51
|
Wong CC, Fearon WF. Where Do We Go With Abnormal Flow? JACC. ASIA 2023; 3:878-880. [PMID: 38155800 PMCID: PMC10751635 DOI: 10.1016/j.jacasi.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Affiliation(s)
- Christopher C.Y. Wong
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Palo Alto, California, USA
| | - William F. Fearon
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
52
|
Mohammed AA, Zhang H, Li S, Liu L, Mareai RM, Xu Y, Abdu FA, Che W. Prognostic value of coronary microvascular dysfunction in patients with aortic stenosis and nonobstructed coronary arteries. J Cardiovasc Med (Hagerstown) 2023; 24:891-899. [PMID: 37942790 DOI: 10.2459/jcm.0000000000001561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
BACKGROUND Patients with aortic valve stenosis have been postulated to have coronary microvascular dysfunction (CMD) contributing to the clinical symptoms and adverse outcomes. The coronary angiography (CAG)-derived index of microcirculatory resistance (caIMR) is proposed as a novel, less invasive and pressure-wire-free index to assess CMD. This study aimed to quantify CMD assessed by caIMR and investigate its prognostic impact in patients with aortic valve stenosis. METHODS This study included 77 moderate or severe aortic valve stenosis patients with no obstructive coronary disease (defined as having no stenosis more than 50% in diameter) who underwent caIMR measurement. CMD was defined by caIMR at least 25. Major adverse cardiovascular events (MACE) were the clinical outcomes during the median 40 months of follow-up. RESULTS The incidence of CMD was 47.7%. Seventeen MACE occurred during the follow-up duration. CMD was associated with an increased risk of MACE (log-rank P < 0.001) and an independent predictor of clinical outcomes [hazard ratio 5.467, 95% confidence interval (CI) 1.393-21.458; P = 0.015]. The receiver-operating characteristic (ROC) curve analysis demonstrated that caIMR could provide a significant predictive value for MACE in aortic valve stenosis patients (AUC 0.785, 95% CI 0.609-0.961, P < 0.001). In addition, the risk of MACE was higher in CMD patients with severe aortic valve stenosis (log-rank P < 0.001) and no aortic valve replacement (log-rank P = 0.003) than in other groups. CONCLUSION Aortic valve stenosis patients demonstrated markedly impaired caIMR. CMD assessed by caIMR increases the risk of MACE and is an independent predictor of adverse outcomes in aortic valve stenosis patients. This finding suggests that using caIMR in the clinical assessment may help identify high-risk groups and stimulate earlier intervention.
Collapse
Affiliation(s)
- Ayman A Mohammed
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai, China
- Department of Internal Medicine, Faculty of Medicine and Health Science, Taiz University, Yemen
| | - Hengbin Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai, China
| | - Siqi Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai, China
| | - Lu Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai, China
| | - Redhwan M Mareai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai, China
| | - Fuad A Abdu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai, China
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine; Shanghai, China
- Department of Cardiology, Shanghai Tenth People's Hospital Chongming Branch, Shanghai, China
| |
Collapse
|
53
|
Aldujeli A, Haq A, Tsai TY, Grabauskyte I, Tatarunas V, Briedis K, Rana S, Unikas R, Hamadeh A, Serruys PW, Brilakis ES. The impact of primary percutaneous coronary intervention strategies during ST-elevation myocardial infarction on the prevalence of coronary microvascular dysfunction. Sci Rep 2023; 13:20094. [PMID: 37973856 PMCID: PMC10654664 DOI: 10.1038/s41598-023-47343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) is a common complication of ST-segment elevation myocardial infarction (STEMI) and can lead to adverse cardiovascular events. This is a non-randomized, observational, prospective study of STEMI patients with multivessel disease who underwent primary PCI, grouped based on whether they underwent balloon pre-dilatation stenting or direct stenting of the culprit lesion. Coronary physiology measurements were performed 3 months post-PCI including coronary flow reserve (CFR) and index of microcirculatory resistance (IMR) measurements at the culprit vessel. The primary endpoint was the prevalence of CMD at 3 months, defined as IMR ≥ 25 or CFR < 2.0 with a normal fractional flow reserve. Secondary endpoints included major adverse cardiovascular events (MACE) at 12 months. Two hundred ten patients were enrolled; most were men, 125 (59.5%), with a median age of 65 years. One hundred twelve (53.2%) underwent balloon pre-dilatation before stenting, and 98 (46.7%) underwent direct stenting. The prevalence of CMD at 3 months was lower in the direct stenting group than in the balloon pre-dilatation stenting group (12.24% vs. 40.18%; p < 0.001). Aspiration thrombectomy and administration of intracoronary glycoprotein IIb/IIIa inhibitors were associated with lower odds of CMD (OR = 0.175, p = 0.001 and OR = 0.113, p = 0.001, respectively). Notably, MACE in patients who underwent direct stenting was lower than in those who underwent balloon pre-dilatation before stenting (14.29% vs. 26.79%; p = 0.040). In STEMI patients with multivessel disease, direct stenting of the culprit lesion, aspiration thrombectomy and administration of intracoronary glycoprotein IIb/IIIa inhibitors were associated with a lower prevalence of CMD at 3 months and lower incidence of MACE at 12 months compared with balloon pre-dilatation stenting.This trial is registered at https://ichgcp.net/clinical-trials-registry/NCT05406297 .
Collapse
Affiliation(s)
- Ali Aldujeli
- Lithuanian University of Health Sciences, Sukileliu pr. 15, 50161, Kaunas, Lithuania.
| | - Ayman Haq
- Abbott Northwestern Hospital/Minneapolis Heart Institute Foundation, Minneapolis, MN, USA
| | | | - Ingrida Grabauskyte
- Lithuanian University of Health Sciences, Sukileliu pr. 15, 50161, Kaunas, Lithuania
| | - Vacis Tatarunas
- Lithuanian University of Health Sciences, Sukileliu pr. 15, 50161, Kaunas, Lithuania
| | - Kasparas Briedis
- Lithuanian University of Health Sciences, Sukileliu pr. 15, 50161, Kaunas, Lithuania
| | - Sumit Rana
- Thorndale Medical Clinic, Dublin, Ireland
| | - Ramunas Unikas
- Lithuanian University of Health Sciences, Sukileliu pr. 15, 50161, Kaunas, Lithuania
| | - Anas Hamadeh
- Heart and Vascular Specialists of North Texas, Arlington, TX, USA
| | | | - Emmanouil S Brilakis
- Abbott Northwestern Hospital/Minneapolis Heart Institute Foundation, Minneapolis, MN, USA
| |
Collapse
|
54
|
Mohammed AQ, Abdu FA, Liu L, Yin G, Mareai RM, Mohammed AA, Xu Y, Che W. Coronary microvascular dysfunction and myocardial infarction with non-obstructive coronary arteries: Where do we stand? Eur J Intern Med 2023; 117:8-20. [PMID: 37482469 DOI: 10.1016/j.ejim.2023.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
In the past decade, scientific and clinical research has provided a translational perspective on myocardial infarction (MI) with non-obstructive coronary arteries (MINOCA). MINOCA is characterized by clinical documentation of an acute MI but angiography shows no significant coronary artery obstruction (stenosis <50%). The prevalence of MINOCA is estimated to range from approximately 6 to 10% among MI patients, and those with this condition have a poor prognosis, experiencing high rates of mortality, rehospitalization, and socioeconomic burden. MINOCA represents a major unmet need in cardiovascular medicine, with uncertain clinical management. It is a complex condition that can be caused by various factors, including atherosclerosis, plaque rupture, coronary vasospasm, and microvascular dysfunction. Effective management of MINOCA depends on identifying the underlying mechanism of the infarction, thus a systematic diagnostic approach is recommended. Contemporary data shows that a significant number of patients exhibit structural and functional abnormalities in coronary microcirculation, which is referred to as coronary microvascular dysfunction (CMD). CMD plays a crucial role in patients with signs and symptoms of myocardial ischemia and non-obstructive coronary artery stenosis, including MINOCA. Furthermore, conducting a thorough evaluation of coronary function can have significant prognostic and therapeutic implications, since personalized patient management strategies based on this assessment have been shown to improve symptoms and prognosis. Therefore, an accurate and timely diagnosis of CMD is essential for effective patient management, which can be achieved through various invasive and non-invasive methods. This review will discuss the pathophysiological understanding, current diagnostic techniques, and management strategies of patients with MINOCA and CMD.
Collapse
Affiliation(s)
- Abdul-Quddus Mohammed
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuad A Abdu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoqing Yin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Redhwan M Mareai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ayman A Mohammed
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Cardiology, Shanghai Tenth People's Hospital Chongming Branch, Shanghai, China.
| |
Collapse
|
55
|
Hokimoto S, Kaikita K, Yasuda S, Tsujita K, Ishihara M, Matoba T, Matsuzawa Y, Mitsutake Y, Mitani Y, Murohara T, Noda T, Node K, Noguchi T, Suzuki H, Takahashi J, Tanabe Y, Tanaka A, Tanaka N, Teragawa H, Yasu T, Yoshimura M, Asaumi Y, Godo S, Ikenaga H, Imanaka T, Ishibashi K, Ishii M, Ishihara T, Matsuura Y, Miura H, Nakano Y, Ogawa T, Shiroto T, Soejima H, Takagi R, Tanaka A, Tanaka A, Taruya A, Tsuda E, Wakabayashi K, Yokoi K, Minamino T, Nakagawa Y, Sueda S, Shimokawa H, Ogawa H. JCS/CVIT/JCC 2023 guideline focused update on diagnosis and treatment of vasospastic angina (coronary spastic angina) and coronary microvascular dysfunction. J Cardiol 2023; 82:293-341. [PMID: 37597878 DOI: 10.1016/j.jjcc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Affiliation(s)
| | - Koichi Kaikita
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Japan
| | - Yasushi Matsuzawa
- Division of Cardiology, Yokohama City University Medical Center, Japan
| | - Yoshiaki Mitsutake
- Division of Cardiovascular Medicine, Kurume University School of Medicine, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Takashi Noda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Hiroshi Suzuki
- Division of Cardiology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Yasuhiko Tanabe
- Department of Cardiology, Niigata Prefectural Shibata Hospital, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Nobuhiro Tanaka
- Division of Cardiology, Tokyo Medical University Hachioji Medical Center, Japan
| | - Hiroki Teragawa
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Japan
| | - Takanori Yasu
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Hiroki Ikenaga
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Takahiro Imanaka
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Japan
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Masanobu Ishii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | - Yunosuke Matsuura
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Yasuhiro Nakano
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Japan
| | - Takayuki Ogawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | | | - Ryu Takagi
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Japan
| | - Akihito Tanaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Etsuko Tsuda
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Japan
| | - Kohei Wakabayashi
- Division of Cardiology, Cardiovascular Center, Showa University Koto-Toyosu Hospital, Japan
| | - Kensuke Yokoi
- Department of Cardiovascular Medicine, Saga University, Japan
| | - Toru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Japan
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| | - Shozo Sueda
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, Japan
| | - Hiroaki Shimokawa
- Graduate School, International University of Health and Welfare, Japan
| | | |
Collapse
|
56
|
Fezzi S, Ding D, Scarsini R, Huang J, Del Sole PA, Zhao Q, Pesarini G, Simpkin A, Wijns W, Ribichini F, Tu S. Integrated Assessment of Computational Coronary Physiology From a Single Angiographic View in Patients Undergoing TAVI. Circ Cardiovasc Interv 2023; 16:e013185. [PMID: 37712285 DOI: 10.1161/circinterventions.123.013185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Angiography-derived computational physiology is an appealing alternative to pressure-wire coronary physiology assessment. However, little is known about its reliability in the setting of severe aortic stenosis. This study sought to provide an integrated assessment of epicardial and microvascular coronary circulation by means of single-view angiography-derived physiology in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation (TAVI). METHODS Pre-TAVI angiographic projections of 198 stenotic coronary arteries (123 patients) were analyzed by means of Murray's law-based quantitative flow ratio and angiography microvascular resistance. Wire-based reference measurements were available for comparison: fractional flow reserve (FFR) in all cases, instantaneous wave-free ratio in 148, and index of microvascular resistance in 42 arteries. RESULTS No difference in terms of the number of ischemia-causing stenoses was detected between FFR ≤0.80 and Murray's law-based quantitative flow ratio ≤0.80 (19.7% versus 19.2%; P=0.899), while this was significantly higher when instantaneous wave-free ratio ≤0.89 (44.6%; P=0.001) was used. The accuracy of Murray's law-based quantitative flow ratio ≤0.80 in predicting pre-TAVI FFR ≤0.80 was significantly higher than the accuracy of instantaneous wave-free ratio ≤0.89 (93.4% versus 77.0%; P=0.001), driven by a higher positive predictive value (86.9% versus 50%). Similar findings were observed when considering post-TAVI FFR ≤0.80 as reference. In 82 cases with post-TAVI angiographic projections, Murray's law-based quantitative flow ratio values remained stable, with a low rate of reclassification of stenosis significance (9.9%), similar to FFR and instantaneous wave-free ratio. Angiography microvascular resistance demonstrated a significant correlation (Rho=0.458; P=0.002) with index of microvascular resistance, showing an area under the curve of 0.887 (95% CI, 0.752-0.964) in predicting index of microvascular resistance ≥25. CONCLUSIONS Angiography-derived physiology provides a valid, reliable, and systematic assessment of the coronary circulation in a complex scenario, such as severe aortic stenosis.
Collapse
Affiliation(s)
- Simone Fezzi
- Department of Medicine, Division of Cardiology, University of Verona, Italy (S.F., R.S., P.A.D.S., G.P., F.R.)
