51
|
Cano Ó, Navarrete-Navarro J, Jover P, Osca J, Izquierdo M, Navarro J, Ayala HD, Martínez-Dolz L. Conduction System Pacing for Cardiac Resynchronization Therapy. J Cardiovasc Dev Dis 2023; 10:448. [PMID: 37998506 PMCID: PMC10672305 DOI: 10.3390/jcdd10110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Cardiac resynchronization therapy (CRT) via biventricular pacing (BiVP-CRT) is considered a mainstay treatment for symptomatic heart failure patients with reduced ejection fraction and wide QRS. However, up to one-third of patients receiving BiVP-CRT are considered non-responders to the therapy. Multiple strategies have been proposed to maximize the percentage of CRT responders including two new physiological pacing modalities that have emerged in recent years: His bundle pacing (HBP) and left bundle branch area pacing (LBBAP). Both pacing techniques aim at restoring the normal electrical activation of the ventricles through the native conduction system in opposition to the cell-to-cell activation of conventional right ventricular myocardial pacing. Conduction system pacing (CSP), including both HBP and LBBAP, appears to be a promising pacing modality for delivering CRT and has proven to be safe and feasible in this particular setting. This article will review the current state of the art of CSP-based CRT, its limitations, and future directions.
Collapse
Affiliation(s)
- Óscar Cano
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Javier Navarrete-Navarro
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Pablo Jover
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Joaquín Osca
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Maite Izquierdo
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Josep Navarro
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
| | - Hebert D. Ayala
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Luis Martínez-Dolz
- Electrophysiology Section, Cardiology Department, Hospital Universitari i Politècnic La Fe, Área de Enfermedades Cardiovasculares, Planta 4-Torre F. Av, Fernando Abril Martorell, 106, 46026 Valencia, Spain (H.D.A.)
- Centro de Investigaciones Biomédicas en RED en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| |
Collapse
|
52
|
Gao J, Zhang N, Zhang B, Sun M, Meng Z, Guo M, Wang R. A case report of left ventricular lead implantation via total three-dimensional transseptal puncture after tricuspid valve replacement. Front Cardiovasc Med 2023; 10:1237967. [PMID: 37965082 PMCID: PMC10642443 DOI: 10.3389/fcvm.2023.1237967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Background Ventricular lead implantation is relatively difficult for patients with bradyarrhythmia after tricuspid valve replacement. Right atrial (RA) abnormalities often occurred in patients with tricuspid valve disease; conventional coronary sinus (CS) lead implantation is not easy to operate. Therefore, it is necessary to develop a safe method for implanting LV endocardial leads in patients after tricuspid valve replacement. Case presentation A 76-year-old Asian woman who had been implanted with a metal tricuspid valve replacement 4 years ago was admitted to the Department of Cardiology for pacemaker implantation due to transient blackout related to persistent atrial fibrillation with long pauses. The patient's family rejected the surgical placement of an epicardial LV lead. Therefore, we first intended to operate LV lead implantation through the CS; however, the orifice of the CS was virtually difficult to seek. Ultimately, we utilized total 3-dimensional (T3D) transseptal puncture (TSP) under the guidance of the CARTO 3 system; thus, we implanted the LV endocardial lead, which contributed to the accurate puncture of the central fossa ovalis and ensured the safety of TSP in the case of RA enlargement. Meanwhile, the CARTO 3 system contributed to the localization of the LV lead to the LV free wall during implantation. All the intraoperative and postoperative pacemaker parameters were favorable; no intraoperative or postoperative complications occurred. Conclusions This case report may provide a novel surgical approach for LV lead implantation in patients who underwent tricuspid valve replacement or patients who may benefit from cardiac resynchronization therapy but failed to implant CS lead.
Collapse
Affiliation(s)
- Jia Gao
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Nan Zhang
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Binghang Zhang
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Meng Sun
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhijun Meng
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Min Guo
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Wang
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
53
|
Akhtar Z, Gallagher MM, Kontogiannis C, Leung LWM, Spartalis M, Jouhra F, Sohal M, Shanmugam N. Progress in Cardiac Resynchronisation Therapy and Optimisation. J Cardiovasc Dev Dis 2023; 10:428. [PMID: 37887875 PMCID: PMC10607614 DOI: 10.3390/jcdd10100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac resynchronisation therapy (CRT) has become the cornerstone of heart failure (HF) treatment. Despite the obvious benefit from this therapy, an estimated 30% of CRT patients do not respond ("non-responders"). The cause of "non-response" is multi-factorial and includes suboptimal device settings. To optimise CRT settings, echocardiography has been considered the gold standard but has limitations: it is user dependent and consumes time and resources. CRT proprietary algorithms have been developed to perform device optimisation efficiently and with limited resources. In this review, we discuss CRT optimisation including the various adopted proprietary algorithms and conduction system pacing.
