51
|
Lu CX, Wang W, Wang Q, Liu XY, Yang YQ. A Novel MEF2C Loss-of-Function Mutation Associated with Congenital Double Outlet Right Ventricle. Pediatr Cardiol 2018; 39:794-804. [PMID: 29468350 DOI: 10.1007/s00246-018-1822-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/20/2018] [Indexed: 02/07/2023]
Abstract
Congenital heart defect (CHD) represents the most prevalent birth defect, and accounts for substantial morbidity and mortality in humans. Aggregating evidence demonstrates the genetic basis for CHD. However, CHD is a heterogeneous disease, and the genetic determinants underlying CHD in most patients remain unknown. In the present study, a cohort of 186 unrelated cases with CHD and 300 unrelated control individuals were recruited. The coding exons and flanking introns of the MEF2C gene, which encodes a transcription factor crucial for proper cardiovascular development, were sequenced in all study participants. The functional effect of an identified MEF2C mutation was characterized using a dual-luciferase reporter assay system. As a result, a novel heterozygous MEF2C mutation, p.R15C, was detected in an index patient with congenital double outlet right ventricle (DORV) as well as ventricular septal defect. Analysis of the proband's pedigree showed that the mutation co-segregated with CHD with complete penetrance. The missense mutation, which changed the evolutionarily conserved amino acid, was absent in 300 control individuals. Functional deciphers revealed that the mutant MEF2C protein had a significantly decreased transcriptional activity. Furthermore, the mutation significantly reduced the synergistic activation between MEF2C and GATA4, another transcription factor linked to CHD. This study firstly associates MEF2C loss-of-function mutation with DORV in humans, which provides novel insight into the molecular pathogenesis of CHD, suggesting potential implications for genetic counseling and personalized treatment of CHD patients.
Collapse
Affiliation(s)
- Cai-Xia Lu
- Department of Pediatrics, Huashan Hospital North, Fudan University, Shanghai, 201907, China
| | - Wei Wang
- Department of Parasitology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qian Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
52
|
Treatment of Dehisced, Thoracic Neonatal Wounds With Single-Use Negative Pressure Wound Therapy Device and Medical-Grade Honey. J Wound Ostomy Continence Nurs 2018. [DOI: 10.1097/won.0000000000000407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Qiao XH, Wang Q, Wang J, Liu XY, Xu YJ, Huang RT, Xue S, Li YJ, Zhang M, Qu XK, Li RG, Qiu XB, Yang YQ. A novel NR2F2 loss-of-function mutation predisposes to congenital heart defect. Eur J Med Genet 2017; 61:197-203. [PMID: 29222010 DOI: 10.1016/j.ejmg.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
Congenital heart defect (CHD) is the most common type of birth defect in humans and a leading cause of infant morbidity and mortality. Previous studies have demonstrated that genetic defects play a pivotal role in the pathogenesis of CHD. However, the genetic basis of CHD remains poorly understood due to substantial genetic heterogeneity. In this study, the coding exons and splicing boundaries of the NR2F2 gene, which encodes a pleiotropic transcription factor required for normal cardiovascular development, were sequenced in 168 unrelated patients with CHD, and a novel mutation (c.247G > T, equivalent to p.G83X) was detected in a patient with double outlet right ventricle as well as ventricular septal defect. Genetic scanning of the mutation carrier's relatives available showed that the mutation was present in all affected family members but absent in unaffected family members. Analysis of the index patient's pedigree displayed that the mutation co-segregated with CHD, which was transmitted as an autosomal dominant trait with complete penetrance. The nonsense mutation was absent in 230 unrelated, ethnically-matched healthy individuals used as controls. Functional deciphers by using a dual-luciferase reporter assay system revealed that the mutant NR2F2 protein had no transcriptional activity as compared with its wild-type counterpart. Furthermore, the mutation abrogated the synergistic transcriptional activation between NR2F2 and GATA4, another core cardiac transcription factor associated with CHD. This study firstly associates NR2F2 loss-of-function mutation with an increased susceptibility to double outlet right ventricle in humans, which provides further significant insight into the molecular mechanisms underpinning CHD, suggesting potential implications for genetic counseling of CHD families and personalized treatment of CHD patients.
Collapse
Affiliation(s)
- Xiao-Hui Qiao
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
54
|
Adams JA, Pastuszko P, Uryash A, Wilson D, Lopez Padrino JR, Nadkarni V, Pastuszko A. Whole Body Periodic Acceleration (pGz) as a non-invasive preconditioning strategy for pediatric cardiac surgery. Med Hypotheses 2017; 110:144-149. [PMID: 29317058 DOI: 10.1016/j.mehy.2017.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/03/2017] [Indexed: 01/05/2023]
Abstract
We hypothesized that pGz has cardio and neuroprotective effects due to upregulation of pathways which include eNOS, anti-apoptotic, and anti-inflammatory pathways. We analyze protein expression of these pathways in the brain of neonatal piglets, as well as report on the myocardial function after Deep Hypothermic Circulatory Arrest (DHCA) and pGz preconditioning. Animal data affirms both a cardio and neuroprotective role for pGz. These findings suggest that pGz can be a simple, non-invasive cardio and neuroprotective strategy preconditioning strategy in children requiring surgical intervention.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States.
