51
|
Rawal S, Munasinghe PE, Shindikar A, Paulin J, Cameron V, Manning P, Williams MJA, Jones GT, Bunton R, Galvin I, Katare R. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc Res 2017; 113:90-101. [PMID: 28065883 DOI: 10.1093/cvr/cvw235] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 07/15/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM Microangiopathy due to endothelial dysfunction is a major contributing factor to the development of diabetes-induced cardiovascular disease (CVD). Dysregulation of endothelial-specific microRNAs (miRs) is correlated with impaired angiogenesis and cell survival. We investigated the profile of two angiomiRs, miR-126, and miR-132, in the plasma of type 2 diabetic individuals without any known history of CVD as well as in the cardiac tissues collected from diabetics undergoing cardiac surgery. METHODS AND RESULTS The presence of diabetes alone significantly decreased both angiomiRs in the plasma and the myocardium. The down-regulation of angiomiRs was also associated with reduced capillaries and arterioles and increased endothelial cell apoptosis, the hallmark of microangiopathy. Importantly, a time course study in a type 2 diabetic mouse model confirmed that the down-regulation of angiomiRs preceded endothelial apoptosis as well as alterations in the density of the microvasculature. Finally, therapeutic overexpression of both angiomiRs in diabetic aortic rings and human umbilical vein endothelial cells exposed to high glucose (HG) abrogated the deleterious effects of diabetes and HG on cell survival and proliferation and restored their angiogenic potential. CONCLUSIONS These novel findings demonstrate that the down-regulation of angiomiRs is a major underlying mechanism for the development of microangiopathy in diabetic hearts. Therefore, therapeutic restoration of angiomiRs could become a potential approach to combat the cardiovascular complications of diabetes.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Physiology-HeartOtago, Otago School of Medical Sciences
| | | | - Amol Shindikar
- Department of Physiology-HeartOtago, Otago School of Medical Sciences
| | - Jono Paulin
- Department of Physiology-HeartOtago, Otago School of Medical Sciences
| | | | | | | | | | - Richard Bunton
- Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago
| | - Ivor Galvin
- Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago
| | - Rajesh Katare
- Department of Physiology-HeartOtago, Otago School of Medical Sciences;
| |
Collapse
|
52
|
Zheng Y, Lin J, Li J, Zhang H, Ai W, Wang X, Dahlgren RA, Wang H. Effects of β-diketone antibiotics on F1-zebrafish (Danio rerio) based on high throughput miRNA sequencing under exposure to parents. CHEMOSPHERE 2016; 164:41-51. [PMID: 27574813 DOI: 10.1016/j.chemosphere.2016.07.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
The toxicity of β-diketone antibiotics (DKAs), a class of ''pseudo-persistent'' environmental pollutants, to F0-zebrafish (Danio rerio) was investigated using 7-dpf F1-zebrafish miRNA sequencing and bioinformatics analyses. Based on relative expression, 47, 134 and 118 of 193 mature miRNAs were differentially expressed between control vs 6.25 mg/L, control vs 12.5 mg/L and 6.25 vs 12.5 mg/L treatments, respectively. Utilizing three databases, 2523 potential target genes were predicted, and they were assigned to 19 high-abundance KEGG pathways and 20 functional categories by COG analysis. Among 11 significantly differential expression and high-abundance miRNAs, the expression levels for 7 miRNAs (miR-144, -124, -499, -125b, -430b, -430c and -152) assessed by qRT-PCR were consistent with those determined by sRNA-seq. A potential network was plotted between 11 miRNAs and their target genes based on differential expression and binding effectiveness. The high degree of connectivity between miRNA-gene pairs suggests that these miRNAs play critical roles in zebrafish development. The expression of miR-124 and miR-499 in whole-mount in situ hybridization was in general agreement with those from qRT-PCR and miRNA-seq and were DKA concentration-dependent. DKA exposure induced severe histopathological changes and damage in F0-zebrafish ovary tissue, as reflected by an increased number of early developmental oocytes, irregular cell distribution, decreased yolk granules, cytoplasmic shrinkage, cell lysis in mature oocytes, and dissolution of internal corona radiata. Chronic DKA exposure affected reproduction of F0-zebrafish and development of F1-zebrafish. These observations demonstrate the toxic effect transfer relation across parent and their offspring, and enhance our understanding of drug-induced diseases.
Collapse
Affiliation(s)
- Yuansi Zheng
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiebo Lin
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jieyi Li
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Haifeng Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiming Ai
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy A Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
53
|
Tian J, An X, Niu L. Role of microRNAs in cardiac development and disease. Exp Ther Med 2016; 13:3-8. [PMID: 28123459 PMCID: PMC5244779 DOI: 10.3892/etm.2016.3932] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/25/2016] [Indexed: 01/03/2023] Open
Abstract
Heart disease-related deaths are the highest in most societies and congenital heart diseases account for approximately 40% of prenatal deaths and over 20% of mortality in the first few months after birth. Congenital heart disease affects approximately 1% of all newborns and is the causative factor for more deaths within the first year of life as compared to all other genetic defects. Advances in treatment approaches increased life expectancy and led to an expansion of adult population with clinical manifestation of congenital heart defects in up to 90% of the children born with congenital heart diseases. Regulation of cardiac gene expression involves multiple independent enhancers that play a critical role in maintaining a restricted and specific pattern of gene expression in the heart. Cardiac transcriptional pathways are intimately regulated by microRNAs (miRNAs), which are small, regulatory RNAs, approximately 22 nucleotides in length, also coded by specific genes. These miRNAs act as suppressors of gene expression by inhibiting translation and/or promoting degradation of target protein-coding mRNAs. There are several miRNAs involved in the development of heart and dysregulation of specific miRNAs is associated with congenital and other cardiac defects. Stress responsive cardiac hypertrophy is orchestrated among other factors, by specific miRNAs. miRNAs such as miR-499 are considered useful as biomarkers of a given heart disease. Therapeutic application of miRNAs is also envisaged considering the small size and specific effects of these molecules. In this review, we addressed different roles of miRNAs in the development and diseases of the heart.
Collapse
Affiliation(s)
- Jing Tian
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Xinjiang An
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Ling Niu
- Department of Cardiology, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
54
|
Blumensatt M, Fahlbusch P, Hilgers R, Bekaert M, Herzfeld de Wiza D, Akhyari P, Ruige JB, Ouwens DM. Secretory products from epicardial adipose tissue from patients with type 2 diabetes impair mitochondrial β-oxidation in cardiomyocytes via activation of the cardiac renin-angiotensin system and induction of miR-208a. Basic Res Cardiol 2016; 112:2. [PMID: 27864612 DOI: 10.1007/s00395-016-0591-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022]
Abstract
Secretory products from epicardial adipose tissue (EAT) from patients with type 2 diabetes (T2D) impair cardiomyocyte function. These changes associate with alterations in miRNA expression, including the induction of miR-208a. Recent studies suggest that activation of the cardiac-specific renin-angiotensin system (RAS) may affect cardiac energy metabolism via induction of miR-208a. This study investigated whether cardiomyocyte dysfunction induced by conditioned media (CM) from EAT-T2D involves activation of the RAS/miR-208a pathway. Therefore, primary adult rat cardiomyocytes were incubated with CM generated from EAT biopsies from patients with T2D and without T2D (ND). Exposing cardiomyocytes to CM-EAT-T2D reduced sarcomere shortening and increased miR-208a expression versus cells exposed to CM-EAT-ND or control medium. The angiotensin II receptor type 1 (AGTR1) antagonist losartan reversed these effects. Accordingly, incubation with angiotensin II (Ang II) reduced sarcomere shortening, and lowered palmitate-induced mitochondrial respiration and carnitine palmitoyltransferase 1c (CPT1c) expression in cardiomyocytes. Locked-nucleic-acid-mediated inhibition of miR-208a function reversed the detrimental effects induced by Ang II. Interestingly, Ang II levels in CM-EAT-T2D were increased by 2.6-fold after culture with cardiomyocytes. The paracrine activation of the cardiac-specific RAS by CM-EAT-T2D was corroborated by increases in the expression of AGTR1 and renin, as well as a reduction in angiotensin-converting enzyme 2 levels. Collectively, these data show that secretory products from EAT-T2D impair cardiomyocyte contractile function and mitochondrial β-oxidation via activation of the cardiac-specific RAS system and induction of miR-208a, and suggest that alterations in the secretory profile of EAT may contribute to the development of diabetes-related heart disease.
