George Biouss
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Stella Sabbatini
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Bo Li
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Carol Lee
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Agostino Pierro
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON M5G 1×8, Canada.
| |
Collapse
|
58
|
Cheung YF, Li VWY, So EKF, Cheng FWT, Yau JPW, Chiu SY, Wong WHS, Cheuk DKL. Remote Ischemic Conditioning in Pediatric Cancer Patients Receiving Anthracycline Chemotherapy: A Sham-Controlled Single-Blind Randomized Trial. JACC CardioOncol 2023; 5:332-342. [PMID: 37397078 PMCID: PMC10308057 DOI: 10.1016/j.jaccao.2022.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 07/04/2023] Open
Abstract
Background Anthracycline cardiotoxicity is a concern in survivors of childhood cancers. Recent evidence suggests that remote ischemic conditioning (RIC) may offer myocardial protection. Objectives This randomized sham-controlled single-blind study tested the hypothesis that RIC may reduce myocardial injury in pediatric cancer patients receiving anthracycline chemotherapy. Methods We performed a phase 2 sham-controlled single-blind randomized controlled trial to determine the impact of RIC on myocardial injury in pediatric cancer patients receiving anthracycline-based chemotherapy. Patients were randomized to receive RIC (3 cycles of 5-minute inflation of a blood pressure cuff placed over 1 limb to 15 mm Hg above systolic pressure) or sham intervention. The intervention was applied within 60 minutes before initiation of the first dose and before up to 4 cycles of anthracycline therapy. The primary outcome was the plasma high-sensitivity cardiac troponin T (hs-cTnT) level. The secondary outcome measures included echocardiographic indexes of left ventricular systolic and diastolic function and the occurrence of cardiovascular events. Results A total of 68 children 10.9 ± 3.9 years of age were randomized to receive RIC (n = 34) or sham (n = 34) intervention. Plasma levels of hs-cTnT showed a progressive increase across time points in the RIC (P < 0.001) and sham (P < 0.001) groups. At each of the time points, there were no significant differences in hs-cTnT levels or LV tissue Doppler and strain parameters between the 2 groups (all P > 0.05). None of the patients developed heart failure or cardiac arrhythmias. Conclusions RIC did not exhibit cardioprotective effects in childhood cancer patients receiving anthracycline-based chemotherapy. (Remote Ischaemic Preconditioning in Childhood Cancer [RIPC]; NCT03166813).
Collapse
Affiliation(s)
- Yiu-fai Cheung
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Vivian Wing-yi Li
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Edwina Kam-fung So
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Frankie Wai-tsoi Cheng
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Jeffery Ping-wa Yau
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Sau-ying Chiu
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Wilfred Hing-sang Wong
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Daniel Ka-leung Cheuk
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| |
Collapse
|
59
|
Zuo B, Zhu S, Wang G, Li Z. Transcriptome analysis reveals ADAMTS15 is a potential inflammation-related gene in remote ischemic postconditioning. Front Cardiovasc Med 2023; 10:1089151. [PMID: 37234367 PMCID: PMC10206167 DOI: 10.3389/fcvm.2023.1089151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Background Remote ischemic postconditioning (RIPostC) induced by brief episodes of the limb ischemia is a potential therapeutic strategy for myocardial ischemia/reperfusion injury, achieved by reducing cardiomyocyte death, inflammation and so on. The actual mechanisms underlying cardioprotection conferred by RIPostC remain unclear. Exploring gene expression profiles in myocardium at transcriptional level is helpful to deepen the understanding on the cardioprotective mechanisms of RIPostC. This study aims to investigate the effect of RIPostC on gene expressions in rat myocardium using transcriptome sequencing. Methods Rat myocardium samples from the RIPostC group, the control group (myocardial ischemia/reperfusion group) and the sham group were performed transcriptome analysis using RNA sequencing. The levels of cardiac IL-1β, IL-6, IL-10 and TNFα were analyzed by Elisa. The expression levels of candidate genes were verified by qRT-PCR technique. Infarct size was measured by Evans blue and TTC staining. Apoptosis was assessed by TUNEL assays and caspase-3 levels were detected using western blotting. Results RIPostC can markedly decrease infarct size and reduce the levels of cardiac IL-1β, IL-6 and increase the level of cardiac IL-10. This transcriptome analysis showed that 2 genes were up-regulated (Prodh1 and ADAMTS15) and 5 genes (Caspase-6, Claudin-5, Sccpdh, Robo4 and AABR07011951.1) were down-regulated in the RIPostC group. Go annotation analysis showed that Go terms mainly included cellular process, metabolic process, cell part, organelle, catalytic activity and binding. The KEGG annotation analysis of DEGs found only one pathway, amino acid metabolism, was up-regulated. The relative mRNA expression levels of ADAMTS15, Caspase-6, Claudin-5 and Prodh1 were verified by qRT-PCR, which were consistent with the RNA-seq results. In addition, the relative expression of ADAMTS15 was negatively correlated with the level of cardiac IL-1β (r = -0.748, P = 0.005) and positively correlated with the level of cardiac IL-10 (r = 0.698, P = 0.012). A negative correlation statistical trend was found between the relative expression of ADAMTS15 and the level of cardiac IL-6 (r = -0.545, P = 0.067). Conclusions ADAMTS15 may be a potential inflammation-related gene in regulation of cardioprotection conferred by remote ischemic postconditioning and a possible therapeutic target for myocardial ischemia reperfusion injury in the future.
Collapse
Affiliation(s)
- Bo Zuo
- Department of Cardiology, Cardiovascular Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Sha Zhu
- Department of Neurology, Peking University International Hospital, Beijing, China
| | - Guisong Wang
- Department of Cardiology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Zhengpeng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
60
|
Song W, Tang Q, Teng L, Zhang M, Sha S, Li B, Zhu L. Exercise for myocardial ischemia-reperfusion injury: A systematic review and meta-analysis based on preclinical studies. Microvasc Res 2023; 147:104502. [PMID: 36746363 DOI: 10.1016/j.mvr.2023.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 01/01/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The main pathological manifestation of coronary artery disease is myocardial injury caused by ischemia-reperfusion (IR) injury. Regular exercise reduces the risk of death during myocardial IR injury. The aim of this study was to describe the effects of various types of exercise on myocardial IR injury. Four electronic databases PubMed, Web of Science, Embase, and Cochrane Library were comprehensively searched from inception until February 2022, to identify studies relevant to the current review, using the method of combining subject and free words. Finally, 16 articles were included in the meta-analysis. Results showed that exercise training decreases the Myocardial infarct size compared to the control group (SMD = -2.6, 95 % CI [-3.53 to -1.67], P < 0.01); increasing the coronary blood flow (MD = 2.93, 95 % CI [2.41 to 3.44], P < 0.01), left ventricular developed pressure (SMD = 2.28, 95 % CI [0.12 to 4.43], P < 0.05), cardiac output (SMD = 1.22, 95 % CI [0.61 to 1.83], P < 0.01) compared to the control group. According to the descriptive analysis results also showed that exercise training increases the left ventricular ejection fraction, superoxide dismutase, manganese superoxide dismutase, glutathione peroxidase, copper-zinc superoxide dismutase, glutathione peroxidase, and decrease the creatine kinase, creatine kinase-MB, lactate dehydrogenase, Malondialdehyde, cardiac troponins T. Exercise can improve myocardial function after myocardial IR injury; however, further research is needed in combination with specific issues such as exercise mode, intensity, duration, and model issues.
Collapse
Affiliation(s)
- Wenjing Song
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Qiang Tang
- Brain Function and Neurorehabilitation Laboratory, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150000, Heilongjiang, China
| | - Lili Teng
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Mei Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Sha Sha
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Bingyao Li
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, Heilongjiang, China
| | - Luwen Zhu
- Brain Function and Neurorehabilitation Laboratory, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150000, Heilongjiang, China; Hospital of Heilongjiang University of Chinese Medicine, Harbin 15000, China.
| |
Collapse
|
61
|
Wu Y, Zhou S, Li Y, Huang P, Zhong Z, Dong H, Tian H, Jiang S, Xie J, Li P. Remote ischemic preconditioning improves spatial memory and sleep of young males during acute high-altitude exposure. Travel Med Infect Dis 2023; 53:102576. [PMID: 37068619 DOI: 10.1016/j.tmaid.2023.102576] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVE The high-altitude hypoxia environment will cause poor acclimatization in a portion of the population. Remote ischemic preconditioning(RIPC)has been demonstrated to prevent cardiovascular and cerebrovascular diseases under ischemic or hypoxic conditions. However, its role in improving acclimatization and preventing acute mountain sickness (AMS) at high altitude has been undetermined. This study aims to estimate the effect of RIPC on acclimatization of individuals exposed to high altitude. METHODS The project was designed as a randomized controlled trial with 82 healthy young males, who received RIPC training once a day for 7 consecutive days. Then they were transported by aircraft to a high altitude (3680 m) and examined for 6 days. Lake Louise Score(LLS) of AMS, physiological index, self-reported sleep pattern, and Pittsburgh Sleep Quality Index(PSQI)score were applied to assess the acclimatization to the high altitude. Five neurobehavioral tests were conducted to assess cognitive function. RESULTS The result showed that the RIPC group had a significantly lower AMSscore than the control group (2.43 ± 1.58 vs 3.29 ± 2.03, respectively; adjusted mean difference-0.84, 95% confidence interval-1.61 to -0.06, P = 0.036). and there was no significant difference in AMS incidence between the two groups (25.0% vs 28.57%, P = 0.555). The RIPC group performed better than the control group in spatial memory span score (11[9-12] vs 10[7.5-11], P=0.025) and the passing digit (7[6-7.5] vs 6[5-7], P= 0.001). Spatial memory was significantly higher in the high-altitude RIPC group than in the low-altitude RIPC group (P<0.01). And the RIPC group obtained significantly lower self-reported sleep quality score (P = 0.024) and PSQI score (P = 0.031). CONCLUSIONS The RIPC treatment improved spatial memory and sleep quality in subjects exposed to acute hypoxic exposure and this may lead to improved performance at high altitude.
Collapse
Affiliation(s)
- Yu Wu
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Simin Zhou
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Yaling Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Pei Huang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Huaping Dong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Huaijun Tian
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China
| | - Shuai Jiang
- Department of Health, The 12th Integrated Training Base of Army, Chongqing, China
| | - Jiaxin Xie
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China.
