51
|
Wu Y, Zhang Y, Chen M, Yang Q, Zhuang S, Lv L, Zuo Z, Wang C. Exposure to low-level metalaxyl impacts the cardiac development and function of zebrafish embryos. J Environ Sci (China) 2019; 85:1-8. [PMID: 31471016 DOI: 10.1016/j.jes.2019.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 06/10/2023]
Abstract
Metalaxyl is an anilide pesticide that is widely used to control plant diseases caused by Peronosporales species. In order to study the toxic effects, zebrafish embryos were exposed to metalaxyl at nominal concentrations of 5, 50 and 500 ng/L for 72 hr, and the cardiac development and functioning of larvae were observed. The results showed that metalaxyl exposure resulted in increased rates of pericardial edema, heart hemorrhage and cardiac malformation. The distance between the sinus venosus and bulbus arteriosus, stroke volume, cardiac output and heart rate were significantly increased in larvae exposed to 50 and 500 ng/L metalaxyl compared to solvent control larvae. Significant upregulation in the transcription of tbx5, gata4 and myh6 was observed in the 50 and 500 ng/L treatments, and that of nkx2.5 and myl7 was observed in the 5, 50 and 500 ng/L groups. These disturbances may be related to cardiac developmental and functional defects in the larvae. The activity of Na+/K+-ATPase and Ca2+-ATPase was significantly increased in zebrafish embryos exposed to 500 ng/L metalaxyl, and the mRNA levels of genes related to ATPase (atp2a11, atp1b2b, and atp1a3b) (in the 50 and 500 ng/L groups) and calcium channels (cacna1ab) (in the 500 ng/L group) were significantly downregulated; these changes might be associated with heart arrhythmia and functional failure.
Collapse
Affiliation(s)
- Yuqiong Wu
- Wuyi University, College of Tea and Food Science, Wuyishan 354300, China.
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Meng Chen
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, Xiamen University, Xiamen 361005, China
| | - Qihong Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Shanshan Zhuang
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, Xiamen University, Xiamen 361005, China
| | - Liangju Lv
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
52
|
Prill K, Carlisle C, Stannard M, Windsor Reid PJ, Pilgrim DB. Myomesin is part of an integrity pathway that responds to sarcomere damage and disease. PLoS One 2019; 14:e0224206. [PMID: 31644553 PMCID: PMC6808450 DOI: 10.1371/journal.pone.0224206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The structure and function of the sarcomere of striated muscle is well studied but the steps of sarcomere assembly and maintenance remain under-characterized. With the aid of chaperones and factors of the protein quality control system, muscle proteins can be folded and assembled into the contractile apparatus of the sarcomere. When sarcomere assembly is incomplete or the sarcomere becomes damaged, suites of chaperones and maintenance factors respond to repair the sarcomere. Here we show evidence of the importance of the M-line proteins, specifically myomesin, in the monitoring of sarcomere assembly and integrity in previously characterized zebrafish muscle mutants. We show that myomesin is one of the last proteins to be incorporated into the assembling sarcomere, and that in skeletal muscle, its incorporation requires connections with both titin and myosin. In diseased zebrafish sarcomeres, myomesin1a shows an early increase of gene expression, hours before chaperones respond to damaged muscle. We found that myomesin expression is also more specific to sarcomere damage than muscle creatine kinase, and our results and others support the use of myomesin assays as an early, specific, method of detecting muscle damage.
Collapse
Affiliation(s)
- Kendal Prill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Casey Carlisle
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Megan Stannard
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - David B. Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
53
|
Pott A, Rottbauer W, Just S. Streamlining drug discovery assays for cardiovascular disease using zebrafish. Expert Opin Drug Discov 2019; 15:27-37. [PMID: 31570020 DOI: 10.1080/17460441.2020.1671351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: In the last decade, our armamentarium of cardiovascular drug therapy has expanded significantly. Using innovative functional genomics strategies such as genome editing by CRISPR/Cas9 as well as high-throughput assays to identify bioactive small chemical compounds has significantly facilitated elaboration of the underlying pathomechanism in various cardiovascular diseases. However, despite scientific progress approvals for cardiovascular drugs has stagnated significantly compared to other fields of drug discovery and therapy during the past years.Areas covered: In this review, the authors discuss the aspects and pitfalls during the early phase of cardiovascular drug discovery and describe the advantages of zebrafish as an in vivo organism to model human cardiovascular diseases (CVD) as well as an in vivo platform for high-throughput chemical compound screening. They also highlight the emerging, promising techniques of automated read-out systems during high-throughput screening (HTS) for the evaluation of important cardiac functional parameters in zebrafish with the potential to streamline CVD drug discovery.Expert opinion: The successful identification of novel drugs to treat CVD is a major challenge in modern biomedical and clinical research. In this context, the definition of the etiologic fundamentals of human cardiovascular diseases is the prerequisite for an efficient and straightforward drug discovery.
Collapse
Affiliation(s)
- Alexander Pott
- Internal Medicine II, Ulm University Medical Center, Ulm, Germany.,Molecular Cardiology, Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
54
|
Perl E, Waxman JS. Reiterative Mechanisms of Retinoic Acid Signaling during Vertebrate Heart Development. J Dev Biol 2019; 7:jdb7020011. [PMID: 31151214 PMCID: PMC6631158 DOI: 10.3390/jdb7020011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023] Open
Abstract
Tightly-regulated levels of retinoic acid (RA) are critical for promoting normal vertebrate development. The extensive history of research on RA has shown that its proper regulation is essential for cardiac progenitor specification and organogenesis. Here, we discuss the roles of RA signaling and its establishment of networks that drive both early and later steps of normal vertebrate heart development. We focus on studies that highlight the drastic effects alternative levels of RA have on early cardiomyocyte (CM) specification and cardiac chamber morphogenesis, consequences of improper RA synthesis and degradation, and known effectors downstream of RA. We conclude with the implications of these findings to our understanding of cardiac regeneration and the etiologies of congenital heart defects.
Collapse
Affiliation(s)
- Eliyahu Perl
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Joshua S Waxman
- The Heart Institute and Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
55
|
Santoro MM, Beltrame M, Panáková D, Siekmann AF, Tiso N, Venero Galanternik M, Jung HM, Weinstein BM. Advantages and Challenges of Cardiovascular and Lymphatic Studies in Zebrafish Research. Front Cell Dev Biol 2019; 7:89. [PMID: 31192207 PMCID: PMC6546721 DOI: 10.3389/fcell.2019.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Since its introduction, the zebrafish has provided an important reference system to model and study cardiovascular development as well as lymphangiogenesis in vertebrates. A scientific workshop, held at the 2018 European Zebrafish Principal Investigators Meeting in Trento (Italy) and chaired by Massimo Santoro, focused on the most recent methods and studies on cardiac, vascular and lymphatic development. Daniela Panáková and Natascia Tiso described new molecular mechanisms and signaling pathways involved in cardiac differentiation and disease. Arndt Siekmann and Wiebke Herzog discussed novel roles for Wnt and VEGF signaling in brain angiogenesis. In addition, Brant Weinstein's lab presented data concerning the discovery of endothelium-derived macrophage-like perivascular cells in the zebrafish brain, while Monica Beltrame's studies refined the role of Sox transcription factors in vascular and lymphatic development. In this article, we will summarize the details of these recent discoveries in support of the overall value of the zebrafish model system not only to study normal development, but also associated disease states.
Collapse
Affiliation(s)
- Massimo M Santoro
- Laboratory of Angiogenesis and Redox Metabolism, Department of Biology, University of Padua, Padua, Italy
| | - Monica Beltrame
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany.,German Centre for Cardiovascular Research: DZHK, Berlin, Germany
| | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Cells in Motion Cluster of Excellence (CiM), University of Münster, Münster, Germany.,Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Natascia Tiso
- Laboratory of Developmental Genetics, Department of Biology, University of Padua, Padua, Italy
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Hyun Min Jung
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
56
|
Song YC, Dohn TE, Rydeen AB, Nechiporuk AV, Waxman JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genet 2019; 15:e1008165. [PMID: 31091225 PMCID: PMC6538190 DOI: 10.1371/journal.pgen.1008165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors. Congenital heart defects are the most common malformations found in newborns, with many of these defects disrupting development of the outflow tract, the structure where blood is expelled from the heart. Despite their frequency, we do not have a grasp of the molecular and genetic mechanisms that underlie most congenital heart defects. Here, we show that zebrafish embryos containing a mutation in a gene called histone deacetylase 1 (hdac1) have smaller hearts with a reduction in the size of the ventricle and outflow tract. Hdac1 proteins limit accessibility to DNA and repress gene expression. We find that loss of Hdac1 in zebrafish embryos leads to increased expression of genes that are also induced by excess retinoic acid, a teratogen that induces similar outflow tract defects. Genetic loss-of-function studies support that ectopic expression of ripply3, a common target of both Hdac1 and retinoic acid signaling that is normally restricted to a subset of posterior pharyngeal cells, contributes to the smaller hearts found in zebrafish hdac1 mutants. Our study establishes a mechanism whereby the coordinated repression of genes downstream of Hdac1 and retinoic acid signaling is necessary for normal vertebrate outflow tract development.