Collapse
Affiliation(s)
- Marcel Blumensatt
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Rebecca Hilgers
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Marlies Bekaert
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Daniella Herzfeld de Wiza
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Payam Akhyari
- Department of Cardiovascular Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes B Ruige
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium.,Centrum Diabeteszorg, AZ Nikolaas, 9100, Sint-Niklaas, Belgium
| | - D Margriet Ouwens
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany. .,Department of Endocrinology, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
55
|
Pinti MV, Hathaway QA, Hollander JM. Role of microRNA in metabolic shift during heart failure. Am J Physiol Heart Circ Physiol 2016; 312:H33-H45. [PMID: 27742689 DOI: 10.1152/ajpheart.00341.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Abstract
Heart failure (HF) is an end point resulting from a number of disease states. The prognosis for HF patients is poor with survival rates precipitously low. Energy metabolism is centrally linked to the development of HF, and it involves the proteomic remodeling of numerous pathways, many of which are targeted to the mitochondrion. microRNAs (miRNA) are noncoding RNAs that influence posttranscriptional gene regulation. miRNA have garnered considerable attention for their ability to orchestrate changes to the transcriptome, and ultimately the proteome, during HF. Recently, interest in the role played by miRNA in the regulation of energy metabolism at the mitochondrion has emerged. Cardiac proteome remodeling during HF includes axes impacting hypertrophy, oxidative stress, calcium homeostasis, and metabolic fuel transition. Although it is established that the pathological environment of hypoxia and hemodynamic stress significantly contribute to the HF phenotype, it remains unclear as to the mechanistic underpinnings driving proteome remodeling. The aim of this review is to present evidence highlighting the role played by miRNA in these processes as a means for linking pathological stimuli with proteomic alteration. The differential expression of proteins of substrate transport, glycolysis, β-oxidation, ketone metabolism, the citric acid cycle (CAC), and the electron transport chain (ETC) are paralleled by the differential expression of miRNA species that modulate these processes. Identification of miRNAs that translocate to cardiomyocyte mitochondria (miR-181c, miR-378) influencing the expression of the mitochondrial genome-encoded transcripts as well as suggested import modulators are discussed. Current insights, applications, and challenges of miRNA-based therapeutics are also described.
Collapse
Affiliation(s)
- Mark V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| |
Collapse
|
56
|
Matkovich SJ, Dorn GW. Feed My Heart or Eat It. J Am Coll Cardiol 2016; 68:1572-4. [DOI: 10.1016/j.jacc.2016.07.740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
|
57
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
58
|
Abstract
Genetic variants contribute to several steps during heart failure pathophysiology. The mechanisms include frequent polymorphisms that increase the susceptibility to heart failure in the general population and rare variants as causes of an underlying cardiomyopathy. In this review, we highlight recent discoveries made by genetic approaches and provide an outlook onto the role of epigenetic modifiers of heart failure.
Collapse
|
59
|
Common miR-590 Variant rs6971711 Present Only in African Americans Reduces miR-590 Biogenesis. PLoS One 2016; 11:e0156065. [PMID: 27196440 PMCID: PMC4873136 DOI: 10.1371/journal.pone.0156065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are recognized as important regulators of cardiac development, hypertrophy and fibrosis. Recent studies have demonstrated that genetic variations which cause alterations in miRNA:target interactions can lead to disease. We hypothesized that genetic variations in miRNAs that regulate cardiac hypertrophy/fibrosis might be involved in generation of the cardiac phenotype in patients diagnosed with hypertrophic cardiomyopathy (HCM). To investigate this question, we Sanger sequenced 18 miRNA genes previously implicated in myocyte hypertrophy/fibrosis and apoptosis, using genomic DNA isolated from the leukocytes of 199 HCM patients. We identified a single nucleotide polymorphism (rs6971711, C57T SNP) at the 17th position of mature miR-590-3p (= 57th position of pre-miR-590) that is common in individuals of African ancestry. SNP frequency was higher in African American HCM patients (n = 55) than ethnically-matched controls (n = 100), but the difference was not statistically significant (8.2% vs. 6.5%; p = 0.5). Using a cell culture system, we discovered that presence of this SNP resulted in markedly lower levels of mature miR-590-5p (39 ± 16%, p<0.003) and miR-590-3p (20 ± 2%, p<0.003), when compared with wild-type (WT) miR-590, without affecting levels of pri-miR-590 and pre-miR-590. Consistent with this finding, the SNP resulted in reduced target suppression when compared to WT miR-590 (71% suppression by WT vs 60% suppression by SNP, p<0.03). Since miR-590 can regulate TGF-β, Activin A and Akt signaling, SNP-induced reduction in miR-590 biogenesis could influence cardiac phenotype by de-repression of these signaling pathways. Since the SNP is only present in African Americans, population studies in this patient population would be valuable to investigate effects of this SNP on myocyte function and cardiac physiology.
Collapse
|
60
|
Xin Y, Yang C, Han Z. Circulating miR-499 as a potential biomarker for acute myocardial infarction. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:135. [PMID: 27162785 DOI: 10.21037/atm.2016.03.40] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acute myocardial infarction (AMI), a common heart disease that may lead to chronic heart failure, is the leading cause of morbidity and mortality worldwide. MicroRNAs (miRNAs) are small non-coding RNAs that mediate the expression of target genes. Recently, a number of miRNAs are emerging as potential biomarkers of AMI. MiRNA-499 is a newly discovered member of miRNAs, and is mainly expressed in myocardium, the circulating levels of miRNA-499 was increased in AMI patients. This review summarizes the latest advances in the miRNA-499 study and discusses the potential of miRNA-499 to be a biomarker of AMI.