- The Lambe Institute for Translational Medicine, The Smart Sensors Lab and Curam, University of Galway, Ireland (S.F., D.D., J.H., W.W.)
| | - Daixin Ding
- The Lambe Institute for Translational Medicine, The Smart Sensors Lab and Curam, University of Galway, Ireland (S.F., D.D., J.H., W.W.)
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, China (D.D., J.H., S.T.)
| | - Roberto Scarsini
- Department of Medicine, Division of Cardiology, University of Verona, Italy (S.F., R.S., P.A.D.S., G.P., F.R.)
| | - Jiayue Huang
- The Lambe Institute for Translational Medicine, The Smart Sensors Lab and Curam, University of Galway, Ireland (S.F., D.D., J.H., W.W.)
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, China (D.D., J.H., S.T.)
| | - Paolo Alberto Del Sole
- Department of Medicine, Division of Cardiology, University of Verona, Italy (S.F., R.S., P.A.D.S., G.P., F.R.)
| | - Qiang Zhao
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Q.Z.)
| | - Gabriele Pesarini
- Department of Medicine, Division of Cardiology, University of Verona, Italy (S.F., R.S., P.A.D.S., G.P., F.R.)
| | - Andrew Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Ireland (A.S.)
| | - William Wijns
- The Lambe Institute for Translational Medicine, The Smart Sensors Lab and Curam, University of Galway, Ireland (S.F., D.D., J.H., W.W.)
| | - Flavio Ribichini
- Department of Medicine, Division of Cardiology, University of Verona, Italy (S.F., R.S., P.A.D.S., G.P., F.R.)
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, China (D.D., J.H., S.T.)
| |
Collapse
|
57
|
Ha ET, Qu YS, Takahashi T, Parikh MA, Kobayashi Y. Challenge in Diagnosis and Management of a Patient With Myocardial Bridge and Coronary Artery Spasm. JACC Case Rep 2023; 20:101950. [PMID: 37614330 PMCID: PMC10442663 DOI: 10.1016/j.jaccas.2023.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 08/25/2023]
Abstract
Positive ischemia by noninvasive imaging studies often results in nonobstructive disease in cardiac catheterization. In this case, we observed ischemia by nuclear stress test in only the anteroseptal area, and the apex is free of ischemia. Coronary angiogram findings were unremarkable, but intravascular ultrasound confirmed the long length of the myocardial bridge. Further testing with spasm provocation and microvascular testing showed diffuse epicardial spasm in this area of myocardial bridge without microvascular dysfunction. We observed the myocardial bridge but no microvascular dysfunction. This case illustrates the coexistence of spasm in the area of a myocardial bridge and the challenges in the medical management of these patients. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
- Edward T. Ha
- Division of Cardiology, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Yongxia S. Qu
- Division of Cardiology, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | | | - Manish A. Parikh
- Division of Cardiology, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Yuhei Kobayashi
- Division of Cardiology, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
58
|
Rigattieri S, Barbato E, Berry C. Microvascular resistance reserve: a reference test of the coronary microcirculation? Eur Heart J 2023; 44:2870-2872. [PMID: 37358487 PMCID: PMC10406335 DOI: 10.1093/eurheartj/ehad291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Affiliation(s)
| | - Emanuele Barbato
- Sant'Andrea University Hospital, Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
- NHS Golden Jubilee hospital, Agamemnon Street, Clydebank, UK
| |
Collapse
|
59
|
Marano P, Wei J, Merz CNB. Coronary Microvascular Dysfunction: What Clinicians and Investigators Should Know. Curr Atheroscler Rep 2023; 25:435-446. [PMID: 37338666 PMCID: PMC10412671 DOI: 10.1007/s11883-023-01116-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW Abnormal structure and function of the coronary microvasculature have been implicated in the pathophysiology of multiple cardiovascular disease processes. This article reviews recent research progress related to coronary microvascular dysfunction (CMD) and salient clinical takeaways. RECENT FINDINGS CMD is prevalent in patients with signs and symptoms of ischemia and no obstructive epicardial coronary artery disease (INOCA), particularly in women. CMD is associated with adverse outcomes, including most frequently the development of heart failure with preserved ejection fraction. It is also associated with adverse outcomes in patient populations including hypertrophic cardiomyopathy, dilated cardiomyopathy, and acute coronary syndromes. In patients with INOCA, stratified medical therapy guided by invasive coronary function testing to define the subtype of CMD leads to improved symptoms. There are invasive and non-invasive methodologies to diagnose CMD that provide prognostic information and mechanistic information to direct treatment. Available treatments improve symptoms and myocardial blood flow; ongoing investigations aim to develop therapy to improve adverse outcomes related to CMD.
Collapse
Affiliation(s)
- Paul Marano
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Janet Wei
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Barbra Streisand Women's Heart Center, Smidt Heart Institute, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA
| | - C Noel Bairey Merz
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA.
- Cedars-Sinai Medical Center, Barbra Streisand Women's Heart Center, Smidt Heart Institute, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
60
|
Zampella E, Assante R, Acampa W. Myocardial perfusion reserve by CZT cameras: A journey inside coronary microvascular circulation. Is it time to leave yet? J Nucl Cardiol 2023; 30:1668-1670. [PMID: 37311913 DOI: 10.1007/s12350-023-03313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Affiliation(s)
- Emilia Zampella
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy.
| |
Collapse
|
61
|
Huang B, Han X, Pan Y, Chen D. A systematic review and meta-analysis of the effect of high-intensity statin on coronary microvascular dysfunction. BMC Cardiovasc Disord 2023; 23:370. [PMID: 37488501 PMCID: PMC10367265 DOI: 10.1186/s12872-023-03402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
OBJECTIVE The purpose of this meta-analysis is to evaluate the role of high-intensity statin pretreatment on coronary microvascular dysfunction in patients with coronary heart disease undergoing percutaneous coronary intervention (PCI). METHODS PubMed, Cochrane, and Embase were searched. This meta-analysis selection included randomized controlled trials (RCTs), involving high-intensity statin pretreatment as active treatment, and measurement of thrombolysis in myocardial infarction (TIMI), myocardial blush grade (MBG) or index of microvascular resistance (IMR) in coronary heart disease (CHD) patients undergoing PCI. I2 test was used to evaluate heterogeneity. Pooled effects of continuous variables were reported as Standard mean difference (SMD) and 95% confidence intervals (CI). Pooled effects of discontinuous variables were reported as risk ratios (RR) and 95% confidence intervals (CI). Random-effect or fix-effect meta-analyses were performed. The Benefit was further examined based on clinical characteristics including diagnosis and statin type by using subgroup analyses. Publication bias was examined by quantitative Egger's test and funnel plot. We performed sensitivity analyses to examine the robustness of pooled effects. RESULTS Twenty RCTs were enrolled. The data on TIMI < 3 was reported in 18 studies. Comparing with non-high-intensity statin, high-intensity statin pretreatment significantly improved TIMI after PCI (RR = 0.62, 95%CI: 0.50 to 0.78, P < 0.0001). The data on MBG < 2 was reported in 3 studies. The rate of MBG < 2 was not different between groups (RR = 1.29, 95% CI: 0.87 to 1.93, P = 0.21). The data on IMR was reported in 2 studies. High-dose statin pretreatment significantly improved IMR after PCI comparing with non-high-dose statin (SMD = -0.94, 95% CI: -1.47 to -0.42, P = 0.0004). There were no significant between-subgroup differences in subgroups based on statin type and diagnosis. Publication bias was not indicated by using quantitative Egger's test (P = 0.97) and funnel plot. Sensitivity analyses confirmed the robustness of these findings. CONCLUSIONS Comparing with non-high-intensity statin, high-intensity statin pretreatment significantly improved TIMI and IMR after PCI. In the future, RCTs with high quality and large samples are needed to test these endpoints.
Collapse
Affiliation(s)
- Bihan Huang
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.
| | - Xueying Han
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yun Pan
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongdong Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
62
|
Noaman S, Kaye DM, Nanayakkara S, Dart AM, Yong ASC, Ng M, Vizi D, Duffy SJ, Cox N, Chan W. Haemodynamic and metabolic adaptations in coronary microvascular disease. Heart 2023; 109:1166-1174. [PMID: 36931716 DOI: 10.1136/heartjnl-2022-322156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
OBJECTIVE We aimed to evaluate the microcirculatory resistance (MR) and myocardial metabolic adaptations at rest and in response to increased cardiac workload in patients with suspected coronary microvascular dysfunction (CMD). METHODS Patients with objective ischaemia and/or myocardial injury and non-obstructive coronary artery disease underwent thermodilution-derived microcirculatory assessment and transcardiac blood sampling during graded exercise with adenosine-mediated hyperaemia. We measured MR at rest and following supine cycle ergometry. Patients (n=24) were stratified by the resting index of MR (IMR) into normal-IMR (IMR<22U, n=12) and high-IMR groups (IMR≥22U, n=12). RESULTS The mean age was 57 years; 67% were males and 38% had hypertension. The normal-IMR group had increased IMR response to exercise (16±5 vs 23±12U, p=0.03) compared with the high-IMR group, who had persistently elevated IMR at rest and following exercise (38±19 vs 33±15U, p=0.39) despite similar exercise duration and rate-pressure product between the groups, both p>0.05. The normal-IMR group had augmented oxygen extraction ratio following exercise (53±18 vs 64±11%, p=0.03) compared with the high-IMR group (65±14 vs 59±11%, p=0.26). The postexercise lactate uptake was greater in the high-IMR (0.04±0.05 vs 0.11±0.07 mmol/L, p=0.004) compared with normal-IMR group (0.08±0.06 vs 0.09±0.09 mmol/L, p=0.67). The high-IMR group demonstrated greater troponin release following exercise compared with the normal-IMR group (0.13±0.12 vs 0.001±0.05 ng/L, p=0.03). CONCLUSIONS Patients with suspected CMD appear to have distinctive microcirculatory resistive and myocardial metabolic profiles at rest and in response to exercise. These differences in phenotypes may permit individualised therapies targeting microvascular responsiveness (normal-IMR group) and/or myocardial metabolic adaptations (normal-IMR and high-IMR groups).
Collapse
Affiliation(s)
- Samer Noaman
- Cardiology, Alfred Health, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Western Health, Footscray, Victoria, Australia
| | - David M Kaye
- Cardiology, Alfred Health, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Shane Nanayakkara
- Cardiology, Alfred Health, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anthony M Dart
- Cardiology, Alfred Health, Melbourne, Victoria, Australia
| | - Andy S C Yong
- Cardiology, Concord Hospital, Sydney, New South Wales, Australia
| | - Martin Ng
- Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Donna Vizi
- Cardiology, Alfred Health, Melbourne, Victoria, Australia
| | | | | | - William Chan
- Cardiology, Alfred Health, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
63
|
Kei CY, Singh K, Dautov RF, Nguyen TH, Chirkov YY, Horowitz JD. Coronary "Microvascular Dysfunction": Evolving Understanding of Pathophysiology, Clinical Implications, and Potential Therapeutics. Int J Mol Sci 2023; 24:11287. [PMID: 37511046 PMCID: PMC10379859 DOI: 10.3390/ijms241411287] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Until recently, it has been generally held that stable angina pectoris (SAP) primarily reflects the presence of epicardial coronary artery stenoses due to atheromatous plaque(s), while acute myocardial infarction (AMI) results from thrombus formation on ruptured plaques. This concept is now challenged, especially by results of the ORBITA and ISCHEMIA trials, which showed that angioplasty/stenting does not substantially relieve SAP symptoms or prevent AMI or death in such patients. These disappointing outcomes serve to redirect attention towards anomalies of small coronary physiology. Recent studies suggest that coronary microvasculature is often both structurally and physiologically abnormal irrespective of the presence or absence of large coronary artery stenoses. Structural remodelling of the coronary microvasculature appears to be induced primarily by inflammation initiated by mast cell, platelet, and neutrophil activation, leading to erosion of the endothelial glycocalyx. This leads to the disruption of laminar flow and the facilitation of endothelial platelet interaction. Glycocalyx shedding has been implicated in the pathophysiology of coronary artery spasm, cardiovascular ageing, AMI, and viral vasculitis. Physiological dysfunction is closely linked to structural remodelling and occurs in most patients with myocardial ischemia, irrespective of the presence or absence of large-vessel stenoses. Dysfunction includes the impairment of platelet and vascular responsiveness to autocidal coronary vasodilators, such as nitric oxide, prostacyclin, and hydrogen sulphide, and predisposes both to coronary vasoconstriction and to a propensity for microthrombus formation. These findings emphasise the need for new directions in medical therapeutics for patients with SAP, as well as a wide range of other cardiovascular disorders.