Collapse
Affiliation(s)
- Yuntao Charlie Song
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Tracy E Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ariel B Rydeen
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alex V Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, United States of America
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
57
|
Nakajima Y. Retinoic acid signaling in heart development. Genesis 2019; 57:e23300. [PMID: 31021052 DOI: 10.1002/dvg.23300] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/30/2022]
Abstract
Retinoic acid (RA) is a vitamin A metabolite that acts as a morphogen and teratogen. Excess or defective RA signaling causes developmental defects including in the heart. The heart develops from the anterior lateral plate mesoderm. Cardiogenesis involves successive steps, including formation of the primitive heart tube, cardiac looping, septation, chamber development, coronary vascularization, and completion of the four-chambered heart. RA is dispensable for primitive heart tube formation. Before looping, RA is required to define the anterior/posterior boundaries of the heart-forming mesoderm as well as to form the atrium and sinus venosus. In outflow tract elongation and septation, RA signaling is required to maintain/differentiate cardiogenic progenitors in the second heart field at the posterior pharyngeal arches level. Epicardium-secreted insulin-like growth factor, the expression of which is regulated by hepatic mesoderm-derived erythropoietin under the control of RA, promotes myocardial proliferation of the ventricular wall. Epicardium-derived RA induces the expression of angiogenic factors in the myocardium to form the coronary vasculature. In cardiogenic events at different stages, properly controlled RA signaling is required to establish the functional heart.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
58
|
Huang M, Zhu F, Jiao J, Wang J, Zhang Y. Exposure to acrylamide disrupts cardiomyocyte interactions during ventricular morphogenesis in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1337-1345. [PMID: 30625662 DOI: 10.1016/j.scitotenv.2018.11.216] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Acrylamide (AA), a ubiquitous chemical that is present in surrounding environment and baked or fried carbohydrate-rich food, has recently been linked to cardiac developmental toxicity. However, the toxicological role of AA exposure in the cardiac development remains largely unknown. Here we showed the cardiotoxicity of AA and its role in cardiomyocyte interactions in zebrafish embryos during ventricular morphogenesis. Using the embryo model of transgenic zebrafish Tg(Tp1:d2GFP;myl7:mCherry), we found AA interfered the dynamics of Notch signaling in the endocardium during early cardiogenesis. Prolonged exposure to AA thickened the chamber wall and prevented the trabeculae from extending into the lumen of ventricular chamber. As a result, AA reduced the ventricular shortening fraction and spatial dimension via excessively activating the Notch signal in myocardium during cardiac maturation. Moreover, exposure to AA inhibited the re-distribution of N‑cadherin and failed to coordinate cardiomyocyte interactions between the myocardium layers due to the lack of delaminated cardiomyocytes. Therefore, AA-treated embryos exhibited subcellular pathological states including disarrayed myofibrils and abnormal morphology of mitochondria despite normal proliferation of cardiomyocytes. In addition, we found overexpression of some cardiac-specific transcription factors, such as hand2 and nkx2.5, in hearts of AA-treated embryos compared with those in control group. Our study provided the evidence that the period of ventricular chamber morphogenesis might be a vulnerable window in zebrafish, and revealed new insights into how AA might exert cardiac developmental toxicity.
Collapse
Affiliation(s)
- Mengmeng Huang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Fanghuan Zhu
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jun Wang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Zhang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
59
|
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e653-e711. [PMID: 30571578 PMCID: PMC6555769 DOI: 10.1161/cir.0000000000000606] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Collapse
|
60
|
Zhao C, Li E, Wang Z, Tian J, Dai Y, Ni Y, Li F, Ma Z, Lin R. Nux Vomica Exposure Triggered Liver Injury and Metabolic Disturbance in Zebrafish Larvae. Zebrafish 2018; 15:610-628. [PMID: 30277848 DOI: 10.1089/zeb.2018.1632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zebrafish larvae were used to further understand the liver toxicity of nux vomica. The histopathology, protein expression, and gene expression were assessed to confirm apoptosis in the liver, and then, profiles of the metabolites in zebrafish were investigated by untargeted metabolomic assessment to understand the potential toxicity mechanism of nux vomica. Histopathological observations showed that nux vomica caused damage to liver cells. Western blot results indicated increased expression of activated caspase3, and the result of real-time polymerase chain reaction showed a significant increase in the expression level of caspase-3, caspase-8, and caspase-9 genes (p < 0.05) compared with the control group. The liver injury from nux vomica was linked to the downregulation of amino acid (e.g., proline and alanine) and fatty acid (e.g., palmitoleic acid) metabolism and upregulation of some other fatty acid (e.g., arachidic acid) and purine (e.g., xanthine and uric acid) metabolism. The hepatotoxicity of nux vomica resulted from metabolic pathway disturbances, including small molecules involved in energy, purine, lipids, and amino acid metabolism.
Collapse
Affiliation(s)
- Chongjun Zhao
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Erwen Li
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Zhaoyi Wang
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Jinghuan Tian
- 2 CCRF (Beijing), Inc., Shimao International Center Office Building One , Beijing, China
| | - Yihang Dai
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Yuanyuan Ni
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Farong Li
- 3 Key Laboratory of Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Shanxi Normal University , Xi'an, China
| | - Zhiqiang Ma
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Ruichao Lin
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| |
Collapse
|
61
|
Guerra A, Germano RF, Stone O, Arnaout R, Guenther S, Ahuja S, Uribe V, Vanhollebeke B, Stainier DY, Reischauer S. Distinct myocardial lineages break atrial symmetry during cardiogenesis in zebrafish. eLife 2018; 7:32833. [PMID: 29762122 PMCID: PMC5953537 DOI: 10.7554/elife.32833] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
The ultimate formation of a four-chambered heart allowing the separation of the pulmonary and systemic circuits was key for the evolutionary success of tetrapods. Complex processes of cell diversification and tissue morphogenesis allow the left and right cardiac compartments to become distinct but remain poorly understood. Here, we describe an unexpected laterality in the single zebrafish atrium analogous to that of the two atria in amniotes, including mammals. This laterality appears to derive from an embryonic antero-posterior asymmetry revealed by the expression of the transcription factor gene meis2b. In adult zebrafish hearts, meis2b expression is restricted to the left side of the atrium where it controls the expression of pitx2c, a regulator of left atrial identity in mammals. Altogether, our studies suggest that the multi-chambered atrium in amniotes arose from a molecular blueprint present before the evolutionary emergence of cardiac septation and provide insights into the establishment of atrial asymmetry.
Collapse
Affiliation(s)
- Almary Guerra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Raoul Fv Germano
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Bruxelles, Belgium
| | - Oliver Stone
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rima Arnaout
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Suchit Ahuja
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Verónica Uribe
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Bruxelles, Belgium
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
62
|
Kang CP, Tu HC, Fu TF, Wu JM, Chu PH, Chang DTH. An automatic method to calculate heart rate from zebrafish larval cardiac videos. BMC Bioinformatics 2018; 19:169. [PMID: 29743010 PMCID: PMC5944013 DOI: 10.1186/s12859-018-2166-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/25/2018] [Indexed: 11/29/2022] Open
Abstract
Background Zebrafish is a widely used model organism for studying heart development and cardiac-related pathogenesis. With the ability of surviving without a functional circulation at larval stages, strong genetic similarity between zebrafish and mammals, prolific reproduction and optically transparent embryos, zebrafish is powerful in modeling mammalian cardiac physiology and pathology as well as in large-scale high throughput screening. However, an economical and convenient tool for rapid evaluation of fish cardiac function is still in need. There have been several image analysis methods to assess cardiac functions in zebrafish embryos/larvae, but they are still improvable to reduce manual intervention in the entire process. This work developed a fully automatic method to calculate heart rate, an important parameter to analyze cardiac function, from videos. It contains several filters to identify the heart region, to reduce video noise and to calculate heart rates. Results The proposed method was evaluated with 32 zebrafish larval cardiac videos that were recording at three-day post-fertilization. The heart rate measured by the proposed method was comparable to that determined by manual counting. The experimental results show that the proposed method does not lose accuracy while largely reducing the labor cost and uncertainty of manual counting. Conclusions With the proposed method, researchers do not have to manually select a region of interest before analyzing videos. Moreover, filters designed to reduce video noise can alleviate background fluctuations during the video recording stage (e.g. shifting), which makes recorders generate usable videos easily and therefore reduce manual efforts while recording. Electronic supplementary material The online version of this article (10.1186/s12859-018-2166-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Pin Kang
- Department of Electronic Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hung-Chi Tu
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzu-Fun Fu
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Jhe-Ming Wu
- Department of Electronic Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Po-Hsun Chu
- Department of Electronic Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Darby Tien-Hao Chang
- Department of Electronic Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
63
|
Pott A, Bock S, Berger IM, Frese K, Dahme T, Keßler M, Rinné S, Decher N, Just S, Rottbauer W. Mutation of the Na +/K +-ATPase Atp1a1a.1 causes QT interval prolongation and bradycardia in zebrafish. J Mol Cell Cardiol 2018; 120:42-52. [PMID: 29750993 DOI: 10.1016/j.yjmcc.2018.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 02/01/2023]
Abstract
The genetic underpinnings that orchestrate the vertebrate heart rate are not fully understood yet, but of high clinical importance, since diseases of cardiac impulse formation and propagation are common and severe human arrhythmias. To identify novel regulators of the vertebrate heart rate, we deciphered the pathogenesis of the bradycardia in the homozygous zebrafish mutant hiphop (hip) and identified a missense-mutation (N851K) in Na+/K+-ATPase α1-subunit (atp1a1a.1). N851K affects zebrafish Na+/K+-ATPase ion transport capacity, as revealed by in vitro pump current measurements. Inhibition of the Na+/K+-ATPase in vivo indicates that hip rather acts as a hypomorph than being a null allele. Consequently, reduced Na+/K+-ATPase function leads to prolonged QT interval and refractoriness in the hip mutant heart, as shown by electrocardiogram and in vivo electrical stimulation experiments. We here demonstrate for the first time that Na+/K+-ATPase plays an essential role in heart rate regulation by prolonging myocardial repolarization.