Collapse
Affiliation(s)
- Yunyi Xin
- 1 Department of Cardiology, 2 Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Chengjian Yang
- 1 Department of Cardiology, 2 Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Zhijun Han
- 1 Department of Cardiology, 2 Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi 214002, China
| |
Collapse
|
61
|
Marques FZ, Vizi D, Khammy O, Mariani JA, Kaye DM. The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail 2016; 18:1000-8. [DOI: 10.1002/ejhf.517] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 11/07/2022] Open
Affiliation(s)
- Francine Z. Marques
- Heart Failure Research Group; Baker IDI Heart and Diabetes Research Institute VIC; Australia
| | - Donna Vizi
- Heart Centre; Alfred Hospital; Melbourne VIC Australia
| | - Ouda Khammy
- Heart Failure Research Group; Baker IDI Heart and Diabetes Research Institute VIC; Australia
| | - Justin A. Mariani
- Heart Failure Research Group; Baker IDI Heart and Diabetes Research Institute VIC; Australia
- Heart Centre; Alfred Hospital; Melbourne VIC Australia
| | - David M. Kaye
- Heart Failure Research Group; Baker IDI Heart and Diabetes Research Institute VIC; Australia
- Heart Centre; Alfred Hospital; Melbourne VIC Australia
| |
Collapse
|
62
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 2016; 94:107-121. [PMID: 27056419 DOI: 10.1016/j.yjmcc.2016.03.015] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/09/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022]
Abstract
Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
63
|
Hanchard NA, Swaminathan S, Bucasas K, Furthner D, Fernbach S, Azamian MS, Wang X, Lewin M, Towbin JA, D'Alessandro LCA, Morris SA, Dreyer W, Denfield S, Ayres NA, Franklin WJ, Justino H, Lantin-Hermoso MR, Ocampo EC, Santos AB, Parekh D, Moodie D, Jeewa A, Lawrence E, Allen HD, Penny DJ, Fraser CD, Lupski JR, Popoola M, Wadhwa L, Brook JD, Bu'Lock FA, Bhattacharya S, Lalani SR, Zender GA, Fitzgerald-Butt SM, Bowman J, Corsmeier D, White P, Lecerf K, Zapata G, Hernandez P, Goodship JA, Garg V, Keavney BD, Leal SM, Cordell HJ, Belmont JW, McBride KL. A genome-wide association study of congenital cardiovascular left-sided lesions shows association with a locus on chromosome 20. Hum Mol Genet 2016; 25:2331-2341. [PMID: 26965164 DOI: 10.1093/hmg/ddw071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/26/2016] [Indexed: 12/28/2022] Open
Abstract
Congenital heart defects involving left-sided lesions (LSLs) are relatively common birth defects with substantial morbidity and mortality. Previous studies have suggested a high heritability with a complex genetic architecture, such that only a few LSL loci have been identified. We performed a genome-wide case-control association study to address the role of common variants using a discovery cohort of 778 cases and 2756 controls. We identified a genome-wide significant association mapping to a 200 kb region on chromosome 20q11 [P= 1.72 × 10-8 for rs3746446; imputed Single Nucleotide Polymorphism (SNP) rs6088703 P= 3.01 × 10-9, odds ratio (OR)= 1.6 for both]. This result was supported by transmission disequilibrium analyses using a subset of 541 case families (lowest P in region= 4.51 × 10-5, OR= 1.5). Replication in a cohort of 367 LSL cases and 5159 controls showed nominal association (P= 0.03 for rs3746446) resulting in P= 9.49 × 10-9 for rs3746446 upon meta-analysis of the combined cohorts. In addition, a group of seven SNPs on chromosome 1q21.3 met threshold for suggestive association (lowest P= 9.35 × 10-7 for rs12045807). Both regions include genes involved in cardiac development-MYH7B/miR499A on chromosome 20 and CTSK, CTSS and ARNT on chromosome 1. Genome-wide heritability analysis using case-control genotyped SNPs suggested that the mean heritability of LSLs attributable to common variants is moderately high ([Formula: see text] range= 0.26-0.34) and consistent with previous assertions. These results provide evidence for the role of common variation in LSLs, proffer new genes as potential biological candidates, and give further insight to the complex genetic architecture of congenital heart disease.
Collapse
Affiliation(s)
- Neil A Hanchard
- Department of Molecular and Human Genetics, Department of Pediatrics
| | | | - Kristine Bucasas
- Department of Molecular and Human Genetics, Center for Statistical Genetics
| | - Dieter Furthner
- Department of Paediatrics, Children's Hospital, Linz, Austria
| | | | | | | | - Mark Lewin
- Division of Cardiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jeffrey A Towbin
- Pediatric Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | - Nancy A Ayres
- Division of Cardiology, Department of Pediatrics, and
| | | | - Henri Justino
- Division of Cardiology, Department of Pediatrics, and
| | | | | | | | - Dhaval Parekh
- Division of Cardiology, Department of Pediatrics, and
| | | | - Aamir Jeewa
- Division of Cardiology, Department of Pediatrics, and
| | | | - Hugh D Allen
- Division of Cardiology, Department of Pediatrics, and
| | | | - Charles D Fraser
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Department of Pediatrics
| | | | - Lalita Wadhwa
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - J David Brook
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Frances A Bu'Lock
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| | - Shoumo Bhattacharya
- Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Sara M Fitzgerald-Butt
- Department of Pediatrics and Center for Cardiovascular and Pulmonary Research, The Heart Center, and
| | | | - Don Corsmeier
- Department of Pediatrics and Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- Department of Pediatrics and Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kelsey Lecerf
- College of Medicine, Ohio State University, Columbus, OH, USA
| | - Gladys Zapata
- Department of Molecular and Human Genetics, Department of Pediatrics
| | | | - Judith A Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK and
| | - Vidu Garg
- Department of Pediatrics and Center for Cardiovascular and Pulmonary Research, The Heart Center, and
| | - Bernard D Keavney
- Institute of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Suzanne M Leal
- Department of Molecular and Human Genetics, Center for Statistical Genetics
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK and
| | - John W Belmont
- Department of Molecular and Human Genetics, Department of Pediatrics,
| | - Kim L McBride
- Department of Pediatrics and Center for Cardiovascular and Pulmonary Research,
| |
Collapse
|
64
|
Bischof C, Krishnan J. Exploiting the hypoxia sensitive non-coding genome for organ-specific physiologic reprogramming. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1782-90. [PMID: 26851074 DOI: 10.1016/j.bbamcr.2016.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/11/2016] [Accepted: 01/28/2016] [Indexed: 12/22/2022]
Abstract
In this review we highlight the role of non-coding RNAs in the development and progression of cardiac pathology and explore the possibility of disease-associated RNAs serving as targets for cardiac-directed therapeutics. Contextually, we focus on the role of stress-induced hypoxia as a driver of disease development and progression through activation of hypoxia inducible factor 1α (HIF1α) and explore mechanisms underlying HIFα function as an enforcer of cardiac pathology through direct transcriptional coupling with the non-coding transcriptome. In the interest of clarity, we will confine our analysis to cardiac pathology and focus on three defining features of the diseased state, namely metabolic, growth and functional reprogramming. It is the aim of this review to explore possible mechanisms through which HIF1α regulation of the non-coding transcriptome connects to spatiotemporal control of gene expression to drive establishment of the diseased state, and to propose strategies for the exploitation of these unique RNAs as targets for clinical therapy. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Corinne Bischof
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jaya Krishnan
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
65
|
Guedes EC, França GS, Lino CA, Koyama FC, Moreira LDN, Alexandre JG, Barreto-Chaves MLM, Galante PAF, Diniz GP. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets. J Cell Physiol 2015; 231:1771-83. [PMID: 26638879 DOI: 10.1002/jcp.25280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/04/2015] [Indexed: 12/28/2022]
Abstract
Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elaine Castilho Guedes
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo Starvaggi França
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil.,Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline Antunes Lino
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Luana do Nascimento Moreira
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Gomes Alexandre
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Luiza M Barreto-Chaves
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Gabriela Placoná Diniz
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
66
|
Matkovich SJ, Dorn GW, Grossenheider TC, Hecker PA. Cardiac Disease Status Dictates Functional mRNA Targeting Profiles of Individual MicroRNAs. ACTA ACUST UNITED AC 2015; 8:774-84. [PMID: 26553694 DOI: 10.1161/circgenetics.115.001237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND MicroRNAs are key players in cardiac stress responses, but the mRNAs, whose abundance and translational potential are primarily affected by changes in cardiac microRNAs, are not well defined. Stimulus-induced, large-scale alterations in the cardiac transcriptome, together with consideration of the law of mass action, further suggest that the mRNAs most substantively targeted by individual microRNAs will vary between unstressed and stressed conditions. To test the hypothesis that microRNA target profiles differ in health and disease, we traced the fate of empirically determined miR-133a and miR-378 targets in mouse hearts undergoing pressure overload hypertrophy. METHODS AND RESULTS Ago2 immunoprecipitation with RNA sequencing (RNA-induced silencing complex sequencing) was used for unbiased definition of microRNA-dependent and microRNA-independent alterations occurring among ≈13 000 mRNAs in response to transverse aortic constriction (TAC). Of 37 direct targets of miR-133a defined in unstressed hearts (fold change ≥25%, false discovery rate <0.02), only 4 (11%) continued to be targeted by miR-133a during TAC, whereas for miR-378 direct targets, 3 of 32 targets (9%) were maintained during TAC. Similarly, only 16% (for miR-133a) and 53% (for miR-378) of hundreds of indirectly affected mRNAs underwent comparable regulation, demonstrating that the effect of TAC on microRNA direct target selection resulted in widespread alterations of signaling function. Numerous microRNA-mediated regulatory events occurring exclusively during pressure overload revealed signaling networks that may be responsive to the endogenous decreases in miR-133a during TAC. CONCLUSIONS Pressure overload-mediated changes in overall cardiac RNA content alter microRNA targeting profiles, reinforcing the need to define microRNA targets in tissue-, cell-, and status-specific contexts.