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
62
|
Billah M, Naz A, Noor R, Bhindi R, Khachigian LM. Early Growth Response-1: Friend or Foe in the Heart? Heart Lung Circ 2023; 32:e23-e35. [PMID: 37024319 DOI: 10.1016/j.hlc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 04/07/2023]
Abstract
Cardiovascular disease is a major cause of mortality and morbidity worldwide. Early growth response-1 (Egr-1) plays a critical regulatory role in a range of experimental models of cardiovascular diseases. Egr-1 is an immediate-early gene and is upregulated by various stimuli including shear stress, oxygen deprivation, oxidative stress and nutrient deprivation. However, recent research suggests a new, underexplored cardioprotective side of Egr-1. The main purpose of this review is to explore and summarise the dual nature of Egr-1 in cardiovascular pathobiology.
Collapse
Affiliation(s)
- Muntasir Billah
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.
| | - Adiba Naz
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Rashed Noor
- School of Environmental and Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh
| | - Ravinay Bhindi
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
63
|
Zhuang Y, Yu ML, Lu SF. Purinergic signaling in myocardial ischemia-reperfusion injury. Purinergic Signal 2023; 19:229-243. [PMID: 35254594 PMCID: PMC9984618 DOI: 10.1007/s11302-022-09856-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/18/2022] [Indexed: 10/18/2022] Open
Abstract
Purines and their derivatives, extensively distributed in the body, act as a class of extracellular signaling molecules via a rich array of receptors, also known as purinoceptors (P1, P2X, and P2Y). They mediate multiple intracellular signal transduction pathways and participate in various physiological and pathological cell behaviors. Since the function in myocardial ischemia-reperfusion injury (MIRI), this review summarized the involvement of purinergic signal transduction in diversified pathological processes, including energy metabolism disorder, oxidative stress injury, calcium overload, inflammatory immune response, platelet aggregation, coronary vascular dysfunction, and cell necrosis and apoptosis. Moreover, increasing evidence suggests that purinergic signaling also mediates the prevention and treatment of MIRI, such as ischemic conditioning, pharmacological intervention, and some other therapies. In conclusion, this review exhibited that purinergic signaling mediates the complex processes of MIRI which shows its promising application and prospecting in the future.
Collapse
Affiliation(s)
- Yi Zhuang
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, 138 Xian-lin Avenue, Qixia District, Nanjing, 210023, Jiangsu Province, China
| | - Mei-Ling Yu
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, 138 Xian-lin Avenue, Qixia District, Nanjing, 210023, Jiangsu Province, China
| | - Sheng-Feng Lu
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, 138 Xian-lin Avenue, Qixia District, Nanjing, 210023, Jiangsu Province, China. .,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
64
|
Bannell DJ, Montrezol FT, Maxwell JD, Somani YB, Low DA, Thijssen DHJ, Jones H. Impact of handgrip exercise and ischemic preconditioning on local and remote protection against endothelial reperfusion injury in young men. Am J Physiol Regul Integr Comp Physiol 2023; 324:R329-R335. [PMID: 36572551 DOI: 10.1152/ajpregu.00061.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ischemic preconditioning (IPC), cyclical bouts of nonlethal ischemia, provides immediate protection against ischemic injury, which is evident both locally and remotely. Given the similarities in protective effects of exercise with ischemic preconditioning, we examined whether handgrip exercise also offers protection against endothelial ischemia-reperfusion (IR) injury and whether this protection is equally present in the local (exercised) and remote (contralateral, nonexercised) arm. Fifteen healthy males (age, 24 ± 3 yr; body mass index, 25 ± 2 kg/m2) attended the laboratory on three occasions. Bilateral brachial artery flow-mediated dilation (FMD) was examined at rest and after a temporary IR injury in the upper arm. Before the IR injury, in the dominant (local) arm, participants performed (randomized, counterbalanced): 1) 4 × 5 min unilateral handgrip exercise (50% maximal voluntary contraction), 2) 4 × 5 min unilateral IPC (220 mmHg), or 3) 4 × 5 min rest (control). Data were analyzed using repeated-measures general linear models. Allometrically scaled FMD declined after IR in the control condition (4.6 ± 1.3% to 2.2 ± 1.7%, P < 0.001), as well as following handgrip exercise (4.6 ± 1.6% to 3.4 ± 1.9%, P = 0.01), however, was significantly attenuated with IPC (4.5 ± 1.4% to 3.8 ± 3.5%, P = 0.14). There were no differences between the local and remote arm. Our findings reinforce the established protective effects of IPC in young, healthy males and also highlight a novel strategy to protect against IR injury with handgrip exercise, which warrants further study.
Collapse
Affiliation(s)
- Daniel J Bannell
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Joseph D Maxwell
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Yasina B Somani
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - David A Low
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Dick H J Thijssen
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom.,Department of Physiology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helen Jones
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
65
|
Jiang G, Li X, Liu M, Li H, Shen H, liao J, You W, Fang Q, Chen G. Remote ischemic postconditioning ameliorates stroke injury via the SDF-1α/CXCR4 signaling axis in rats. Brain Res Bull 2023; 197:31-41. [PMID: 36990325 DOI: 10.1016/j.brainresbull.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Remote Ischemic Postconditioning (RIPostC) has become a research hotspot due to its protective effect on the brain in clinical studies related to ischemic stroke. The purpose of this study is to investigate the protective effect of RIPostC after ischemic stroke in rats. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the wire embolization method. RIPostC was obtained by inducing temporary ischemia in the hind limbs of rats. First, based on the results of short-term behavioral measures and long-term neurological function experiments, RIPostC was found to have a protective effect on the MCAO/R model and to improve neurological recovery in rats. Compared to the sham group, RIPostC upregulated the expression levels of C-X-C motif chemokine receptor 4(CXCR4) in the brain and stromal cell-derived factor-1(SDF-1α) in peripheral blood. In addition, RIPostC upregulated CXCR4 expression on CD34+ stem cells in peripheral blood in flow cytometric assays. Meanwhile, according to the results of EdU/DCX co-staining and CD31 staining, it was found that the effect of RIPostC on ameliorating brain injury via SDF-1α/CXCR4 signaling axis may be associated with vascular neogenesis. Finally, after inhibiting the SDF-1α/CXCR4 signaling axis using AMD3100(Plerixafor), we found that the neuroprotective effect of RIPostC was diminished. Taken together, RIPostC can improve neurobehavioral damage induced by MCAO/R in rats, and its mechanism may be related to SDF-1α/CXCR4 signaling axis. Therefore, RIPostC can be used as an intervention strategy for stroke. SDF-1α/CXCR4 signaling axis can also be a potential target for intervention.
Collapse
|
66
|
Jang MH, Kim DH, Han JH, Kim J, Kim JH. A Single Bout of Remote Ischemic Preconditioning Suppresses Ischemia-Reperfusion Injury in Asian Obese Young Men. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3915. [PMID: 36900926 PMCID: PMC10002219 DOI: 10.3390/ijerph20053915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Remote ischemic preconditioning (RIPC) has been shown to minimize subsequent ischemia-reperfusion injury (IRI), whereas obesity has been suggested to attenuate the efficacy of RIPC in animal models. The primary objective of this study was to investigate the effect of a single bout of RIPC on the vascular and autonomic response after IRI in young obese men. A total of 16 healthy young men (8 obese and 8 normal weight) underwent two experimental trials: RIPC (three cycles of 5 min ischemia at 180 mmHg + 5 min reperfusion on the left thigh) and SHAM (the same RIPC cycles at resting diastolic pressure) following IRI (20 min ischemia at 180 mmHg + 20 min reperfusion on the right thigh). Heart rate variability (HRV), blood pressure (SBP/DBP), and cutaneous blood flow (CBF) were measured between baseline, post-RIPC/SHAM, and post-IRI. The results showed that RIPC significantly improved the LF/HF ratio (p = 0.027), SBP (p = 0.047), MAP (p = 0.049), CBF (p = 0.001), cutaneous vascular conductance (p = 0.003), vascular resistance (p = 0.001), and sympathetic reactivity (SBP: p = 0.039; MAP: p = 0.084) after IRI. However, obesity neither exaggerated the degree of IRI nor attenuated the conditioning effects on the measured outcomes. In conclusion, a single bout of RIPC is an effective means of suppressing subsequent IRI and obesity, at least in Asian young adult men, does not significantly attenuate the efficacy of RIPC.
Collapse
Affiliation(s)
- Min-Hyeok Jang
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Dae-Hwan Kim
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Jean-Hee Han
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Jahyun Kim
- Department of Kinesiology, California State University Bakersfield, Bakersfield, CA 93311, USA
| | - Jung-Hyun Kim
- Department of Sports Medicine, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
67
|
Pathways for Cardioprotection in Perspective: Focus on Remote Conditioning and Extracellular Vesicles. BIOLOGY 2023; 12:biology12020308. [PMID: 36829584 PMCID: PMC9953525 DOI: 10.3390/biology12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cutting-edge treatments, coronary artery disease (CAD) morbidity and mortality rates remain present at high levels. Therefore, new cardioprotective approaches are crucial to improve the health of patients. To date, experimental investigations of acute ischemia-reperfusion injury (IRI) have generally demonstrated the efficacy of local ischemic preconditioning and postconditioning cardioprotection techniques as well as of remote conditioning. However, application in clinical settings is still highly controversial and debated. Currently, remote ischemic conditioning (RIC) seems to be the most promising method for heart repair. Protective factors are released into the bloodstream, and protection can be transferred within and across species. For a long time, the cross-function and cross-transmission mechanisms of cardioprotection were largely unknown. Recently, it has been shown that small, anuclear, bilayered lipid membrane particles, known as extracellular vesicles (EVs), are the drivers of signal transduction in cardiac IRI and RIC. EVs are related to the pathophysiological processes of cardiovascular diseases (CVDs), according to compelling evidence. In this review, we will first review the current state of knowledge on myocardial IRI and cardioprotective strategies explored over the past 37 years. Second, we will briefly discuss the role of EVs in CVD and the most recent improvements on EVs as prognostic biomarkers, diagnostic, and therapeutic agents. We will discuss how EVs can be used as a new drug delivery mechanism and how they can be employed in cardiac treatment, also from a perspective of overcoming the impasse that results from neglecting confounding factors.