Collapse
Affiliation(s)
- Alexander Pott
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Sarah Bock
- Molecular Cardiology, Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Ina M Berger
- Molecular Cardiology, Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Karen Frese
- Department of Internal Medicine III, Heidelberg University Medical Center, Heidelberg, Germany
| | - Tillman Dahme
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Mirjam Keßler
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany.
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
64
|
Huang M, Jiao J, Wang J, Xia Z, Zhang Y. Characterization of acrylamide-induced oxidative stress and cardiovascular toxicity in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:451-460. [PMID: 29353190 DOI: 10.1016/j.jhazmat.2018.01.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Acrylamide (AA) is a high production volume chemical in industrial applications and widely found in baked or fried carbohydrate-rich foods. In this study, we unravelled that AA induced developmental toxicity associated with oxidative stress status and disordered lipid distribution in heart region of developing zebrafish. Treatment with AA caused a deficient cardiovascular system with significant heart malformation and dysfunction. We also found that AA could reduce the number of cardiomyocytes through the reduced capacity of cardiomyocyte proliferation rather than cell apoptosis. The cardiac looping and ballooning appeared abnormal though cardiac chamber-specific identity in the differentiated myocardium was maintained well after AA treatment through MF20/S46 immunofluorescence assay. Furthermore, treatment with AA disturbed the differentiation of atrioventricular canal, which was demonstrated by the disordered expressions of the atrioventricular boundary markers bmp4, tbx2b and notch1b and further confirmed by the ectopic expressions of the cardiac valve precursor markers has2, klf2a and nfatc1 through whole-mount in situ hybridization. Thus, our studies provide the evidence of cardiac developmental toxicity of AA in the cardiovascular system, and also raised health concern about the harm of trans-placental exposure to high level of AA for foetuses and the risk of high exposure to AA for the pregnant women.
Collapse
Affiliation(s)
- Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhidan Xia
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
65
|
Huang M, Jiao J, Wang J, Xia Z, Zhang Y. Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:656-666. [PMID: 29223822 DOI: 10.1016/j.envpol.2017.11.095] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Acrylamide (AA), an environmental pollutant, has been linked to neurotoxicity, genotoxicity and carcinogenicity. AA is widely used to synthesize polymers for industrial applications, is widely found in Western-style carbohydrate-rich foods and cigarette smoke, and can also be detected in human umbilical cord blood and breast milk. This is the first study that demonstrated the cardiac developmental toxicity of AA in zebrafish embryos. Post-fertilization exposure to AA caused a clearly deficient cardiovascular system with a shrunken heart and abortive morphogenesis and function. Disordered expression of the cardiac genes, myl7, vmhc, myh6, bmp4, tbx2b and notch1b, as well as reduced number of myocardial cells and endocardial cells, indicated the collapsed development of ventricle and atrium and failed differentiation of atrioventricular canal (AVC). Although cell apoptosis was not affected, the capacity of cardiomyocyte proliferation was significantly reduced by AA exposure after fertilization. Further investigation showed that treatment with AA specifically reduced the expressions of nkx2.5, myl7 and vmhc in the anterior lateral plate mesoderm (ALPM) during the early cardiogenesis. In addition, AA exposure disturbed the restricted expressions of bmp4, tbx2b and notch1b during atrioventricular (AV) valve development and cardiac chambers maturation. Our results showed that AA-induced cardiotoxicity was related to decreased cardiac progenitor genes expression, reduced myocardium growth, abnormal cardiac chambers morphogenesis and disordered AVC differentiation. Our study demonstrates that AA exposure during a time point analogous to the first trimester in humans has a detrimental effect on early heart development in zebrafish. A high ingestion rate of AA-containing products may be an underlying risk factor for cardiogenesis in fetuses.
Collapse
Affiliation(s)
- Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhidan Xia
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
66
|
Ivanovitch K, Temiño S, Torres M. Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis. eLife 2017; 6:30668. [PMID: 29202929 PMCID: PMC5731822 DOI: 10.7554/elife.30668] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/26/2017] [Indexed: 12/15/2022] Open
Abstract
During vertebrate heart development, two progenitor populations, first and second heart fields (FHF, SHF), sequentially contribute to longitudinal subdivisions of the heart tube (HT), with the FHF contributing the left ventricle and part of the atria, and the SHF the rest of the heart. Here, we study the dynamics of cardiac differentiation and morphogenesis by tracking individual cells in live analysis of mouse embryos. We report that during an initial phase, FHF precursors differentiate rapidly to form a cardiac crescent, while limited morphogenesis takes place. In a second phase, no differentiation occurs while extensive morphogenesis, including splanchnic mesoderm sliding over the endoderm, results in HT formation. In a third phase, cardiac precursor differentiation resumes and contributes to SHF-derived regions and the dorsal closure of the HT. These results reveal tissue-level coordination between morphogenesis and differentiation during HT formation and provide a new framework to understand heart development. We all start life as a single cell, which – over the course of nine months – multiplies to generate the billions of cells that can be found in a newborn. As an embryo develops, the cells need to achieve two major tasks: they need to diversify into different types of cells, such as blood cells or muscle cells, and they need to organize themselves in space to form tissues and organs. The heart of an embryo, for example, first forms a simple structure called the heart tube that can pump blood and later develops into the four chambers that we see in adults. The tube is made up of cells from two different origins, known as the first and second heart fields. Unlike other organs, the heart has to start beating while it is still developing, and until now, it was unclear how the heart manages this difficult task. Here, Ivanovich et al. studied mouse embryos grown outside the womb by using a combination of advanced microscopy and genetic labeling to track how single cells turn into beating cells and move while the heart forms. The results showed that specializing into beating cells and forming the heart tube shape happened during alternating phases. The first heart-field cells turned into beating cells and began to contract at an early stage before the heart tube was formed. Next, the cells of the second heart field did not instantly develop into beating cells, but instead, helped the first heart-field cells to acquire the shape of a heart tube. Once this was completed, the second heart-field cells started to specialize into beating cells and created the additional parts of the more complex adult heart. This research shows that the second heart field plays an active role in helping the heart tube form. The alternating phases of cell specialization and tissue formation allow the heart to become active whilst it is still developing. A better insight into how the heart forms may help us to create new treatments for various genetic heart conditions. The methods used here could also help to study how cells build other organs.
Collapse
Affiliation(s)
- Kenzo Ivanovitch
- Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Susana Temiño
- Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Miguel Torres
- Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
67
|
Liu HC, Chu TY, Chen LL, Gui WJ, Zhu GN. The cardiovascular toxicity of triadimefon in early life stage of zebrafish and potential implications to human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1093-1103. [PMID: 28803741 DOI: 10.1016/j.envpol.2017.05.072] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/24/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The health risk of triadimefon (TF) to cardiovascular system of human is still unclear, especially to pesticide suicides population, occupational population (farmers, retailers and pharmaceutical workers), and special population (young children and infants, pregnant women, older people, and those with compromised immune systems) who are at a greater risk. Therefore, firstly we explored the toxic effects and possible mechanism of cardiovascular toxicity induced by TF using zebrafish model. Zebrafish at stage of 48 h post fertilization (hpf) exposed to TF for 24 h exhibited morphological malformations which were further confirmed by histopathologic examination, including pericardial edema, circulation abnormalities, serious venous thrombosis and increased distance between the sinus venosus (SV) and bulbus arteriosus (BA) regions of the heart. In addition to morphological changes, TF induced functional deficits in the heart of zebrafish, including bradycardia and a significant reduced cardiac output that became more serious at higher concentrations. To better understand the possible molecular mechanisms underlying cardiovascular toxicity in zebrafish, we investigated the transcriptional level of genes related to calcium signaling pathway and cardiac muscle contraction. Q-PCR (quantitative real-time polymerase chain reaction) results demonstrated that the expression level of genes related to ATPase (atp2a1l, atp1b2b, atp1a3b), calcium channel (cacna1ab, cacna1da) and cardiac troponin C (tnnc1a) were significantly decreased after TF exposure. For the first time, the present study revealed that TF exposure had observable morphological and functional negative impacts on cardiovascular system of zebrafish. Mechanistically, this toxicity might result from the pressure of down-regulation of genes associated with calcium signaling pathway and cardiac muscle contraction following TF exposure. These findings generated here can provide information for better pesticide poisoning treatments, occupational disease prevention, and providing theoretical foundation for risk management measures.