Collapse
Affiliation(s)
- Zaki Akhtar
- Department of Cardiology, St George’s University Hospital, Blackshaw Road, London SW17 0QT, UK
| | - Mark M. Gallagher
- Department of Cardiology, St George’s University Hospital, Blackshaw Road, London SW17 0QT, UK
| | - Christos Kontogiannis
- Department of Cardiology, St George’s University Hospital, Blackshaw Road, London SW17 0QT, UK
| | - Lisa W. M. Leung
- Department of Cardiology, St George’s University Hospital, Blackshaw Road, London SW17 0QT, UK
| | - Michael Spartalis
- Department of Cardiology, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Fadi Jouhra
- Department of Cardiology, St George’s University Hospital, Blackshaw Road, London SW17 0QT, UK
| | - Manav Sohal
- Department of Cardiology, St George’s University Hospital, Blackshaw Road, London SW17 0QT, UK
| | - Nesan Shanmugam
- Department of Cardiology, St George’s University Hospital, Blackshaw Road, London SW17 0QT, UK
| |
Collapse
|
54
|
Chung MK, Patton KK, Lau CP, Dal Forno ARJ, Al-Khatib SM, Arora V, Birgersdotter-Green UM, Cha YM, Chung EH, Cronin EM, Curtis AB, Cygankiewicz I, Dandamudi G, Dubin AM, Ensch DP, Glotzer TV, Gold MR, Goldberger ZD, Gopinathannair R, Gorodeski EZ, Gutierrez A, Guzman JC, Huang W, Imrey PB, Indik JH, Karim S, Karpawich PP, Khaykin Y, Kiehl EL, Kron J, Kutyifa V, Link MS, Marine JE, Mullens W, Park SJ, Parkash R, Patete MF, Pathak RK, Perona CA, Rickard J, Schoenfeld MH, Seow SC, Shen WK, Shoda M, Singh JP, Slotwiner DJ, Sridhar ARM, Srivatsa UN, Stecker EC, Tanawuttiwat T, Tang WHW, Tapias CA, Tracy CM, Upadhyay GA, Varma N, Vernooy K, Vijayaraman P, Worsnick SA, Zareba W, Zeitler EP, Lopez-Cabanillas N, Ellenbogen KA, Hua W, Ikeda T, Mackall JA, Mason PK, McLeod CJ, Mela T, Moore JP, Racenet LK. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. J Arrhythm 2023; 39:681-756. [PMID: 37799799 PMCID: PMC10549836 DOI: 10.1002/joa3.12872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Cardiac physiologic pacing (CPP), encompassing cardiac resynchronization therapy (CRT) and conduction system pacing (CSP), has emerged as a pacing therapy strategy that may mitigate or prevent the development of heart failure (HF) in patients with ventricular dyssynchrony or pacing-induced cardiomyopathy. This clinical practice guideline is intended to provide guidance on indications for CRT for HF therapy and CPP in patients with pacemaker indications or HF, patient selection, pre-procedure evaluation and preparation, implant procedure management, follow-up evaluation and optimization of CPP response, and use in pediatric populations. Gaps in knowledge, pointing to new directions for future research, are also identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eugene H Chung
- University of Michigan Medical School Ann Arbor Michigan USA
| | | | | | | | | | - Anne M Dubin
- Stanford University, Pediatric Cardiology Palo Alto California USA
| | - Douglas P Ensch
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Taya V Glotzer
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
| | - Michael R Gold
- Medical University of South Carolina Charleston South Carolina USA
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
| | | | - Eiran Z Gorodeski
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
| | | | | | - Weijian Huang
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Peter B Imrey
- Cleveland Clinic Cleveland Ohio USA
- Case Western Reserve University Cleveland Ohio USA
| | - Julia H Indik
- University of Arizona, Sarver Heart Center Tucson Arizona USA
| | - Saima Karim
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
| | - Peter P Karpawich
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
| | - Yaariv Khaykin
- Southlake Regional Health Center Newmarket Ontario Canada
| | | | - Jordana Kron
- Virginia Commonwealth University Richmond Virginia USA
| | | | - Mark S Link
- University of Texas Southwestern Medical Center Dallas Texas USA
| | - Joseph E Marine
- Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Wilfried Mullens
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
| | - Seung-Jung Park
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
| | | | | | - Rajeev Kumar Pathak
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
| | | | | | | | | | | | - Morio Shoda
- Tokyo Women's Medical University Tokyo Japan
| | - Jagmeet P Singh
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
| | - David J Slotwiner
- Weill Cornell Medicine Population Health Sciences New York New York USA
| | | | - Uma N Srivatsa
- University of California Davis Sacramento California USA
| | | | | | | | | | - Cynthia M Tracy
- George Washington University Washington District of Columbia USA
| | | | | | - Kevin Vernooy
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
| | | | | | - Wojciech Zareba
- University of Rochester Medical Center Rochester New York USA
| | | | - Nestor Lopez-Cabanillas
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Kenneth A Ellenbogen
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Wei Hua
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Takanori Ikeda
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Judith A Mackall
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Pamela K Mason
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Christopher J McLeod
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Theofanie Mela
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Jeremy P Moore
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| | - Laurel Kay Racenet
- Cleveland Clinic Cleveland Ohio USA
- University of Washington Seattle Washington USA
- University of Hong Kong Hong Kong China
- Hospital SOS Cárdio Florianópolis Brazil
- Duke University Medical Center Durham North Carolina USA
- Indraprastha Apollo Hospital New Delhi India
- University of California San Diego Health La Jolla California USA
- Mayo Clinic, Rochester Rochester Minnesota USA
- University of Michigan Medical School Ann Arbor Michigan USA
- Temple University Philadelphia Pennsylvania USA
- University at Buffalo Buffalo New York USA
- Medical University of Łódź, Łódź Poland
- Virginia Mason Franciscan Health Tacoma Washington USA