Collapse
|
68
|
Liang F, Liu S, Liu G, Liu H, Wang Q, Song B, Yao L. Remote ischaemic preconditioning versus no remote ischaemic preconditioning for vascular and endovascular surgical procedures. Cochrane Database Syst Rev 2023; 1:CD008472. [PMID: 36645250 PMCID: PMC9841888 DOI: 10.1002/14651858.cd008472.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Despite advances in perioperative care, elective major vascular surgical procedures still carry a significant risk of morbidity and mortality. Remote ischaemic preconditioning (RIPC) is the temporary blocking of blood flow to vascular beds remote from those targeted by surgery. It has the potential to provide local tissue protection from further prolonged periods of ischaemia. However, the efficacy and safety of RIPC in people undergoing major vascular surgery remain unknown. This is an update of a review published in 2011. OBJECTIVES: To assess the benefits and harms of RIPC versus no RIPC in people undergoing elective major vascular and endovascular surgery. SEARCH METHODS The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL databases and the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov to 1 April 2022. SELECTION CRITERIA We included all randomised controlled trials that evaluated the role of RIPC in reducing perioperative mortality and morbidities in people undergoing elective major vascular or endovascular surgery. DATA COLLECTION AND ANALYSIS We collected data on the characteristics of the trial, methodological quality, and the remote ischaemic preconditioning stimulus used. Our primary outcome was perioperative mortality, and secondary outcomes included myocardial infarction, renal impairment, stroke, hospital stay, limb loss, and operating time or total anaesthetic time. We analysed the data using random-effects models. For each outcome, we calculated the risk ratio (RR) or mean difference (MD) with a 95% confidence interval (CI) based on an intention-to-treat analysis. In addition, we used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS We included 14 trials which randomised a total of 1295 participants (age range: 64.5 to 76 years; 84% male; study periods ranged from 2003 to 2019). In general, the included studies were at low to unclear risk of bias for most risk of bias domains. The certainty of evidence of main outcomes was moderate due to imprecision of results, moderate heterogeneity, or possible publication bias. We found that RIPC made no clear difference in perioperative mortality compared with no RIPC (RR 1.41, 95% CI 0.59 to 3.40; I2 = 0%; 10 studies, 965 participants; moderate-certainty evidence). Similarly, we found no clear difference between the two groups for myocardial infarction (RR 0.82, 95% CI 0.49 to 1.40; I2 = 7%; 11 studies, 1001 participants; moderate-certainty evidence), renal impairment (RR 1.07, 95% CI 0.62 to 1.86; I2 = 40%; 12 studies, 1054 participants; moderate-certainty evidence), stroke (RR 0.33, 95% CI 0.04 to 3.15; I2 = 0%; 4 studies, 392 participants; moderate-certainty evidence), limb loss (RR 0.74, 95% CI 0.05 to 10.61; I2 = 32%; 3 studies, 322 participants; low-certainty evidence), hospital stay (MD -0.94 day, 95% CI -1.95 to 0.07; I2 = 17%; 7 studies, 569 participants; moderate-certainty evidence), and operating time or total anaesthetic time (MD 5.76 minutes, 95% CI -3.25 to 14.76; I2 = 44%; 10 studies, 803 participants; moderate-certainty evidence). AUTHORS' CONCLUSIONS: Overall, compared with no RIPC, RIPC probably leads to little or no difference in perioperative mortality, myocardial infarction, renal impairment, stroke, hospital stay, and operating time, and may lead to little or no difference in limb loss in people undergoing elective major vascular and endovascular surgery. Adequately powered and designed randomised studies are needed, focusing in particular on the clinical endpoints and patient-centred outcomes.
Collapse
Affiliation(s)
- Fuxiang Liang
- Department of Cardiovascular Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Thoracic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shidong Liu
- Department of Cardiovascular Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Guangzu Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Hongxu Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qi Wang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Bing Song
- Department of Cardiovascular Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Liang Yao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| |
Collapse
|
69
|
Protective Efficiency Comparison of Direct and Remote Ischemic Preconditioning on Ischemia Reperfusion Injury of the Liver in Patients Undergoing Partial Hepatectomy. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2763320. [PMID: 36647546 PMCID: PMC9840547 DOI: 10.1155/2023/2763320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/08/2023]
Abstract
Objective Ischemia reperfusion injury greatly damages liver function and deteriorates the prognosis of patients undergoing partial hepatectomy. This study is to compare the protective efficiency of direct and remote ischemic preconditioning (DIPC and RIPC) on ischemia reperfusion injury of the liver in patients undergoing partial hepatectomy. Methods 90 patients scheduled for partial hepatectomy were enrolled and randomly divided into control (n = 30), DIPC (n = 30), and RIPC (n = 30) groups. Baseline and surgery characteristics were collected, and ischemic preconditioning methods were carried out. Intraoperative hemodynamics, liver function and liver reserve capacity, oxidative stress, and inflammatory responses were measured, and the incidence of postoperative adverse reactions was calculated finally. Results 10 patients were excluded from the study, and finally, the eligible patients in three groups were 27, 28, and 25, separately. No significant differences were observed in baseline and surgery characteristics among the three groups. SBP and DBP were significantly higher after hepatic portal vein occlusion while they were significantly lower after surgery in the DIPC and RIPC groups compared with that in the control group, SBP and DBP were of great fluctuation at different time points in the control group while they showed much more stabilization in the DIPC and RIPC groups. ALT, AST, and TBIL were significantly decreased on days 1, 3, and 5 after surgery, and ICG R15 was significantly decreased while ICG K value and EHBF were significantly increased on day 1 after surgery in the DIPC and RIPC groups compared with that in the control group. Moreover, antioxidant enzyme SOD was increased, and inflammatory factors TNF-α and IL-1β were decreased 24 hours after surgery in the DIPC and RIPC groups compared with that in the control group. DIPC and RIPC also decreased hospital stays and the incidence of nausea, vomiting, and hypertension. Conclusion DIPC and RIPC both alleviated ischemia reperfusion injury of the liver and reduced perioperative complications with similar protective efficiency in patients undergoing partial hepatectomy.
Collapse
|
70
|
Nair R, Sarmiento R, Sheriff A, Shuaib A, Buck B, Gauthier M, Mushahwar V, Ferguson-Pell M, Kate M. Assessment of remote ischemic conditioning delivery with optical sensor in acute ischemic stroke: Randomised clinical trial protocol. PLoS One 2023; 18:e0284879. [PMID: 37141237 PMCID: PMC10159200 DOI: 10.1371/journal.pone.0284879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Remote ischemic conditioning (RIC) is delivered by a blood pressure cuff over the limb, raising pressure 50 mmHg above the systolic blood pressure, to a maximum of 200 mmHg. The cuff is inflated for five minutes and then deflated for five minutes in a sequential ischemia-reperfusion cycle 4-5 times per session. Elevated pressure in the limb may be associated with discomfort and consequently reduced compliance. Continuous assessment of relative blood concentration and oxygenation with a tissue reflectance spectroscopy (a type of optical sensor device) placed over the forearm during the RIC sessions of the arm will allow us to observe the effect of inflation and deflation of the pressure cuff. We hypothesize, in patients with acute ischemic stroke (AIS) and small vessel disease, RIC delivered together with a tissue reflectance sensor will be feasible. METHODS The study is a prospective, single-center, randomized control trial testing the feasibility of the device. Patients with AIS within 7 days from symptoms onset; who also have small vessel disease will be randomized 2:1 to intervention or sham control arms. All patients randomized to the intervention arm will receive 5 cycles of ischemia/reperfusion in the non-paralyzed upper limb with a tissue reflectance sensor and patients in the sham control arm will receive pressure by keeping the cuff pressure at 30 mmHg for 5 minutes. A total of 51 patients will be randomized, 17 in the sham control arm and 34 in the intervention arm. The primary outcome measure will be the feasibility of RIC delivered for 7 days or at the time of discharge. The secondary device-related outcome measures are fidelity of RIC delivery and the completion rate of intervention. The secondary clinical outcome includes a modified Rankin scale, recurrent stroke and cognitive assessment at 90 days. DISCUSSION RIC delivery together with a tissue reflectance sensor will allow insight into the blood concentration and blood oxygenation changes in the skin. This will allow individualized delivery of the RIC and improve compliance. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05408130, June 7, 2022.
Collapse
Affiliation(s)
- Radhika Nair
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Sarmiento
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Asif Sheriff
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ashfaq Shuaib
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Brian Buck
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Michel Gauthier
- Department of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Vivian Mushahwar
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Ferguson-Pell
- Department of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mahesh Kate
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
71
|
Landman TRJ, Uthman L, Hofmans IAH, Schoon Y, de Leeuw FE, Thijssen DHJ. Attenuated inflammatory profile following single and repeated handgrip exercise and remote ischemic preconditioning in patients with cerebral small vessel disease. Front Physiol 2022; 13:1026711. [PMID: 36479354 PMCID: PMC9719941 DOI: 10.3389/fphys.2022.1026711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/10/2022] [Indexed: 01/26/2024] Open
Abstract
Background: Similar to remote ischemic preconditioning bouts of exercise may possess immediate protective effects against ischemia-reperfusion injury. However, underlying mechanisms are largely unknown. This study compared the impact of single and repeated handgrip exercise versus remote ischemic preconditioning on inflammatory biomarkers in patients with cerebral small vessel disease (cSVD). Methods: In this crossover study, 14 patients with cSVD were included. All participants performed 4-day of handgrip exercise (4x5-minutes at 30% of maximal handgrip strength) and remote ischemic preconditioning (rIPC; 4x5-minutes cuff occlusion around the upper arm) twice daily. Patients were randomized to start with either handgrip exercise or rIPC and the two interventions were separated by > 9 days. Venous blood was drawn before and after one intervention, and after 4-day of repeated exposure. We performed a targeted proteomics on inflammation markers in all blood samples. Results: Targeted proteomics revealed significant changes in 9 out of 92 inflammatory proteins, with four proteins demonstrating comparable time-dependent effects between handgrip and rIPC. After adjustment for multiple testing we found significant decreases in FMS-related tyrosine kinase-3 ligand (Flt3L; 16.2% reduction; adjusted p-value: 0.029) and fibroblast growth factor-21 (FGF-21; 32.8% reduction adjusted p-value: 0.029) after single exposure. This effect did not differ between handgrip and rIPC. The decline in Flt3L after repeated handgrip and rIPC remained significant (adjusted p-value = 0.029), with no difference between rIPC and handgrip (adjusted p-value = 0.98). Conclusion: Single handgrip exercise and rIPC immediately attenuated plasma Flt3L and FGF-21, with the reduction of Flt3L remaining present after 4-day of repeated intervention, in people with cSVD. This suggests that single and repeated handgrip exercise and rIPC decrease comparable inflammatory biomarkers, which suggests activation of shared (anti-)inflammatory pathways following both stimuli. Additional studies will be needed to exclude the possibility that this activation is merely a time effect.