Collapse
Affiliation(s)
- Hong-Cui Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Tian-Yi Chu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Li-Li Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Wen-Jun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Guo-Nian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
68
|
Ueda Y, Stern JA. A One Health Approach to Hypertrophic Cardiomyopathy. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:433-448. [PMID: 28955182 PMCID: PMC5612186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease in humans and results in significant morbidity and mortality. Research over the past 25 years has contributed enormous insight into this inherited disease particularly in the areas of genetics, molecular mechanisms, and pathophysiology. Our understanding continues to be limited by the heterogeneity of clinical presentations with various genetic mutations associated with HCM. Transgenic mouse models have been utilized especially studying the genotypic and phenotypic interactions. However, mice possess intrinsic cardiac and hemodynamic differences compared to humans and have limitations preventing their direct translation. Other animal models of HCM have been studied or generated in part to overcome these limitations. HCM in cats shows strikingly similar molecular, histopathological, and genetic similarities to human HCM, and offers an important translational opportunity for the study of this disease. Recently, inherited left ventricular hypertrophy in rhesus macaques was identified and collaborative investigations have been conducted to begin to develop a non-human primate HCM model. These naturally-occurring large-animal models may aid in advancing our understanding of HCM and developing novel therapeutic approaches to this disease. This review will highlight the features of HCM in humans and the relevant available and developing animal models of this condition.
Collapse
Affiliation(s)
- Yu Ueda
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Joshua A. Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA,California National Primate Research Center, University of California-Davis, Davis, CA,To whom all correspondence should be addressed: Joshua A. Stern, One Shields Avenue, Davis, CA, 95616, Tel: 530-752-2475, .
| |
Collapse
|
69
|
Liu H, Chu T, Chen L, Gui W, Zhu G. In vivo cardiovascular toxicity induced by acetochlor in zebrafish larvae. CHEMOSPHERE 2017; 181:600-608. [PMID: 28472748 DOI: 10.1016/j.chemosphere.2017.04.090] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
The risk of acetochlor to human health is still unclear, prompting concern over its risk, especially to pesticide suicides population, occupational population (farmers, retailers and pharmaceutical workers), and special population (young children and infants, pregnant women, older people, and those with compromised immune systems). This study was to explore the toxic effect and the possible mechanism of toxic action of acetochlor using zebrafish larvae whose toxicity profiles have been confirmed to be strikingly similar with mammalian. The result indicated that the toxic target organ of acetochlor was cardiovascular system. Thus, cardiovascular toxicity evaluation was investigated systematically. The main phenotypes of cardiovascular toxicity induced by acetochlor were bradycardia, pericardial edema, circulation defect, and thrombosis; Malformed heart was confirmed by histopathological examination. Thrombosis which maybe triggered by bradycardia was further studied using o-dianisidine for erythrocyte staining; Substantial thrombus in the caudal vein and significantly reduced heart red blood cells (RBCs) intensity which can reflect the thrombosis degree were observed in zebrafish in a concentration-dependent manner. Additionally, the mRNA expression level of Nkx2.5 and Gata4 related to induction of cardiac program were down-regulated significantly by quantitative real-time polymerase chain reaction (qRT-PCR), which could cause defects in the cardiovascular system. For the first time, our results demonstrated that acetochlor induced cardiovascular toxicity, and down-regulation of Nkx2.5 and Gata4 might be its possible molecular basis. Our data generated here might provide novel insights into cardiovascular disease risk following acetochlor exposure to human, especially to pesticide suicides population, occupational population and special population.
Collapse
Affiliation(s)
- Hongcui Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Chu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Lili Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
70
|
Perrichon P, Grosell M, Burggren WW. Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume. Front Physiol 2017; 8:464. [PMID: 28725199 PMCID: PMC5495860 DOI: 10.3389/fphys.2017.00464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the "standard" prolate spheroid model as well as a cylinder and cone tip + cylinder model) applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30-50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function-especially if stroke volume is the focus of the study-should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output.
Collapse
Affiliation(s)
- Prescilla Perrichon
- Developmental Integrative Biology Research Cluster, Department of Biological Sciences, University of North TexasDenton, TX, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of MiamiMiami, FL, United States
| | - Warren W. Burggren
- Developmental Integrative Biology Research Cluster, Department of Biological Sciences, University of North TexasDenton, TX, United States
| |
Collapse
|
71
|
Fukui H, Chiba A, Miyazaki T, Takano H, Ishikawa H, Omori T, Mochiuzki N. Spatial Allocation and Specification of Cardiomyocytes during Zebrafish Embryogenesis. Korean Circ J 2017; 47:160-167. [PMID: 28382067 PMCID: PMC5378018 DOI: 10.4070/kcj.2016.0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022] Open
Abstract
Incomplete development and severe malformation of the heart result in miscarriage of embryos because of its malfunction as a pump for circulation. During cardiogenesis, development of the heart is precisely coordinated by the genetically-primed program that is revealed by the sequential expression of transcription factors. It is important to investigate how spatial allocation of the heart containing cardiomyocytes and other mesoderm-derived cells is determined. In addition, the molecular mechanism underlying cardiomyocyte differentiation still remains elusive. The location of ectoderm-, mesoderm-, and endoderm-derived organs is determined by their initial allocation and subsequent mutual cell-cell interactions or paracrine-based regulation. In the present work, we provide an overview of cardiac development controlled by the germ layers and discuss the points that should be uncovered in future for understanding cardiogenesis.
Collapse
Affiliation(s)
- Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Haruko Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Toyonori Omori
- Management office, National Center for Child Health and Development, Tokyo, Japan
| | - Naoki Mochiuzki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.; AMED-CREST, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
72
|
Mortensen SA, Skov LL, Kjaer-Sorensen K, Hansen AG, Hansen S, Dagnæs-Hansen F, Jensenius JC, Oxvig C, Thiel S, Degn SE. Endogenous Natural Complement Inhibitor Regulates Cardiac Development. THE JOURNAL OF IMMUNOLOGY 2017; 198:3118-3126. [PMID: 28258200 DOI: 10.4049/jimmunol.1601958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/09/2017] [Indexed: 01/26/2023]
Abstract
Congenital heart defects are a major cause of perinatal mortality and morbidity, affecting >1% of all live births in the Western world, yet a large fraction of such defects have an unknown etiology. Recent studies demonstrated surprising dual roles for immune-related molecules and their effector mechanisms during fetal development and adult homeostasis. In this article, we describe the function of an endogenous complement inhibitor, mannan-binding lectin (MBL)-associated protein (MAp)44, in regulating the composition of a serine protease-pattern recognition receptor complex, MBL-associated serine protease (MASP)-3/collectin-L1/K1 hetero-oligomer, which impacts cardiac neural crest cell migration. We used knockdown and rescue strategies in zebrafish, a model allowing visualization and assessment of heart function, even in the presence of severe functional defects. Knockdown of embryonic expression of MAp44 caused impaired cardiogenesis, lowered heart rate, and decreased cardiac output. These defects were associated with aberrant neural crest cell behavior. We found that MAp44 competed with MASP-3 for pattern recognition molecule interaction, and knockdown of endogenous MAp44 expression could be rescued by overexpression of wild-type MAp44. Our observations provide evidence that immune molecules are centrally involved in the orchestration of cardiac tissue development.
Collapse
Affiliation(s)
- Simon A Mortensen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Louise L Skov
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Annette G Hansen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Søren Hansen
- Department of Cancer and Inflammation Research, University of Southern Denmark, DK-5000 Odense, Denmark; and
| | | | - Jens C Jensenius
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark; .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
73
|
Karra R, Poss KD. Redirecting cardiac growth mechanisms for therapeutic regeneration. J Clin Invest 2017; 127:427-436. [PMID: 28145902 DOI: 10.1172/jci89786] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heart failure is a major source of morbidity and mortality. Replacing lost myocardium with new tissue is a major goal of regenerative medicine. Unlike adult mammals, zebrafish and neonatal mice are capable of heart regeneration following cardiac injury. In both contexts, the regenerative program echoes molecular and cellular events that occur during cardiac development and morphogenesis, notably muscle creation through division of cardiomyocytes. Based on studies over the past decade, it is now accepted that the adult mammalian heart undergoes a low grade of cardiomyocyte turnover. Recent data suggest that this cardiomyocyte turnover can be augmented in the adult mammalian heart by redeployment of developmental factors. These findings and others suggest that stimulating endogenous regenerative responses can emerge as a therapeutic strategy for human cardiovascular disease.
Collapse
|
74
|
Isl2b regulates anterior second heart field development in zebrafish. Sci Rep 2017; 7:41043. [PMID: 28106108 PMCID: PMC5247716 DOI: 10.1038/srep41043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
After initial formation, the heart tube grows by addition of second heart field progenitor cells to its poles. The transcription factor Isl1 is expressed in the entire second heart field in mouse, and Isl1-deficient mouse embryos show defects in arterial and venous pole development. The expression of Isl1 is conserved in zebrafish cardiac progenitors; however, Isl1 is required for cardiomyocyte differentiation only at the venous pole. Here we show that Isl1 homologues are expressed in specific patterns in the developing zebrafish heart and play distinct roles during cardiac morphogenesis. In zebrafish, isl2a mutants show defects in cardiac looping, whereas isl2b is required for arterial pole development. Moreover, Isl2b controls the expression of key cardiac transcription factors including mef2ca, mef2cb, hand2 and tbx20. The specific roles of individual Islet family members in the development of distinct regions of the zebrafish heart renders this system particularly well-suited for dissecting Islet-dependent gene regulatory networks controlling the behavior and function of second heart field progenitors in distinct steps of cardiac development.