- Stanford University, Pediatric Cardiology Palo Alto California USA
- Hackensack Meridian School of Medicine Hackensack New Jersey USA
- Medical University of South Carolina Charleston South Carolina USA
- University of Wisconsin School of Medicine and Public Health Madison Wisconsin USA
- Kansas City Heart Rhythm Institute Overland Park Kansas USA
- University Hospitals and Case Western Reserve University School of Medicine Cleveland Ohio USA
- University of Minnesota Minneapolis Minnesota USA
- McMaster University Hamilton Ontario Canada
- First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Case Western Reserve University Cleveland Ohio USA
- University of Arizona, Sarver Heart Center Tucson Arizona USA
- MetroHealth Medical Center Case Western Reserve University Cleveland Ohio USA
- The Children's Hospital of Michigan Central Michigan University Detroit Michigan USA
- Southlake Regional Health Center Newmarket Ontario Canada
- Sentara Norfolk Virginia USA
- Virginia Commonwealth University Richmond Virginia USA
- University of Rochester Medical Center Rochester New York USA
- University of Texas Southwestern Medical Center Dallas Texas USA
- Johns Hopkins University School of Medicine Baltimore Maryland USA
- Ziekenhuis Oost-Limburg Genk Belgium and Hasselt University Hasselt Belgium
- Sungkyunkwan University School of Medicine, Samsung Medical Center Seoul Republic of Korea
- QEII Health Sciences Center Halifax Nova Scotia Canada
- Clinica Corazones Unidos Santo Domingo Dominican Republic
- Australian National University, Canberra Hospital Garran Australian Capital Territory Australia
- Santojanni Hospital Buenos Aires Argentina
- Yale University School of Medicine New Haven Connecticut USA
- National University Hospital Singapore Singapore
- Mayo Clinic Phoenix Arizona USA
- Tokyo Women's Medical University Tokyo Japan
- Massachusetts General Hospital, Harvard Medical School Boston Massachusetts USA
- Weill Cornell Medicine Population Health Sciences New York New York USA
- University of California Davis Sacramento California USA
- Oregon Health & Science University Portland Oregon USA
- Indiana University Indianapolis Indiana USA
- Fundación Cardioinfantil Instituto de Cardiologia Bogotá Colombia
- George Washington University Washington District of Columbia USA
- University of Chicago Medicine Chicago Illinois USA
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center Maastricht The Netherlands
- Geisinger Health System Wilkes-Barre Pennsylvania USA
- Dartmouth Hitchcock Medical Center New Hampshire Lebanon
| |
Collapse
|
55
|
Song Y, Chen X, Yang K, Dong Z, Cui C, Zhao K, Cheng H, Ji K, Lu M, Zhao S. Cardiac MRI-derived Myocardial Fibrosis and Ventricular Dyssynchrony Predict Response to Cardiac Resynchronization Therapy in Patients with Nonischemic Dilated Cardiomyopathy. Radiol Cardiothorac Imaging 2023; 5:e220127. [PMID: 37908550 PMCID: PMC10613947 DOI: 10.1148/ryct.220127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/05/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
Purpose To determine the association of myocardial fibrosis and left ventricular (LV) dyssynchrony measured using cardiac MRI with late gadolinium enhancement (LGE) and feature tracking (FT), respectively, with response to cardiac resynchronization therapy (CRT) for nonischemic dilated cardiomyopathy (DCM). Materials and Methods This retrospective study included 98 patients (mean age, 59 years ± 10 [SD]; 54 men) who had nonischemic DCM, as assessed with LGE cardiac MRI before CRT. Cardiac MRI FT-derived dyssynchrony was defined as the SD of the time-to-peak strain (TTP-SD) of the LV segments in three directions (longitudinal, radial, and circumferential). CRT response was defined as a 15% increase in LV ejection fraction (LVEF) at echocardiography at 6-month follow-up, and then, long-term cardiovascular events were assessed. The likelihood ratio test was used to evaluate the incremental prognostic value of LGE and dyssynchrony parameters. Results Seventy-one (72%) patients showed a favorable LVEF response following CRT. LGE presence (odds ratio: 0.14 [95% CI: 0.04, 0.47], P = .002; and hazard ratio: 3.52 [95% CI: 1.37, 9.07], P = .01) and lower circumferential TTP-SD (odds ratio: 1.04 [95% CI: 1.02, 1.07], P = .002; and hazard ratio: 0.98 [95% CI: 0.96, 1.00], P = .03) were independently associated with LVEF nonresponse and long-term outcomes. Combined LGE and circumferential TTP-SD provided the highest discrimination for LVEF nonresponse (area under the receiver operating characteristic curve [AUC]: 0.89 [95% CI: 0.81, 0.94], sensitivity: 84.5% [95% CI: 74.0%, 92.0%], specificity: 85.2% [95% CI: 66.3%, 95.8%]) and long-term outcomes (AUC: 0.84 [95% CI: 0.75, 0.91], sensitivity: 76.9% [95% CI: 56.4%, 91.0%], specificity: 87.0% [95% CI: 76.7%, 93.9%]). Conclusion Myocardial fibrosis and lower circumferential dyssynchrony assessed with pretherapy cardiac MRI were independently associated with unfavorable LVEF response and long-term events following CRT in patients with nonischemic DCM and may provide incremental value in predicting prognosis.Keywords: MR Imaging, Cardiac, Outcomes Analysis Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
| | | | - Kai Yang
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Zhixiang Dong
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Chen Cui
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Kankan Zhao
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Huaibing Cheng
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Keshan Ji
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Minjie Lu
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| | - Shihua Zhao
- From the Department of Magnetic Resonance Imaging (Y.S., X.C., K.Y.,
Z.D., C.C., K.J., M.L., S.Z.), Department of Function Test Center (H.C.), and
Department of Radiology Imaging Center (S.Z.), Fuwai Hospital, National Center
for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease,
Chinese Academy of Medical Sciences and Peking Union Medical College, 167
Beilishi Road, Xi Cheng District, Beijing 100037, China; and Paul C. Lauterbur
Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
(K.Z.)