Collapse
Affiliation(s)
- Thijs R. J. Landman
- Departmenet of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Centre, Gelderland, Netherlands
| | - Laween Uthman
- Departmenet of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Centre, Gelderland, Netherlands
| | - Inge A. H. Hofmans
- Departmenet of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Centre, Gelderland, Netherlands
| | - Yvonne Schoon
- Departmenet of Geriatric Medicine, Radboud Institute for Health Sciences, Radboud University Medical Centre, Gelderland, Netherlands
| | - Frank-Erik de Leeuw
- Center for Cognitive Neuroscience, Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Gelderland, Netherlands
| | - Dick H. J. Thijssen
- Departmenet of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Centre, Gelderland, Netherlands
| |
Collapse
|
72
|
Cerebral Ischemia/Reperfusion Injury and Pharmacologic Preconditioning as a Means to Reduce Stroke-induced Inflammation and Damage. Neurochem Res 2022; 47:3598-3614. [DOI: 10.1007/s11064-022-03789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
73
|
Eren F, Yilmaz SE. Neuroprotective approach in acute ischemic stroke: A systematic review of clinical and experimental studies. Brain Circ 2022; 8:172-179. [PMID: 37181847 PMCID: PMC10167855 DOI: 10.4103/bc.bc_52_22] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a disease with worldwide economic and social negative effects. It is a serious disease with high disability and mortality. Ionic imbalance, excitotoxicity, oxidative stress, and inflammation are induced during and after ischemic stroke. Cellular dysfunction, apoptosis, and necrosis are activated directly or indirectly mechanisms. The studies about neuroprotection in neurodegenerative diseases have increased in recent years. Data about the mechanisms of progressive molecular improvement in the brain tissue are increasing in acute ischemic stroke. Based on these data, preclinical and clinical studies on new neuroprotective treatments are being designed. An effective neuroprotective strategy can prolong the indication period of recanalization treatments in the acute stage of ischemic stroke. In addition, it can reduce neuronal necrosis and protect the brain against ischemia-related reperfusion injury. The current review has evaluated the recent clinical and experimental studies. The molecular mechanism of each of the neuroprotective strategies is also summarized. This review may help develop future strategies for combination treatment to protect the cerebral tissue from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Fettah Eren
- Department of Neurology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Sueda Ecem Yilmaz
- Department of Neurology, School of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
74
|
Does Disruption of Optic Atrophy-1 (OPA1) Contribute to Cell Death in HL-1 Cardiomyocytes Subjected to Lethal Ischemia-Reperfusion Injury? Cells 2022; 11:cells11193083. [PMID: 36231044 PMCID: PMC9564372 DOI: 10.3390/cells11193083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Disruption of mitochondrial structure/function is well-recognized to be a determinant of cell death in cardiomyocytes subjected to lethal episodes of ischemia-reperfusion (IR). However, the precise mitochondrial event(s) that precipitate lethal IR injury remain incompletely resolved. Using the in vitro HL-1 cardiomyocyte model, our aims were to establish whether: (1) proteolytic processing of optic atrophy protein-1 (OPA1), the inner mitochondrial membrane protein responsible for maintaining cristae junction integrity, plays a causal, mechanistic role in determining cardiomyocyte fate in cells subjected to lethal IR injury; and (2) preservation of OPA1 may contribute to the well-documented cardioprotection achieved with ischemic preconditioning (IPC) and remote ischemic conditioning. We report that HL-1 cells subjected to 2.5 h of simulated ischemia displayed increased activity of OMA1 (the metalloprotease responsible for proteolytic processing of OPA1) during the initial 45 min following reoxygenation. This was accompanied by processing of mitochondrial OPA1 (i.e., cleavage to yield short-OPA1 peptides) and release of short-OPA1 into the cytosol. However, siRNA-mediated knockdown of OPA1 content did not exacerbate lethal IR injury, and did not attenuate the cardioprotection seen with IPC and a remote preconditioning stimulus, achieved by transfer of ‘reperfusate’ medium (TRM-IPC) in this cell culture model. Taken together, our results do not support the concept that maintenance of OPA1 integrity plays a mechanistic role in determining cell fate in the HL-1 cardiomyocyte model of lethal IR injury, or that preservation of OPA1 underlies the cardioprotection seen with ischemic conditioning.
Collapse
|
75
|
Jiang W, Yin Y, Gu X, Zhang Z, Ma H. Opportunities and challenges of pain-related myocardial ischemia-reperfusion injury. Front Physiol 2022; 13:900664. [PMID: 36117689 PMCID: PMC9481353 DOI: 10.3389/fphys.2022.900664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Pain is one of the most serious problems plaguing human health today. Pain is not an independent pathophysiological condition and is associated with a high impact on elevated disability and organ dysfunction. Several lines of evidence suggested the associations of pain with cardiovascular diseases, especially myocardial ischemia-reperfusion (I/R) injury, while the role of pain in I/R injury and related mechanisms are not yet comprehensively assessed. In this review, we attempted to explore the role of pain in myocardial I/R injury, and we concluded that acute pain protects myocardial ischemia-reperfusion injury and chronic pain aggravates cardiac ischemia-reperfusion injury. In addition, the construction of different pain models and animal models commonly used to study the role of pain in myocardial I/R injury were discussed in detail, and the potential mechanism of pain-related myocardial I/R injury was summarized. Finally, the future research direction was prospected. That is, the remote regulation of pain to cardiac function requires peripheral pain signals to be transmitted from the peripheral to the cardiac autonomic nervous system, which then affects autonomic innervation during cardiac ischemia-reperfusion injury and finally affects the cardiac function.
Collapse
Affiliation(s)
- Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Zihui Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Zihui Zhang, ; Heng Ma,
| | - Heng Ma
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zihui Zhang, ; Heng Ma,
| |
Collapse
|
76
|
Bell RM, Basalay M, Bøtker HE, Beikoghli Kalkhoran S, Carr RD, Cunningham J, Davidson SM, England TJ, Giesz S, Ghosh AK, Golforoush P, Gourine AV, Hausenloy DJ, Heusch G, Ibanez B, Kleinbongard P, Lecour S, Lukhna K, Ntsekhe M, Ovize M, Salama AD, Vilahur G, Walker JM, Yellon DM. Remote ischaemic conditioning: defining critical criteria for success-report from the 11th Hatter Cardiovascular Workshop. Basic Res Cardiol 2022; 117:39. [PMID: 35970954 PMCID: PMC9377667 DOI: 10.1007/s00395-022-00947-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/31/2023]
Abstract
The Hatter Cardiovascular Institute biennial workshop, originally scheduled for April 2020 but postponed for 2 years due to the Covid pandemic, was organised to debate and discuss the future of Remote Ischaemic Conditioning (RIC). This evolved from the large multicentre CONDI-2-ERIC-PPCI outcome study which demonstrated no additional benefit when using RIC in the setting of ST-elevation myocardial infarction (STEMI). The workshop discussed how conditioning has led to a significant and fundamental understanding of the mechanisms preventing cell death following ischaemia and reperfusion, and the key target cyto-protective pathways recruited by protective interventions, such as RIC. However, the obvious need to translate this protection to the clinical setting has not materialised largely due to the disconnect between preclinical and clinical studies. Discussion points included how to adapt preclinical animal studies to mirror the patient presenting with an acute myocardial infarction, as well as how to refine patient selection in clinical studies to account for co-morbidities and ongoing therapy. These latter scenarios can modify cytoprotective signalling and need to be taken into account to allow for a more robust outcome when powered appropriately. The workshop also discussed the potential for RIC in other disease settings including ischaemic stroke, cardio-oncology and COVID-19. The workshop, therefore, put forward specific classifications which could help identify so-called responders vs. non-responders in both the preclinical and clinical settings.
Collapse
Affiliation(s)
- R M Bell
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - M Basalay
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - H E Bøtker
- Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - S Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - R D Carr
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | | | - S M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - T J England
- Stroke, Division of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - S Giesz
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - A K Ghosh
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - P Golforoush
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - D J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- CVMD, Duke-NUS, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - G Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg, Germany
| | - B Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital & CIBERCV, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - P Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg, Germany
| | - S Lecour
- University of Cape Town, Cape Town, South Africa
| | - K Lukhna
- University of Cape Town, Cape Town, South Africa
| | - M Ntsekhe
- University of Cape Town, Cape Town, South Africa
| | - M Ovize
- INSERM U1060, CarMeN Laboratory, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, F-69500, Bron, France
| | | | - G Vilahur
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, CIBERCV, Barcelona, Spain
| | - J M Walker
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - D M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
77
|
Ischemic limb preconditioning-induced anti-arrhythmic effect in reperfusion-induced myocardial injury: is it mediated by the RISK or SAFE pathway? Pflugers Arch 2022; 474:979-991. [PMID: 35695933 DOI: 10.1007/s00424-022-02716-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
The mechanism for limb ischemic precondition (RLIPC)-induced suppression of reperfusion arrhythmia remains unknown. The purpose of this study was to examine the roles of the pro-survival reperfusion injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways in this RLIPC-mediated antiarrhythmic activity. Male Sprague Dawley rats were assigned to sham-operated, control, or RLIPC groups. All rats except for the sham rats had 5 min of left main coronary artery occlusion with another 20 min of reperfusion. RLIPC was initiated by four cycles of limb ischemia (5 min) and reperfusion (5 min) on the bilateral femoral arteries. Hearts in every group were taken for protein phosphorylation analysis. RLIPC ameliorated reperfusion-induced arrhythmogenesis and reduced the incidence of sudden cardiac death during the entire 20-min reperfusion period (66.7% of control rats had SCD vs. only 16.7% of RLIPC-treated rats). RLIPC enhances ventricular ERK1/2 phosphorylation after reperfusion. RLIPC-induced antiarrhythmic action and ERK1/2 phosphorylation are abolished in the presence of the ERK1/2 inhibitor U0126. Limb ischemic preconditioning protects the heart against myocardial reperfusion injury-induced lethal arrhythmia. These beneficial effects may involve the activation of ERK1/2 in the RISK signaling pathway.