Collapse
|
75
|
Bhattacharya M, Sharma AR, Sharma G, Patra BC, Nam JS, Chakraborty C, Lee SS. The crucial role and regulations of miRNAs in zebrafish development. PROTOPLASMA 2017; 254:17-31. [PMID: 26820151 DOI: 10.1007/s00709-015-0931-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
To comprehend the events during developmental biology, fundamental knowledge about the basic machinery of regulation is a prerequisite. MicroRNA (miRNAs) act as regulators in most of the biological processes and recently, it has been concluded that miRNAs can act as modulatory factors even during developmental process from lower to higher animal. Zebrafish, because of its favorable attributes like tiny size, transparent embryo, and rapid external embryonic development, has gained a preferable status among all other available experimental animal models. Currently, zebrafish is being utilized for experimental studies related to stem cells, regenerative molecular medicine as well drug discovery. Therefore, it is important to understand precisely about the various miRNAs that controls developmental biology of this vertebrate model. In here, we have discussed about the miRNA-controlled zebrafish developmental stages with a special emphasis on different miRNA families such as miR-430, miR-200, and miR-133. Moreover, we have also reviewed the role of various miRNAs during embryonic and vascular development stages of zebrafish. In addition, efforts have been made to summarize the involvement of miRNAs in the development of different body parts such as the brain, eye, heart, muscle, and fin, etc. In each section, we have tried to fulfill the gaps of zebrafish developmental biology with the help of available knowledge of miRNA research. We hope that precise knowledge about the miRNA-regulated developmental stages of zebrafish may further help the researchers to efficiently utilize this vertebrate model for experimental purpose.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Bidhan Chandra Patra
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Ju-Suk Nam
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea.
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, 201306, India.
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea.
- Department of Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, 200-704, Republic of Korea.
| |
Collapse
|
76
|
Haggard DE, Das SR, Tanguay RL. Comparative Toxicogenomic Responses to the Flame Retardant mITP in Developing Zebrafish. Chem Res Toxicol 2016; 30:508-515. [PMID: 27957850 DOI: 10.1021/acs.chemrestox.6b00423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monosubstituted isopropylated triaryl phosphate (mITP) is a major component of Firemaster 550, an additive flame retardant mixture commonly used in polyurethane foams. Developmental toxicity studies in zebrafish established mITP as the most toxic component of FM 550, which causes pericardial edema and heart looping failure. Mechanistic studies showed that mITP is an aryl hydrocarbon receptor (AhR) ligand; however, the cardiotoxic effects of mITP were independent of the AhR. We performed comparative whole genome transcriptomics in wild-type and ahr2hu3335 zebrafish, which lack functional ahr2, to identify transcriptional signatures causally involved in the mechanism of mITP-induced cardiotoxicity. Regardless of ahr2 status, mITP exposure resulted in decreased expression of transcripts related to the synthesis of all-trans-retinoic acid and a host of Hox genes. Clustered gene ontology enrichment analysis showed unique enrichment in biological processes related to xenobiotic metabolism and response to external stimuli in wild-type samples. Transcript enrichments overlapping both genotypes involved the retinoid metabolic process and sensory/visual perception biological processes. Examination of the gene-gene interaction network of the differentially expressed transcripts in both genetic backgrounds demonstrated a strong AhR interaction network specific to wild-type samples, with overlapping genes regulated by retinoic acid receptors (RARs). A transcriptome analysis of control ahr2-null zebrafish identified potential cross-talk among AhR, Nrf2, and Hif1α. Collectively, we confirmed that mITP is an AhR ligand and present evidence in support of our hypothesis that mITP's developmental cardiotoxic effects are mediated by inhibition at the RAR level.
Collapse
Affiliation(s)
- Derik E Haggard
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97333, United States
| | - Siba R Das
- Pacific Northwest Diabetes Research Institute , Seattle, Washington 98122, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97333, United States
| |
Collapse
|
77
|
Cardiomyocyte proliferation in zebrafish and mammals: lessons for human disease. Cell Mol Life Sci 2016; 74:1367-1378. [PMID: 27812722 PMCID: PMC5357290 DOI: 10.1007/s00018-016-2404-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
Cardiomyocytes proliferate profusely during early development and for a brief period after birth in mammals. Within a month after birth, this proliferative capability is dramatically reduced in mammals unlike lower vertebrates where it persists into adult life. The zebrafish, for example, retains the ability to regenerate the apex of the heart following resection by a mechanism predominantly driven by cardiomyocyte proliferation. Differences in proliferative capacity of cardiomyocytes in adulthood between mammals and lower vertebrates are closely liked to ontogenetic or phylogenetic factors. Elucidation of these factors has the potential to provide enormous benefits if they lead to the development of therapeutic strategies that facilitate cardiomyocyte proliferation. In this review, we highlight the differences between Mammalian and Zebrafish cardiomyocytes, which could explain at least in part the different proliferative capacities in these two species. We discuss the advantages of the zebrafish as a model of cardiomyocyte proliferation, particularly at the embryonic stage. We also identify a number of key molecular pathways with potential to reveal key steps in switching cardiomyocytes from a quiescent to a proliferative phenotype.
Collapse
|
78
|
Roy NM, Ochs J, Zambrzycka E, Anderson A. Glyphosate induces cardiovascular toxicity in Danio rerio. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:292-300. [PMID: 27525560 DOI: 10.1016/j.etap.2016.08.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Glyphosate is a broad spectrum herbicide used aggressively in agricultural practices as well as home garden care. Although labeled "safe" by the chemical industry, doses tested by industry do not mimic chronic exposures to sublethal doses that organisms in the environment are exposed to over long periods of time. Given the widespread uses of and exposure to glyphosate, studies on developmental toxicity are needed. Here we utilize the zebrafish vertebrate model system to study early effects of glyphosate on the developing heart. Treatment by embryo soaking with 50μg/ml glyphosate starting at gastrulation results in structural abnormalities in the atrium and ventricle, irregular heart looping, situs inversus as well as decreased heartbeats by 48h as determined by live imaging and immunohistochemistry. Vasculature in the body was also affected as determined using fli-1 transgenic embryos. To determine if the effects noted at 48h post fertilization are due to early stage alterations in myocardial precursors, we also investigate cardiomyocyte development with a Mef2 antibody and by mef2ca in situ hybridization and find alterations in the Mef2/mef2ca staining patterns during early cardiac patterning stages. We conclude that glyphosate is developmentally toxic to the zebrafish heart.
Collapse
Affiliation(s)
- Nicole M Roy
- Department of Biology, Sacred Heart University, Fairfield, CT, United States.
| | - Jeremy Ochs
- Department of Biology, Sacred Heart University, Fairfield, CT, United States
| | - Ewelina Zambrzycka
- Department of Biology, Sacred Heart University, Fairfield, CT, United States
| | - Ariann Anderson
- Department of Biology, Sacred Heart University, Fairfield, CT, United States
| |
Collapse
|
79
|
Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes. Stem Cell Reports 2016; 7:370-382. [PMID: 27569061 PMCID: PMC5032289 DOI: 10.1016/j.stemcr.2016.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/24/2022] Open
Abstract
A cardiomyocyte differentiation in vitro system from zebrafish embryos remains to be established. Here, we have determined pluripotency window of zebrafish embryos by analyzing their gene-expression patterns of pluripotency factors together with markers of three germ layers, and have found that zebrafish undergoes a very narrow period of pluripotency maintenance from zygotic genome activation to a brief moment after oblong stage. Based on the pluripotency and a combination of appropriate conditions, we established a rapid and efficient method for cardiomyocyte generation in vitro from primary embryonic cells. The induced cardiomyocytes differentiated into functional and specific cardiomyocyte subtypes. Notably, these in vitro generated cardiomyocytes exhibited typical contractile kinetics and electrophysiological features. The system provides a new paradigm of cardiomyocyte differentiation from primary embryonic cells in zebrafish. The technology provides a new platform for the study of heart development and regeneration, in addition to drug discovery, disease modeling, and assessment of cardiotoxic agents. Zebrafish embryos may start to exit from pluripotency shortly after the oblong stage Beating cell clusters are efficiently generated from zebrafish blastomeres Beating cell clusters contain specific cardiomyocyte subtypes Induced cardiomyocytes possess normal electrophysiological features
Collapse
|
80
|
Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish. PLoS One 2016; 11:e0161205. [PMID: 27556898 PMCID: PMC4996461 DOI: 10.1371/journal.pone.0161205] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3–24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish.