Collapse
Affiliation(s)
- Scot J Matkovich
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO.
| | - Gerald W Dorn
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO
| | - Tiffani C Grossenheider
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO
| | - Peter A Hecker
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
67
|
miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 2015; 7:1771-92. [PMID: 26399457 DOI: 10.4155/fmc.15.107] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
miRNAs are small non-coding RNAs (ncRNAs), which regulate gene expression. Here, the authors describe the contribution of miRNAs to cardiac biology and disease. They discuss various strategies for manipulating miRNA activity including antisense oligonucleotides (antimiRs, blockmiRs), mimics, miRNA sponges, Tough Decoys and miRNA mowers. They review developments in chemistries (e.g., locked nucleic acid) and modifications (sugar, 'ZEN', peptide nucleic acids) and miRNA delivery tools (viral vectors, liposomes, nanoparticles, pHLIP). They summarize potential miRNA therapeutic targets for heart disease based on preclinical studies. Finally, the authors review current progress of miRNA therapeutics in clinical development for HCV and cancer, and discuss challenges that will need to be overcome for similar therapies to enter the clinic for patients with cardiac disease.
Collapse
|
68
|
Postnatal β-cell maturation is associated with islet-specific microRNA changes induced by nutrient shifts at weaning. Nat Commun 2015; 6:8084. [PMID: 26330140 PMCID: PMC4569696 DOI: 10.1038/ncomms9084] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022] Open
Abstract
Glucose-induced insulin secretion is an essential function of pancreatic β-cells that is partially lost in individuals affected by Type 2 diabetes. This unique property of β-cells is acquired through a poorly understood postnatal maturation process involving major modifications in gene expression programs. Here we show that β-cell maturation is associated with changes in microRNA expression induced by the nutritional transition that occurs at weaning. When mimicked in newborn islet cells, modifications in the level of specific microRNAs result in a switch in the expression of metabolic enzymes and cause the acquisition of glucose-induced insulin release. Our data suggest microRNAs have a central role in postnatal β-cell maturation and in the determination of adult functional β-cell mass. A better understanding of the events governing β-cell maturation may help understand why some individuals are predisposed to developing diabetes and could lead to new strategies for the treatment of this common metabolic disease. Pancreatic β-cells are less responsive to changes in glucose concentration in newborn than in adult rats. Here, the authors show that functional β-cell maturation is associated with changes in miRNA expression induced by nutritional shifts at the suckling-to-weaning transition.
Collapse
|
69
|
Ham O, Lee SY, Lee CY, Park JH, Lee J, Seo HH, Cha MJ, Choi E, Kim S, Hwang KC. let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3. Stem Cell Res Ther 2015; 6:147. [PMID: 26296645 PMCID: PMC4546263 DOI: 10.1186/s13287-015-0134-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 03/17/2015] [Accepted: 07/17/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) have therapeutic potential for the repair of myocardial injury. The efficacy of MSC therapy for myocardial regeneration mainly depends on the survival of cells after transplantation into the infarcted heart. In the transplanted regions, reactive oxygen species (ROS) can cause cell death, and this process depends on caspase activation and autophagosome formation. Methods A Software TargetScan was utilized to search for microRNAs (miRNAs) that target caspase-3 mRNA. Six candidate miRNAs including let-7b were selected and transfected into human MSCs in vitro. Expression of MEK-EKR signal pathways and autophagy-related genes were detected. Using ischemia/reperfusion model (I/R), the effect of MSCs enriched with let-7b was determined after transplantation into infarcted heart area. Miller catheter was used to evaluate cardiac function. Results Here, we report that let-7b targets caspase-3 to regulate apoptosis and autophagy in MSCs exposed to ROS. Let-7b-transfected MSCs (let-7b-MSCs) showed high expression of survival-related proteins, including p-MEK, p-ERK and Bcl-2, leading to a decrease in Annexin V/PI- and TUNEL-positive cells under ROS-rich conditions. Moreover, autophagy-related genes, including Atg5, Atg7, Atg12 and beclin-1, were significantly downregulated in let-7b-MSCs. Using a rat model of acute myocardial infarction, we found that intramyocardial injection of let-7b-MSCs markedly enhanced left ventricular (LV) function and microvessel density, in accordance with a reduced infarct size and the expression of caspase-3. Conclusions Taken together, these data indicate that let-7b may protect MSCs implanted into infarcted myocardium from apoptosis and autophagy by directly targeting caspase-3 signaling.
Collapse
Affiliation(s)
- Onju Ham
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| | - Se-Yeon Lee
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 120-752, Republic of Korea.
| | - Jun-Hee Park
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 120-752, Republic of Korea.
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea.
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea.
| | - Min-Ji Cha
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea. .,Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea.
| | - Eunhyun Choi
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea. .,Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea.
| | - Soonhag Kim
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea. .,Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea.
| | - Ki-Chul Hwang
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea. .,Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea.
| |
Collapse
|
70
|
Kontaraki JE, Marketou ME, Parthenakis FI, Maragkoudakis S, Zacharis EA, Petousis S, Kochiadakis GE, Vardas PE. Hypertrophic and antihypertrophic microRNA levels in peripheral blood mononuclear cells and their relationship to left ventricular hypertrophy in patients with essential hypertension. ACTA ACUST UNITED AC 2015; 9:802-810. [PMID: 26358152 DOI: 10.1016/j.jash.2015.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/03/2015] [Accepted: 07/23/2015] [Indexed: 12/22/2022]
Abstract
MicroRNAs regulate several aspects of physiological and pathologic cardiac hypertrophy, and they represent promising therapeutic targets in cardiovascular disease. We assessed the expression levels of the microRNAs miR-1, miR-133a, miR-26b, miR-208b, miR-499, and miR-21, in 102 patients with essential hypertension and 30 healthy individuals. All patients underwent two-dimensional echocardiography. MicroRNA expression levels in peripheral blood mononuclear cells were quantified by real-time reverse transcription polymerase chain reaction. Hypertensive patients showed significantly lower miR-133a (5.06 ± 0.50 vs. 13.20 ± 2.15, P < .001) and miR-26b (6.76 ± 0.53 vs. 9.36 ± 1.40, P = .037) and higher miR-1 (25.99 ± 3.07 vs. 12.28 ± 2.06, P = .019), miR-208b (22.29 ± 2.96 vs. 8.73 ± 1.59, P = .016), miR-499 (10.06 ± 1.05 vs. 5.70 ± 0.91, P = .033), and miR-21 (2.75 ± 0.15 vs. 1.82 ± 0.20, P = .002) expression levels compared with healthy controls. In hypertensive patients, we observed significant negative correlations of miR-1 (r = -0.374, P < .001) and miR-133a (r = -0.431, P < .001) and significant positive correlations of miR-26b (r = 0.302, P = .002), miR-208b (r = 0.426, P < .001), miR-499 (r = 0.433, P < .001) and miR-21 (r = 0.498, P < .001) expression levels with left ventricular mass index. Our data reveal that miR-1, miR-133a, miR-26b, miR-208b, miR-499, and miR-21 show distinct expression profiles in hypertensive patients relative to healthy individuals and they are associated with clinical indices of left ventricular hypertrophy in hypertensive patients. Thus, they may be related to heart hypertrophy in hypertensive patients and are possibly candidate therapeutic targets in hypertensive heart disease.