Collapse
Affiliation(s)
- Chun Yeung Kei
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
| | - Kuljit Singh
- Department of Medicine, Griffith University, Southport 4111, Australia;
- Gold Coast University Hospital, Gold Coast 4215, Australia
| | - Rustem F. Dautov
- Department of Medicine, University of Queensland, Woolloongabba 4102, Australia;
- Prince Charles Hospital, Brisbane 4032, Australia
| | - Thanh H. Nguyen
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
- Northern Adelaide Local Health Network, Adelaide 5000, Australia
| | - Yuliy Y. Chirkov
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
- Basil Hetzel Institute for Translational Research, Adelaide 5011, Australia
| | - John D. Horowitz
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
- Basil Hetzel Institute for Translational Research, Adelaide 5011, Australia
| |
Collapse
|
64
|
Mohammed AQ, Abdu FA, Su Y, Liu L, Yin G, Feng Y, Zhang W, Xu Y, Xu D, Che W. Prognostic Significance of Coronary Microvascular Dysfunction in Patients With Heart Failure With Preserved Ejection Fraction. Can J Cardiol 2023; 39:971-980. [PMID: 37086837 DOI: 10.1016/j.cjca.2023.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND The prognostic impact of coronary microvascular dysfunction (CMD) has been scarcely addressed in heart failure with preserved ejection fraction (HFpEF). This study investigated the prevalence and prognostic significance of CMD as measured by a novel pressure wire-free coronary angiography-derived index of microcirculatory resistance (caIMR) on clinical outcomes. METHODS Patients diagnosed with HFpEF from 2019 to 2021 were enrolled retrospectively. caIMR was used to quantify microvascular function, and patients were categorised into 2 groups based on their caIMR. The primary end points were composite of all-cause death and heart failure rehospitalisation. RESULTS Of 137 HFpEF patients, CMD (defined as caIMR ≥ 25) was present in 88 patients (64.2%). Forty-five patients (32.8%) experienced composite events during a mean follow-up of 15 months. Compared with patients with caIMR < 25, those with caIMR ≥ 25 had a notably higher incidence of composite events (16.3% vs 42.0%; P = 0.002). On survival analysis, patients with caIMR ≥ 25 demonstrated a worse prognosis than those with caIMR < 25 for composite events (P = 0.006). Patients with caIMR ≥ 25 in multiple coronary arteries showed a trend to worse outcome than those with caIMR ≥ 25 in a single coronary artery (log-rank P = 0.056). In adjusted analysis, caIMR ≥ 25 was independently predictive of adverse outcomes (adjusted hazard ratio 2.93, 95% confidence interval [CI] 1.28-6.70; P = 0.010). caIMR displayed a significant predictive power for adverse event prediction (area under the receiver operating characteristic curve 0.767, 95% CI 0.677-0.858; P < 0.001). CONCLUSIONS CMD is highly prevalent and is an independent predictor of adverse outcomes in HFpEF patients. Assessment of CMD may identify high-risk patients early for intensified treatment and risk-factor management.
Collapse
Affiliation(s)
- Abdul-Quddus Mohammed
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuad A Abdu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Su
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoqing Yin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Wen Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Cardiology, Shanghai Tenth People's Hospital Chongming Branch, Shanghai, China.
| |
Collapse
|
65
|
Xu J, Lo S, Mussap CJ, French JK, Rajaratnam R, Kadappu K, Premawardhana U, Nguyen P, Juergens CP, Leung DY. Early Effects of Ticagrelor Versus Clopidogrel on Peripheral Endothelial Function After Non-ST-Elevation Acute Coronary Syndrome and Assessment of Its Relationship With Coronary Microvascular Function. Am J Cardiol 2023; 201:16-24. [PMID: 37348152 DOI: 10.1016/j.amjcard.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Peripheral endothelial dysfunction is an independent predictor of adverse long-term prognosis after acute coronary syndrome. Data are lacking on the effects of oral P2Y12-inhibitors on peripheral endothelial function in non-ST-elevation acute coronary syndrome (NSTEACS). Furthermore, the relation between peripheral endothelial function and invasive indexes of coronary microvascular function in NSTEACS is unclear. Between March 2018 and July 2020, hospitalized patients with NSTEACS were randomized (1:1) to ticagrelor or clopidogrel. Peripheral endothelial function was assessed with brachial artery flow-mediated vasodilation (FMD). Invasive indexes of coronary microvascular function were obtained using an intracoronary pressure-temperature sensor-tipped wire. In 70 patients included, mean age was 58.6 years, 78.6% (n = 55) were male and 20% (n = 14) had diabetes mellitus. Compared with clopidogrel, ticagrelor significantly improved FMD (14.2 ± 5.4% vs 8.9 ± 5.3%, p <0.001) after a median treatment time of 41.2 hours. The FMD was significantly correlated with the index of microcirculatory resistance (IMR) measured in the infarct-related artery (r = -0.38, p = 0.001), with a stronger correlation found in those who did not have percutaneous coronary intervention (r = -0.52, p = 0.03). Using receiver operating characteristic curve analysis, an FMD of 8.2% identified an IMR of >34 as the threshold, with 77.6% sensitivity and 52.4% specificity. In patients who did not have a percutaneous coronary intervention, an FMD of 11.49% identified an IMR of >34 with 84.6% sensitivity and 80% specificity. In conclusion, ticagrelor significantly improved peripheral endothelial function compared with clopidogrel in patients with NSTEACS. There was a significant correlation between brachial artery FMD and IMR of the infarct-related artery.
Collapse
Affiliation(s)
- James Xu
- Department of Cardiology, Liverpool Hospital, Sydney, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, Australia.
| | - Sidney Lo
- Department of Cardiology, Liverpool Hospital, Sydney, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Christian J Mussap
- Department of Cardiology, Liverpool Hospital, Sydney, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - John K French
- Department of Cardiology, Liverpool Hospital, Sydney, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Rohan Rajaratnam
- Department of Cardiology, Liverpool Hospital, Sydney, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Krishna Kadappu
- Department of Cardiology, Campbelltown Hospital, Sydney, Australia; Macarthur Clinical School, Western Sydney University, Sydney, Australia
| | - Upul Premawardhana
- Department of Cardiology, Campbelltown Hospital, Sydney, Australia; Macarthur Clinical School, Western Sydney University, Sydney, Australia
| | - Phong Nguyen
- Department of Cardiology, Campbelltown Hospital, Sydney, Australia; Macarthur Clinical School, Western Sydney University, Sydney, Australia
| | - Craig P Juergens
- Department of Cardiology, Liverpool Hospital, Sydney, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Dominic Y Leung
- Department of Cardiology, Liverpool Hospital, Sydney, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
66
|
Gallinoro E, Bertolone DT, Fernandez-Peregrina E, Paolisso P, Bermpeis K, Esposito G, Gomez-Lopez A, Candreva A, Mileva N, Belmonte M, Mizukami T, Fournier S, Vanderheyden M, Wyffels E, Bartunek J, Sonck J, Barbato E, Collet C, De Bruyne B. Reproducibility of bolus versus continuous thermodilution for assessment of coronary microvascular function in patients with ANOCA. EUROINTERVENTION 2023; 19:e155-e166. [PMID: 36809253 PMCID: PMC10242662 DOI: 10.4244/eij-d-22-00772] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/04/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND A bolus thermodilution-derived index of microcirculatory resistance (IMR) has emerged as the standard for assessing coronary microvascular dysfunction (CMD). Continuous thermodilution has recently been introduced as a tool to quantify absolute coronary flow and microvascular resistance directly. Microvascular resistance reserve (MRR) derived from continuous thermodilution has been proposed as a novel metric of microvascular function, which is independent of epicardial stenoses and myocardial mass. AIMS We aimed to assess the reproducibility of bolus and continuous thermodilution in assessing coronary microvascular function. METHODS Patients with angina and non-obstructive coronary artery disease (ANOCA) at angiography were prospectively enrolled. Bolus and continuous intracoronary thermodilution measurements were obtained in duplicate in the left anterior descending artery (LAD). Patients were randomly assigned in a 1:1 ratio to undergo either bolus thermodilution first or continuous thermodilution first. RESULTS A total of 102 patients were enrolled. The mean fractional flow reserve (FFR) was 0.86±0.06. Coronary flow reserve (CFR) calculated with continuous thermodilution (CFRcont) was significantly lower than bolus thermodilution-derived CFR (CFRbolus; 2.63±0.65 vs 3.29±1.17; p<0.001). CFRcont showed a higher reproducibility than CFRbolus (variability: 12.7±10.4% continuous vs 31.26±24.85% bolus; p<0.001). MRR showed a higher reproducibility than IMR (variability 12.4±10.1% continuous vs 24.2±19.3% bolus; p<0.001). No correlation was found between MRR and IMR (r=0.1, 95% confidence interval: -0.09 to 0.29; p=0.305). CONCLUSIONS In the assessment of coronary microvascular function, continuous thermodilution demonstrated significantly less variability on repeated measurements than bolus thermodilution.
Collapse
Affiliation(s)
- Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Dario Tino Bertolone
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Turin, Italy
| | | | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Turin, Italy
| | | | - Giuseppe Esposito
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Turin, Italy
| | | | - Alessandro Candreva
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Cardiology, Zurich University Hospital, Zurich, Switzerland
- Department of Mechanical and Aerospace Engineering, PolitoBIO Med Lab, Politecnico di Torino, Italy
| | - Niya Mileva
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | | | | | - Stephane Fournier
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Eric Wyffels
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | | | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Turin, Italy
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
67
|
Caullery B, Riou L, Barone-Rochette G. Coronary Angiography Upgraded by Imaging Post-Processing: Present and Future Directions. Diagnostics (Basel) 2023; 13:diagnostics13111978. [PMID: 37296830 DOI: 10.3390/diagnostics13111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Advances in computer technology and image processing now allow us to obtain from angiographic images a large variety of information on coronary physiology without the use of a guide-wire as a diagnostic information equivalent to FFR and iFR but also information allowing for the performance of a real virtual percutaneous coronary intervention (PCI) and finally the ability to obtain information to optimize the results of PCI. With specific software, it is now possible to have a real upgrading of invasive coronary angiography. In this review, we present the different advances in this field and discuss the future perspectives offered by this technology.
Collapse
Affiliation(s)
- Benoit Caullery
- Department of Cardiology, University Hospital, 38000 Grenoble, France
| | - Laurent Riou
- University Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
| | - Gilles Barone-Rochette
- Department of Cardiology, University Hospital, 38000 Grenoble, France
- University Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, 38000 Grenoble, France
- French Clinical Research Infrastructure Network, 75018 Paris, France
| |
Collapse
|
68
|
Hokimoto S, Kaikita K, Yasuda S, Tsujita K, Ishihara M, Matoba T, Matsuzawa Y, Mitsutake Y, Mitani Y, Murohara T, Noda T, Node K, Noguchi T, Suzuki H, Takahashi J, Tanabe Y, Tanaka A, Tanaka N, Teragawa H, Yasu T, Yoshimura M, Asaumi Y, Godo S, Ikenaga H, Imanaka T, Ishibashi K, Ishii M, Ishihara T, Matsuura Y, Miura H, Nakano Y, Ogawa T, Shiroto T, Soejima H, Takagi R, Tanaka A, Tanaka A, Taruya A, Tsuda E, Wakabayashi K, Yokoi K, Minamino T, Nakagawa Y, Sueda S, Shimokawa H, Ogawa H. JCS/CVIT/JCC 2023 Guideline Focused Update on Diagnosis and Treatment of Vasospastic Angina (Coronary Spastic Angina) and Coronary Microvascular Dysfunction. Circ J 2023; 87:879-936. [PMID: 36908169 DOI: 10.1253/circj.cj-22-0779] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
| | - Koichi Kaikita
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | | | - Yoshiaki Mitsutake
- Division of Cardiovascular Medicine, Kurume University School of Medicine
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Takashi Noda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Suzuki
- Division of Cardiology, Department of Internal Medicine, Showa University Fujigaoka Hospital
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Yasuhiko Tanabe
- Department of Cardiology, Niigata Prefectural Shibata Hospital
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Nobuhiro Tanaka
- Division of Cardiology, Tokyo Medical University Hachioji Medical Center
| | - Hiroki Teragawa
- Department of Cardiovascular Medicine, JR Hiroshima Hospital
| | - Takanori Yasu
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Hiroki Ikenaga
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Takahiro Imanaka
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Masanobu Ishii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | | | - Yunosuke Matsuura
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | | | - Takayuki Ogawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | | | - Ryu Takagi
- Division of Cardiology, Tokyo Medical University Hachioji Medical Center
| | - Akihito Tanaka
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Etsuko Tsuda
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center
| | - Kohei Wakabayashi
- Division of Cardiology, Cardiovascular Center, Showa University Koto-Toyosu Hospital
| | - Kensuke Yokoi
- Department of Cardiovascular Medicine, Saga University
| | - Toru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Shozo Sueda
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | | | | |
Collapse
|
69
|
Mailey JA, Moore JS, Brennan PF, Jing M, Awuah A, McLaughlin JAD, Nesbit MA, Moore TCB, Spence MS. Assessment of hemodynamic indices of conjunctival microvascular function in patients with coronary microvascular dysfunction. Microvasc Res 2023; 147:104480. [PMID: 36690270 DOI: 10.1016/j.mvr.2023.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Coronary microvascular dysfunction (CMD) is a cause of ischaemia with non-obstructive coronary arteries (INOCA). It is notoriously underdiagnosed due to the need for invasive microvascular function testing. We hypothesized that systemic microvascular dysfunction could be demonstrated non-invasively in the microcirculation of the bulbar conjunctiva in patients with CMD. METHODS Patients undergoing coronary angiography for the investigation of chest pain or dyspnoea, with physiologically insignificant epicardial disease (fractional flow reserve ≥0.80) were recruited. All patients underwent invasive coronary microvascular function testing. We compared a cohort of patients with evidence of CMD (IMR ≥25 or CFR <2.0); to a group of controls (IMR <25 and CFR ≥2.0). Conjunctival imaging was performed using a previously validated combination of a smartphone and slit-lamp biomicroscope. This technique allows measurement of vessel diameter and other indices of microvascular function by tracking erythrocyte motion. RESULTS A total of 111 patients were included (43 CMD and 68 controls). There were no differences in baseline demographics, co-morbidities or epicardial coronary disease severity. The mean number of vessel segments analysed per patient was 21.0 ± 12.8 (3.2 ± 3.5 arterioles and 14.8 ± 10.8 venules). In the CMD cohort, significant reductions were observed in axial/cross-sectional velocity, blood flow, wall shear rate and stress. CONCLUSION The changes in microvascular function linked to CMD can be observed non-invasively in the bulbar conjunctiva. Conjunctival vascular imaging may have utility as a non-invasive tool to both diagnose CMD and augment conventional cardiovascular risk assessment.