| | - Peter Pastuszko
- Pediatric Cardiovascular Surgery, Mount Sinai Health Systems, New York, NY, United States
| | - Arkady Uryash
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - David Wilson
- Department of Biochemistry & Biophysics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Jose R Lopez Padrino
- Division of Neonatology and Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Vinay Nadkarni
- Anesthesia and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anna Pastuszko
- Department of Biochemistry & Biophysics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
55
|
Li Z, Jiang Z, Zhao L, Yang X, Zhang J, Song X, Liu B, Ding J. PEGylated stereocomplex polylactide coating of stent for upregulated biocompatibility and drug storage. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:443-451. [PMID: 28887996 DOI: 10.1016/j.msec.2017.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 02/05/2023]
Abstract
Treatment of coronary heart disease by percutaneous coronary intervention (PCT) is usually limited to the high restenosis rate after implantation of bare-metal stent. To solve the problem, the coating of PEGylated stereocomplex poly(l-lactide) (PEG-cPLA) was utilized on the surface modification of stainless steel (SS) sheet. Specifically, the 3-aminopropyltriethoxysilane (APTES)-modified methoxy-poly(ethylene glycol)-poly(d-lactide) (mPEG-PDLA) was grafted onto the surface of hydroxylated SS sheet through coupling reaction, and poly(l-lactide)-poly(ethylene glycol)-poly(l-lactide) (PLLA-PEG-PLLA) was coated onto the surface through stereocomplex interaction between DLA and LLA units. The increase of contact angle firstly confirmed the changes of surface composition and hydrophilicity for the PEG-scPLA-modified SS sheet. The decreased fibrinogen adsorption, down-regulated platelet activation, and improved adhesion of human umbilical vein endothelial cells (HUVECs) indicated the excellent biocompatibility of PEG-scPLA-modified SS sheet. In addition, the drug loading capability of SS sheet was greatly upregulated through the formation of scPLA coating on the surface, where fluorescein (FLU) was chosen as a model molecule. Overall, the surface modification of SS sheet with PEG-scPLA could enhance the comprehensive performances, such as biocompatibility and drug loading capability, demonstrating that PEG-scPLA is a promising coating of coronary stent for PCT.
Collapse
Affiliation(s)
- Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Lei Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xianrui Yang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jin Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xianjing Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
56
|
Qiao XH, Wang F, Zhang XL, Huang RT, Xue S, Wang J, Qiu XB, Liu XY, Yang YQ. MEF2C loss-of-function mutation contributes to congenital heart defects. Int J Med Sci 2017; 14:1143-1153. [PMID: 29104469 PMCID: PMC5666546 DOI: 10.7150/ijms.21353] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Congenital heart disease (CHD) is the most common type of developmental abnormality in humans, and is a leading cause for substantially increased morbidity and mortality in affected individuals. Increasing studies demonstrates a pivotal role of genetic defects in the pathogenesis of CHD, and presently mutations in more than 60 genes have been associated with CHD. Nevertheless, CHD is of pronounced genetic heterogeneity, and the genetic basis underpinning CHD in a large proportion of patients remains unclear. In the present study, the whole coding exons and splicing donors/acceptors of the MEF2C gene, which codes for a transcription factor essential for normal cardiovascular development, were sequenced in 200 unrelated patients affected with CHD, and a novel heterozygous missense mutation, p.L38P, was identified in an index patient with patent ductus arteriosus (PDA) and ventricular septal defect (VSD). Genetic scan of the mutation carrier's family members available showed that the mutation was present in all affected family members but absent in unaffected family members. Analysis of the proband's pedigree revealed that the mutation co-segregated with PDA, which was transmitted as an autosomal dominant trait with complete penetrance. The mutation changed the amino acid that was completely conserved evolutionarily, and did not exist in 300 unrelated, ethnically-matched healthy individuals used as controls. Functional deciphers by using a dual-luciferase reporter assay system unveiled that the mutant MEF2C protein had a significantly reduced transcriptional activity. Furthermore, the mutation significantly diminished the synergistic activation between MEF2C and GATA4, another cardiac core transcription factor that has been causally linked to CHD. In conclusion, this is the first report on the association of a MEF2C loss-of-function mutation with an increased vulnerability to CHD in humans, which provides novel insight into the molecular mechanisms underlying CHD, implying potential implications for early diagnosis and timely prophylaxis of CHD.
Collapse
Affiliation(s)
- Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital, 339 Liuding Street, Ningbo 315012, China
| | - Fei Wang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Xian-Ling Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Juan Wang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| |
Collapse
|
57
|
Affiliation(s)
- Ali J Marian
- From the Center for Cardiovascular Genetics, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston.
| |
Collapse
|