| |
Collapse
|
56
|
Duchenne J, Larsen CK, Cvijic M, Galli E, Aalen JM, Klop B, Mirea O, Puvrez A, Bézy S, Wouters L, Minten L, Sirnes PA, Khan FH, Voros G, Willems R, Penicka M, Kongsgård E, Hopp E, Bogaert J, Smiseth OA, Donal E, Voigt JU. Mechanical Dyssynchrony Combined with Septal Scarring Reliably Identifies Responders to Cardiac Resynchronization Therapy. J Clin Med 2023; 12:6108. [PMID: 37763048 PMCID: PMC10531814 DOI: 10.3390/jcm12186108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Background and aim: The presence of mechanical dyssynchrony on echocardiography is associated with reverse remodelling and decreased mortality after cardiac resynchronization therapy (CRT). Contrarily, myocardial scar reduces the effect of CRT. This study investigated how well a combined assessment of different markers of mechanical dyssynchrony and scarring identifies CRT responders. Methods: In a prospective multicentre study of 170 CRT recipients, septal flash (SF), apical rocking (ApRock), systolic stretch index (SSI), and lateral-to-septal (LW-S) work differences were assessed using echocardiography. Myocardial scarring was quantified using cardiac magnetic resonance imaging (CMR) or excluded based on a coronary angiogram and clinical history. The primary endpoint was a CRT response, defined as a ≥15% reduction in LV end-systolic volume 12 months after implantation. The secondary endpoint was time-to-death. Results: The combined assessment of mechanical dyssynchrony and septal scarring showed AUCs ranging between 0.81 (95%CI: 0.74-0.88) and 0.86 (95%CI: 0.79-0.91) for predicting a CRT response, without significant differences between the markers, but significantly higher than mechanical dyssynchrony alone. QRS morphology, QRS duration, and LV ejection fraction were not superior in their prediction. Predictive power was similar in the subgroups of patients with ischemic cardiomyopathy. The combined assessments significantly predicted all-cause mortality at 44 ± 13 months after CRT with a hazard ratio ranging from 0.28 (95%CI: 0.12-0.67) to 0.20 (95%CI: 0.08-0.49). Conclusions: The combined assessment of mechanical dyssynchrony and septal scarring identified CRT responders with high predictive power. Both visual and quantitative markers were highly feasible and demonstrated similar results. This work demonstrates the value of imaging LV mechanics and scarring in CRT candidates, which can already be achieved in a clinical routine.
Collapse
Affiliation(s)
- Jürgen Duchenne
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Camilla K. Larsen
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Marta Cvijic
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Elena Galli
- Inserm, LTSI-UMR, 1099, 35042 Rennes, France; (E.G.)
- Department of Cardiology, CHU Rennes, 35033 Rennes, France
| | - John M. Aalen
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Boudewijn Klop
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Oana Mirea
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Cardiology, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Alexis Puvrez
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Stéphanie Bézy
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Laurine Wouters
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lennert Minten
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Per A. Sirnes
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Faraz H. Khan
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Gabor Voros
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Rik Willems
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Martin Penicka
- Cardiovascular Center Aalst, OLV Clinic, 9300 Aalst, Belgium
| | - Erik Kongsgård
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Einar Hopp
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0379 Oslo, Norway
| | - Jan Bogaert
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
- Department of Radiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Otto A. Smiseth
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Cardiology, Oslo University Hospital, 0379 Oslo, Norway
| | - Erwan Donal
- Inserm, LTSI-UMR, 1099, 35042 Rennes, France; (E.G.)
- Department of Cardiology, CHU Rennes, 35033 Rennes, France
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium (L.M.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
57
|
Chung MK, Patton KK, Lau CP, Dal Forno ARJ, Al-Khatib SM, Arora V, Birgersdotter-Green UM, Cha YM, Chung EH, Cronin EM, Curtis AB, Cygankiewicz I, Dandamudi G, Dubin AM, Ensch DP, Glotzer TV, Gold MR, Goldberger ZD, Gopinathannair R, Gorodeski EZ, Gutierrez A, Guzman JC, Huang W, Imrey PB, Indik JH, Karim S, Karpawich PP, Khaykin Y, Kiehl EL, Kron J, Kutyifa V, Link MS, Marine JE, Mullens W, Park SJ, Parkash R, Patete MF, Pathak RK, Perona CA, Rickard J, Schoenfeld MH, Seow SC, Shen WK, Shoda M, Singh JP, Slotwiner DJ, Sridhar ARM, Srivatsa UN, Stecker EC, Tanawuttiwat T, Tang WHW, Tapias CA, Tracy CM, Upadhyay GA, Varma N, Vernooy K, Vijayaraman P, Worsnick SA, Zareba W, Zeitler EP. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart Rhythm 2023; 20:e17-e91. [PMID: 37283271 PMCID: PMC11062890 DOI: 10.1016/j.hrthm.2023.03.1538] [Citation(s) in RCA: 206] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 06/08/2023]
Abstract
Cardiac physiologic pacing (CPP), encompassing cardiac resynchronization therapy (CRT) and conduction system pacing (CSP), has emerged as a pacing therapy strategy that may mitigate or prevent the development of heart failure (HF) in patients with ventricular dyssynchrony or pacing-induced cardiomyopathy. This clinical practice guideline is intended to provide guidance on indications for CRT for HF therapy and CPP in patients with pacemaker indications or HF, patient selection, pre-procedure evaluation and preparation, implant procedure management, follow-up evaluation and optimization of CPP response, and use in pediatric populations. Gaps in knowledge, pointing to new directions for future research, are also identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eugene H Chung
- University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | - Anne M Dubin
- Stanford University, Pediatric Cardiology, Palo Alto, California
| | | | - Taya V Glotzer
- Hackensack Meridian School of Medicine, Hackensack, New Jersey
| | - Michael R Gold
- Medical University of South Carolina, Charleston, South Carolina