Collapse
Affiliation(s)
- Jonathan A Mailey
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom; Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom.
| | - Julie S Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - Paul F Brennan
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Min Jing
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, United Kingdom
| | - Agnes Awuah
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - James A D McLaughlin
- Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom; Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Jordanstown, United Kingdom
| | - M Andrew Nesbit
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - Tara C B Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| | - Mark S Spence
- Department of Cardiology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom; Integrated Diagnostic Laboratory, Northland House, Ulster University, Belfast, United Kingdom
| |
Collapse
|
70
|
Foà A, Canton L, Bodega F, Bergamaschi L, Paolisso P, De Vita A, Villano A, Mattioli AV, Tritto I, Morrone D, Lanza GA, Pizzi C. Myocardial infarction with nonobstructive coronary arteries: from pathophysiology to therapeutic strategies. J Cardiovasc Med (Hagerstown) 2023; 24:e134-e146. [PMID: 37186564 DOI: 10.2459/jcm.0000000000001439] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Myocardial infarction with nonobstructive coronary arteries (MINOCA) is a heterogeneous group of clinical entities characterized by clinical evidence of acute myocardial infarction (AMI) with normal or near-normal coronary arteries on coronary angiography (stenosis < 50%) and without an over the alternative diagnosis for the acute presentation. Its prevalence ranges from 6% to 11% among all patients with AMI, with a predominance of young, nonwhite females with fewer traditional risks than those with an obstructive coronary artery disease (MI-CAD). MINOCA can be due to either epicardial causes such as rupture or fissuring of unstable nonobstructive atherosclerotic plaque, coronary artery spasm, spontaneous coronary dissection and cardioembolism in-situ or microvascular causes. Besides, also type-2 AMI due to supply-demand mismatch and Takotsubo syndrome must be considered as a possible MINOCA cause. Because of the complex etiology and a limited amount of evidence, there is still some confusion around the management and treatment of these patients. Therefore, the key focus of this condition is to identify the underlying individual mechanisms to achieve patient-specific treatments. Clinical history, electrocardiogram, echocardiography, and coronary angiography represent the first-level diagnostic investigations, but coronary imaging with intravascular ultrasound and optical coherent tomography, coronary physiology testing, and cardiac magnetic resonance imaging offer additional information to understand the underlying cause of MINOCA. Although the prognosis is slightly better compared with MI-CAD patients, MINOCA is not always benign and depends on the etiopathology. This review analyzes all possible pathophysiological mechanisms that could lead to MINOCA and provides the most specific and appropriate therapeutic approach in each scenario.
Collapse
Affiliation(s)
- Alberto Foà
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), IRCCS Policlinico St. Orsola-Malpighi, Alma Mater Studiorum University of Bologna, Bologna
| | - Lisa Canton
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), IRCCS Policlinico St. Orsola-Malpighi, Alma Mater Studiorum University of Bologna, Bologna
| | - Francesca Bodega
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), IRCCS Policlinico St. Orsola-Malpighi, Alma Mater Studiorum University of Bologna, Bologna
| | - Luca Bergamaschi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), IRCCS Policlinico St. Orsola-Malpighi, Alma Mater Studiorum University of Bologna, Bologna
| | - Pasquale Paolisso
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | - Antonio De Vita
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome
| | - Angelo Villano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome
| | | | - Isabella Tritto
- Università di Perugia, Dipartimento di Medicina, Sezione di Cardiologia e Fisiopatologia Cardiovascolare, Perugia
| | - Doralisa Morrone
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine-Cardiology Division, University Hospital of Pisa, Italy
| | - Gaetano Antonio Lanza
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), IRCCS Policlinico St. Orsola-Malpighi, Alma Mater Studiorum University of Bologna, Bologna
| |
Collapse
|
71
|
Liu L, Dai N, Yin G, Zhang W, Mohammed AQ, Xu S, Lv X, Shi T, Feng C, Mohammed AA, Mareai RM, Xu Y, Yu X, Abdu FA, Yu F, Che W. Prognostic value of combined coronary angiography-derived IMR and myocardial perfusion imaging by CZT SPECT in INOCA. J Nucl Cardiol 2023; 30:684-701. [PMID: 35918592 DOI: 10.1007/s12350-022-03038-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/26/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND A significant proportion of ischemia with non-obstructive coronary artery disease (INOCA) demonstrate coronary microvascular dysfunction (CMD), a condition associated with abnormal myocardial perfusion imaging (MPI) and adverse outcomes. Coronary angiography-derived index of microvascular resistance (caIMR) is a novel non-invasive technique to assess CMD. We aimed to investigate the prognostic value of combined caIMR and MPI by CZT SPECT in INOCA patients. METHODS Consecutive 151 patients with chest pain and < 50% coronary stenosis who underwent coronary angiography and MPI within 3 months were enrolled. caIMR was calculated by computational pressure-flow dynamics. CMD was defined as caIMR ≥ 25. The endpoint was major adverse cardiac events (MACE: cardiovascular death, nonfatal myocardial infarction, revascularization, angina-related rehospitalization, heart failure, and stroke). RESULTS Of all INOCA patients, CMD was present in 93 (61.6%) patients. The prevalence of abnormal MPI was significantly higher in CMD compared with non-CMD patients (40.9% vs 13.8%, P < .001). CMD showed a higher risk of MACE than non-CMD patients. Patients with both CMD and abnormal MPI had the worst prognosis, followed by patients with CMD and normal MPI (log-rank P < .001). Cox regression analysis identified CMD (HR 3.121, 95%CI 1.221-7.974, P = .017) and MPI (HR 2.704, 95%CI 1.030-7.099, P = .043) as predictive of MACE. The prognostic value of INOCA patients enhanced significantly by adding CMD and MPI to the model with clinical risk factors (AUC = 0.777 vs 0.686, P = .030). CONCLUSION caIMR-derived CMD is associated with increased risk of MACE among INOCA patients. Patients with abnormalities on both caIMR and MPI had the worse outcomes.
Collapse
Affiliation(s)
- Lu Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Neng Dai
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoqing Yin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Wen Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Abdul-Quddus Mohammed
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Siling Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Xian Lv
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Tingting Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Cailin Feng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Ayman A Mohammed
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Redhwan M Mareai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Xuejing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Fuad A Abdu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
- Department of Cardiology, Shanghai Tenth People's Hospital Chongming Branch, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
72
|
Hwang D, Park SH, Koo BK. Ischemia With Nonobstructive Coronary Artery Disease: Concept, Assessment, and Management. JACC. ASIA 2023; 3:169-184. [PMID: 37181394 PMCID: PMC10167523 DOI: 10.1016/j.jacasi.2023.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 05/16/2023]
Abstract
In daily clinical practice, physicians often encounter patients with angina or those with evidence of myocardial ischemia from noninvasive tests but not having obstructive coronary artery disease. This type of ischemic heart disease is referred to as ischemia with nonobstructive coronary arteries (INOCA). INOCA patients often suffer from recurrent chest pain without adequate management and are associated with poor clinical outcomes. There are several endotypes of INOCA, and each endotype should be treated based on its specific underlying mechanism. Therefore, identifying INOCA and discriminating its underlying mechanisms are important issues and of clinical interest. Invasive physiologic assessment is the first step in the diagnosis of INOCA and discriminating the underlying mechanism; additional provocation tests help physicians identify the vasospastic component in INOCA patients. Comprehensive information acquired from these invasive tests can provide a template for mechanism-specific management for patients with INOCA.
Collapse
Affiliation(s)
- Doyeon Hwang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Sang-Hyeon Park
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
73
|
Wang B, Gao Y, Zhao Y, Xu C, Zhao S, Li H, Zhang Y, Xu Y. The spectrum of angiography-derived IMR according to morphological and physiological coronary stenosis in patients with suspected myocardial ischemia. Clin Cardiol 2023; 46:502-511. [PMID: 36855931 DOI: 10.1002/clc.23999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Coronary microvascular dysfunction is crucial in determining myocardial ischemia; however, the relationship between epicardial coronary diameter stenosis (DS) and the index of microcirculatory resistance (IMR) remains unclear. We sought to explore the distribution of coronary angiography-derived IMR (angio-IMR) in patients with suspected myocardial ischemia. METHODS The study included 480 patients with suspected myocardial ischemia, all of whom underwent coronary angiography. According to the severity of coronary DS, patients were divided into three groups: mild (DS < 50%), intermediate (DS 50%-70%), and severe (DS > 70%). Angio-IMR and fractional flow reserve (FFR) were calculated based on coronary angiography images through the principle of computational flow and pressure simulation. RESULTS Of the 480 patients, the mean age was 67.23 ± 9.44 years, with 55.4% male. There were 193 (40.2%) patients in the mild group, 189 (39.4%) patients in the intermediate group, and 98 (20.4%) patients in the severe group. The average angio-IMR of the mild group was 30.8 ± 14.9, which was significantly higher than those of the intermediate group (26.7 ± 13.0) and the severe group (17.9 ± 8.4) (p < .001). In the correlation analysis, angio-IMR was negatively correlated with DS (rho = -0.331, p = .001) and positively correlated with angio-FFR (rho = 0.483, p < .001). By multivariate logistic regression analysis, angio-FFR ≤ 0.8 (odds ratio, 0.184; 95% confidence interval, 0.106-0.321) was the only independent predictor of coronary microvascular dysfunction. CONCLUSION In patients with suspected myocardial ischemia, coronary microcirculation is significantly associated with morphological and physiological coronary stenosis. (ClinicalTrials.gov: NCT05435898).
Collapse
Affiliation(s)
- Bo Wang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Gao
- Department of Cardiology, North Station Hospital of Jing'an District, Shanghai, China
| | - Yifan Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chong Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Song Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
74
|
Sans-Roselló J, García-García HM. Atherosclerotic Nonobstructive Coronary Artery Disease in Patients With Takotsubo Syndrome and Heart Failure: A Contributor or a Red Herring? Response. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2023; 48:42. [PMID: 36379830 DOI: 10.1016/j.carrev.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Jordi Sans-Roselló
- Department of Cardiology, Parc Taulí Hospital Universitari, Sabadell, Barcelona, Spain
| | - Hector M García-García
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA.
| |
Collapse
|
75
|
van Schalkwijk DL, Widdershoven J, Magro M, Smaardijk V, Bekendam M, Vermeltfoort I, Mommersteeg P. Clinical and psychological characteristics of patients with ischemia and non-obstructive coronary arteries (INOCA) and obstructive coronary artery disease. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 27:100282. [PMID: 38511098 PMCID: PMC10945986 DOI: 10.1016/j.ahjo.2023.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/22/2024]
Abstract
Study objective Ischemia with non-obstructive coronary arteries (INOCA) is caused by vascular dysfunctions and predominantly seen in women. For better recognition and prevention more insight is needed on risk factors and well-being. We aimed to explore differences in psychological distress, quality of life, risk factors, and medication use between women with INOCA and obstructive coronary artery disease (CAD). Methods Patients from two separate studies (n = 373, 57 % women) completed a questionnaire assessing psychological and clinical factors. Analyses were performed for women only who were categorized into three groups: non-ischemic chest pain (n = 115), INOCA (n = 68), and obstructive CAD (n = 30). Secondary analyses were performed for men only, and sex differences within INOCA patients were explored. Results and conclusion Compared to obstructive CAD patients, INOCA patients reported better physical functioning (p = 0.041). Furthermore, INOCA patients had less often hypercholesterolemia (p < 0.001), were less often active smokers (p = 0.062), had a lower mean BMI (p = 0.022), and reported more often a familial history of CAD (p = 0.004). Patients with INOCA used antithrombotic, cholesterol lowering medications, and beta-blockers less often than patients with obstructive CAD. No differences between patients with INOCA and obstructive CAD were found for psychological distress, well-being, and for women-specific risk factors. The results suggest that women with INOCA experience similar levels of psychological distress and seem to have different risk factor profiles and are less optimally treated as compared to obstructive CAD patients. Further research on risk factors is needed for better prevention and treatment.
Collapse
Affiliation(s)
- Dinah L. van Schalkwijk
- Center of Research on Psychology in Somatic Diseases (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, the Netherlands
| | - Jos Widdershoven
- Center of Research on Psychology in Somatic Diseases (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, the Netherlands
- Department of Cardiology, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - Michael Magro
- Department of Cardiology, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - Veerle Smaardijk
- Center of Research on Psychology in Somatic Diseases (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, the Netherlands
| | - Maria Bekendam
- Center of Research on Psychology in Somatic Diseases (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, the Netherlands
| | - Ilse Vermeltfoort
- Department of Nuclear Medicine, Institute Verbeeten, Tilburg, the Netherlands
| | - Paula Mommersteeg
- Center of Research on Psychology in Somatic Diseases (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, the Netherlands
| |
Collapse
|
76
|
Ekmejian A, Allahwala U, Ward M, Bhindi R. Impact of coronary disease patterns, anatomical factors, micro-vascular disease and non-coronary cardiac factors on invasive coronary physiology. Am Heart J 2023; 257:51-61. [PMID: 36509137 DOI: 10.1016/j.ahj.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 05/11/2023]
Abstract
Invasive coronary physiology has been applied by interventional cardiologists to guide the management of coronary artery disease (CAD), with well-defined thresholds applied to determine whether CAD should be managed with optimal medical therapy (OMT) alone or OMT and percutaneous coronary intervention (PCI). There are multiple modalities in clinical use, including hyperaemic and non-hyperaemic indices. Despite endorsement in the major guidelines, there are various factors which impact and confound the readings of invasive coronary physiology, both within the coronary tree and beyond. This review article aims to summarise the mechanisms by which these factors impact invasive coronary physiology, and distinguish factors that contribute to ischaemia from confounding factors. The potential for mis-classification of ischaemic status is highlighted. Lastly, the authors identify targets for future research to improve the precision of physiology-guided management of CAD.