Collapse
|
81
|
Gao J, Mahapatra CT, Mapes CD, Khlebnikova M, Wei A, Sepúlveda MS. Vascular toxicity of silver nanoparticles to developing zebrafish (Danio rerio). Nanotoxicology 2016; 10:1363-72. [PMID: 27499207 DOI: 10.1080/17435390.2016.1214763] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nanoparticles (NPs, 1-100 nm) can enter the environment and result in exposure to humans and other organisms leading to potential adverse health effects. The aim of the present study is to evaluate the effects of early life exposure to polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs, 50 nm), particularly with respect to vascular toxicity on zebrafish embryos and larvae (Danio rerio). Previously published data has suggested that PVP-AgNP exposure can inhibit the expression of genes within the vascular endothelial growth factor (VEGF) signaling pathway, leading to delayed and abnormal vascular development. Here, we show that early acute exposure (0-12 h post-fertilization, hpf) of embryos to PVP-AgNPs at 1 mg/L or higher results in a transient, dose-dependent induction in VEGF-related gene expression that returns to baseline levels at hatching (72 hpf). Hatching results in normoxia, negating the effects of AgNPs on vascular development. Interestingly, increased gene transcription was not followed by the production of associated proteins within the VEGF pathway, which we attribute to NP-induced stress in the endoplasmic reticulum (ER). The impaired translation may be responsible for the observed delays in vascular development at later stages, and for smaller larvae size at hatching. Silver ion (Ag(+)) concentrations were < 0.001 mg/L at all times, with no significant effects on the VEGF pathway. We propose that PVP-AgNPs temporarily delay embryonic vascular development by interfering with oxygen diffusion into the egg, leading to hypoxic conditions and ER stress.
Collapse
Affiliation(s)
- Jiejun Gao
- a Department of Forestry and Natural Resources and Bindley Biosciences Center
| | - Cecon T Mahapatra
- a Department of Forestry and Natural Resources and Bindley Biosciences Center
| | | | - Maria Khlebnikova
- c Department of Chemistry , Purdue University , West Lafayette, IN , USA
| | - Alexander Wei
- c Department of Chemistry , Purdue University , West Lafayette, IN , USA
| | - Marisol S Sepúlveda
- a Department of Forestry and Natural Resources and Bindley Biosciences Center
| |
Collapse
|
82
|
Duan J, Hu H, Li Q, Jiang L, Zou Y, Wang Y, Sun Z. Combined toxicity of silica nanoparticles and methylmercury on cardiovascular system in zebrafish (Danio rerio) embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 44:120-7. [PMID: 27163730 DOI: 10.1016/j.etap.2016.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 05/12/2023]
Abstract
This study was to investigate the combined toxicity of silica nanoparticles (SiNPs) and methylmercury (MeHg) on cardiovascular system in zebrafish (Danio rerio) embryos. Ultraviolet absorption analysis showed that the co-exposure system had high absorption and stability. The dosages used in this study were based on the NOAEL level. Zebrafish embryos exposed to the co-exposure of SiNPs and MeHg did not show any cardiovascular malformation or atrioventricular block, but had an inhibition effect on bradycardia. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased gradually in SiNPs, MeHg, co-exposure groups, respectively. Co-exposure of SiNPs and MeHg enhanced the vascular endothelial damage in Tg(fli-1:EGFP) transgenic zebrafish line. Moreover, the co-exposure significantly activated the oxidative stress and inflammatory response in neutrophils-specific Tg(mpo:GFP) transgenic zebrafish line. This study suggested that the combined toxic effects of SiNPs and MeHg on cardiovascular system had more severe toxicity than the single exposure alone.
Collapse
Affiliation(s)
- Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qiuling Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lizhen Jiang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Zou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
83
|
Duan J, Yu Y, Li Y, Wang Y, Sun Z. Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[a]pyrene in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2016; 151:152-62. [PMID: 26943738 DOI: 10.1016/j.chemosphere.2016.02.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 05/21/2023]
Abstract
Given the severe situation of world-wide particulate matter air pollution, it is urgent to explore the combined effects of particulate matter components on cardiovascular system. Using zebrafish model, this study was aimed to determine whether the low level co-exposure to silica nanoparticles (SiNPs) and benzo[a]pyrene (B[a]P) had a pronounced cardiovascular toxicity than the single exposure to either SiNPs or B[a]P alone. The FTIR and TGA analysis showed that the co-exposure system possessed of high absorption and thermal stability. Embryos exposed to SiNPs or B[a]P alone did not show cardiac toxicity phenotype at the NOAEL level. However, embryos co-exposed to SiNPs and B[a]P exhibited pericardial edema and bradycardia. While ROS generation remained unaffected, the co-exposure induced significant neutrophil-mediated inflammation and caused erythrocyte aggregation in caudal vein of embryos. Microarray analysis and STC analysis were performed to screen the cardiovascular-related differential expression genes and the expression trend of genes in each group. The co-exposure of SiNPs and B[a]P significantly enhanced the expression of proinflammatory and procoagulant genes. Moreover, the co-exposure markedly increased the phosphorylated AP-1/c-Jun and induced TF expression, but not NF-κB p65. This study for the first time demonstrated the inflammatory response and blood hypercoagulable state were triggered by the combination of SiNPs and B[a]P at low level exposure.
Collapse
Affiliation(s)
- Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China.
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
84
|
Adada M, Luberto C, Canals D. Inhibitors of the sphingomyelin cycle: Sphingomyelin synthases and sphingomyelinases. Chem Phys Lipids 2016. [DOI: 10.1016/j.chemphyslip.2015.07.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
85
|
Brown DR, Samsa LA, Qian L, Liu J. Advances in the Study of Heart Development and Disease Using Zebrafish. J Cardiovasc Dev Dis 2016; 3. [PMID: 27335817 PMCID: PMC4913704 DOI: 10.3390/jcdd3020013] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications.
Collapse
Affiliation(s)
- Daniel R. Brown
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leigh Ann Samsa
- Department of Cell Biology and Physiology; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-962-0326; Fax: +1-919- 843-2063
| |
Collapse
|
86
|
Vargas R, Vásquez IC. Cardiac and somatic parameters in zebrafish: tools for the evaluation of cardiovascular function. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:569-577. [PMID: 26553553 DOI: 10.1007/s10695-015-0160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Cardiovascular diseases are a worldwide public health problem. To date, extensive research has been conducted to elucidate the pathophysiological mechanisms that trigger cardiovascular diseases and to evaluate therapeutic options. Animal models are widely used to achieve these goals, and zebrafish have emerged as a low-cost model that produces rapid results. Currently, a large body of research is devoted to the cardiovascular development and diverse cardiovascular disorders of zebrafish embryos and larvae. However, less research has been conducted on adult zebrafish specimens. In this study, we evaluated a method to obtain and to evaluate morphometric parameters (of both the entire animal and the heart) of adult zebrafish. We used these data to calculate additional parameters, such as body mass index, condition factor and cardiac somatic index. This method and its results can be used as reference for future studies that aim to evaluate the pathophysiological aspects of the zebrafish cardiovascular system.
Collapse
Affiliation(s)
- Rafael Vargas
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Isabel Cristina Vásquez
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
87
|
Lambers E, Kume T. Navigating the labyrinth of cardiac regeneration. Dev Dyn 2016; 245:751-61. [PMID: 26890576 DOI: 10.1002/dvdy.24397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022] Open
Abstract
Heart disease is the number one cause of morbidity and mortality in the world and is a major health and economic burden, costing the United States Health Care System more than $200 billion annually. A major cause of heart disease is the massive loss or dysfunction of cardiomyocytes caused by myocardial infarctions and hypertension. Due to the limited regenerative capacity of the heart, much research has focused on better understanding the process of differentiation toward cardiomyocytes. This review will highlight what is currently known about cardiac cell specification during mammalian development, areas of controversy, cellular sources of cardiomyocytes, and current and potential uses of stem cell derived cardiomyocytes for cardiac therapies. Developmental Dynamics 245:751-761, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erin Lambers
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
88
|
Samsa LA, Fleming N, Magness S, Qian L, Liu J. Isolation and Characterization of Single Cells from Zebrafish Embryos. J Vis Exp 2016. [PMID: 27022828 DOI: 10.3791/53877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The zebrafish (Danio rerio) is a powerful model organism to study vertebrate development. Though many aspects of zebrafish embryonic development have been described at the morphological level, little is known about the molecular basis of cellular changes that occur as the organism develops. With recent advancements in microfluidics and multiplexing technologies, it is now possible to characterize gene expression in single cells. This allows for investigation of heterogeneity between individual cells of specific cell populations to identify and classify cell subtypes, characterize intermediate states that occur during cell differentiation, and explore differential cellular responses to stimuli. This study describes a protocol to isolate viable, single cells from zebrafish embryos for high throughput multiplexing assays. This method may be rapidly applied to any zebrafish embryonic cell type with fluorescent markers. An extension of this method may also be used in combination with high throughput sequencing technologies to fully characterize the transcriptome of single cells. As proof of principle, the relative abundance of cardiac differentiation markers was assessed in isolated, single cells derived from nkx2.5 positive cardiac progenitors. By evaluation of gene expression at the single cell level and at a single time point, the data support a model in which cardiac progenitors coexist with differentiating progeny. The method and work flow described here is broadly applicable to the zebrafish research community, requiring only a labeled transgenic fish line and access to microfluidics technologies.