Collapse
|
78
|
Briguori C, Donahue M, D'Amore C. Renal Insufficiency and the Impact of Contrast Agents. Interv Cardiol 2022. [DOI: 10.1002/9781119697367.ch28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
79
|
Piccoli M, Coviello S, Canali ME, Rota P, La Rocca P, Cirillo F, Lavota I, Tarantino A, Ciconte G, Pappone C, Ghiroldi A, Anastasia L. Neu3 Sialidase Activates the RISK Cardioprotective Signaling Pathway during Ischemia and Reperfusion Injury (IRI). Int J Mol Sci 2022; 23:ijms23116090. [PMID: 35682772 PMCID: PMC9181429 DOI: 10.3390/ijms23116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Coronary reperfusion strategies are life-saving approaches to restore blood flow to cardiac tissue after acute myocardial infarction (AMI). However, the sudden restoration of normal blood flow leads to ischemia and reperfusion injury (IRI), which results in cardiomyoblast death, irreversible tissue degeneration, and heart failure. The molecular mechanism of IRI is not fully understood, and there are no effective cardioprotective strategies to prevent it. In this study, we show that activation of sialidase-3, a glycohydrolytic enzyme that cleaves sialic acid residues from glycoconjugates, is cardioprotective by triggering RISK pro-survival signaling pathways. We found that overexpression of Neu3 significantly increased cardiomyoblast resistance to IRI through activation of HIF-1α and Akt/Erk signaling pathways. This raises the possibility of using Sialidase-3 activation as a cardioprotective reperfusion strategy after myocardial infarction.
Collapse
Affiliation(s)
- Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Simona Coviello
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Maria Elena Canali
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
| | - Paola Rota
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Mangiagalli 31, 20097 Milan, Italy
| | - Paolo La Rocca
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20097 Milan, Italy
| | - Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Ivana Lavota
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
| | - Giuseppe Ciconte
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
| | - Carlo Pappone
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Correspondence: (A.G.); (L.A.); Tel.: +39-02-2643-7746 (A.G.); +39-02-2643-7756 (L.A.)
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy; (M.P.); (S.C.); (M.E.C.); (F.C.); (I.L.); (A.T.)
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy; (P.R.); (P.L.R.); (G.C.); (C.P.)
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20097 Milan, Italy
- Correspondence: (A.G.); (L.A.); Tel.: +39-02-2643-7746 (A.G.); +39-02-2643-7756 (L.A.)
| |
Collapse
|
80
|
Huang D, Chen C, Zuo Y, Du L, Liu T, Abbott GW, Hu Z. Protective effect of remote liver ischemic postconditioning on pulmonary ischemia and reperfusion injury in diabetic and non-diabetic rats. PLoS One 2022; 17:e0268571. [PMID: 35617238 PMCID: PMC9135201 DOI: 10.1371/journal.pone.0268571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Pulmonary ischemia and reperfusion (I/R) injury occurs in many clinical conditions and causes severe damage to the lungs. Diabetes mellitus (DM) predisposes to pulmonary I/R injury. We previously found that remote liver ischemia preconditioning protected lungs against pulmonary I/R injury. The aim of the present study was to investigate whether remote liver ischemic postconditioning (RLIPost) attenuates pulmonary damage induced by I/R injury in non-diabetic or diabetic rats. Male Sprague-Dawley rats were assigned into non-diabetic and diabetic groups. All rats except for the sham were exposed to 45 min of left hilum occlusion followed by 2 h of reperfusion. RLIPost was conducted at the onset of pulmonary reperfusion by four cycles of 5 min of liver ischemia and reperfusion. Lung injury was assessed by the wet/dry weight ratio, pulmonary oxygenation, histopathological changes, apoptosis and the expression of inflammatory cytokines. Reperfusion-associated protein phosphorylation states were determined. RLIPost offered strong pulmonary-protection in both non-diabetic and diabetic rats, as reflected in reduced water content and pulmonary structural damage, recovery of lung function, inhibition of apoptosis and inflammation after ischemia-reperfusion. RLIPost induced the activation of pulmonary STAT-3, a key component in the SAFE pathway, but not activation of the proteins in the RISK pathway, in non-diabetic rats. In contrast, RLIPost-induced pulmonary protection in diabetic lungs was independent of SAFE or RISK pathway activation. These results demonstrate that RLIPost exerts pulmonary protection against I/R-induced lung injury in non-diabetic and diabetic rats. The underlying mechanism for protection may be different in non-diabetic (STAT-3 dependent) versus diabetic (STAT-3 independent) rats.
Collapse
Affiliation(s)
- Dou Huang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changwei Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, United States of America
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
81
|
Lang JA, Kim J. Remote ischaemic preconditioning - translating cardiovascular benefits to humans. J Physiol 2022; 600:3053-3067. [PMID: 35596644 PMCID: PMC9327506 DOI: 10.1113/jp282568] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
Remote ischaemic preconditioning (RIPC), induced by intermittent periods of limb ischaemia and reperfusion, confers cardiac and vascular protection from subsequent ischaemia–reperfusion (IR) injury. Early animal studies reliably demonstrate that RIPC attenuated infarct size and preserved cardiac tissue. However, translating these adaptations to clinical practice in humans has been challenging. Large clinical studies have found inconsistent results with respect to RIPC eliciting IR injury protection or improving clinical outcomes. Follow‐up studies have implicated several factors that potentially affect the efficacy of RIPC in humans such as age, fitness, frequency, disease state and interactions with medications. Thus, realizing the clinical potential for RIPC may require a human experimental model where confounding factors are more effectively controlled and underlying mechanisms can be further elucidated. In this review, we highlight recent experimental findings in the peripheral circulation that have added valuable insight on the mechanisms and clinical benefit of RIPC in humans. Central to this discussion is the critical role of timing (i.e. immediate vs. delayed effects following a single bout of RIPC) and the frequency of RIPC. Limited evidence in humans has demonstrated that repeated bouts of RIPC over several days uniquely improves vascular function beyond that observed with a single bout alone. Since changes in resistance vessel and microvascular function often precede symptoms and diagnosis of cardiovascular disease, repeated bouts of RIPC may be promising as a preclinical intervention to prevent or delay cardiovascular disease progression.
![]()
Collapse
Affiliation(s)
- James A Lang
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Jahyun Kim
- Department of Kinesiology, California State University Bakersfield, Bakersfield, CA, USA
| |
Collapse
|
82
|
Min SH, Choe SH, Kim WS, Ahn SH, Cho YJ. Effects of ischemic conditioning on head and neck free flap oxygenation: a randomized controlled trial. Sci Rep 2022; 12:8130. [PMID: 35581399 PMCID: PMC9114019 DOI: 10.1038/s41598-022-12374-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Flap failure after microvascular reconstructive surgery is a rare but devastating complication caused by reperfusion injury and tissue hypoperfusion. Remote ischemic conditioning (RIC) provides protection against ischemia/reperfusion injury and reduces tissue infarction. We hypothesized that RIC would enhance flap oxygenation and exert organ-protective effects during head and neck free flap reconstructive surgery. Adult patients undergoing free flap transfer surgery for head and neck cancer were randomized to receive either RIC or sham-RIC during surgery. RIC consisted of four cycles of 5-min ischemia and 5-min reperfusion applied to the upper or lower extremity. The primary endpoint, tissue oxygen saturation of the flap, was measured by near-infrared spectroscopy on the first postoperative day. Organ-protective effects of RIC were evaluated with infarct size of rat hearts perfused with plasma dialysate from patients received RIC or sham-RIC. Between April 2018 and July 2019, 50 patients were randomized (each n = 25) and 46 were analyzed in the RIC (n = 23) or sham-RIC (n = 23) groups. Tissue oxygen saturation of the flap was similar between the groups (85 ± 12% vs 83 ± 9% in the RIC vs sham-RIC groups; P = 0.471). Myocardial infarct size after treatment of plasma dialysate was significantly reduced in the RIC group (44 ± 7% to 26 ± 6%; P = 0.018) compared to the sham-RIC group (42 ± 6% to 37 ± 7%; P = 0.388). RIC did not improve tissue oxygenation of the transferred free flap in head and neck cancer reconstructive surgery. However, there was evidence of organ-protective effects of RIC in experimental models. Trial registration: Registry number of ClinicalTrials.gov: NCT03474952.
Collapse
Affiliation(s)
- Se-Hee Min
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul, 06973, South Korea
| | - Suk Hyung Choe
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Won Shik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Jeil ENT Clinic, 23, Nonhyeon-ro 131-gil, Gangnam-gu, Seoul, 06045, South Korea
| | - Soon-Hyun Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Youn Joung Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
83
|
An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells 2022; 11:cells11071165. [PMID: 35406729 PMCID: PMC8998015 DOI: 10.3390/cells11071165] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in western countries. Among cardiovascular diseases, myocardial infarction represents a life-threatening condition predisposing to the development of heart failure. In recent decades, much effort has been invested in studying the molecular mechanisms underlying the development and progression of ischemia/reperfusion (I/R) injury and post-ischemic cardiac remodeling. These mechanisms include metabolic alterations, ROS overproduction, inflammation, autophagy deregulation and mitochondrial dysfunction. This review article discusses the most recent evidence regarding the molecular basis of myocardial ischemic injury and the new potential therapeutic interventions for boosting cardioprotection and attenuating cardiac remodeling.
Collapse
|
84
|
The Antioxidant Selenoprotein T Mimetic, PSELT, Induces Preconditioning-like Myocardial Protection by Relieving Endoplasmic-Reticulum Stress. Antioxidants (Basel) 2022; 11:antiox11030571. [PMID: 35326221 PMCID: PMC8944960 DOI: 10.3390/antiox11030571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress and endoplasmic reticulum stress (ERS) are strictly involved in myocardial ischemia/reperfusion (MI/R). Selenoprotein T (SELENOT), a vital thioredoxin-like selenoprotein, is crucial for ER homeostasis and cardiomyocyte differentiation and protection, likely acting as a redox-sensing protein during MI/R. Here, we designed a small peptide (PSELT), encompassing the redox site of SELENOT, and investigated whether its pre-conditioning cardioprotective effect resulted from modulating ERS during I/R. The Langendorff rat heart model was employed for hemodynamic analysis, while mechanistic studies were performed in perfused hearts and H9c2 cardiomyoblasts. PSELT improved the post-ischemic contractile recovery, reducing infarct size and LDH release with and without the ERS inducer tunicamycin (TM). Mechanistically, I/R and TM upregulated SELENOT expression, which was further enhanced by PSELT. PSELT also prevented the expression of the ERS markers CHOP and ATF6, reduced cardiac lipid peroxidation and protein oxidation, and increased SOD and catalase activities. An inert PSELT (I-PSELT) lacking selenocysteine was ineffective. In H9c2 cells, H2O2 decreased cell viability and SELENOT expression, while PSELT rescued protein levels protecting against cell death. In SELENOT-deficient H9c2 cells, H2O2 exacerbated cell death, that was partially mitigated by PSELT. Microscopy analysis revealed that a fluorescent form of PSELT was internalized into cardiomyocytes with a perinuclear distribution. Conclusions: The cell-permeable PSELT is able to induce pharmacological preconditioning cardioprotection by mitigating ERS and oxidative stress, and by regulating endogenous SELENOT.