Collapse
Affiliation(s)
- Avedis Ekmejian
- Royal North Shore Hospital, Department of Cardiology, Sydney, NSW, Australia; University of Sydney Northern Clinical School, Sydney, NSW, Australia; Kolling Institute of Medical Research, Sydney, NSW, Australia.
| | - Usaid Allahwala
- Royal North Shore Hospital, Department of Cardiology, Sydney, NSW, Australia; University of Sydney Northern Clinical School, Sydney, NSW, Australia; Kolling Institute of Medical Research, Sydney, NSW, Australia
| | - Michael Ward
- Royal North Shore Hospital, Department of Cardiology, Sydney, NSW, Australia; University of Sydney Northern Clinical School, Sydney, NSW, Australia; Kolling Institute of Medical Research, Sydney, NSW, Australia
| | - Ravinay Bhindi
- Royal North Shore Hospital, Department of Cardiology, Sydney, NSW, Australia; University of Sydney Northern Clinical School, Sydney, NSW, Australia; Kolling Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
77
|
Initial single-center experience of a standardized protocol for invasive assessment of ischemia and no obstructive coronary artery disease. Rev Port Cardiol 2023; 42:455-465. [PMID: 36828182 DOI: 10.1016/j.repc.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/23/2022] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Coronary vasomotion disorders (CVDs), including microvascular angina (MVA) and vasospastic angina (VSA), account for significant morbidity among patients with non-obstructive coronary artery disease (NOCAD). However, protocols for CVD assessment in clinical practice are seldom standardized and may be difficult to implement. PURPOSE To assess the safety and feasibility of a comprehensive coronary function test (CFT) protocol for assessment of CVD and the prevalence of different phenotypes of CVD in patients with angina and NOCAD (ANOCA). METHODS Patients with persistent angina referred for invasive coronary angiogram and found to have NOCAD were prospectively recruited and underwent a CFT. Functional parameters (fractional flow reserve, coronary flow reserve and index of myocardial resistance) and coronary vasoreactivity were assessed in all patients. RESULTS Of the 20 patients included, the mean age was 63±13 years and 50% were females. Most patients had persistent typical angina and evidence of ischemia in noninvasive tests (75%). The CFT was successfully performed in all subjects without serious complications. Isolated MVA was found in 25%, isolated VSA in 40%, both MVA and VSA in 10% and noncardiac chest pain in 25% of patients. Antianginal therapy was modified after the results of CFT in 70% of patients. CONCLUSION A coronary function test was feasible and safe in a cohort of patients with ANOCA. CVD were prevalent in this selected group of patients, and some presented mixed CVD phenotypes. CFT may provide a definitive diagnosis in patients with persistent angina and prompt the stratification of pharmacological therapy.
Collapse
|
78
|
Vandeloo B, Andreini D, Brouwers S, Mizukami T, Monizzi G, Lochy S, Mileva N, Argacha JF, De Boulle M, Muyldermans P, Belmonte M, Sonck J, Gallinoro E, Munhoz D, Roosens B, Trabattoni D, Galli S, Seki R, Penicka M, Wyffels E, Mushtaq S, Nagumo S, Pardaens S, Barbato E, Bartorelli AL, De Bruyne B, Cosyns B, Collet C. Diagnostic performance of exercise stress tests for detection of epicardial and microvascular coronary artery disease: the UZ Clear study. EUROINTERVENTION 2023; 18:e1090-e1098. [PMID: 36147027 PMCID: PMC9909457 DOI: 10.4244/eij-d-22-00270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND Cardiac stress tests remain the cornerstone for evaluating patients suspected of having obstructive coronary artery disease (CAD). Coronary microvascular dysfunction (CMD) can lead to abnormal non-invasive tests. AIMS We sought to assess the diagnostic performance of exercise stress tests with indexes of epicardial and microvascular resistance as reference. METHODS This was a prospective, single-arm, multicentre study of patients with an intermediate pretest probability of CAD and positive exercise stress tests who were referred for invasive angiography. Patients underwent an invasive diagnostic procedure (IDP) with measurement of fractional flow reserve (FFR) and index of microvascular resistance (IMR) in at least one coronary vessel. Obstructive CAD was defined as diameter stenosis (DS) >50% by quantitative coronary angiography (QCA). The objective was to determine the false discovery rate (FDR) of cardiac exercise stress tests with both FFR and IMR as references. RESULTS One hundred and seven patients (137 vessels) were studied. The mean age was 62.1±8.7, and 27.1% were female. The mean diameter stenosis was 37.2±27.5%, FFR was 0.84±0.10, coronary flow reserve was 2.74±2.07, and IMR 20.3±11.9. Obstructive CAD was present in 39.3%, whereas CMD was detected in 20.6%. The FDR was 60.7% and 62.6% with QCA and FFR as references (p-value=0.803). The combination of FFR and IMR as clinical reference reduced the FDR by 25% compared to QCA (45.8% vs 60.7%; p-value=0.006). CONCLUSIONS In patients with evidence of ischaemia, an invasive functional assessment accounting for the epicardial and microvascular compartments led to an improvement in the diagnostic performance of exercise tests, driven by a significant FDR reduction.
Collapse
Affiliation(s)
- Bert Vandeloo
- Centrum voor Hart- en Vaatziekten (CHVZ), Vrije Universiteit Brussel (VUB), Universtair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Sofie Brouwers
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Experimental Pharmacology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Takuya Mizukami
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Division of Clinical Pharmacology, Department of Pharmacology, Showa University, Tokyo, Japan
| | | | - Stijn Lochy
- Centrum voor Hart- en Vaatziekten (CHVZ), Vrije Universiteit Brussel (VUB), Universtair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Niya Mileva
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Medical Faculty, Medical University Sofia, Sofia, Bulgaria
| | - Jean-François Argacha
- Centrum voor Hart- en Vaatziekten (CHVZ), Vrije Universiteit Brussel (VUB), Universtair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Matthias De Boulle
- Centrum voor Hart- en Vaatziekten (CHVZ), Vrije Universiteit Brussel (VUB), Universtair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Philip Muyldermans
- Centrum voor Hart- en Vaatziekten (CHVZ), Vrije Universiteit Brussel (VUB), Universtair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Marta Belmonte
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | - Jeroen Sonck
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | | | - Daniel Munhoz
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences University Federico II, Naples, Italy
- Department of Internal Medicine, Discipline of Cardiology, University of Campinas (Unicamp), Campinas, Brazil
| | - Bram Roosens
- Centrum voor Hart- en Vaatziekten (CHVZ), Vrije Universiteit Brussel (VUB), Universtair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | | - Ruiko Seki
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | | | - Eric Wyffels
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | | | - Sakura Nagumo
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Cardiology, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | | | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences University Federico II, Naples, Italy
| | - Antonio L Bartorelli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Bernard De Bruyne
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Bernard Cosyns
- Centrum voor Hart- en Vaatziekten (CHVZ), Vrije Universiteit Brussel (VUB), Universtair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| |
Collapse
|
79
|
Civieri G, Montisci R, Kerkhof PLM, Iliceto S, Tona F. Coronary Flow Velocity Reserve by Echocardiography: Beyond Atherosclerotic Disease. Diagnostics (Basel) 2023; 13:diagnostics13020193. [PMID: 36673004 PMCID: PMC9858233 DOI: 10.3390/diagnostics13020193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Coronary flow velocity reserve (CFVR) is defined as the ratio between coronary flow velocity during maximal hyperemia and coronary flow at rest. Gold-standard techniques to measure CFVR are either invasive or require radiation and are therefore inappropriate for large-scale adoption. More than 30 years ago, echocardiography was demonstrated to be a reliable tool to assess CFVR, and its field of application rapidly expanded. Although initially validated to assess the hemodynamic relevance of a coronary stenosis, CFVR by echocardiography was later used to investigate coronary microcirculation. Microvascular dysfunction was detected in many different conditions, ranging from organ transplantation to inflammatory disorders and from metabolic diseases to cardiomyopathies. Moreover, it has been proven that CFVR by echocardiography not only detects coronary microvascular involvement but is also an effective prognostic factor that allows a precise risk stratification of the patients. In this review, we will summarize the many applications of CFVR by echocardiography, focusing on the coronary involvement of systemic diseases.
Collapse
Affiliation(s)
- Giovanni Civieri
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Roberta Montisci
- Clinical Cardiology, AOU Cagliari, Department of Medical Science and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Peter L. M. Kerkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, VUmc, 1081 HV Amsterdam, The Netherlands
| | - Sabino Iliceto
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Francesco Tona
- Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
- Correspondence: ; Tel.: +39-049-8211844
| |
Collapse
|
80
|
Castaldi G, Fezzi S, Widmann M, Lia M, Rizzetto F, Mammone C, Pazzi S, Piccolo S, Galli V, Pighi M, Pesarini G, Prati D, Ferrero V, Scarsini R, Tavella D, Ribichini F. Angiography-derived index of microvascular resistance in takotsubo syndrome. Int J Cardiovasc Imaging 2023; 39:233-244. [PMID: 36336756 PMCID: PMC9813145 DOI: 10.1007/s10554-022-02698-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022]
Abstract
Coronary microvascular dysfunction (CMD) has been proposed as a key driver in the etiopathogenesis of Takotsubo syndrome (TTS), likely related to an "adrenergic storm" upon a susceptible microvascular circulation. The aim of our manuscript was to assess CMD in patients with TTS through the computation of the angiography-derived index of microcirculatory resistance (IMR) and its correlation with clinical presentation. Coronary angiograms of 41 consecutive TTS patients were retrospectively analyzed to derive angiography-based indices of CMD. Three indices (NH-IMRangio, AngioIMR and A-IMR) were calculated based on quantitative flow ratio. CMD was defined as an IMRangio value ≥ 25 units. The correlation between CMD and clinical presentation was then assessed. Median age was 76 years, 85.7% were women and mean left ventricular ejection fraction (LVEF) at first echocardiogram was 41.2%. Angiography-derived IMR was higher in left anterior descending artery (LAD) than circumflex and right coronary artery with either NH-IMRangio (53.9 ± 19.8 vs 35.8 ± 15.4 vs 40.8 ± 18.5, p-value < 0.001), AngioIMR (47.2 ± 17.3 vs 31.8 ± 12.2 vs 37.3 ± 13.7, p-value < 0.001) or A-IMR (52.7 ± 19 vs 36.1 ± 14.1 vs 41.8 ± 16.1, p-value < 0.001). All patients presented CMD with angiography-derived IMR ≥ 25 in at least one territory with each formula. Angiography-derived IMR in LAD territory was significantly higher in patients presenting with LVEF impairment (≤ 40%) than in those with preserved ventricular global function (NH-IMRangio: 59.3 ± 18.1 vs 46.3 ± 16.0 p-value = 0.030; AngioIMR: 52.9 ± 17.8 vs 41.4 ± 14.2, p-value = 0.037; A-IMR: 59.2 ± 18.6 vs 46.3 ± 17.0, p-value = 0.035). CMD assessed with angiography-derived IMR is a common finding in TTS and it is inversely correlated with LV function. The available formulas have a substantial superimposable diagnostic performance in assessing coronary microvascular function.
Collapse
Affiliation(s)
- Gianluca Castaldi
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Simone Fezzi
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Maddalena Widmann
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Micaela Lia
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Francesca Rizzetto
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Concetta Mammone
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Sara Pazzi
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Solange Piccolo
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Verdiana Galli
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Michele Pighi
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Gabriele Pesarini
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Daniele Prati
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Valeria Ferrero
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Roberto Scarsini
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Domenico Tavella
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy
| | - Flavio Ribichini
- Division of Cardiology, Department of Medicine, University of Verona, Piazzale Aristide Stefani 1, 37126, Verona, Italy.
| |
Collapse
|
81
|
Mohammed AA, Zhang H, Abdu FA, Liu L, Singh S, Lv X, Shi T, Mareai RM, Mohammed A, Yin G, Zhang W, Xu Y, Che W. Effect of nonobstructive coronary stenosis on coronary microvascular dysfunction and long-term outcomes in patients with INOCA. Clin Cardiol 2022; 46:204-213. [PMID: 36567512 PMCID: PMC9933113 DOI: 10.1002/clc.23962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ischemic pain with no-obstructive coronary artery (INOCA) is clinically significant and defined by nonobstructive coronary stenosis <50%. Coronary microvascular dysfunction (CMD) is a relevant cause associated with adverse outcomes. OBJECTIVES Investigated the effect of no-stenosis (0% stenosis) and non-obstructive (0% < stenosis < 50%) on the prognostic impact of CMD in INOCA. METHOD A retrospective study assessed the coronary microvascular function in 151 INOCA patients who underwent invasive angiography by the coronary angiography-derived index of microcirculation-resistance (caIMR). CZT-SPECT was performed to evaluate myocardial perfusion imaging (MPI) abnormalities. Chi-square test/Fisher exact test, Student t-test, Kaplan-Meier curve, and Uni-multivariable Cox proportional models were used for analysis. Clinical outcomes were major adverse cardiovascular events (MACE) during a median follow-up of 35 months. RESULT No-stenosis was present in 71 (47%) INOCA patients, and 80 (53%) were with nonobstructive. CMD (caIMR ≥ 25) was more prevalent in patients with no-stenosis than nonobstructive (76.1% vs. 48.8%, p = .001), along with abnormal MPI (39.4% vs. 22.5%, p = .024). The MACE rates were not different between no-stenosis and nonobstructive stenosis. CMD showed an increased risk of MACE for all INOCA. No-stenosis with CMD had the worst prognosis. Cox regression analysis identified CMD and abnormal MPI as predictors of MACE in all INOCA and patients with no-stenosis. However, no-stenosis and nonobstructive stenosis were not predictors of MACE in INOCA. CONCLUSION CMD was more frequently present in INOCA with no-stenosis. However, there was no difference in long-term clinical outcomes between no-stenosis and nonobstructive stenosis. CMD could independently predict poor outcomes in INOCA, particularly in patients with no-stenosis.