Collapse
Affiliation(s)
- Joanna E Kontaraki
- Molecular Cardiology Laboratory, Department of Cardiology, School of Medicine, University of Crete, Heraklion, Greece.
| | - Maria E Marketou
- Department of Cardiology, Heraklion University Hospital, Crete, Greece
| | | | | | | | - Stelios Petousis
- Department of Cardiology, Heraklion University Hospital, Crete, Greece
| | | | - Panos E Vardas
- Department of Cardiology, Heraklion University Hospital, Crete, Greece
| |
Collapse
|
71
|
Abstract
The human heart has a limited capacity to regenerate lost or damaged cardiomyocytes after cardiac insult. Instead, myocardial injury is characterized by extensive cardiac remodeling by fibroblasts, resulting in the eventual deterioration of cardiac structure and function. Cardiac function would be improved if these fibroblasts could be converted into cardiomyocytes. MicroRNAs (miRNAs), small noncoding RNAs that promote mRNA degradation and inhibit mRNA translation, have been shown to be important in cardiac development. Using this information, various researchers have used miRNAs to promote the formation of cardiomyocytes through several approaches. Several miRNAs acting in combination promote the direct conversion of cardiac fibroblasts into cardiomyocytes. Moreover, several miRNAs have been identified that aid the formation of inducible pluripotent stem cells and miRNAs also induce these cells to adopt a cardiac fate. MiRNAs have also been implicated in resident cardiac progenitor cell differentiation. In this review, we discuss the current literature as it pertains to these processes, as well as discussing the therapeutic implications of these findings.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Martin H Kang
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Sophie Dal-Pra
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Maria Mirotsou
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Victor J Dzau
- From the Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Department of Medicine, Duke University Medical Center, Durham, NC.
| |
Collapse
|
72
|
The mesmiRizing complexity of microRNAs for striated muscle tissue engineering. Adv Drug Deliv Rev 2015; 88:37-52. [PMID: 25912658 DOI: 10.1016/j.addr.2015.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/31/2015] [Accepted: 04/15/2015] [Indexed: 12/12/2022]
Abstract
microRNAs (miRs) are small non-protein-coding RNAs, able to post-transcriptionally regulate many genes and exert pleiotropic effects. Alteration of miR levels in tissues and in the circulation has been associated with various pathological and regenerative conditions. In this regard, tissue engineering of cardiac and skeletal muscles is a fascinating context for harnessing the complexity of miR-based circuitries and signals. In this review, we will focus on miR-driven regulation of cardiac and skeletal myogenic routes in homeostatic and challenging states. Furthermore, we will survey the intriguing perspective of exosomal and circulating miRs as novel paracrine players, potentially useful for current and future approaches of regenerative medicine for the striated muscles.
Collapse
|
73
|
Martinez SR, Gay MS, Zhang L. Epigenetic mechanisms in heart development and disease. Drug Discov Today 2015; 20:799-811. [PMID: 25572405 PMCID: PMC4492921 DOI: 10.1016/j.drudis.2014.12.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/05/2014] [Accepted: 12/29/2014] [Indexed: 12/11/2022]
Abstract
Suboptimal intrauterine development has been linked to predisposition to cardiovascular disease in adulthood, a concept termed 'developmental origins of health and disease'. Although the exact mechanisms underlying this developmental programming are unknown, a growing body of evidence supports the involvement of epigenetic regulation. Epigenetic mechanisms such as DNA methylation, histone modifications and micro-RNA confer added levels of gene regulation without altering DNA sequences. These modifications are relatively stable signals, offering possible insight into the mechanisms underlying developmental origins of health and disease. This review will discuss the role of epigenetic mechanisms in heart development as well as aberrant epigenetic regulation contributing to cardiovascular disease. Additionally, we will address recent advances targeting epigenetic mechanisms as potential therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- Shannalee R Martinez
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Maresha S Gay
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
74
|
van den Hoogen P, van den Akker F, Deddens JC, Sluijter JPG. Heart Failure in Chronic Myocarditis: A Role for microRNAs? Curr Genomics 2015; 16:88-94. [PMID: 26085807 PMCID: PMC4467309 DOI: 10.2174/1389202916999150120153344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/20/2014] [Accepted: 01/06/2015] [Indexed: 12/22/2022] Open
Abstract
Myocarditis is an inflammatory disease of the heart, which can persist over a long time. During this time, known as the chronic phase of myocarditis, ongoing inflammation damages the cardiomyocytes. The loss of cardiac cells culminates in the development of dilated cardiomyopathy, often followed by non-ischemic heart failure due to diminished cardiac function. During the course of the disease, expression levels of non-coding small RNAs, called microRNAs (miRNAs), change. Although mainly studied in the acute setting, some of these changes in expression level appear to persist in the chronic phase. In addition to being a much-needed diagnostic tool, these miRNA could provide new treatment options. miRNA-based intervention strategies already showed promising results in the treatment of ischemic cardiovascular diseases in preclinical animal models. By implementing more knowledge on the role of miRNAs in the progression towards heart failure, this can potentially be used in the development of miRNA-based therapeutic interventions in the treatment of myocarditis and thereby preventing the progression towards heart failure. The first part of this review will focus on the natural course of myocarditis and the progression towards heart failure. Secondly, we will discuss the current knowledge on alterations of miRNA expression patterns, and suggest some possible future interventions.
Collapse
Affiliation(s)
- P van den Hoogen
- Department of Cardiology, University Medical Center Utrecht, the Netherlands; ; ICIN - Netherlands Heart Institute, Utrecht, The Netherlands
| | - F van den Akker
- Department of Cardiology, University Medical Center Utrecht, the Netherlands
| | - J C Deddens
- Department of Cardiology, University Medical Center Utrecht, the Netherlands
| | - J P G Sluijter
- Department of Cardiology, University Medical Center Utrecht, the Netherlands; ; ICIN - Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
75
|
Costa ADF, Franco OL. Insights into RNA transcriptome profiling of cardiac tissue in obesity and hypertension conditions. J Cell Physiol 2015; 230:959-68. [PMID: 25393239 DOI: 10.1002/jcp.24807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 12/20/2022]
Abstract
Several epidemiologic studies suggest that obesity and hypertension are associated with cardiac transcriptome modifications that could be further associated with inflammatory processes and cardiac hypertrophy. In this field, transcriptome studies have demonstrated their importance to elucidate physiologic mechanisms, pathways or genes involved in many biologic processes. Over the past decade, RNA microarray and RNA-seq analysis has become an essential component to examine metabolic pathways in terms of mRNA expression in cardiology. In this review, cardiac muscle gene expression in response to effects of obesity and hypertension will be focused, providing a broad view on cardiac transcriptome and physiologic and biochemical mechanisms involved in gene expression changes produced by these events, emphasizing the use of new technologies for gene expression analyses.
Collapse
Affiliation(s)
- Alzenira de Fátima Costa
- Universidade Católica de Brasília, Pós-Graduação em Ciências Genômicas e Biotecnologia Centro de Análises Proteômicas e Bioquímicas, Brasília, Brazil
| | | |
Collapse
|
76
|
Yang J, Xu WW, Hu SJ. Heart failure: advanced development in genetics and epigenetics. BIOMED RESEARCH INTERNATIONAL 2015; 2015:352734. [PMID: 25949994 PMCID: PMC4407520 DOI: 10.1155/2015/352734] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/25/2015] [Accepted: 03/19/2015] [Indexed: 01/16/2023]
Abstract
Heart failure (HF) is a complex pathophysiological syndrome that arises from a primary defect in the ability of the heart to take in and/or eject sufficient blood. Genetic mutations associated with familial dilated cardiomyopathy, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy can contribute to the various pathologies of HF. Therefore, genetic screening could be an approach for guiding individualized therapies and surveillance. In addition, epigenetic regulation occurs via key mechanisms, including ATP-dependent chromatin remodeling, DNA methylation, histone modification, and RNA-based mechanisms. MicroRNA is also a hot spot in HF research. This review gives an overview of genetic mutations associated with cardiomyopathy and the roles of some epigenetic mechanisms in HF.