Collapse
|
85
|
Cho YJ, Jung DE, Nam K, Bae J, Lee S, Jeon Y. Effects of transcutaneous electrical nerve stimulation on myocardial protection in patients undergoing aortic valve replacement: a randomized clinical trial. BMC Anesthesiol 2022; 22:68. [PMID: 35264104 PMCID: PMC8905743 DOI: 10.1186/s12871-022-01611-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cardiopulmonary bypass-related myocardial ischemia-reperfusion injury is a major contributor to postoperative morbidity. Although transcutaneous electrical nerve stimulation (TENS) has been found to have cardioprotective effects in animal studies and healthy volunteers, its effects on cardiac surgery under cardiopulmonary bypass patients have not been evaluated. We investigated the effects of TENS on myocardial protection in patients undergoing aortic valve replacement surgery using cardiopulmonary bypass. Methods Thirty patients were randomized to receive TENS or sham in three different anesthetic states – pre-anesthesia, sevoflurane, or propofol (each n = 5). TENS was applied with a pulse width of 385 μs and a frequency of 10 Hz using two surface electrodes at the upper arm for 30 min. Sham treatment was provided without stimulation. The primary outcome was the difference in myocardial infarct size following ischemia-reperfusion injury in rat hearts perfused with pre- and post-TENS plasma dialysate obtained from the patients using Langendorff perfusion system. The cardioprotective effects of TENS were determined by assessing reduction in infarct size following treatment. Results There were no differences in myocardial infarct size between pre- and post-treatment in any group (41.4 ± 4.3% vs. 36.7 ± 5.3%, 39.8 ± 7.3% vs. 27.8 ± 12.0%, and 41.6 ± 2.2% vs. 37.8 ± 7.6%; p = 0.080, 0.152, and 0.353 in the pre-anesthesia, sevoflurane, and propofol groups, respectively). Conclusions In our study, TENS did not show a cardioprotective effect in patients undergoing aortic valve replacement surgery. Trial registration This study was registered at clinicaltrials.gov (NCT03859115, on March 1, 2019). Supplementary Information The online version contains supplementary material available at 10.1186/s12871-022-01611-x.
Collapse
Affiliation(s)
- Youn Joung Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Dhong-Eun Jung
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Karam Nam
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jinyoung Bae
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seohee Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yunseok Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
86
|
Thijssen DHJ, Uthman L, Somani Y, van Royen N. Short-term exercise-induced protection of cardiovascular function and health: why and how fast does the heart benefit from exercise? J Physiol 2022; 600:1339-1355. [PMID: 35239189 PMCID: PMC9311195 DOI: 10.1113/jp282000#support-information-section] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/10/2021] [Indexed: 05/28/2023] Open
Abstract
Regular exercise training has potent and powerful protective effects against the development of cardiovascular disease. These cardioprotective effects of regular exercise training are partly explained through the effects of exercise on traditional cardiovascular risk factors and improvement in cardiac and vascular health, which take several weeks to months to develop. This review focuses on the observation that single bouts of exercise may also possess an underrecognized, clinically useful form of immediate cardioprotection. Studies, performed in both animals and humans, demonstrate that single or short-term exercise-induced protection (SEP) attenuates the magnitude of cardiac and/or vascular damage in response to prolonged ischaemia and reperfusion injury. This review highlights preclinical evidence supporting the hypothesis that SEP activates multiple pathways to confer immediate protection against ischaemic events, reduce the severity of potentially lethal ischaemic myocardial injury, and therefore act as a physiological first line of defence against injury. Given the fact that the extent of SEP could be modulated by exercise-related and subject-related factors, it is important to recognize and consider these factors to optimize future clinical implications of SEP. This review also summarizes potential effector signalling pathways (i.e. communication between exercising muscles to vascular/cardiac tissue) and intracellular pathways (i.e. reducing tissue damage) that ultimately confer protection against cardiac and vascular injury. Finally, we discuss potential future directions for designing adequate human and animal studies that will support developing effective SEP strategies for the (multi-)diseased and aged individual. KEY POINTS: Single or short-term exercise-induced protection (SEP) attenuates the magnitude of cardiac and/or vascular damage in response to prolonged ischaemia and reperfusion injury (IR injury). SEP activates multiple pathways to confer cardiac protection, which develops remotely at the site of the activated muscle by release of circulating molecules, which transfer towards activation of intramyocardial signalling that promotes cell survival during episodes of IR injury. SEP represents an attractive intervention in aged individuals and in those with co-morbidities. The immediate protection, low cost and simplicity to increase the 'dose' of SEP offers unique opportunities in the clinical applications of SEP.
Collapse
Affiliation(s)
- Dick H. J. Thijssen
- Radboud Institute for Health SciencesDepartments of PhysiologyNijmegenThe Netherlands
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLeicesterUK
| | - Laween Uthman
- Radboud Institute for Health SciencesDepartments of PhysiologyNijmegenThe Netherlands
- CardiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Yasina Somani
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLeicesterUK
| | - Niels van Royen
- CardiologyRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
87
|
Holcombe J, Weavers H. The role of preconditioning in the development of resilience: mechanistic insights. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
88
|
Synergetic protective effect of remote ischemic preconditioning and prolyl 4‑hydroxylase inhibition in ischemic cardiac injury. Mol Med Rep 2022; 25:80. [PMID: 35029283 PMCID: PMC8778658 DOI: 10.3892/mmr.2022.12596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
It has been reported that hypoxia-inducible factor 1α (HIF-1α) serves a key role in the protective effect of remote ischemic preconditioning (RIP) in ischemia/reperfusion (I/R)-induced cardiac injury. Moreover, inhibition of prolyl 4-hydroxylase (PHD), an enzyme responsible for HIF-1α degradation, prevents I/R-induced cardiac injury. However, whether their protective effects are synergetic remains to be elucidated. The present study aimed to investigate the protective effect of RIP, PHD inhibition using dimethyloxalylglycine (DMOG) and their combination on I/R-induced cardiac injury. Rabbits were randomly divided into seven groups: i) Sham; ii) I/R; iii) lung RIP + I/R; iv) thigh RIP + I/R; v) DMOG + I/R; vi) DMOG + lung RIP + I/R; and vii) DMOG + thigh RIP + I/R. I/R models were established via 30 min left coronary artery occlusion and 3 h reperfusion. For lung/thigh RIP, rabbits received left pulmonary artery (or left limb) ischemia for 25 min and followed by release for 5 min. Some rabbits were administered 20 mg/kg DMOG. The results demonstrated that both lung/thigh RIP and DMOG significantly decreased myocardial infarct size, creatine kinase activity and myocardial apoptosis in I/R rabbits. Furthermore, the combination of RIP and PHD inhibition exerted synergetic protective effects on these aforementioned changes. The mechanistic study indicated that both treatments increased mRNA and protein expression levels of HIF-1α and its downstream regulators, including vascular endothelial growth factor (VEGF), AKT and endothelial nitric oxide synthase (eNOS). In conclusion, the present study demonstrated that RIP and PHD inhibition exerted synergetic protective effects on cardiac injury via activation of HIF-1α and the downstream VEGF/AKT-eNOS signaling pathway.
Collapse
|
89
|
Goyal A, Agrawal N, Jain A, Gupta JK, Garabadu D. Role of caveolin-eNOS platform and mitochondrial ATP-sensitive potassium channel in abrogated cardioprotective effect of ischemic preconditioning in postmenopausal women. BRAZ J PHARM SCI 2022; 58. [DOI: 10.1590/s2175-97902022e20081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | | | - Ankit Jain
- Dr. Hari Singh Gour Central University, India
| | | | | |
Collapse
|
90
|
Hamarneh A, Ho AFW, Bulluck H, Sivaraman V, Ricciardi F, Nicholas J, Shanahan H, Hardman EA, Wicks P, Ramlall M, Chung R, McGowan J, Cordery R, Lawrence D, Clayton T, Kyle B, Xenou M, Ariti C, Yellon DM, Hausenloy DJ. Negative interaction between nitrates and remote ischemic preconditioning in patients undergoing cardiac surgery: the ERIC-GTN and ERICCA studies. Basic Res Cardiol 2022; 117:31. [PMID: 35727392 PMCID: PMC9213287 DOI: 10.1007/s00395-022-00938-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/31/2023]
Abstract
Remote ischaemic preconditioning (RIPC) using transient limb ischaemia failed to improve clinical outcomes following cardiac surgery and the reasons for this remain unclear. In the ERIC-GTN study, we evaluated whether concomitant nitrate therapy abrogated RIPC cardioprotection. We also undertook a post-hoc analysis of the ERICCA study, to investigate a potential negative interaction between RIPC and nitrates on clinical outcomes following cardiac surgery. In ERIC-GTN, 185 patients undergoing cardiac surgery were randomized to: (1) Control (no RIPC or nitrates); (2) RIPC alone; (3); Nitrates alone; and (4) RIPC + Nitrates. An intravenous infusion of nitrates (glyceryl trinitrate 1 mg/mL solution) was commenced on arrival at the operating theatre at a rate of 2-5 mL/h to maintain a mean arterial pressure between 60 and 70 mmHg and was stopped when the patient was taken off cardiopulmonary bypass. The primary endpoint was peri-operative myocardial injury (PMI) quantified by a 48-h area-under-the-curve high-sensitivity Troponin-T (48 h-AUC-hs-cTnT). In ERICCA, we analysed data for 1502 patients undergoing cardiac surgery to investigate for a potential negative interaction between RIPC and nitrates on clinical outcomes at 12-months. In ERIC-GTN, RIPC alone reduced 48 h-AUC-hs-cTnT by 37.1%, when compared to control (ratio of AUC 0.629 [95% CI 0.413-0.957], p = 0.031), and this cardioprotective effect was abrogated in the presence of nitrates. Treatment with nitrates alone did not reduce 48 h-AUC-hs-cTnT, when compared to control. In ERICCA there was a negative interaction between nitrate use and RIPC for all-cause and cardiovascular mortality at 12-months, and for risk of peri-operative myocardial infarction. RIPC alone reduced the risk of peri-operative myocardial infarction, compared to control, but no significant effect of RIPC was demonstrated for the other outcomes. When RIPC and nitrates were used together they had an adverse impact in patients undergoing cardiac surgery with the presence of nitrates abrogating RIPC-induced cardioprotection and increasing the risk of mortality at 12-months post-cardiac surgery in patients receiving RIPC.