Collapse
Affiliation(s)
- Ayman A. Mohammed
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina,Department of Internal Medicine, Faculty of Medicine and Health ScienceTaiz UniversityTaizYemen
| | - Hengbin Zhang
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Fuad A. Abdu
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Lu Liu
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Shekhar Singh
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Xian Lv
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Tingting Shi
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Redhwan M. Mareai
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Abdul‐Quddus Mohammed
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Guoqing Yin
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Wen Zhang
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina,Department of CardiologyShanghai Tenth People's Hospital Chongming branchShanghaiChina
| |
Collapse
|
82
|
Scarsini R, Pighi M, Mainardi A, Portolan L, Springhetti P, Mammone C, Della Mora F, Fanti D, Tavella D, Gottin L, Bergamini C, Benfari G, Pesarini G, Ribichini FL. Proof of concept study on coronary microvascular function in low flow low gradient aortic stenosis. HEART (BRITISH CARDIAC SOCIETY) 2022; 109:785-793. [PMID: 36598066 DOI: 10.1136/heartjnl-2022-321907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES We hypothesised that low flow low gradient aortic stenosis (LFLGAS) is associated with more severe coronary microvascular dysfunction (CMD) compared with normal-flow high-gradient aortic stenosis (NFHGAS) and that CMD is related to reduced cardiac performance. METHODS Invasive CMD assessment was performed in 41 consecutive patients with isolated severe aortic stenosis with unobstructed coronary arteries undergoing transcatheter aortic valve implantation (TAVI). The index of microcirculatory resistance (IMR), resistive reserve ratio (RRR) and coronary flow reserve (CFR) were measured in the left anterior descending artery before and after TAVI. Speckle tracking echocardiography was performed to assess cardiac function at baseline and repeated at 6 months. RESULTS IMR was significantly higher in patients with LFLGAS compared with patients with NFHGAS (24.1 (14.6 to 39.1) vs 12.8 (8.6 to 19.2), p=0.002), while RRR was significantly lower (1.4 (1.1 to 2.1) vs 2.6 (1.5 to 3.3), p=0.020). No significant differences were observed in CFR between the two groups. High IMR was associated with low stroke volume index, low cardiac output and reduced peak atrial longitudinal strain (PALS). TAVI determined no significant variation in microvascular function (IMR: 16.0 (10.4 to 26.1) vs 16.6 (10.2 to 25.6), p=0.403) and in PALS (15.9 (9.9 to 26.5) vs 20.1 (12.3 to 26.7), p=0.222). Conversely, left ventricular (LV) global longitudinal strain increased after TAVI (-13.2 (8.4 to 16.6) vs -15.1 (9.4 to 17.8), p=0.047). In LFLGAS, LV systolic function recovered after TAVI in patients with preserved microvascular function but not in patients with CMD. CONCLUSIONS CMD is more severe in patients with LFLGAS compared with NFHGAS and is associated with low-flow state, left atrial dysfunction and reduced cardiac performance.
Collapse
Affiliation(s)
- Roberto Scarsini
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy .,Department of Medicine, Division of Cardiology, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Veneto, Italy
| | - Michele Pighi
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | - Andrea Mainardi
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | - Leonardo Portolan
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | - Paolo Springhetti
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | - Concetta Mammone
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | - Francesco Della Mora
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | - Diego Fanti
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | - Domenico Tavella
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | - Leonardo Gottin
- Department of Intensive Care and Anesthesiology, University of Verona, Verona, Italy
| | - Corinna Bergamini
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | - Giovanni Benfari
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | - Gabriele Pesarini
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | | |
Collapse
|
83
|
Picone DS, Kodithuwakku V, Mayer CC, Chapman N, Rehman S, Climie RE. Sex differences in pressure and flow waveform physiology across the life course. J Hypertens 2022; 40:2373-2384. [PMID: 36093877 DOI: 10.1097/hjh.0000000000003283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cardiovascular disease (CVD) has long been deemed a disease of old men. However, in 2019 CVD accounted for 35% of all deaths in women and, therefore, remains the leading cause of death in both men and women. There is increasing evidence to show that risk factors, pathophysiology and health outcomes related to CVD differ in women compared with men, yet CVD in women remains understudied, underdiagnosed and undertreated. Differences exist between the sexes in relation to the structure of the heart and vasculature, which translate into differences in blood pressure and flow waveform physiology. These physiological differences between women and men may represent an important explanatory factor contributing to the sex disparity in CVD presentation and outcomes but remain understudied. In this review we aim to describe sex differences in arterial pressure and flow waveform physiology and explore how they may contribute to differences in CVD in women compared to men. Given that unfavourable alterations in the cardiovascular structure and function can start as early as in utero, we report sex differences in waveform physiology across the entire life course.
Collapse
Affiliation(s)
- Dean S Picone
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | | | - Christopher C Mayer
- Medical Signal Analysis, Center for Health & Bioresources, AIT Austrian Institute of Technology, Vienna, Austria
| | - Niamh Chapman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Sabah Rehman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Rachel E Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
84
|
Varrichione G, Biccirè FG, Di Pietro R, Prati F, Battisti P. The risk of acute coronary events in microvascular disease. Eur Heart J Suppl 2022; 24:I127-I130. [PMID: 36380795 PMCID: PMC9653131 DOI: 10.1093/eurheartjsupp/suac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The microvascular disease represents a widespread clinical entity in the general population, especially among women. The dysfunction of the microcirculation is often responsible for myocardial ischaemia and angina in the absence of significant stenosis of the epicardial district, while in other cases it can represent a contributing cause of angina even in the presence of coronary artery disease, cardiomyopathies or heart failure. The cardiovascular risk factors of people with microvascular disease are similar to those who develop epicardial atherosclerotic disease. However, the prognostic significance of microvascular disease remains a matter of debate. An element to be clarified, in fact, is whether subjects with dysfunction of the microcirculation and coronary tree without significant stenoses present an increased risk of myocardial infarction and sudden death. In recent years, several studies seem to confirm an association between microvascular disease and progression of coronary epicardial atherosclerosis. The prognosis of microvascular disease would therefore not be benign as was previously believed, but associated with an increased risk of cardiovascular events including revascularization, heart attack, and cardiac death.
Collapse
|
85
|
Fan Y, Fezzi S, Sun P, Ding N, Li X, Hu X, Wang S, Wijns W, Lu Z, Tu S. In Vivo Validation of a Novel Computational Approach to Assess Microcirculatory Resistance Based on a Single Angiographic View. J Pers Med 2022; 12:1798. [PMID: 36573725 PMCID: PMC9692562 DOI: 10.3390/jpm12111798] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
(1) Background: In spite of the undeniable clinical value of the index of microvascular resistance (IMR) in assessing the status of coronary microcirculation, its use globally remains very low. The aim of this study was to validate the novel single-view, pressure-wire- and adenosine-free angiographic microvascular resistance (AMR) index, having the invasive wire-based IMR as a reference standard. (2) Methods: one hundred and sixty-three patients (257 vessels) were investigated with pressure wire-based IMR. Microvascular dysfunction (CMD) was defined by IMR ≥ 25. AMR was independently computed from the diagnostic coronary angiography in a blinded fashion. (3) Results: AMR demonstrated a good correlation (r = 0.83, p < 0.001) and diagnostic performance (AUC 0.94; 95% CI: 0.91 to 0.97) compared with wire-based IMR. The best cutoff value for AMR in determining IMR ≥ 25 was 2.5 mmHg*s/cm. The overall diagnostic accuracy of AMR was 87.2% (95% CI: 83.0% to 91.3%), with a sensitivity of 93.5% (95% CI: 87.0% to 97.3%), a specificity of 82.7% (95% CI: 75.6% to 88.4%), a positive predictive value of 79.4% (95% CI: 71.2% to 86.1%) and a negative predictive value of 94.7% (95% CI: 89.3% to 97.8%). No difference in terms of CMD rate was described among different clinical presentations. (4) Conclusions: AMR derived solely from a single angiographic view is a feasible computational alternative to pressure wire-based IMR, with good diagnostic accuracy in assessing CMD.
Collapse
Affiliation(s)
- Yongzhen Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China
| | - Simone Fezzi
- The Lambe Institute for Translational Medicine, the Smart Sensors Lab and Curam, University of Galway, University Road, H91 TK3 Galway, Ireland
- Division of Cardiology, Department of Medicine, University of Verona, 37129 Verona, Italy
| | - Pengcheng Sun
- Shanghai Pulse Medical Technology Inc., Shanghai 200233, China
| | - Nan Ding
- Shanghai Pulse Medical Technology Inc., Shanghai 200233, China
| | - Xiaohui Li
- Shanghai Pulse Medical Technology Inc., Shanghai 200233, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China
| | - Shuang Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - William Wijns
- The Lambe Institute for Translational Medicine, the Smart Sensors Lab and Curam, University of Galway, University Road, H91 TK3 Galway, Ireland
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430072, China
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
86
|
Zhang W, Singh S, Liu L, Mohammed AQ, Yin G, Xu S, Lv X, Shi T, Feng C, Jiang R, Mohammed AA, Mareai RM, Xu Y, Yu X, Abdu FA, Che W. Prognostic value of coronary microvascular dysfunction assessed by coronary angiography-derived index of microcirculatory resistance in diabetic patients with chronic coronary syndrome. Cardiovasc Diabetol 2022; 21:222. [PMID: 36309724 PMCID: PMC9618191 DOI: 10.1186/s12933-022-01653-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/03/2022] [Indexed: 01/14/2024] Open
Abstract
Background Coronary microvascular dysfunction (CMD) is common and is associated with unfavorable cardiovascular events in patients with diabetes mellitus (DM). Coronary angiography-derived index of microcirculatory resistance (caIMR) is a recently developed wire- and hyperemic agent-free method to assess CMD. We aimed to investigate the prognostic impact of CMD assessed by caIMR on clinical outcomes in patients with DM and chronic coronary syndrome (CCS). Methods CCS patients who underwent coronary angiography between June 2015 to May 2018 were included. Coronary microvascular function was measured by caIMR, and CMD was defined as caIMR ≥ 25U. The primary endpoint was major adverse cardiac events (MACE). Kaplan-Meier analysis and Cox proportional hazards models were used to assess the relationship between caIMR and the risk of MACE. Results Of 290 CCS patients, 102 patients had DM. Compared with non-diabetic patients, CMD (caIMR ≥ 25U) was higher among DM patients (57.8% vs. 38.3%; p = 0.001). During a mean 35 months follow-up, 40 MACE had occurred. Patients with caIMR ≥ 25 had a higher rate of MACE than patients with caIMR < 25 (20.6% vs. 8.2%, p = 0.002). Of these, the MACE rate was higher among DM patients with caIMR ≥ 25 than those with caIMR < 25 (33.9% vs. 14.0%; p = 0.022). In multivariable Cox analysis, caIMR ≥ 25 was independently associated with MACE in the DM patients but not in non-DM patients (HR, 2.760; 95% CI, 1.066–7.146; P = 0.036). Conclusion CMD assessed by caIMR was common and is an independent predictor of MACE among diabetic patients with CCS. This finding potentially enables a triage of higher-risk patients to more intensive therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01653-y.
Collapse
|
87
|
Aguiar Rosa S, Mota Carmo M, Rocha Lopes L, Oliveira E, Thomas B, Baquero L, Cruz Ferreira R, Fiarresga A. Index of microcirculatory resistance in the assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy. Rev Port Cardiol 2022; 41:761-767. [DOI: 10.1016/j.repc.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 07/27/2021] [Indexed: 10/17/2022] Open
|
88
|
Zhai C, Fan H, Zhu Y, Chen Y, Shen L. Coronary functional assessment in non-obstructive coronary artery disease: Present situation and future direction. Front Cardiovasc Med 2022; 9:934279. [PMID: 36082113 PMCID: PMC9445206 DOI: 10.3389/fcvm.2022.934279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Non-obstructive coronary artery disease (CAD), which is defined as coronary stenosis <50%, has been increasingly recognized as an emerging entity in clinical practice. Vasomotion abnormality and coronary microvascular dysfunction are two major mechanisms contributing to the occur of angina with non-obstructive CAD. Although routine coronary functional assessment is limited due to several disadvantages, functional evaluation can help to understand the pathophysiological mechanism and/or to exclude specific etiologies. In this review, we summarized the potential mechanisms involved in ischemia with non-obstructive coronary arteries (INOCA) and myocardial infarction with non-obstructive coronary arteries (MINOCA), the two major form of non-obstructive CAD. Additionally, we reviewed currently available functional assessment indices and their use in non-obstructive CAD. Furthermore, we speculated that novel technique combined anatomic and physiologic parameters might provide more individualized therapeutic choice for patients with non-obstructive CAD.