Collapse
Affiliation(s)
- Jian Yang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| | - Wei-wei Xu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| | - Shen-jiang Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| |
Collapse
|
77
|
Huang Y, Li J. MicroRNA208 family in cardiovascular diseases: therapeutic implication and potential biomarker. J Physiol Biochem 2015; 71:479-86. [DOI: 10.1007/s13105-015-0409-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/26/2015] [Indexed: 01/05/2023]
|
78
|
Nandi SS, Mishra PK. Harnessing fetal and adult genetic reprograming for therapy of heart disease. JOURNAL OF NATURE AND SCIENCE 2015; 1:e71. [PMID: 25879081 PMCID: PMC4394627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Heart is the first organ formed during organogenesis. The fetal heart undergoes several structural and functional modifications to form the four-chambered mammalian heart. The adult heart shows different adaptations during compensatory and decompensatory heart failure. However, one common adaptation in the pathological heart is fetal reprogramming, where the adult heart expresses several genes and miRNAs which are active in the fetal stage. The fetal reprogramming in the failing heart raises several questions, such as whether the switch of adult to fetal genetic programming is an adaptive response to cope with adverse remodeling of the heart, does the expression of fetal genes protect the heart during compensatory and/or decompensatory heart failure, does repressing the fetal gene in the failing heart is protective to the heart? To answer these questions, we need to understand the expression of genes and miRNAs that are reprogrammed in the failing heart. In view of this, we provided an overview of differentially expressed genes and miRNAs, and their regulation in this review. Further, we elaborated novel strategies for a plausible future therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Shyam Sundar Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
79
|
Liu J, Liang X, Gan Z. Transcriptional regulatory circuits controlling muscle fiber type switching. SCIENCE CHINA-LIFE SCIENCES 2015; 58:321-7. [DOI: 10.1007/s11427-015-4833-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/17/2014] [Indexed: 12/16/2022]
|
80
|
Abstract
Heart failure is a global problem with an estimated prevalence of 38 million patients worldwide, a number that is increasing with the ageing of the population. It is the most common diagnosis in patients aged 65 years or older admitted to hospital and in high-income nations. Despite some progress, the prognosis of heart failure is worse than that of most cancers. Because of the seriousness of the condition, a declaration of war on five fronts has been proposed for heart failure. Efforts are underway to treat heart failure by enhancing myofilament sensitivity to Ca(2+); transfer of the gene for SERCA2a, the protein that pumps calcium into the sarcoplasmic reticulum of the cardiomyocyte, seems promising in a phase 2 trial. Several other abnormal calcium-handling proteins in the failing heart are candidates for gene therapy; many short, non-coding RNAs--ie, microRNAs (miRNAs)--block gene expression and protein translation. These molecules are crucial to calcium cycling and ventricular hypertrophy. The actions of miRNAs can be blocked by a new class of drugs, antagomirs, some of which have been shown to improve cardiac function in animal models of heart failure; cell therapy, with autologous bone marrow derived mononuclear cells, or autogenous mesenchymal cells, which can be administered as cryopreserved off the shelf products, seem to be promising in both preclinical and early clinical heart failure trials; and long-term ventricular assistance devices are now used increasingly as a destination therapy in patients with advanced heart failure. In selected patients, left ventricular assistance can lead to myocardial recovery and explantation of the device. The approaches to the treatment of heart failure described, when used alone or in combination, could become important weapons in the war against heart failure.
Collapse
Affiliation(s)
- Eugene Braunwald
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
81
|
Matkovich SJ, Dorn GW. Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy. Methods Mol Biol 2015; 1299:27-49. [PMID: 25836573 DOI: 10.1007/978-1-4939-2572-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicate purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses.
Collapse
Affiliation(s)
- Scot J Matkovich
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA,
| | | |
Collapse
|
82
|
Dorn GW, Matkovich SJ. Epitranscriptional regulation of cardiovascular development and disease. J Physiol 2014; 593:1799-808. [PMID: 25433070 DOI: 10.1113/jphysiol.2014.283234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/14/2014] [Indexed: 12/18/2022] Open
Abstract
Development, homeostasis and responses to stress in the heart all depend on appropriate control of mRNA expression programmes, which may be enacted at the level of DNA sequence, DNA accessibility and RNA-mediated control of mRNA output. Diverse mechanisms underlie promoter-driven transcription of coding mRNAs and their translation into protein, and the ways in which sequence alteration of DNA can make an impact on these processes have been studied for some time. The field of epigenetics explores changes in DNA structure that influence its accessibility by transcriptional machinery, and we are continuing to develop our understanding of how these processes modify cardiac RNA production. In this topical review, we do not focus on how DNA sequence and methylation, and histone interactions, may alter its accessibility, but rather on newly described mechanisms by which some transcribed RNAs may alter initial transcription or downstream processing of other RNAs, involving both short non-coding RNAs (microRNAs) and long non-coding RNAs (lncRNAs). Here we present examples of how these two classes of non-coding RNAs mediate widespread effects on cardiac transcription and protein output in processes for which we use the broad term 'epitranscriptional regulation' and that are complementary to the DNA methylation and histone modification events studied by classical epigenetics.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
83
|
Lee S, Choi E, Cha MJ, Hwang KC. Looking into a conceptual framework of ROS-miRNA-atrial fibrillation. Int J Mol Sci 2014; 15:21754-76. [PMID: 25431922 PMCID: PMC4284676 DOI: 10.3390/ijms151221754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) has been recognized as a major cause of cardiovascular-related morbidity and mortality. MicroRNAs (miRNAs) represent recent additions to the collection of biomolecules involved in arrhythmogenesis. Reactive oxygen species (ROS) have been independently linked to both AF and miRNA regulation. However, no attempts have been made to investigate the possibility of a framework composed of ROS–miRNA–AF that is related to arrhythmia development. Therefore, this review was designed as an attempt to offer a new approach to understanding AF pathogenesis. The aim of this review was to find and to summarize possible connections that exist among AF, miRNAs and ROS to understand the interactions among the molecular entities underlying arrhythmia development in the hopes of finding unappreciated mechanisms of AF. These findings may lead us to innovative therapies for AF, which can be a life-threatening heart condition. A systemic literature review indicated that miRNAs associated with AF might be regulated by ROS, suggesting the possibility that miRNAs translate cellular stressors, such as ROS, into AF pathogenesis. Further studies with a more appropriate experimental design to either prove or disprove the existence of an ROS–miRNA–AF framework are strongly encouraged.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| |
Collapse
|
84
|
Affiliation(s)
- Ali J Marian
- From the Institute of Molecular Medicine, Center for Cardiovascular Genetic Research, University of Texas Health Science Center, Houston.
| |
Collapse
|
85
|
Abstract
According to the World Health Organization, cardiovascular disease accounts for approximately 30% of all deaths in the United States, and is the worldwide leading cause of morbidity and mortality. Over the last several years, microRNAs have emerged as critical regulators of physiological homeostasis in multiple organ systems, including the cardiovascular system. The focus of this review is to provide an overview of the current state of knowledge of the molecular mechanisms contributing to the multiple causes of cardiovascular disease with respect to regulation by microRNAs. A major challenge in understanding the roles of microRNAs in the pathophysiology of cardiovascular disease is that cardiovascular disease may arise from perturbations in intracellular signaling in multiple cell types including vascular smooth muscle and endothelial cells, cardiac myocytes and fibroblasts, as well as hepatocytes, pancreatic β-cells, and others. Additionally, perturbations in intracellular signaling cascades may also have profound effects on heterocellular communication via secreted cytokines and growth factors. There has been much progress in recent years to identify the microRNAs that are both dysregulated under pathological conditions, as well as the signaling pathway(s) regulated by an individual microRNA. The goal of this review is to summarize what is currently known about the mechanisms whereby microRNAs maintain cardiovascular homeostasis and to attempt to identify some key unresolved questions that require further study.