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Eiran Z Gorodeski
- University Hospitals and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | | | - Weijian Huang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peter B Imrey
- Cleveland Clinic, Cleveland, Ohio; Case Western Reserve University, Cleveland, Ohio
| | - Julia H Indik
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | - Saima Karim
- MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Peter P Karpawich
- The Children's Hospital of Michigan, Central Michigan University, Detroit, Michigan
| | - Yaariv Khaykin
- Southlake Regional Health Center, Newmarket, Ontario, Canada
| | | | - Jordana Kron
- Virginia Commonwealth University, Richmond, Virginia
| | | | - Mark S Link
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph E Marine
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wilfried Mullens
- Ziekenhuis Oost-Limburg Genk, Belgium and Hasselt University, Hasselt, Belgium
| | - Seung-Jung Park
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Ratika Parkash
- QEII Health Sciences Center, Halifax, Nova Scotia, Canada
| | | | - Rajeev Kumar Pathak
- Australian National University, Canberra Hospital, Garran, Australian Capital Territory, Australia
| | | | | | | | | | | | - Morio Shoda
- Tokyo Women's Medical University, Tokyo, Japan
| | - Jagmeet P Singh
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David J Slotwiner
- Weill Cornell Medicine Population Health Sciences, New York, New York
| | | | | | | | | | | | | | - Cynthia M Tracy
- George Washington University, Washington, District of Columbia
| | | | | | - Kevin Vernooy
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
58
|
Toyosaki E, Mochizuki Y, Den H, Ichikawa S, Miyazaki H, Chino S, Hachiya R, Fukuoka H, Kokaze A, Matsuyama T, Shinke T. Relationship Between Results of Pathological Evaluation of Endomyocardial Biopsy and Echocardiographic Indices in Patients With Non-Ischemic Cardiomyopathy. Circ Rep 2023; 5:331-337. [PMID: 37564876 PMCID: PMC10411993 DOI: 10.1253/circrep.cr-23-0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background: Endomyocardial biopsy (EMB) is a useful modality in diagnosing the origin of cardiomyopathy and the condition of the impaired myocardium. However, the usefulness of obtaining an EMB from the right and left ventricles (RV and LV, respectively), and its associations with echocardiographic parameters, have not been explored. Methods and Results: Ninety-five consecutive patients with non-ischemic cardiomyopathy excluding myocarditis who underwent EMB between July 2017 and May 2019 were studied. Seventy-nine RV and 93 LV biopsy specimens were pathologically analyzed. The relationships among echocardiographic data before EMB and pathologically measured cardiomyocyte diameter (CMD) and interstitial fibrosis (IF) were evaluated. CMD in both LV and RV specimens correlated with echocardiographic LV morphology, but only CMD in the LV was significantly correlated with cardiac function evaluation, including LV ejection fraction, E' and E/E'. In contrast, there were no significant correlations between IF in either the LV or RV and any echocardiographic parameters measured. Furthermore, CMD of both ventricles was significantly correlated with B-type natriuretic peptide (BNP) concentration at EMB, whereas IF of the LV was barely related and IF of the RV was not significantly correlated with BNP concentrations. Conclusions: Pathologically evaluated CMD of EMB specimens of the LV may be more related to functional parameters for heart failure status and LV geometry on echocardiographic examination, than IF.
Collapse
Affiliation(s)
- Eiji Toyosaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Yasuhide Mochizuki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Hiroki Den
- Department of Hygiene, Public Health and Preventive Medicine, Showa University Tokyo Japan
| | - Saaya Ichikawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Haruka Miyazaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Saori Chino
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Rumi Hachiya
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Hiroto Fukuoka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| | - Akatsuki Kokaze
- Department of Hygiene, Public Health and Preventive Medicine, Showa University Tokyo Japan
| | | | - Toshiro Shinke
- Division of Cardiovascular Medicine, Department of Internal Medicine, Showa University Tokyo Japan
| |
Collapse
|
59
|
Yoon M, Oh J, Chun KH, Yu HT, Lee CJ, Kim TH, Pak HN, Lee MH, Joung B, Kang SM. Clinical Implications of Device-Detected Atrial Fibrillation in Cardiac Resynchronization Therapy. Korean Circ J 2023; 53:483-496. [PMID: 37271751 PMCID: PMC10406527 DOI: 10.4070/kcj.2022.0342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Atrial fibrillation (AF) is associated with decreased cardiac resynchronization therapy (CRT) benefits compared to sinus rhythm (SR). Effective biventricular (BiV) pacing is a determinant of CRT success, but AF can interfere with adequate BiV pacing and affect clinical outcomes. We investigated the effect of device-detected AF on clinical outcomes and optimal BiV pacing in patients with heart failure (HF) treated with CRT. METHODS We retrospectively analyzed 174 patients who underwent CRT implantation between 2012 and 2019 at a tertiary center. The optimal BiV pacing percentage was defined as ≥98%. Device-detected AF was defined as an atrial high-rate episode ≥180 beats per minute lasting more than 6 minutes during the follow-up period. We stratified the patients without preexisting AF at pre-implantation into device-detected AF and no-AF groups. RESULTS A total of 120 patients did not show preexisting AF at pre-implantation, and 54 had AF. Among these 120 patients, 19 (15.8%) showed device-detected AF during a median follow-up of 25.1 months. The proportion of optimal BiV pacing was significantly lower in the device-detected AF group than in the no-AF group (42.1% vs. 75.2%, p=0.009). The device-detected AF group had a higher incidence of HF hospitalization, cardiovascular death, and all-cause death than the no-AF group. The device-detected AF and previous AF groups showed no significant differences regarding the percentage of BiV pacing and clinical outcomes. CONCLUSIONS For HF patients implanted with CRT, device-detected AF was associated with lower optimal BiV pacing and worse clinical outcomes than no-AF.