Collapse
Affiliation(s)
- Leigh Ann Samsa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Nicole Fleming
- McAllister Heart Institute, University of North Carolina at Chapel Hill; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
| | - Scott Magness
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina at Chapel Hill; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill;
| |
Collapse
|
89
|
Andrés-Delgado L, Mercader N. Interplay between cardiac function and heart development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1707-16. [PMID: 26952935 PMCID: PMC4906158 DOI: 10.1016/j.bbamcr.2016.03.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022]
Abstract
Mechanotransduction refers to the conversion of mechanical forces into biochemical or electrical signals that initiate structural and functional remodeling in cells and tissues. The heart is a kinetic organ whose form changes considerably during development and disease. This requires cardiomyocytes to be mechanically durable and able to mount coordinated responses to a variety of environmental signals on different time scales, including cardiac pressure loading and electrical and hemodynamic forces. During physiological growth, myocytes, endocardial and epicardial cells have to adaptively remodel to these mechanical forces. Here we review some of the recent advances in the understanding of how mechanical forces influence cardiac development, with a focus on fluid flow forces. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Laura Andrés-Delgado
- Development of the Epicardium and Its Role during Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Nadia Mercader
- Development of the Epicardium and Its Role during Regeneration Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Melchor Fernández Almagro 3, 28029 Madrid, Spain; Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
90
|
Kwon HJ. Vitamin D receptor signaling is required for heart development in zebrafish embryo. Biochem Biophys Res Commun 2016; 470:575-578. [PMID: 26797277 DOI: 10.1016/j.bbrc.2016.01.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/16/2016] [Indexed: 11/29/2022]
Abstract
Vitamin D has been found to be associated with cardiovascular diseases. However, the role of vitamin D in heart development during embryonic period is largely unknown. Vitamin D induces its genomic effects through its nuclear receptor, the vitamin D receptor (VDR). The present study investigated the role of VDR on heart development by antisense-mediated knockdown approaches in zebrafish model system. In zebrafish embryos, two distinct VDR genes (vdra and vdrb) have been identified. Knockdown of vdra has little effect on heart development, whereas disrupting vdrb gene causes various cardiac phenotypes, characterized by pericardial edema, slower heart rate and laterality defects. Depletion of both vdra and vdrb (vdra/b) produce additive, but not synergistic effects. To determine whether atrioventricular (AV) cardiomyocytes are properly organized in these embryos, the expression of bmp4, which marks the developing AV boundary at 48 h post-fertilization, was examined. Notably, vdra/b-deficient embryos display ectopic expression of bmp4 towards the ventricle or throughout atrial and ventricular chambers. Taken together, these results suggest that VDR signaling plays an essential role in heart development.
Collapse
Affiliation(s)
- Hye-Joo Kwon
- Biology Department, Texas A&M University, College Station, TX77843-3258, United States; Biology Department, Princess Nourah University, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
91
|
Duan J, Yu Y, Li Y, Li Y, Liu H, Jing L, Yang M, Wang J, Li C, Sun Z. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos. Nanotoxicology 2015; 10:575-85. [PMID: 26551753 DOI: 10.3109/17435390.2015.1102981] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The toxicity mechanism of nanoparticles on vertebrate cardiovascular system is still unclear, especially on the low-level exposure. This study was to explore the toxic effect and mechanisms of low-dose exposure of silica nanoparticles (SiNPs) on cardiac function in zebrafish embryos via the intravenous microinjection. The dosage of SiNPs was based on the no observed adverse effect level (NOAEL) of malformation assessment in zebrafish embryos. The mainly cardiac toxicity phenotypes induced by SiNPs were pericardial edema and bradycardia but had no effect on atrioventricular block. Using o-Dianisidine for erythrocyte staining, the cardiac output of zebrafish embryos was decreased in a dose-dependent manner. Microarray analysis and bioinformatics analysis were performed to screen the differential expression genes and possible pathway involved in cardiac function. SiNPs induced whole-embryo oxidative stress and neutrophil-mediated cardiac inflammation in Tg(mpo:GFP) zebrafish. Inflammatory cells were observed in atrium of SiNPs-treated zebrafish heart by histopathological examination. In addition, the expression of TNNT2 protein, a cardiac contraction marker in heart tissue had been down-regulated compared to control group using immunohistochemistry. Confirmed by qRT-PCR and western blot assays, results showed that SiNPs inhibited the calcium signaling pathway and cardiac muscle contraction via the down-regulated of related genes, such as ATPase-related genes (atp2a1l, atp1b2b, atp1a3b), calcium channel-related genes (cacna1ab, cacna1da) and the regulatory gene tnnc1a for cardiac troponin C. Moreover, the protein level of TNNT2 was decreased in a dose-dependent manner. For the first time, our results demonstrated that SiNPs induced cardiac dysfunction via the neutrophil-mediated cardiac inflammation and cardiac contraction in zebrafish embryos.
Collapse
Affiliation(s)
- Junchao Duan
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Yang Yu
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Yang Li
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Yanbo Li
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Hongcui Liu
- c Hunter Biotechnology Inc. , Hangzhou, Zhejiang Province , P.R. China
| | - Li Jing
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Man Yang
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Ji Wang
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| | - Chunqi Li
- c Hunter Biotechnology Inc. , Hangzhou, Zhejiang Province , P.R. China
| | - Zhiwei Sun
- a School of Public Health, Capital Medical University , Beijing , P.R. China .,b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University , Beijing , P.R. China , and
| |
Collapse
|
92
|
Morphometric Analysis of Human Embryonic Stem Cell-Derived Ventricular Cardiomyocytes: Determining the Maturation State of a Population by Quantifying Parameters in Individual Cells. Stem Cells Int 2015; 2015:586908. [PMID: 26351464 PMCID: PMC4553338 DOI: 10.1155/2015/586908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/13/2015] [Accepted: 07/22/2015] [Indexed: 11/24/2022] Open
Abstract
Quantitative methods were established to determine the level of maturation of human embryonic stem cell-derived ventricular cardiomyocytes (hESC-vCMs) that were treated with different metabolic stimulants (i.e., isoproterenol and oleic acid) during early differentiation. Cells were double-immunolabeled with α-actinin and COX IV antibodies, to label the myofibrils and mitochondria, respectively, after which images were acquired via confocal microscopy. In order to determine the extent of differentiation, image analysis protocols were then used to quantify cell shape and area, as well as the degree of myofibrillar organization and intercalation of mitochondria between the myofibrils within the cells. We demonstrated that oleic acid or isoproterenol alone, or a combination of the two, induced a more elongated hESC-vCM phenotype than the untreated controls. In addition, cells treated with isoproterenol alone exhibited a similar level of myofibrillar organization as the controls, but those treated with oleic acid with/without isoproterenol exhibited a more organized (parallel) orientation of myofibrils. The combined isoproterenol/oleic acid treatment also resulted in enhanced intercalation of mitochondria between the myofibrils. We suggest that these quantitative morphometric methods might serve as simple and effective tools that can be utilized in the determination of the level of structural maturation of hESC-vCMs.