Collapse
Affiliation(s)
- Ronald L Neppl
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| | - Da-Zhi Wang
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| |
Collapse
|
86
|
Matkovich SJ. MicroRNAs in the Stressed Heart: Sorting the Signal from the Noise. Cells 2014; 3:778-801. [PMID: 25100019 PMCID: PMC4197633 DOI: 10.3390/cells3030778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
The short noncoding RNAs, known as microRNAs, are of undisputed importance in cellular signaling during differentiation and development, and during adaptive and maladaptive responses of adult tissues, including those that comprise the heart. Cardiac microRNAs are regulated by hemodynamic overload resulting from exercise or hypertension, in the response of surviving myocardium to myocardial infarction, and in response to environmental or systemic disruptions to homeostasis, such as those arising from diabetes. A large body of work has explored microRNA responses in both physiological and pathological contexts but there is still much to learn about their integrated actions on individual mRNAs and signaling pathways. This review will highlight key studies of microRNA regulation in cardiac stress and suggest possible approaches for more precise identification of microRNA targets, with a view to exploiting the resulting data for therapeutic purposes.
Collapse
Affiliation(s)
- Scot J Matkovich
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA.
| |
Collapse
|
87
|
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci U S A 2014; 111:12264-9. [PMID: 25071214 DOI: 10.1073/pnas.1410622111] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The vast majority of mammalian DNA does not encode for proteins but instead is transcribed into noncoding (nc)RNAs having diverse regulatory functions. The poorly characterized subclass of long ncRNAs (lncRNAs) can epigenetically regulate protein-coding genes by interacting locally in cis or distally in trans. A few reports have implicated specific lncRNAs in cardiac development or failure, but precise details of lncRNAs expressed in hearts and how their expression may be altered during embryonic heart development or by adult heart disease is unknown. Using comprehensive quantitative RNA sequencing data from mouse hearts, livers, and skin cells, we identified 321 lncRNAs present in the heart, 117 of which exhibit a cardiac-enriched pattern of expression. By comparing lncRNA profiles of normal embryonic (∼E14), normal adult, and hypertrophied adult hearts, we defined a distinct fetal lncRNA abundance signature that includes 157 lncRNAs differentially expressed compared with adults (fold-change ≥ 50%, false discovery rate = 0.02) and that was only poorly recapitulated in hypertrophied hearts (17 differentially expressed lncRNAs; 13 of these observed in embryonic hearts). Analysis of protein-coding mRNAs from the same samples identified 22 concordantly and 11 reciprocally regulated mRNAs within 10 kb of dynamically expressed lncRNAs, and reciprocal relationships of lncRNA and mRNA levels were validated for the Mccc1 and Relb genes using in vitro lncRNA knockdown in C2C12 cells. Network analysis suggested a central role for lncRNAs in modulating NFκB- and CREB1-regulated genes during embryonic heart growth and identified multiple mRNAs within these pathways that are also regulated, but independently of lncRNAs.
Collapse
|
88
|
Nair N, Gupta S, Collier IX, Gongora E, Vijayaraghavan K. Can microRNAs emerge as biomarkers in distinguishing HFpEF versus HFrEF? Int J Cardiol 2014; 175:395-9. [PMID: 25002320 DOI: 10.1016/j.ijcard.2014.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/24/2014] [Accepted: 06/20/2014] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are short strands of approximately 21-25 nucleotides. MiRNAs are emerging as important biomarker candidates for various cardiovascular diseases. These small molecules are being currently investigated for diagnosis, prognosis and more importantly as therapeutic targets. This review tries to explore the possibility of identifying miRNAs that are specific to Heart Failure with reduced Ejection Fraction (HFrEF) and Heart Failure with preserved Ejection Fraction (HFpEF) as both conditions carry equal morbidity and mortality risks, but drastically differ in their underlying pathophysiology. The concept of circulating miRNAs as biomarkers needs further investigation because the mechanism of their release into circulation still remains elusive; and, the biological correlation between circulatory miRNA and the relevant organ/tissue expression has not been established. A growing body of evidence indicates that miRNA may "shuttle" in between intracellular compartments for paracrine activities. Generating different panels of miRNAs may be useful in distinguishing HFrEF vs HFpEF. The use of antisense oligonucleotides to silence miRNAs would be another avenue towards establishing target-driven therapeutics in the context of personalized medicine.
Collapse
Affiliation(s)
- Nandini Nair
- Division of Cardiology, Scott and White Memorial Hospital, United States; Spokane Heart Institute, Sacred Heart Medical Center, 122 West Seventh Ave, Suite 450, Spokane, WA 99204, United States.
| | | | - Ian X Collier
- Division of Cardiology, Scott and White Memorial Hospital, United States
| | - Enrique Gongora
- Division of Cardiothoracic Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, United States
| | | |
Collapse
|
89
|
Affiliation(s)
- Gerald W Dorn
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
90
|
MicroRNAs expression profiles in cardiovascular diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:985408. [PMID: 25013816 PMCID: PMC4075084 DOI: 10.1155/2014/985408] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/12/2014] [Indexed: 02/07/2023]
Abstract
The current search for new markers of cardiovascular diseases (CVDs) is explained by the high morbidity and mortality still observed in developed and developing countries due to cardiovascular events. Recently, microRNAs (miRNAs or miRs) have emerged as potential new biomarkers and are small sequences of RNAs that regulate gene expression at posttranscriptional level by inhibiting translation or inducing degradation of the target mRNAs. Circulating miRNAs are involved in the regulation of signaling pathways associated to aging and can be used as novel diagnostic markers for acute and chronic diseases such as cardiovascular pathologies. This review summarizes the biogenesis, maturation, and stability of miRNAs and their use as potential biomarkers for coronary artery disease (CAD), myocardial infarction (MI), and heart failure (HF).
Collapse
|
91
|
Affiliation(s)
- Yonathan F Melman
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA
| | | | | |
Collapse
|
92
|
Feng HJ, Ouyang W, Liu JH, Sun YG, Hu R, Huang LH, Xian JL, Jing CF, Zhou MJ. Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy. ACTA ACUST UNITED AC 2014; 47:361-8. [PMID: 24728214 PMCID: PMC4075303 DOI: 10.1590/1414-431x20142937] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 01/21/2014] [Indexed: 11/22/2022]
Abstract
Hypertrophy is a major predictor of progressive heart disease and has an adverse
prognosis. MicroRNAs (miRNAs) that accumulate during the course of cardiac
hypertrophy may participate in the process. However, the nature of any interaction
between a hypertrophy-specific signaling pathway and aberrant expression of miRNAs
remains unclear. In this study, Spague Dawley male rats were treated with transverse
aortic constriction (TAC) surgery to mimic pathological hypertrophy. Hearts were
isolated from TAC and sham operated rats (n=5 for each group at 5, 10, 15, and 20
days after surgery) for miRNA microarray assay. The miRNAs dysexpressed during
hypertrophy were further analyzed using a combination of bioinformatics algorithms in
order to predict possible targets. Increased expression of the target genes
identified in diverse signaling pathways was also analyzed. Two sets of miRNAs were
identified, showing different expression patterns during hypertrophy. Bioinformatics
analysis suggested the miRNAs may regulate multiple hypertrophy-specific signaling
pathways by targeting the member genes and the interaction of miRNA and mRNA might
form a network that leads to cardiac hypertrophy. In addition, the multifold changes
in several miRNAs suggested that upregulation of rno-miR-331*, rno-miR-3596b,
rno-miR-3557-5p and downregulation of rno-miR-10a, miR-221, miR-190, miR-451 could be
seen as biomarkers of prognosis in clinical therapy of heart failure. This study
described, for the first time, a potential mechanism of cardiac hypertrophy involving
multiple signaling pathways that control up- and downregulation of miRNAs. It
represents a first step in the systematic discovery of miRNA function in
cardiovascular hypertrophy.