Collapse
Affiliation(s)
- Minjae Yoon
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jaewon Oh
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyeong-Hyeon Chun
- Division of Cardiology, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Hee Tae Yu
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Moon-Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Min Kang
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
60
|
Agricola E, Ancona F. Is There Any Room Left for Echocardiographic-Dyssynchrony Parameters in the Field of CRT? JACC Cardiovasc Imaging 2023; 16:885-888. [PMID: 37407121 DOI: 10.1016/j.jcmg.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 07/07/2023]
Affiliation(s)
- Eustachio Agricola
- Cardiovascular Imaging Unit, Cardiothoracic Department, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Francesco Ancona
- Cardiovascular Imaging Unit, Cardiothoracic Department, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
61
|
Ansalone G, Boriani G, Sassone B, Camastra G, Donal E, Calò L, Casella M, Delarche N, Lozano IF, Biffi M, Boulogne E, Guidotto T, Leclercq C. Biventricular versus left ventricular only stimulation: an echocardiographic substudy of the B-LEFT HF trial. J Cardiovasc Med (Hagerstown) 2023; 24:453-460. [PMID: 37285276 DOI: 10.2459/jcm.0000000000001480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND The noninferiority of left ventricular pacing alone (LVp) compared with biventricular pacing (BIV) has not been yet definitely documented. In this study, we reviewed all the original echocardiographic measures of the Biventricular versus Left Univentricular Pacing with ICD Back-up in Heart Failure Patients (B-LEFT HF) trial in order to investigate mechanisms underlying LV remodelling with both pacing modalities. METHODS Patients with New York Heart Association functional class (NYHA) III or IV despite optimal medical therapy, LVEF 35% or less, left ventricular end-diastolic diameter (LVEDD) more than 55 mm, QRS duration at least 130 ms were randomized to BIV or LVp for 6 months. The primary end point was a composite of at least 1 point decrease in NYHA class and at least 5 mm decrease in left ventricular end-systolic diameter (LVESD). An additional end point was a LVp reverse remodelling defined as at least 10% decrease in LVESD. Mitral regurgitation and all echocardiographic measures were reassessed after 6-month follow-up. RESULTS One hundred and forty-three patients were enrolled. Seventy-six patients were in the BIV and 67 were in the LVp group. Left ventricular volumes decreased significantly without difference between groups (P = 0.8447). Similarly, left ventricular diameters decreased significantly in both groups with a significant decrease in LVESD with BIV (P < 0.0001), but not with LVp (P = 0.1383). LVEF improved in both groups without difference (P = 0.8072). Mitral regurgitation did not improve either with BIV, or with LVp. CONCLUSION The echocardiographic sub-analysis of B-LEFT study showed the substantial equivalence of LVp in favouring left ventricular reverse remodelling as compared with BIV.
Collapse
Affiliation(s)
| | - Giuseppe Boriani
- Cardiology Division, Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Policlinico di Modena, Modena
| | - Biagio Sassone
- Department of Cardiology, Ospedale SS.ma Annunziata, Azienda Unità Sanitaria Locale Ferrara, Cento, Italy
| | | | | | | | - Michela Casella
- Heart Rhythm Center, Centro Cardiologico Monzino, Milan, Italy
| | | | | | - Mauro Biffi
- Institute of Cardiology, University of Bologna, Azienda Ospedaliera S.Orsola-Malpighi, Bologna, Italy
| | | | | | | |
Collapse
|
62
|
Hopman LHGA, Zweerink A, van der Lingen ALCJ, Huntelaar MJ, Mulder MJ, Robbers LFHJ, van Rossum AC, van Halm VP, Götte MJW, Allaart CP. Feasibility of CMR Imaging during Biventricular Pacing: Comparison with Invasive Measurement as a Pathway towards a Novel Optimization Strategy. J Clin Med 2023; 12:3998. [PMID: 37373691 PMCID: PMC10298880 DOI: 10.3390/jcm12123998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVES This prospective pilot study assessed the feasibility of cardiovascular magnetic resonance (CMR) imaging during biventricular (BIV) pacing in patients with a CMR conditional cardiac resynchronization therapy defibrillator (CRT-D) and compared the results with invasive volume measurements. METHODS Ten CRT-D patients underwent CMR imaging prior to device implantation (baseline) and six weeks after device implantation, including CRT-on and CRT-off modes. Left ventricular (LV) function, volumes, and strain measurements of LV dyssynchrony and dyscoordination were assessed. Invasive pressure-volume measurements were performed, matching the CRT settings used during CMR. RESULTS Post-implantation imaging enabled reliable cine assessment, but showed artefacts on late gadolinium enhancement images. After six weeks of CRT, significant reverse remodeling was observed, with a 22.7 ± 11% reduction in LV end-systolic volume during intrinsic rhythm (CRT-off). During CRT-on, the LV ejection fraction significantly improved from 27.4 ± 5.9% to 32.2 ± 8.7% (p < 0.01), and the strain assessment showed the abolition of the left bundle branch block contraction pattern. Invasively measured and CMR-assessed LV hemodynamics during BIV pacing were significantly associated. CONCLUSIONS Post-CRT implantation CMR assessing acute LV pump function is feasible and provides important insights into the effects of BIV pacing on cardiac function and contraction patterns. LV assessment during CMR may constitute a future CRT optimization strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cornelis P. Allaart
- Department of Cardiology, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands; (L.H.G.A.H.)