Collapse
|
93
|
Zhao S, Huang J, Ye J. A fresh look at zebrafish from the perspective of cancer research. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:80. [PMID: 26260237 PMCID: PMC4531851 DOI: 10.1186/s13046-015-0196-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
Zebrafish represent a vertebrate model organism that has been widely, and increasingly, employed over the last decade in the study of developmental processes, wound healing, microbe-host interactions, and drug screening. With the increase in the laboratory use of zebrafish, several advantages, such as a high genetic homology to humans and transparent embryos, which allow clear disease evaluation, have greatly widened its use as a model for studying tumor development in vivo. The use of zebrafish has been applied in several areas of cancer research, mainly in the following domains: (1) establishing cancer models by carcinogenic chemical, genetic technology, and xenotransplantation; (2) evaluating tumor angiogenesis; (3) studying tumor metastasis; and (4) anti-tumor drug screening and drug toxicity evaluation. In this study, we provide a comprehensive overview of the role of zebrafish in order to underline the advantages of using them as a model organism in cancer research. Several related successful events are also reviewed.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Surgical oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jian Huang
- Department of Surgical oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
94
|
Guna A, Butcher NJ, Bassett AS. Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms. J Neurodev Disord 2015; 7:18. [PMID: 26137170 PMCID: PMC4487986 DOI: 10.1186/s11689-015-9113-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023] Open
Abstract
Background 22q11.2 deletion syndrome (22q11.2DS) is the most common micro-deletion syndrome. The associated 22q11.2 deletion conveys the strongest known molecular risk for schizophrenia. Neurodevelopmental phenotypes, including intellectual disability, are also prominent though variable in severity. Other developmental features include congenital cardiac and craniofacial anomalies. Whereas existing mouse models have been helpful in determining the role of some genes overlapped by the hemizygous 22q11.2 deletion in phenotypic expression, much remains unknown. Simple model organisms remain largely unexploited in exploring these genotype-phenotype relationships. Methods We first developed a comprehensive map of the human 22q11.2 deletion region, delineating gene content, and brain expression. To identify putative orthologs, standard methods were used to interrogate the proteomes of the zebrafish (D. rerio), fruit fly (D. melanogaster), and worm (C. elegans), in addition to the mouse. Spatial locations of conserved homologues were mapped to examine syntenic relationships. We systematically cataloged available knockout and knockdown models of all conserved genes across these organisms, including a comprehensive review of associated phenotypes. Results There are 90 genes overlapped by the typical 2.5 Mb deletion 22q11.2 region. Of the 46 protein-coding genes, 41 (89.1 %) have documented expression in the human brain. Identified homologues in the zebrafish (n = 37, 80.4 %) were comparable to those in the mouse (n = 40, 86.9 %) and included some conserved gene cluster structures. There were 22 (47.8 %) putative homologues in the fruit fly and 17 (37.0 %) in the worm involving multiple chromosomes. Individual gene knockdown mutants were available for the simple model organisms, but not for mouse. Although phenotypic data were relatively limited for knockout and knockdown models of the 17 genes conserved across all species, there was some evidence for roles in neurodevelopmental phenotypes, including four of the six mitochondrial genes in the 22q11.2 deletion region. Conclusions Simple model organisms represent a powerful but underutilized means of investigating the molecular mechanisms underlying the elevated risk for neurodevelopmental disorders in 22q11.2DS. This comparative multi-species study provides novel resources and support for the potential utility of non-mouse models in expression studies and high-throughput drug screening. The approach has implications for other recurrent copy number variations associated with neurodevelopmental phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s11689-015-9113-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alina Guna
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Nancy J Butcher
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ; Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Anne S Bassett
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ; Institute of Medical Science, University of Toronto, Toronto, ON Canada ; Dalglish Family Hearts and Minds Clinic for Adults with 22q11.2 Deletion Syndrome, Division of Cardiology, Department of Medicine, Department of Psychiatry, and Toronto General Research Institute, University Health Network, Toronto, ON Canada ; Department of Psychiatry, University of Toronto, Toronto, ON Canada ; Centre for Addiction and Mental Health, 33 Russell Street, Room 1100, M5S 2S1 Toronto, ON Canada
| |
Collapse
|
95
|
Stoyek MR, Croll RP, Smith FM. Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio). J Comp Neurol 2015; 523:1683-700. [PMID: 25711945 DOI: 10.1002/cne.23764] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 01/22/2023]
Abstract
In the vertebrate heart the intracardiac nervous system is the final common pathway for autonomic control of cardiac output, but the neuroanatomy of this system is not well understood. In this study we investigated the innervation of the heart in a model vertebrate, the zebrafish. We used antibodies against acetylated tubulin, human neuronal protein C/D, choline acetyltransferase, tyrosine hydroxylase, neuronal nitric oxide synthase, and vasoactive intestinal polypeptide to visualize neural elements and their neurotransmitter content. Most neurons were located at the venous pole in a plexus around the sinoatrial valve; mean total number of cells was 197 ± 23, and 92% were choline acetyltransferase positive, implying a cholinergic role. The plexus contained cholinergic, adrenergic, and nitrergic axons and vasoactive intestinal polypeptide-positive terminals, some innervating somata. Putative pacemaker cells near the plexus showed immunoreactivity for hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) and the transcription factor Islet-1 (Isl1). The neurotracer neurobiotin showed that extrinsic axons from the left and right vagosympathetic trunks innervated the sinoatrial plexus proximal to their entry into the heart; some extrinsic axons from each trunk also projected into the medial dorsal plexus region. Extrinsic axons also innervated the atrial and ventricular walls. An extracardiac nerve trunk innervated the bulbus arteriosus and entered the arterial pole of the heart to innervate the proximal ventricle. We have shown that the intracardiac nervous system in the zebrafish is anatomically and neurochemically complex, providing a substrate for autonomic control of cardiac effectors in all chambers.
Collapse
Affiliation(s)
- Matthew R Stoyek
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics; Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Frank M Smith
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
96
|
Hein SJ, Lehmann LH, Kossack M, Juergensen L, Fuchs D, Katus HA, Hassel D. Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury. PLoS One 2015; 10:e0122665. [PMID: 25853735 PMCID: PMC4390243 DOI: 10.1371/journal.pone.0122665] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/12/2015] [Indexed: 11/29/2022] Open
Abstract
Translucent zebrafish larvae represent an established model to analyze genetics of cardiac development and human cardiac disease. More recently adult zebrafish are utilized to evaluate mechanisms of cardiac regeneration and by benefiting from recent genome editing technologies, including TALEN and CRISPR, adult zebrafish are emerging as a valuable in vivo model to evaluate novel disease genes and specifically validate disease causing mutations and their underlying pathomechanisms. However, methods to sensitively and non-invasively assess cardiac morphology and performance in adult zebrafish are still limited. We here present a standardized examination protocol to broadly assess cardiac performance in adult zebrafish by advancing conventional echocardiography with modern speckle-tracking analyses. This allows accurate detection of changes in cardiac performance and further enables highly sensitive assessment of regional myocardial motion and deformation in high spatio-temporal resolution. Combining conventional echocardiography measurements with radial and longitudinal velocity, displacement, strain, strain rate and myocardial wall delay rates after myocardial cryoinjury permitted to non-invasively determine injury dimensions and to longitudinally follow functional recovery during cardiac regeneration. We show that functional recovery of cryoinjured hearts occurs in three distinct phases. Importantly, the regeneration process after cryoinjury extends far beyond the proposed 45 days described for ventricular resection with reconstitution of myocardial performance up to 180 days post-injury (dpi). The imaging modalities evaluated here allow sensitive cardiac phenotyping and contribute to further establish adult zebrafish as valuable cardiac disease model beyond the larval developmental stage.
Collapse
Affiliation(s)
- Selina J. Hein
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lorenz H. Lehmann
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mandy Kossack
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lonny Juergensen
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Dieter Fuchs
- FUJIFILM VisualSonics Inc., Amsterdam, The Netherlands
| | - Hugo A. Katus
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - David Hassel
- Department of Medicine III, Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
97
|
Abstract
Zebrafish (Danio rerio) embryos have proven to be a powerful model for studying a variety of developmental and disease processes. External development and optical transparency make these embryos especially amenable to microscopy, and numerous transgenic lines that label specific cell types with fluorescent proteins are available, making the zebrafish embryo an ideal system for visualizing the interaction of vascular, hematopoietic, and other cell types during injury and repair in vivo. Forward and reverse genetics in zebrafish are well developed, and pharmacological manipulation is possible. We describe a mechanical vascular injury model using micromanipulation techniques that exploits several of these features to study responses to vascular injury including hemostasis and blood vessel repair. Using a combination of video and timelapse microscopy, we demonstrate that this method of vascular injury results in measurable and reproducible responses during hemostasis and wound repair. This method provides a system for studying vascular injury and repair in detail in a whole animal model.
Collapse
Affiliation(s)
- Hilary Clay
- Cardiovascular Research Institute, University of California
| | | |
Collapse
|
98
|
D'Aniello E, Waxman JS. Input overload: Contributions of retinoic acid signaling feedback mechanisms to heart development and teratogenesis. Dev Dyn 2015; 244:513-23. [PMID: 25418431 DOI: 10.1002/dvdy.24232] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/07/2022] Open
Abstract
Appropriate levels of retinoic acid (RA) signaling are critical for normal heart development in vertebrates. A fascinating property of RA signaling is the thoroughness by which positive and negative feedback are employed to promote proper embryonic RA levels. In the present short review, we first cover the advancement of hypotheses regarding the impact of RA signaling on cardiac specification. We then discuss our current understanding of RA signaling feedback mechanisms and the implications of recent studies, which have indicated improperly maintained RA signaling feedback can be a contributing factor to developmental malformations.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | | |
Collapse
|
99
|
Marsiglia JDC, Pereira AC. Hypertrophic cardiomyopathy: how do mutations lead to disease? Arq Bras Cardiol 2014; 102:295-304. [PMID: 24714796 PMCID: PMC3987320 DOI: 10.5935/abc.20140022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common monogenic genetic cardiac
disease, with an estimated prevalence of 1:500 in the general population. Clinically,
HCM is characterized by hypertrophy of the left ventricle (LV) walls, especially the
septum, usually asymmetric, in the absence of any cardiac or systemic disease that
leads to a secondary hypertrophy. The clinical course of the disease has a large
inter- and intrafamilial heterogeneity, ranging from mild symptoms of heart failure
late in life to the onset of sudden cardiac death at a young age and is caused by a
mutation in one of the genes that encode a protein from the sarcomere, Z-disc or
intracellular calcium modulators. Although many genes and mutations are already known
to cause HCM, the molecular pathways that lead to the phenotype are still unclear.
This review focus on the molecular mechanisms of HCM, the pathways from mutation to
clinical phenotype and how the disease's genotype correlates with phenotype.
Collapse
Affiliation(s)
- Júlia Daher Carneiro Marsiglia
- Mailing Address: Júlia Daher Carneiro Marsiglia, Av. Dr. Enéas de
Carvalho Aguiar, 44, Cerqueira César. Postal Code 05403- 900, São Paulo, SP - Brazil.
E-mail: ;
| | | |
Collapse
|
100
|
Abstract
The epicardium is the mesothelial outer layer of the vertebrate heart. It plays an important role during cardiac development by, among other functions, nourishing the underlying myocardium, contributing to cardiac fibroblasts and giving rise to the coronary vasculature. The epicardium also exerts key functions during injury responses in the adult and contributes to cardiac repair. In this article, we review current knowledge on the cellular and molecular mechanisms underlying epicardium formation in the zebrafish, a teleost fish, which is rapidly gaining status as an animal model in cardiovascular research, and compare it with the mechanisms described in other vertebrate models. We moreover describe the expression patterns of a subset of available zebrafish Wilms' tumor 1 transgenic reporter lines and discuss their specificity, applicability and limitations in the study of epicardium formation.
Collapse
|