Collapse
Affiliation(s)
- Ashraf Hamarneh
- Institute of Cardiovascular Sciences, The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Andrew Fu Wah Ho
- Department of Emergency Medicine, Singapore General Hospital, Singapore, Singapore
- Pre-Hospital and Emergency Research Centre, Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Heerajnarain Bulluck
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Vivek Sivaraman
- Institute of Cardiovascular Sciences, The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Federico Ricciardi
- Department of Statistical Science, University College London, London, UK
| | - Jennifer Nicholas
- Clinical Trials Unit and Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Hilary Shanahan
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Peter Wicks
- University Hospital Southampton NHS Foundation Trust, London, UK
| | - Manish Ramlall
- Institute of Cardiovascular Sciences, The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Robin Chung
- Institute of Cardiovascular Sciences, The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - John McGowan
- Institute of Cardiovascular Sciences, The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Roger Cordery
- Barts Heart Centre, King's College London, London, UK
| | - David Lawrence
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Tim Clayton
- Clinical Trials Unit and Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Bonnie Kyle
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Maria Xenou
- Institute of Cardiovascular Sciences, The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Cono Ariti
- University Hospital of Wales, Heath Park, Cardiff, CF14 4YS, UK
| | - Derek M Yellon
- Institute of Cardiovascular Sciences, The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Derek J Hausenloy
- Institute of Cardiovascular Sciences, The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK.
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan.
| |
Collapse
|
91
|
Lieder HR, Tüller P, Braczko F, Zandi A, Kamler M, Thielmann M, Heusch G, Kleinbongard P. Bioassays of Humoral Cardioprotective Factors Released by Remote Ischemic Conditioning in Patients Undergoing Coronary Artery Bypass Surgery. J Cardiovasc Pharmacol Ther 2022; 27:10742484221097273. [PMID: 35510644 DOI: 10.1177/10742484221097273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Remote ischemic conditioning (RIC) induces the release of circulating cardioprotective factors and attenuates myocardial ischemia/reperfusion injury. Evidence for such humoral cardioprotective factor(s) is derived from transfer with plasma (derivatives) from one individual undergoing RIC to another individual's heart, even across species. With transfer into an isolated perfused heart, only a single plasma (derivative) sample can be studied with infarct size as endpoint, and therefore the comparison of samples before and after RIC or between RIC and placebo is hampered by the inter-individual variation of infarct sizes in isolated perfused hearts. We therefore developed a preparation of cardiomyocytes from a single mouse heart, where aliquots of the same heart can undergo hypoxia/reoxygenation (H/R) with exposure to buffer, RIC, or placebo samples without or with pharmacological blockade. To validate this approach, we used plasma dialysates taken before and after RIC from patients undergoing coronary bypass grafting who had experienced protection by RIC (troponin release ↓ by 28% vs placebo). The cardiomyocyte bioassay had little variation after H/R with buffer (mean ± standard deviation; 7% ± 2% viable cells) and demonstrated preserved viability after RIC (15% ± 5% vs 6% ± 3% before). For comparison, infarct size in isolated mouse hearts after global ischemia and reperfusion was 22% ± 14% of left ventricular mass after versus 42% ± 14% before RIC. Stattic, an inhibitor of signal transducer and activator of transcription (STAT)3 protein, abrogated protection in the cardiomyocytes. We have thus established a cardiomyocyte bioassay to analyze RIC's protection which minimizes inter-individual variation and the use of animals.
Collapse
Affiliation(s)
- Helmut Raphael Lieder
- Institute for Pathophysiology, West German Heart and Vascular Center, 123109University of Essen Medical School, Essen, Germany
| | - Pia Tüller
- Institute for Pathophysiology, West German Heart and Vascular Center, 123109University of Essen Medical School, Essen, Germany
| | - Felix Braczko
- Institute for Pathophysiology, West German Heart and Vascular Center, 123109University of Essen Medical School, Essen, Germany
| | - Afsaneh Zandi
- Heart Center Essen-Huttrop, West German Heart and Vascular Center, 123109University of Essen Medical School, Essen, Germany
| | - Markus Kamler
- Heart Center Essen-Huttrop, West German Heart and Vascular Center, 123109University of Essen Medical School, Essen, Germany.,Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, 123109University of Essen Medical School, Essen, Germany
| | - Matthias Thielmann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, 123109University of Essen Medical School, Essen, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, 123109University of Essen Medical School, Essen, Germany
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, 123109University of Essen Medical School, Essen, Germany
| |
Collapse
|
92
|
Thijssen DHJ, Uthman L, Somani Y, Royen N. Short term exercise‐induced protection of cardiovascular function and health: Why and how fast does the heart benefit from exercise? J Physiol 2021; 600:1339-1355. [PMID: 35239189 PMCID: PMC9311195 DOI: 10.1113/jp282000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract Regular exercise training has potent and powerful protective effects against the development of cardiovascular disease. These cardioprotective effects of regular exercise training are partly explained through the effects of exercise on traditional cardiovascular risk factors and improvement in cardiac and vascular health, which take several weeks to months to develop. This review focuses on the observation that single bouts of exercise may also possess an underrecognized, clinically useful form of immediate cardioprotection. Studies, performed in both animals and humans, demonstrate that single or short‐term exercise‐induced protection (SEP) attenuates the magnitude of cardiac and/or vascular damage in response to prolonged ischaemia and reperfusion injury. This review highlights preclinical evidence supporting the hypothesis that SEP activates multiple pathways to confer immediate protection against ischaemic events, reduce the severity of potentially lethal ischaemic myocardial injury, and therefore act as a physiological first line of defence against injury. Given the fact that the extent of SEP could be modulated by exercise‐related and subject‐related factors, it is important to recognize and consider these factors to optimize future clinical implications of SEP. This review also summarizes potential effector signalling pathways (i.e. communication between exercising muscles to vascular/cardiac tissue) and intracellular pathways (i.e. reducing tissue damage) that ultimately confer protection against cardiac and vascular injury. Finally, we discuss potential future directions for designing adequate human and animal studies that will support developing effective SEP strategies for the (multi‐)diseased and aged individual. Key points Single or short‐term exercise‐induced protection (SEP) attenuates the magnitude of cardiac and/or vascular damage in response to prolonged ischaemia and reperfusion injury (IR injury). SEP activates multiple pathways to confer cardiac protection, which develops remotely at the site of the activated muscle by release of circulating molecules, which transfer towards activation of intramyocardial signalling that promotes cell survival during episodes of IR injury. SEP represents an attractive intervention in aged individuals and in those with co‐morbidities. The immediate protection, low cost and simplicity to increase the ‘dose’ of SEP offers unique opportunities in the clinical applications of SEP.
![]()
Collapse
Affiliation(s)
- Dick H. J. Thijssen
- Radboud Institute for Health Sciences Departments of Physiology Nijmegen The Netherlands
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Leicester United Kingdom
| | - Laween Uthman
- Radboud Institute for Health Sciences Departments of Physiology Nijmegen The Netherlands
- Cardiology Radboud University Medical Center Nijmegen The Netherlands
| | - Yasina Somani
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Leicester United Kingdom
| | - Niels Royen
- Cardiology Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
93
|
Hypoxic preconditioning in renal ischaemia-reperfusion injury: a review in pre-clinical models. Clin Sci (Lond) 2021; 135:2607-2618. [PMID: 34878507 DOI: 10.1042/cs20210615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Ischaemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and chronic kidney disease, which consists of cellular damage and renal dysfunction. AKI is a major complication that is of particular concern after cardiac surgery and to a lesser degree following organ transplantation in the immediate post-transplantation period, leading to delayed graft function. Because effective therapies are still unavailable, several recent studies have explored the potential benefit of hypoxic preconditioning (HPC) on IRI. HPC refers to the acquisition of increased organ tolerance to subsequent ischaemic or severe hypoxic injury, and experimental evidences suggest a potential benefit of HPC. There are three experimental forms of HPC, and, for better clarity, we named them as follows: physical HPC, HPC via treated-cell administration and stabilised hypoxia-inducible factor (HIF)-1α HPC, or mimicked HPC. The purpose of this review is to present the latest developments in the literature on HPC in the context of renal IRI in pre-clinical models. The data we compiled suggest that preconditional activation of hypoxia pathways protects against renal IRI, suggesting that HPC could be used in the treatment of renal IRI in transplantation.
Collapse
|
94
|
Abbasi-Habashi S, Jickling GC, Winship IR. Immune Modulation as a Key Mechanism for the Protective Effects of Remote Ischemic Conditioning After Stroke. Front Neurol 2021; 12:746486. [PMID: 34956045 PMCID: PMC8695500 DOI: 10.3389/fneur.2021.746486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Remote ischemic conditioning (RIC), which involves a series of short cycles of ischemia in an organ remote to the brain (typically the limbs), has been shown to protect the ischemic penumbra after stroke and reduce ischemia/reperfusion (IR) injury. Although the exact mechanism by which this protective signal is transferred from the remote site to the brain remains unclear, preclinical studies suggest that the mechanisms of RIC involve a combination of circulating humoral factors and neuronal signals. An improved understanding of these mechanisms will facilitate translation to more effective treatment strategies in clinical settings. In this review, we will discuss potential protective mechanisms in the brain and cerebral vasculature associated with RIC. We will discuss a putative role of the immune system and circulating mediators of inflammation in these protective processes, including the expression of pro-and anti-inflammatory genes in peripheral immune cells that may influence the outcome. We will also review the potential role of extracellular vesicles (EVs), biological vectors capable of delivering cell-specific cargo such as proteins and miRNAs to cells, in modulating the protective effects of RIC in the brain and vasculature.
Collapse
Affiliation(s)
- Sima Abbasi-Habashi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Division of Neurology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
95
|
CSA-AKI: Incidence, Epidemiology, Clinical Outcomes, and Economic Impact. J Clin Med 2021; 10:jcm10245746. [PMID: 34945041 PMCID: PMC8706363 DOI: 10.3390/jcm10245746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common complication following cardiac surgery and reflects a complex biological combination of patient pathology, perioperative stress, and medical management. Current diagnostic criteria, though increasingly standardized, are predicated on loss of renal function (as measured by functional biomarkers of the kidney). The addition of new diagnostic injury biomarkers to clinical practice has shown promise in identifying patients at risk of renal injury earlier in their course. The accurate and timely identification of a high-risk population may allow for bundled interventions to prevent the development of CSA-AKI, but further validation of these interventions is necessary. Once the diagnosis of CSA-AKI is established, evidence-based treatment is limited to supportive care. The cost of CSA-AKI is difficult to accurately estimate, given the diverse ways in which it impacts patient outcomes, from ICU length of stay to post-hospital rehabilitation to progression to CKD and ESRD. However, with the global rise in cardiac surgery volume, these costs are large and growing.