Collapse
Affiliation(s)
- Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongyan Fan
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yujuan Zhu
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yunqing Chen
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liang Shen
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Liang Shen
| |
Collapse
|
89
|
Yang S, Hoshino M, Koo BK, Yonetsu T, Zhang J, Hwang D, Shin ES, Doh JH, Nam CW, Wang J, Chen S, Tanaka N, Matsuo H, Kubo T, Chang HJ, Kakuta T, Narula J. Relationship of Plaque Features at Coronary CT to Coronary Hemodynamics and Cardiovascular Events. Radiology 2022; 305:578-587. [PMID: 35972355 DOI: 10.1148/radiol.213271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Plaque assessments with coronary CT angiography (CCTA) and coronary flow indexes have prognostic implications. Purpose To investigate the association and additive prognostic value of plaque burden and characteristics at CCTA with coronary pressure and flow. Materials and Methods Data of patients with coronary artery disease who underwent CCTA within 90 days before physiologic assessments at tertiary cardiovascular centers between January 2011 and December 2018 were retrospectively analyzed, which included fractional flow reserve (FFR), resting distal coronary artery pressure (Pd)-to-aortic pressure (Pa) ratio (hereafter, Pd/Pa), coronary flow reserve (CFR), hyperemic flow (1/hyperemic mean transit time [Tmn]), resting flow (1/resting Tmn), and index of microcirculatory resistance (IMR). Four high-risk plaque (HRP) attributes at CCTA defined high disease burden (plaque burden, ≥70%; minimum lumen area, <4 mm2) and adverse plaque (low-attenuation plaque, positive remodeling). Their lesion-specific relationships with coronary hemodynamic parameters and major adverse cardiovascular events (MACE) were investigated using a generalized estimating equation and marginal Cox model. Results Among 406 lesions from 335 patients (mean age, 67 years ± 10 [SD]; 259 men), high disease burden is predicted by FFR (odds ratio [OR], 0.55; P < .001), resting Pd/Pa (OR, 0.47; P < .001), CFR (OR, 0.85; P = .004), and hyperemic flow (OR, 0.91; P = .03), and adverse plaque by FFR (OR, 0.67; P < .001), resting Pd/Pa (OR, 0.69; P = .001), hyperemic flow (OR, 0.76; P = .006), resting flow (OR, 0.54; P = .001), and IMR (OR, 1.27; P = .008). High disease burden (hazard ratio [HR], 4.0; P = .004) and adverse plaque (HR, 2.7; P = .02) were associated with a higher risk of MACE (n = 27) over median 2.9-year follow-up. In six lesion subsets with normal flow or pressure, at least three HRP attributes predicted a higher MACE rate (HR range, 2.6-6.3). Conclusion High-risk plaque features and plaque burden at coronary CT angiography were associated with cardiovascular events independent of coronary hemodynamic parameters. Clinical trial registration no. NCT04037163 © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Leipsic and Tzimas in this issue.
Collapse
Affiliation(s)
- Seokhun Yang
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Masahiro Hoshino
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Bon-Kwon Koo
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Taishi Yonetsu
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Jinlong Zhang
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Doyeon Hwang
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Eun-Seok Shin
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Joon-Hyung Doh
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Chang-Wook Nam
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Jianan Wang
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Shaoliang Chen
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Nobuhiro Tanaka
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Hitoshi Matsuo
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Takashi Kubo
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Hyuk-Jae Chang
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Tsunekazu Kakuta
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| | - Jagat Narula
- From the Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, 101 Daehang-ro, Chongno-gu, Seoul, 110-744, Korea (S.Y., B.K.K., D.H.); Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T. Kakuta); Institute on Aging, Seoul National University, Seoul, Korea (B.K.K.); Department of Interventional Cardiology, Tokyo Medical and Dental University, Tokyo, Japan (T.Y.); Department of Cardiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China (J.Z., J.W.); Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (E.S.S.); Division of Cardiology, Ulsan Hospital, Ulsan, Korea (E.S.S.); Department of Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea (J.H.D.); Department of Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea (C.W.N.); Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China (S.C.); Department of Cardiology, Tokyo Medical University, Tokyo, Japan (N.T.); Department of Cardiology, Gifu Heart Center, Gifu, Japan (H.M.); Wakayama Medical University, Wakayama, Japan (T. Kubo); Division of Cardiology, Severance Cardiovascular Hospital, Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, Korea (H.J.C.); and Icahn School of Medicine at Mount Sinai, New York, NY (J.N.)
| |
Collapse
|
90
|
Bradley C, Berry C. Definition and epidemiology of coronary microvascular disease. J Nucl Cardiol 2022; 29:1763-1775. [PMID: 35534718 PMCID: PMC9345825 DOI: 10.1007/s12350-022-02974-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022]
Abstract
Ischemic heart disease remains one of the leading causes of death and disability worldwide. However, most patients referred for a noninvasive computed tomography coronary angiogram (CTA) or invasive coronary angiogram for the investigation of angina do not have obstructive coronary artery disease (CAD). Approximately two in five referred patients have coronary microvascular disease (CMD) as a primary diagnosis and, in addition, CMD also associates with CAD and myocardial disease (dual pathology). CMD underpins excess morbidity, impaired quality of life, significant health resource utilization, and adverse cardiovascular events. However, CMD often passes undiagnosed and the onward management of these patients is uncertain and heterogeneous. International standardized diagnostic criteria allow for the accurate diagnosis of CMD, ensuring an often overlooked patient population can be diagnosed and stratified for targeted medical therapy. Key to this is assessing coronary microvascular function-including coronary flow reserve, coronary microvascular resistance, and coronary microvascular spasm. This can be done by invasive methods (intracoronary temperature-pressure wire, intracoronary Doppler flow-pressure wire, intracoronary provocation testing) and non-invasive methods [positron emission tomography (PET), cardiac magnetic resonance imaging (CMR), transthoracic Doppler echocardiography (TTDE), cardiac computed tomography (CT)]. Coronary CTA is insensitive for CMD. Functional coronary angiography represents the combination of CAD imaging and invasive diagnostic procedures.
Collapse
Affiliation(s)
- Conor Bradley
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
- NHS Golden Jubilee Hospital, Clydebank, United Kingdom
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.
- NHS Golden Jubilee Hospital, Clydebank, United Kingdom.
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, United Kingdom.
| |
Collapse
|
91
|
Cecere A, Kerkhof PLM, Civieri G, Angelini A, Gambino A, Fraiese A, Bottio T, Osto E, Famoso G, Fedrigo M, Giacomin E, Toscano G, Montisci R, Iliceto S, Gerosa G, Tona F. Coronary Flow Evaluation in Heart Transplant Patients Compared to Healthy Controls Documents the Superiority of Coronary Flow Velocity Reserve Companion as Diagnostic and Prognostic Tool. Front Cardiovasc Med 2022; 9:887370. [PMID: 35811712 PMCID: PMC9263115 DOI: 10.3389/fcvm.2022.887370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDistinct contributions by functional or structural alterations of coronary microcirculation in heart transplantation (HT) and their prognostic role have not been fully elucidated. We aimed to identify the mechanisms of coronary microvascular dysfunction (CMD) in HT and their prognostic implications.Methods134 patients, surviving at least 5 years after HT, without evidence of angiographic vasculopathy or symptoms/signs of rejection were included. 50 healthy volunteers served as controls. All underwent the assessment of rest and hyperemic coronary diastolic peak flow velocity (DPVr and DPVh) and coronary flow velocity reserve (CFVR) and its inherent companion that is based on the adjusted quadratic mean: CCFVR = √{(DPVr)2 + (DPVh)2}. Additionally, basal and hyperemic coronary microvascular resistance (BMR and HMR) were estimated.ResultsBased on CFVR and DPVh, HT patients can be assigned to four endotypes: endotype 1, discordant with preserved CFVR (3.1 ± 0.4); endotype 2, concordant with preserved CFVR (3.4 ± 0.5); endotype 3, concordant with impaired CFVR (1.8 ± 0.3) and endotype 4, discordant with impaired CFVR (2.0 ± 0.2). Intriguingly, endotype 1 showed lower DPVr (p < 0.0001) and lower DPVh (p < 0.0001) than controls with lower CFVR (p < 0.0001) and lower CCFVR (p < 0.0001) than controls. Moreover, both BMR and HMR were higher in endotype 1 than in controls (p = 0.001 and p < 0.0001, respectively), suggesting structural microvascular remodeling. Conversely, endotype 2 was comparable to controls. A 13/32 (41%) patients in endotype 1 died in a follow up of 28 years and mortality rate was comparable to endotype 3 (14/31, 45%). However, CCFVR was < 80 cm/s in all 13 deaths of endotype 1 (characterized by preserved CFVR). At multivariable analysis, CMD, DPVh < 75 cm/s and CCFVR < 80 cm/s were independent predictors of mortality. The inclusion of CCFVR < 80 cm/s to models with clinical indicators of mortality better predicted survival, compared to only adding CMD or DPVh < 75 cm/s (p < 0.0001 and p = 0.03, respectively).ConclusionA normal CFVR could hide detection of microvasculopathy with high flow resistance and low flow velocities at rest. This microvasculopathy seems to be secondary to factors unrelated to HT (less rejections and more often diabetes). The combined use of CFVR and CCFVR provides more complete clinical and prognostic information on coronary microvasculopathy in HT.
Collapse
Affiliation(s)
- Annagrazia Cecere
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Peter L. M. Kerkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Giovanni Civieri
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Annalisa Angelini
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Antonio Gambino
- Division of Cardiac Surgery, University of Padua, Padua, Italy
| | - Angela Fraiese
- Division of Cardiac Surgery, University of Padua, Padua, Italy
| | - Tomaso Bottio
- Division of Cardiac Surgery, University of Padua, Padua, Italy
| | - Elena Osto
- Cardiology, University Heart Center, University Hospital of Zürich, Zurich, Switzerland
- Institute of Clinical Chemistry, University of Zurich, University Hospital of Zürich, Zurich, Switzerland
| | - Giulia Famoso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Marny Fedrigo
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Enrico Giacomin
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | | | - Roberta Montisci
- Clinical Cardiology, AOU Cagliari, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Gino Gerosa
- Division of Cardiac Surgery, University of Padua, Padua, Italy
| | - Francesco Tona
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
- *Correspondence: Francesco Tona,
| |
Collapse
|
92
|
Prognostic significance of severe coronary microvascular dysfunction post-PCI in patients with STEMI: A systematic review and meta-analysis. PLoS One 2022; 17:e0268330. [PMID: 35576227 PMCID: PMC9109915 DOI: 10.1371/journal.pone.0268330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Coronary microvascular dysfunction (CMVD) is common and associated with poorer outcomes in patients with ST Segment Elevation Myocardial Infarction (STEMI). The index of microcirculatory resistance (IMR) and the index of hyperemic microvascular resistance (HMR) are both invasive indexes of microvascular resistance proposed for the diagnosis of severe CMVD after primary percutaneous coronary intervention (pPCI). However, these indexes are not routinely assessed in STEMI patients. Our main objective was to clarify the association between IMR or HMR and long-term major adverse cardiovascular events (MACE), through a systematic review and meta-analysis of observational studies. We searched Medline, PubMed, and Google Scholar for studies published in English until December 2020. The primary outcome was a composite of cardiovascular death, non-cardiovascular death, non-fatal myocardial infarction, non-fatal stroke, and rehospitalization for heart failure occurring after at least 6 months following CMVD assessment. We identified 6 studies, reporting outcomes in 1094 patients (mean age 59.7 ± 11.4 years; 18.2% of patients were women) followed-up from 6 months to 7 years. Severe CMVD, defined as IMR > 40 mmHg or HMR > 3mmHg/cm/sec was associated with MACE with a pooled HR of 3.42 [2.45; 4.79]. Severe CMVD is associated with an increased risk of long-term adverse cardiovascular events in patients with STEMI. Our results suggest that IMR and HMR are useful for the early identification of severe CMVD in patients with STEMI after PCI, and represent powerful prognostic assessments as well as new therapeutic targets for clinical intervention.