| |
Collapse
|
63
|
Ma C, Wang Z, Ma Z, Ma P, Dai S, Wang N, Yang Y, Li G, Gao L, Xia Y, Xiao X, Dong Y. The feasibility and safety of his-purkinje conduction system pacing in patients with heart failure with severely reduced ejection fraction. Front Cardiovasc Med 2023; 10:1187169. [PMID: 37283576 PMCID: PMC10239933 DOI: 10.3389/fcvm.2023.1187169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Objective The purpose of this study was to evaluate the feasibility and outcomes of conduction system pacing (CSP) in patients with heart failure (HF) who had a severely reduced left ventricular ejection fraction (LVEF) of less than 30% (HFsrEF). Methods Between January 2018 and December 2020, all consecutive HF patients with LVEF < 30% who underwent CSP at our center were evaluated. Clinical outcomes and echocardiographic data [LVEF and left ventricular end-systolic volume (LVESV)], and complications were all recorded. In addition, clinical and echocardiographic (≥5% improvement in LVEF or ≥15% decrease in LVESV) responses were assessed. The patients were classified into a complete left bundle branch block (CLBBB) morphology group and a non-CLBBB morphology group according to the baseline QRS configuration. Results Seventy patients (66 ± 8.84 years; 55.7% male) with a mean LVEF of 23.2 ± 3.23%, LVEDd of 67.33 ± 7.47 mm and LVESV of 212.08 ± 39.74 ml were included. QRS configuration at baseline was CLBBB in 67.1% (47/70) of patients and non-CLBBB in 32.9%. At implantation, the CSP threshold was 0.6 ± 0.3 V @ 0.4 ms and remained stable during a mean follow-up of 23.43 ± 11.44 months. CSP resulted in significant LVEF improvement from 23.2 ± 3.23% to 34.93 ± 10.34% (P < 0.001) and significant QRS narrowing from 154.99 ± 34.42 to 130.81 ± 25.18 ms (P < 0.001). Clinical and echocardiographic responses were observed in 91.4% (64/70) and 77.1% (54/70) of patients. Super-response to CSP (≥15% improvement in LVEF or ≥30% decrease in LVESV) was observed in 52.9% (37/70) of patients. One patient died due to acute HF and following severe metabolic disorders. Baseline BNP (odds ratio: 0.969; 95% confidence interval: 0.939-0.989; P = 0.045) was associated with echocardiographic response. The proportions of clinical and echocardiographic responses in the CLBBB group were higher than those in the non-CLBBB group but without significant statistical differences. Conclusions CSP is feasible and safe in patients with HFsrEF. CSP is associated with a significant improvement in clinical and echocardiographic outcomes, even for patients with non-CLBBB widened QRS.
Collapse
Affiliation(s)
- Chengming Ma
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongzhen Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhulin Ma
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Peipei Ma
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shiyu Dai
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yiheng Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guocao Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lianjun Gao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xianjie Xiao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yingxue Dong
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
64
|
Maass AH, Daniëls F, Roseboom E, Vernooy K, Rienstra M. Special Issue: Latest Advances in Delivery and Outcomes of Cardiac Resynchronization Therapy and Conduction System Pacing. J Clin Med 2023; 12:jcm12103453. [PMID: 37240559 DOI: 10.3390/jcm12103453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiac Resynchronization Therapy (CRT) is an established technique to improve morbidity and mortality in selected heart failure patients [...].
Collapse
Affiliation(s)
- Alexander H Maass
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Fenna Daniëls
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
- Department of Cardiology, Isala Hospital, 8000 GK Zwolle, The Netherlands
| | - Eva Roseboom
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
65
|
Gin J, Chow CL, Voskoboinik A, Nalliah C, Wong C, Van Gaal W, Farouque O, Mohamed U, Lim HS, Kalman JM, Wong GR. Improved Outcomes of Conduction System Pacing in Heart Failure with Reduced Ejection Fraction - A Systematic Review and Meta-analysis. Heart Rhythm 2023:S1547-5271(23)02226-9. [PMID: 37172670 DOI: 10.1016/j.hrthm.2023.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Conduction system pacing (CSP) - His bundle pacing (HBP) and Left bundle branch area pacing (LBBAP) - are emerging alternatives to biventricular pacing (BVP) for cardiac resynchronization therapy (CRT) in heart failure. However, evidence is largely limited to small and observational studies. We conducted a meta-analysis including a total of 15 randomized control trials (RCTs) and non-RCTs that compare CSP (HBP & LBBAP) with BVP in patients with CRT indications. We assessed the mean differences in QRS duration (QRSd), pacing threshold, left ventricular ejection fraction (LVEF), and New York Heart Association (NYHA) class score. CSP resulted in a pooled mean QRSd improvement of -20.3 ms (95% CI -26.1 - -14.5, p<0.05, I2=87.1%) versus BVP. For LVEF, a weighted mean increase of 5.2% (95% CI 3.5-6.9, p<0.05, I2=55.6) was observed following CSP versus BVP. The mean NYHA score was reduced by -0.40 (95% CI -0.6 - -0.2, p<0.05, I2=61.7) post-CSP versus BVP. Subgroup analysis of outcomes by LBBAP and HBP demonstrated statistically significant weighted mean improvements from both CSP modalities for QRSd and LVEF compared to BVP. LBBAP resulted in NYHA improvement compared to BVP without differences between CSP subgroups. LBBAP is associated with a significantly lowered mean pacing threshold of -0.51V (95% CI -0.68 - -0.38) whilst HBP had increased the mean threshold (0.62V, 95% CI -0.03 - 1.26) compared to BVP, however, this was associated with significant heterogeneity. Overall, both CSP techniques are feasible and effective CRT alternatives for heart failure. Further RCTs are needed to establish long-term efficacy and safety.
Collapse
Affiliation(s)
- Julian Gin
- Department of Cardiology, Austin Health, Melbourne, Victoria, Australia
| | - Chee Loong Chow
- Department of Cardiology, Austin Health, Melbourne, Victoria, Australia; Department of Cardiology, Northern Health, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Alex Voskoboinik
- Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
| | - Chrishan Nalliah
- Department of Cardiology, Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Chiew Wong
- Department of Cardiology, Northern Health, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Victoria, Australia
| | - William Van Gaal
- Department of Cardiology, Northern Health, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Omar Farouque
- Department of Cardiology, Austin Health, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Uwais Mohamed
- Department of Cardiology, St. Vincent's Hospital Melbourne, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Han S Lim
- Department of Cardiology, Austin Health, Melbourne, Victoria, Australia; Department of Cardiology, Northern Health, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Jonathan M Kalman
- Department of Cardiac Electrophysiology, Royal Melbourne Hospital, Victoria, Australia; Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Geoffrey R Wong
- Department of Cardiology, Austin Health, Melbourne, Victoria, Australia; Department of Cardiology, Northern Health, Melbourne, Victoria, Australia.