Collapse
Affiliation(s)
- H J Feng
- Zhujiang Hospital, Department of Nuclear Medicine, Southern Medical University, Guangzhou, China
| | - W Ouyang
- Zhujiang Hospital, Department of Nuclear Medicine, Southern Medical University, Guangzhou, China
| | - J H Liu
- Zhujiang Hospital, Department of Nuclear Medicine, Southern Medical University, Guangzhou, China
| | - Y G Sun
- Zhujiang Hospital, Department of Nuclear Medicine, Southern Medical University, Guangzhou, China
| | - R Hu
- Zhujiang Hospital, Department of Nuclear Medicine, Southern Medical University, Guangzhou, China
| | - L H Huang
- Zhujiang Hospital, Department of Nuclear Medicine, Southern Medical University, Guangzhou, China
| | - J L Xian
- Zhujiang Hospital, Department of Nuclear Medicine, Southern Medical University, Guangzhou, China
| | - C F Jing
- National Engineering Research Center, South China Sea Marine Biotechnology, Sun Yat-Sen University, Guangzhou, China
| | - M J Zhou
- National Engineering Research Center, South China Sea Marine Biotechnology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
93
|
Condorelli G, Latronico MVG, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 2014; 63:2177-87. [PMID: 24583309 DOI: 10.1016/j.jacc.2014.01.050] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 12/15/2022]
Abstract
Over the last few years, the field of microribonucleic acid (miRNA) in cardiovascular biology and disease has expanded at an incredible pace. miRNAs are themselves part of a larger family, that of non-coding RNAs, the importance of which for biological processes is starting to emerge. miRNAs are ~22-nucleotide-long RNA sequences that can legate messenger (m)RNAs at partially complementary binding sites, and hence regulate the rate of protein synthesis by altering the stability of the targeted mRNAs. In the cardiovascular system, miRNAs have been shown to be critical regulators of development and physiology. They control basic functions in virtually all cell types relevant to the cardiovascular system (such as endothelial cells, cardiac muscle, smooth muscle, inflammatory cells, and fibroblasts) and, thus, are directly involved in the pathophysiology of many cardiovascular diseases. As a result of their role in disease, they are being studied for exploitation in diagnostics, prognostics, and therapeutics. However, there are still significant obstacles that need to be overcome before they enter the clinical arena. We present here a review of the literature and outline the directions toward their use in the clinic.
Collapse
Affiliation(s)
- Gianluigi Condorelli
- Cardiovascular Research Center, Humanitas Research Hospital, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Rozzano, Italy; Institute of Genetics and Biomedical Research, National Research Council of Italy, Rome, Italy.
| | | | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "La Sapienza", Latina, Italy
| |
Collapse
|
94
|
Rawal S, Manning P, Katare R. Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease. Cardiovasc Diabetol 2014; 13:44. [PMID: 24528626 PMCID: PMC3976030 DOI: 10.1186/1475-2840-13-44] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetic heart disease (DHD) is the leading cause of morbidity and mortality among the people with diabetes, with approximately 80% of the deaths in diabetics are due to cardiovascular complications. Importantly, heart disease in the diabetics develop at a much earlier stage, although remaining asymptomatic till the later stage of the disease, thereby restricting its early detection and active therapeutic management. Thus, a better understanding of the modulators involved in the pathophysiology of DHD is necessary for the early diagnosis and development of novel therapeutic implications for diabetes-associated cardiovascular complications. microRNAs (miRs) have recently been evolved as key players in the various cardiovascular events through the regulation of cardiac gene expression. Besides their credible involvement in controlling the cellular processes, they are also released in to the circulation in disease states where they serve as potential diagnostic biomarkers for cardiovascular disease. However, their potential role in DHD as modulators as well as diagnostic biomarkers is largely unexplored. In this review, we describe the putative mechanisms of the selected cardiovascular miRs in relation to cardiovascular diseases and discuss their possible involvement in the pathophysiology and early diagnosis of DHD.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Patrick Manning
- Department of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
95
|
|
96
|
Affiliation(s)
- Priyatansh Gurha
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute, Houston, TX
| | | |
Collapse
|
97
|
Zhou S, Liu Y, Prater K, Zheng Y, Cai L. Roles of microRNAs in pressure overload- and ischemia-related myocardial remodeling. Life Sci 2013; 93:855-862. [PMID: 24021888 DOI: 10.1016/j.lfs.2013.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/21/2013] [Accepted: 08/29/2013] [Indexed: 12/11/2022]
Abstract
Cardiac remodeling, a term that spans maladaptation at the molecular, cellular, tissue and organ levels, is the key pathophysiological process that leads to heart failure (HF). In clinic, pressure overload and ischemia are the two most common reasons to induce cardiac remodeling and HF, which includes but is not limited to cardiac hypertrophy, fibrosis, and cardiomyocyte apoptosis. MicroRNAs (miRNAs) are endogenous, single-stranded, short non-coding RNAs. By imperfectly binding to the 3' untranslated region (UTR) of messenger RNAs (mRNAs), miRNAs are able to suppress target gene expression by promoting degradation or by inhibiting translation of the target mRNAs, thus playing an important role in a wide range of biologic processes. Growing evidence has indicated that miRNAs are aberrantly expressed in the cardiovascular system under experimental and clinical conditions with cardiac remodeling and HF. Clinically there is increasing evidence that miRNAs can act as diagnostic biomarker and even represent a novel therapeutic target in several cardiovascular disorders. This review provides an overview of several miRNAs' impacts in pressure-overload and ischemia-induced cardiac remodeling and HF.
Collapse
Affiliation(s)
- Shanshan Zhou
- The Cardiovascular Center, The First Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
98
|
Abstract
Heart failure is a leading cause of death in industrialized nations especially in an aging population. The recent improvements in cardiac revascularization therapy reduced death rates because of myocardial infarction but steadily increased the number of individuals developing cardiac remodeling and heart failure in the future. Conceptual novel approaches entering the clinics to treat cardiac remodeling and heart failure remain scarce. MicroRNAs emerged as powerful and dynamic modifiers of cardiovascular diseases. In this review, the current approaches using microRNAs as novel diagnostic and therapeutic strategies for cardiac remodeling and heart failure are highlighted. Other gene regulatory mechanisms presented include long (>200 bp) noncoding RNAs that function as an additional regulatory machinery of the genome controlling both transcriptional and post-transcriptional events also in the cardiovascular system.
Collapse
Affiliation(s)
- Regalla Kumarswamy
- Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | | |
Collapse
|
99
|
The Editors. Recent Developments in Cardiovascular Genetics. Circ Res 2013; 113:e88-91. [DOI: 10.1161/circresaha.113.302634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
100
|
Quattrocelli M, Crippa S, Montecchiani C, Camps J, Cornaglia AI, Boldrin L, Morgan J, Calligaro A, Casasco A, Orlacchio A, Gijsbers R, D'Hooge J, Toelen J, Janssens S, Sampaolesi M. Long-term miR-669a therapy alleviates chronic dilated cardiomyopathy in dystrophic mice. J Am Heart Assoc 2013; 2:e000284. [PMID: 23963759 PMCID: PMC3828786 DOI: 10.1161/jaha.113.000284] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a leading cause of chronic morbidity and mortality in muscular dystrophy (MD) patients. Current pharmacological treatments are not yet able to counteract chronic myocardial wastage, thus novel therapies are being intensely explored. MicroRNAs have been implicated as fine regulators of cardiomyopathic progression. Previously, miR-669a downregulation has been linked to the severe DCM progression displayed by Sgcb-null dystrophic mice. However, the impact of long-term overexpression of miR-669a on muscle structure and functionality of the dystrophic heart is yet unknown. METHODS AND RESULTS Here, we demonstrate that intraventricular delivery of adeno-associated viral (AAV) vectors induces long-term (18 months) miR-669a overexpression and improves survival of Sgcb-null mice. Treated hearts display significant decrease in hypertrophic remodeling, fibrosis, and cardiomyocyte apoptosis. Moreover, miR-669a treatment increases sarcomere organization, reduces ventricular atrial natriuretic peptide (ANP) levels, and ameliorates gene/miRNA profile of DCM markers. Furthermore, long-term miR-669a overexpression significantly reduces adverse remodeling and enhances systolic fractional shortening of the left ventricle in treated dystrophic mice, without significant detrimental consequences on skeletal muscle wastage. CONCLUSIONS Our findings provide the first evidence of long-term beneficial impact of AAV-mediated miRNA therapy in a transgenic model of severe, chronic MD-associated DCM.
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Translational Cardiomyology Lab, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|