Collapse
|
96
|
Ehresman J, Cottrill E, Caplan JM, McDougall CG, Theodore N, Nyquist PA. Neuroprotective Role of Acidosis in Ischemia: Review of the Preclinical Evidence. Mol Neurobiol 2021; 58:6684-6696. [PMID: 34606050 DOI: 10.1007/s12035-021-02578-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/26/2021] [Indexed: 12/09/2022]
Abstract
Efforts to develop effective neuroprotective therapies for ischemic stroke have had little success to date. One promising approach to neuroprotection is ischemic postconditioning, which utilizes brief bouts of ischemia after acute ischemic stroke to elicit neuroprotection, although the mechanism is largely unknown. As the primary components of transient ischemia are local hypoxia and acidosis, and hypoxic postconditioning has had little success, it is possible that the acidosis component may be the primary driver. To address the evidence behind this, we performed a systematic review of preclinical studies focused on the neuroprotective role of transient acidosis after ischemia. Animal studies demonstrated that mild-to-moderate acidosis after ischemic events led to better functional neurologic outcomes with reduced infarct volumes, while severe acidosis often led to cerebral edema and worse functional outcomes. In vitro studies demonstrated that mild-to-moderate acidosis improves neuronal survival largely through two means: (1) inhibition of harmful superoxide formation in the excitotoxic pathway and (2) remodeling neuronal mitochondria to allow for efficient ATP production (i.e., oxidative phosphorylation), even in the absence of oxygen. Similar to the animal studies, acidotic postconditioning in humans would entail short cycles of carbon dioxide inhalation, which has already been demonstrated to be safe as part of a hypercapnic challenge when measuring cerebrovascular reactivity. Due to the preclinical efficacy of acidotic postconditioning, its relatively straightforward translation into humans, and the growing need for neuroprotective therapies, future preclinical studies should focus on filling the current knowledge gaps that are currently restricting the development of phase I/II clinical trials.
Collapse
Affiliation(s)
- Jeff Ehresman
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps 416, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps 416, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - Justin M Caplan
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps 416, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - Cameron G McDougall
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps 416, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps 416, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - Paul A Nyquist
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 416, 600 N. Wolfe St., Baltimore, MD, 21287, USA.
| |
Collapse
|
97
|
Burda J, Burda R. Ischemic tolerance - blessing or curse. Physiol Res 2021; 70:661-670. [PMID: 34505532 DOI: 10.33549/physiolres.934644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Application of knowledge about ischemic tolerance to clinic requires the solid understanding of mechanism of creation of this phenomenon. This review summarizes research that has been carried out in many laboratories over a long period of time, but the main focus will be on own experimental research. The main emphasis is devoted to the possibility of preparing full tolerance in the donor's body and its transfer to the patient in the form of activated blood plasma. Such plasma could be administered as soon as the patient is transported to the hospital and would take effect immediately after administration to the patient's bloodstream. One chapter is also devoted to anticonditioning, i.e. the possibility of preventing the activation of tolerance. Anticonditioning could be used to treat oncologic patients. We expect that this method could increase effectiveness of cancer treatment. Cross-tolerance with a wide range of diverse stressors gives us the courage to assume that activated plasma can significantly help with a wide range of pathological events.
Collapse
Affiliation(s)
- J Burda
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic. Faculty of Medicine, Clinic of Trauma Surgery, P. J. Šafárik University, Košice, Slovak Republic.
| | | |
Collapse
|
98
|
Cienfuegos-Pecina E, Moreno-Peña DP, Torres-González L, Rodríguez-Rodríguez DR, Garza-Villarreal D, Mendoza-Hernández OH, Flores-Cantú RA, Samaniego Sáenz BA, Alarcon-Galvan G, Muñoz-Espinosa LE, Ibarra-Rivera TR, Saucedo AL, Cordero-Pérez P. Treatment with sodium ( S)-2-hydroxyglutarate prevents liver injury in an ischemia-reperfusion model in female Wistar rats. PeerJ 2021; 9:e12426. [PMID: 34824916 PMCID: PMC8592047 DOI: 10.7717/peerj.12426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ischemia-reperfusion (IR) injury is one of the leading causes of early graft dysfunction in liver transplantation. Techniques such as ischemic preconditioning protect the graft through the activation of the hypoxia-inducible factors (HIF), which are downregulated by the EGLN family of prolyl-4-hydroxylases, a potential biological target for the development of strategies based on pharmacological preconditioning. For that reason, this study aims to evaluate the effect of the EGLN inhibitor sodium (S)-2-hydroxyglutarate [(S)-2HG] on liver IR injury in Wistar rats. Methods Twenty-eight female Wistar rats were divided into the following groups: sham (SH, n = 7), non-toxicity (HGTox, n = 7, 25 mg/kg of (S)-2HG, twice per day for two days), IR (n = 7, total liver ischemia: 20 minutes, reperfusion: 60 minutes), and (S)-2HG+IR (HGIR, n = 7, 25 mg/kg of (S)-2HG, twice per day for two days, total liver ischemia as the IR group). Serum ALT, AST, LDH, ALP, glucose, and total bilirubin were assessed. The concentrations of IL-1β, IL-6, TNF, malondialdehyde, superoxide dismutase, and glutathione peroxidase were measured in liver tissue, as well as the expression of Hmox1, Vegfa, and Pdk1, determined by RT-qPCR. Sections of liver tissue were evaluated histologically, assessing the severity of necrosis, sinusoidal congestion, and cytoplasmatic vacuolization. Results The administration of (S)-2HG did not cause any alteration in the assessed biochemical markers compared to SH. Preconditioning with (S)-2HG significantly ameliorated IR injury in the HGIR group, decreasing the serum activities of ALT, AST, and LDH, and the tissue concentrations of IL-1β and IL-6 compared to the IR group. IR injury decreased serum glucose compared to SH. There were no differences in the other biomarkers assessed. The treatment with (S)-2HG tended to decrease the severity of hepatocyte necrosis and sinusoidal congestion compared to the IR group. The administration of (S)-2HG did not affect the expression of Hmox1 but decreased the expression of both Vegfa and Pdk1 compared to the SH group, suggesting that the HIF-1 pathway is not involved in its mechanism of hepatoprotection. In conclusion, (S)-2HG showed a hepatoprotective effect, decreasing the levels of liver injury and inflammation biomarkers, without evidence of the involvement of the HIF-1 pathway. No hepatotoxic effect was observed at the tested dose.
Collapse
Affiliation(s)
- Eduardo Cienfuegos-Pecina
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico.,Universidad Autónoma de Nuevo León. Blood Bank, Department of Clinical Pathology, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana P Moreno-Peña
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Liliana Torres-González
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana Raquel Rodríguez-Rodríguez
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana Garza-Villarreal
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Oscar H Mendoza-Hernández
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Raul Alejandro Flores-Cantú
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Brenda Alejandra Samaniego Sáenz
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Gabriela Alarcon-Galvan
- Universidad de Monterrey, Basic Science Department, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Linda E Muñoz-Espinosa
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Tannya R Ibarra-Rivera
- Universidad Autónoma de Nuevo León. Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Alma L Saucedo
- Universidad Autónoma de Nuevo León. Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Paula Cordero-Pérez
- Universidad Autónoma de Nuevo León. Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| |
Collapse
|
99
|
Gatto M, Mota GAF, Pagan LU, Gomes MJ, Okoshi MP. Pré-Condicionamento na Lesão por Isquemia-Reperfusão. Arq Bras Cardiol 2021; 117:1145-1146. [PMID: 35613171 PMCID: PMC8757153 DOI: 10.36660/abc.20210908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
100
|
Korei C, Szabo B, Varga A, Barath B, Deak A, Vanyolos E, Hargitai Z, Kovacs I, Nemeth N, Peto K. Hematological, Micro-Rheological, and Metabolic Changes Modulated by Local Ischemic Pre- and Post-Conditioning in Rat Limb Ischemia-Reperfusion. Metabolites 2021; 11:metabo11110776. [PMID: 34822434 PMCID: PMC8625580 DOI: 10.3390/metabo11110776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
In trauma and orthopedic surgery, limb ischemia-reperfusion (I/R) remains a great challenge. The effect of preventive protocols, including surgical conditioning approaches, is still controversial. We aimed to examine the effects of local ischemic pre-conditioning (PreC) and post-conditioning (PostC) on limb I/R. Anesthetized rats were randomized into sham-operated (control), I/R (120-min limb ischemia with tourniquet), PreC, or PostC groups (3 × 10-min tourniquet ischemia, 10-min reperfusion intervals). Blood samples were taken before and just after the ischemia, and on the first postoperative week for testing hematological, micro-rheological (erythrocyte deformability and aggregation), and metabolic parameters. Histological samples were also taken. Erythrocyte count, hemoglobin, and hematocrit values decreased, while after a temporary decrease, platelet count increased in I/R groups. Erythrocyte deformability impairment and aggregation enhancement were seen after ischemia, more obviously in the PreC group, and less in PostC. Blood pH decreased in all I/R groups. The elevation of creatinine and lactate concentration was the largest in PostC group. Histology did not reveal important differences. In conclusion, limb I/R caused micro-rheological impairment with hematological and metabolic changes. Ischemic pre- and post-conditioning had additive changes in various manners. Post-conditioning showed better micro-rheological effects. However, by these parameters it cannot be decided which protocol is better.
Collapse
Affiliation(s)
- Csaba Korei
- Department of Traumatology and Hand Surgery, Faculty of Medicine, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary;
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Barbara Barath
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Doctoral School of Clinical Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Adam Deak
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| | - Erzsebet Vanyolos
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| | - Zoltan Hargitai
- Clinical Center, Pathology Unit, Kenezy Campus, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - Ilona Kovacs
- Clinical Center, Pathology Unit, Kenezy Campus, University of Debrecen, Bartok Bela ut 2-26, H-4031 Debrecen, Hungary; (Z.H.); (I.K.)
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
- Correspondence: ; Tel./Fax: +36-52-416-915
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond u. 22, H-4002 Debrecen, Hungary; (B.S.); (A.V.); (B.B.); (A.D.); (E.V.); (K.P.)
| |
Collapse
|