Collapse
|
93
|
Bastiany A, Pacheco C, Sedlak T, Saw J, Miner SE, Liu S, Lavoie A, Kim DH, Gulati M, Graham MM. A Practical Approach to Invasive Testing in Ischemia with No Obstructive Coronary Arteries (INOCA). CJC Open 2022; 4:709-720. [PMID: 36035733 PMCID: PMC9402961 DOI: 10.1016/j.cjco.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Up to 65% of women and approximately 30% of men have ischemia with no obstructive coronary artery disease (CAD; commonly known as INOCA) on invasive coronary angiography performed for stable angina. INOCA can be due to coronary microvascular dysfunction or coronary vasospasm. Despite the absence of obstructive CAD, those with INOCA have an increased risk of all-cause mortality and adverse outcomes, including recurrent angina and cardiovascular events. These patients often undergo repeat testing, including cardiac catheterization, resulting in lifetime healthcare costs that rival those for obstructive CAD. Patients with INOCA often remain undiagnosed and untreated. This review discusses the symptoms and prognosis of INOCA, offers a systematic approach to the diagnostic evaluation of these patients, and summarizes therapeutic management, including tailored therapy according to underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Alexandra Bastiany
- Thunder Bay Regional Health Sciences Centre, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
- Corresponding author: Dr Alexandra Bastiany, Thunder Bay Regional Health Sciences Centre, Catheterization Laboratory, 980 Oliver Rd, Thunder Bay, Ontario P7B 6V4, Canada. Tel.: +1-807-622-3091; fax: +1-807-333-0903.
| | - Christine Pacheco
- Hôpital Pierre-Boucher, Université de Montréal, Montreal, Quebec, Canada
- Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Tara Sedlak
- Department of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jaqueline Saw
- Department of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Shuangbo Liu
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea Lavoie
- Saskatchewan Health Authority and Regina Mosaic Heart Centre, Regina, Saskatchewan, Canada
| | - Daniel H. Kim
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - Martha Gulati
- Cedars-Sinai Heart Institute, Los Angeles, California, USA
| | - Michelle M. Graham
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| |
Collapse
|
94
|
Fernández-Peregrina E, Garcia-Garcia HM, Sans-Rosello J, Sanz-Sanchez J, Kotronias R, Scarsini R, Echavarria-Pinto M, Tebaldi M, De Maria GL. Angiography-derived versus invasively-determined index of microcirculatory resistance in the assessment of coronary microcirculation: A systematic review and meta-analysis. Catheter Cardiovasc Interv 2022; 99:2018-2025. [PMID: 35366386 DOI: 10.1002/ccd.30174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND The index of microvascular resistance (IMR) is an established tool to assess the status of coronary microcirculation. However, the need for a pressure wire and hyperemic agents have limited its routine use and have led to the development of angiography-derived pressure-wire-free methods (angiography-derived IMR [IMRAngio]). In this review and meta-analysis, we aim to assess the global diagnosis accuracy of IMRAngio versus IMR. METHODS A systematic review of the literature was performed. Studies directly evaluating IMRAngio versus IMR were considered eligible. Pooled values of diagnostic test and summary receiver operator curve were calculated. RESULTS Seven studies directly comparing IMRAngio versus IMR were included (687 patients; 807 vessels). Pooled sensitivity, specificity, +likelihood ratio (LR), and -LR were 82%, 83%, 4.5, and 0.26 respectively. Pooled accuracy was 83% while pooled positive predictive value and negative predictive value were 76% and 85%, respectively. Comparable results were obtained when analyzing by clinical scenario (acute and nonacute coronary syndromes). CONCLUSION IMRAngio shows a good diagnostic performance for the prediction of abnormal IMR.
Collapse
Affiliation(s)
- Estefania Fernández-Peregrina
- Division of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA.,Department of Medicine, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Hector M Garcia-Garcia
- Division of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Jordi Sans-Rosello
- Division of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, USA.,Department of Medicine, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jorge Sanz-Sanchez
- Departamento de Cardiología Intervencionista, Hospital de La Fe, Valencia, Spain.,Centro de Investigacion Biomedica en Red (CIBERCV), Madrid, Spain
| | - Rafail Kotronias
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Roberto Scarsini
- Department of Medicine, Division of Cardiology, University of Verona, Verona, Italy
| | - Mauro Echavarria-Pinto
- Facultad de Medicina, Hospital General ISSSTE Querétano, Universidad Autónoma de Querétano, Santiago de Querétano, Mexico
| | - Matteo Tebaldi
- Cardiovascular Institute, Azienda Ospedaliera Univertaria S. Anna, Ferrara, Italy
| | - Giovanni L De Maria
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
95
|
Spione F, Arevalos V, Gabani R, Sabaté M, Brugaletta S. Coronary Microvascular Angina: A State-of-the-Art Review. Front Cardiovasc Med 2022; 9:800918. [PMID: 35433857 PMCID: PMC9005807 DOI: 10.3389/fcvm.2022.800918] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
Up to 60–70% of patients, undergoing invasive coronary angiography due to angina and demonstrable myocardial ischemia with provocative tests, do not have any obstructive coronary disease. Coronary microvascular angina due to a dysfunction of the coronary microcirculation is the underlying cause in almost 50% of these patients, associated with a bad prognosis and poor quality of life. In recent years, progress has been made in the diagnosis and management of this condition. The aim of this review is to provide an insight into current knowledge of this condition, from current diagnostic methods to the latest treatments.
Collapse
Affiliation(s)
- Francesco Spione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Victor Arevalos
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rami Gabani
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manel Sabaté
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Salvatore Brugaletta
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- *Correspondence: Salvatore Brugaletta,
| |
Collapse
|
96
|
Saito Y, Nishi T, Kato K, Kitahara H, Kobayashi Y. Resistive reserve ratio and microvascular resistance reserve in patients with coronary vasospastic angina. Heart Vessels 2022; 37:1489-1495. [PMID: 35301553 DOI: 10.1007/s00380-022-02051-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
Patients with epicardial coronary vasospastic angina (VSA) may be likely to have coronary microvascular dysfunction, although mixed results have been reported. The aim of this study was to evaluate coronary microvascular function in detail using novel invasive physiologic indices, such as resistive reserve ratio (RRR) and microvascular resistance reserve (MRR). A total of 45 patients undergoing intracoronary acetylcholine (ACh) provocation test and invasive coronary circulatory evaluation using a thermodilution method were prospectively included. VSA was diagnosed as angiographic vasospasm accompanied by chest pain and/or ischemic electrocardiographic changes by intracoronary injection of ACh. Coronary circulation was assessed with physiologic indices including fractional flow reserve, resting and hyperemic mean transit time (Tmn), coronary flow reserve (CFR), basal resistance index, index of microcirculatory resistance (IMR), RRR, and MRR. Of 45 patients, 23 (51.1%) were diagnosed as having VSA. Patients with positive ACh test had longer resting Tmn (slower coronary flow velocity), higher basal resistance index, and greater RRR and MRR than those without, while fractional flow reserve, CFR, and IMR did not differ significantly between the two groups. In conclusion, although conventional measures such as CFR and IMR failed to show significant differences, RRR and MRR, novel invasive coronary physiologic indices, provided counterintuitive insights that coronary microvascular dilation function was better preserved in patients with VSA than those without.
Collapse
Affiliation(s)
- Yuichi Saito
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan.
| | - Takeshi Nishi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan.,Department of Cardiology, Kawasaki Medical School, Kurashiki, Japan
| | - Ken Kato
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| | - Hideki Kitahara
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| |
Collapse
|
97
|
In Vivo Imaging of Rat Vascularity with FDG-Labeled Erythrocytes. Pharmaceuticals (Basel) 2022; 15:ph15030292. [PMID: 35337090 PMCID: PMC8953049 DOI: 10.3390/ph15030292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
Microvascular disease is frequently found in major pathologies affecting vital organs, such as the brain, heart, and kidneys. While imaging modalities, such as ultrasound, computed tomography, single photon emission computed tomography, and magnetic resonance imaging, are widely used to visualize vascular abnormalities, the ability to non-invasively assess an organ’s total vasculature, including microvasculature, is often limited or cumbersome. Previously, we have demonstrated proof of concept that non-invasive imaging of the total mouse vasculature can be achieved with 18F-fluorodeoxyglucose (18F-FDG)-labeled human erythrocytes and positron emission tomography/computerized tomography (PET/CT). In this work, we demonstrate that changes in the total vascular volume of the brain and left ventricular myocardium of normal rats can be seen after pharmacological vasodilation using 18F-FDG-labeled rat red blood cells (FDG RBCs) and microPET/CT imaging. FDG RBC PET imaging was also used to approximate the location of myocardial injury in a surgical myocardial infarction rat model. Finally, we show that FDG RBC PET imaging can detect relative differences in the degree of drug-induced intra-myocardial vasodilation between diabetic rats and normal controls. This FDG-labeled RBC PET imaging technique may thus be useful for assessing microvascular disease pathologies and characterizing pharmacological responses in the vascular bed of interest.
Collapse
|
98
|
Reynolds HR, Merz CNB, Berry C, Samuel R, Saw J, Smilowitz NR, de Souza ACDA, Sykes R, Taqueti VR, Wei J. Coronary Arterial Function and Disease in Women With No Obstructive Coronary Arteries. Circ Res 2022; 130:529-551. [PMID: 35175840 PMCID: PMC8911308 DOI: 10.1161/circresaha.121.319892] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ischemic heart disease (IHD) is the leading cause of mortality in women. While traditional cardiovascular risk factors play an important role in the development of IHD in women, women may experience sex-specific IHD risk factors and pathophysiology, and thus female-specific risk stratification is needed for IHD prevention, diagnosis, and treatment. Emerging data from the past 2 decades have significantly improved the understanding of IHD in women, including mechanisms of ischemia with no obstructive coronary arteries and myocardial infarction with no obstructive coronary arteries. Despite this progress, sex differences in IHD outcomes persist, particularly in young women. This review highlights the contemporary understanding of coronary arterial function and disease in women with no obstructive coronary arteries, including coronary anatomy and physiology, mechanisms of ischemia with no obstructive coronary arteries and myocardial infarction with no obstructive coronary arteries, noninvasive and invasive diagnostic strategies, and management of IHD.
Collapse
Affiliation(s)
- Harmony R Reynolds
- Sarah Ross Soter Center for Women’s Cardiovascular Research, Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - C. Noel Bairey Merz
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, G12 8TA, UK, West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK, Department of Cardiology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow, UK
| | - Rohit Samuel
- Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacqueline Saw
- Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel R Smilowitz
- Sarah Ross Soter Center for Women’s Cardiovascular Research, Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ana Carolina do A.H. de Souza
- Cardiovascular Imaging Program, Departments of Radiology and Medicine (Cardiology), Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Sykes
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, G12 8TA, UK, West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Viviany R. Taqueti
- Cardiovascular Imaging Program, Departments of Radiology and Medicine (Cardiology), Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janet Wei
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
99
|
Ma P, Liu J, Hu Y, Zhou X, Shang Y, Wang J. Histologic validation of stress cardiac magnetic resonance T1-mapping techniques for detection of coronary microvascular dysfunction in rabbits. Int J Cardiol 2022; 347:76-82. [PMID: 34736980 DOI: 10.1016/j.ijcard.2021.10.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND To investigate the diagnostic performance of stress cardiac magnetic resonance (CMR) T1-mapping for the detection of coronary microvascular dysfunction (CMD) by correlating microvascular density (MVD) and collagen volume fraction (CVF) with T1 response to adenosine triphosphate (ATP) stress (stress ΔT1) in rabbits. METHODS Twenty-four New Zealand white rabbits were randomly divided into the CMD group induced by microembolization spheres (n = 10), sham-operated group (n = 5), and control group (n = 9). All rabbits underwent 3.0 T CMR, both rest and ATP stress T1-maps were obtained, and first-pass perfusion imaging was performed. Stress ΔT1 and myocardial perfusion reserve index (MPRI) were calculated. For the histologic study, each rabbit was sacrificed after CMR scanning. Left ventricular myocardial tissue was stained with Hematoxylin-eosin (H&E), Masson, and CD31, from which MVD and CVF were extracted. Pearson correlation analyses were performed to determine the strength of the association between the stress ΔT1 and both MVD and CVF. RESULTS The stress ΔT1 values (CMD, 2.53 ± 0.37% vs. control, 6.00 ± 0.64% vs. Sham, 6.07 ± 0.97%, p < 0.001) and MPRI (CMD, 1.45 ± 0.13 vs. control, 1.94 ± 0.23, vs. sham, 1.89 ± 0.15, p < 0.001) were both lower in CMD rabbits compared with sham-operated and control rabbits. Further, the stress ΔT1 showed a high correlation with CVF (r = -0.806, p < 0.001) and MVD (r = 0.920, p < 0.001). CONCLUSIONS Stress T1 response strongly correlates with pathological MVD and CVF, indicating that stress CMR T1 mapping can accurately detect microvascular dysfunction.
Collapse
Affiliation(s)
- Peisong Ma
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Juan Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yurou Hu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Yongning Shang
- Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
100
|
Li W, Takahashi T, Rios SA, Latib A, Lee JM, Fearon WF, Kobayashi Y. Diagnostic performance and prognostic impact of coronary angiography-based Index of Microcirculatory Resistance assessment: A systematic review and meta-analysis. Catheter Cardiovasc Interv 2022; 99:286-292. [PMID: 35019220 DOI: 10.1002/ccd.30076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/26/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND The Index of Microcirculatory Resistance (IMR), measured with a pressure-thermistor tipped coronary guidewire has been established as a gold standard for coronary microvascular assessment. Angiography-based IMR (angio-IMR) is a novel method to derive IMR without intracoronary instrumentation or the need for adenosine. METHODS PubMed and Embase databases were systemically searched in November 2021 for studies that measured angio-IMR. The primary outcomes were pooled sensitivity and specificity as well as the area under the curve (AUC) of the summary receiver operating characteristic curve using IMR as a reference standard. RESULTS A total of 129 records were initially identified and 8 studies were included in the final analysis. Overall, 1653 lesions were included in this study, of which 733 were in patients presenting with ST-segment elevation myocardial infarction. Angio-IMR yielded high diagnostic performance predicting wire-based IMR with pooled sensitivity = 0.81 (95% confidence interval: 0.76, 0.85), specificity = 0.80 (0.72, 0.86), and AUC = 0.86 (0.82, 0.88), which was similar irrespective of patient presentation. When the clinical outcome was compared between high versus low angio-IMR in patients presenting with myocardial infarction, high angio-IMR predicted an increased risk of major adverse cardiac events (MACE). CONCLUSION Our study found that coronary angio-IMR has relatively high diagnostic performance as well as prognostic values predicting MACE, supporting its use in clinical practice.
Collapse
Affiliation(s)
- Weijia Li
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tatsunori Takahashi
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Saul A Rios
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Azeem Latib
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - William F Fearon
- Division of Cardiovascular Medicine, Stanford University Medical Center and Stanford Cardiovascular Institute, Stanford, California, USA
| | - Yuhei Kobayashi
- Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|