| |
Collapse
|
66
|
Melzer C. Reply to "CRT upgrading might be a potential therapy in pacemaker-induced cardiomyopathy". Int J Cardiol 2023:S0167-5273(23)00535-1. [PMID: 37087056 DOI: 10.1016/j.ijcard.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Affiliation(s)
- Christoph Melzer
- Deutsches Herzzentrum der Charitè, Klinik für Kardiologie, Angiologie und Intensivmedizin, Campus Mitte, Berlin 10,117, Germany.
| |
Collapse
|
67
|
Xing J, Wang S, Bilchick KC, Epstein FH, Patel AR, Zhang M. MULTITASK LEARNING FOR IMPROVED LATE MECHANICAL ACTIVATION DETECTION OF HEART FROM CINE DENSE MRI. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2023; 2023:10.1109/isbi53787.2023.10230782. [PMID: 40124116 PMCID: PMC11929564 DOI: 10.1109/isbi53787.2023.10230782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The selection of an optimal pacing site, which is ideally scar-free and late activated, is critical to the response of cardiac resynchronization therapy (CRT). Despite the success of current approaches formulating the detection of such late mechanical activation (LMA) regions as a problem of activation time regression, their accuracy remains unsatisfactory, particularly in cases where myocardial scar exists. To address this issue, this paper introduces a multi-task deep learning framework that simultaneously estimates LMA amount and classify the scar-free LMA regions based on cine displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI). With a newly introduced auxiliary LMA region classification sub-network, our proposed model shows more robustness to the complex pattern cause by myocardial scar, significantly eliminates their negative effects in LMA detection, and in turn improves the performance of scar classification. To evaluate the effectiveness of our method, we tests our model on real cardiac MR images and compare the predicted LMA with the state-of-the-art approaches. It shows that our approach achieves substantially increased accuracy. In addition, we employ the gradient-weighted class activation mapping (Grad-CAM) to visualize the feature maps learned by all methods. Experimental results suggest that our proposed model better recognizes the LMA region pattern.
Collapse
Affiliation(s)
- Jiarui Xing
- Department of Electrical and Computer Engineering, University of Virginia, USA
| | - Shuo Wang
- School of Medicine, University of Virginia Health System, USA
| | | | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia Health System, USA
| | - Amit R Patel
- School of Medicine, University of Virginia Health System, USA
| | - Miaomiao Zhang
- Department of Electrical and Computer Engineering, University of Virginia, USA
- Department of Computer Science, University of Virginia, USA
| |
Collapse
|
68
|
Galli E, Galand V, Le Rolle V, Taconne M, Wazzan AA, Hernandez A, Leclercq C, Donal E. The saga of dyssynchrony imaging: Are we getting to the point. Front Cardiovasc Med 2023; 10:1111538. [PMID: 37063957 PMCID: PMC10103462 DOI: 10.3389/fcvm.2023.1111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cardiac resynchronisation therapy (CRT) has an established role in the management of patients with heart failure, reduced left ventricular ejection fraction (LVEF < 35%) and widened QRS (>130 msec). Despite the complex pathophysiology of left ventricular (LV) dyssynchrony and the increasing evidence supporting the identification of specific electromechanical substrates that are associated with a higher probability of CRT response, the assessment of LVEF is the only imaging-derived parameter used for the selection of CRT candidates.This review aims to (1) provide an overview of the evolution of cardiac imaging for the assessment of LV dyssynchrony and its role in the selection of patients undergoing CRT; (2) highlight the main pitfalls and advantages of the application of cardiac imaging for the assessment of LV dyssynchrony; (3) provide some perspectives for clinical application and future research in this field.Conclusionthe road for a more individualized approach to resynchronization therapy delivery is open and imaging might provide important input beyond the assessment of LVEF.
Collapse
|
69
|
Gurgu A, Luca CT, Vacarescu C, Petrescu L, Goanta EV, Lazar MA, Arnăutu DA, Cozma D. Considering Diastolic Dyssynchrony as a Predictor of Favorable Response in LV-Only Fusion Pacing Cardiac Resynchronization Therapy. Diagnostics (Basel) 2023; 13:diagnostics13061186. [PMID: 36980494 PMCID: PMC10047065 DOI: 10.3390/diagnostics13061186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Background: CRT improves systolic and diastolic function, increasing cardiac output. Aim of the study: to assess the outcome of LV diastolic dyssynchrony in a population of fusion pacing CRT. Methods: Diastolic dyssynchrony was measured by offline speckle-tracking-derived TDI timing assessment of the simultaneity of E″ and A″ basal septal and lateral walls. New parameters introduced: E″ and, respectively, A″ time (E″T/A″T) as the time difference between E″ (respectively, A″) peak septal and lateral wall. Patients were divided into super-responders (SR), responders (R), and non-responders (NR). Results: Baseline characteristics: 62 pts (62 ± 11 y.o.) with idiopathic DCM, EF 27 ± 5.2%; 29% type III diastolic dysfunction (DD), 63% type II, 8% type I. Average follow-up 45 ± 19 months: LVEF 37 ± 7.9%, 34%SR, 61%R, 5%NR. The E″T decreased from 90 ± 20 ms to 25 ± 10 ms in SR with significant LV reverse remodeling (LV end-diastolic volume 193.7 ± 81 vs. 243.2 ± 82 mL at baseline, p < 0.0028) and lower LV filling pressures (E/E' 13.2 ± 4.6 vs. 11.4 ± 4.5, p = 0.0295). DD profile improved in 65% of R with a reduction in E/E' ratio (21 ± 9 vs. 14 ± 4 ms, p < 0.0001). Significant cut-off value calculated by ROC curve for LV diastolic dyssynchrony is E″T > 80 ms and A″T > 30 msec. Conclusions: The study identifies the cut-off values of diastolic dyssynchrony parameters as predictors of favorable outcomes in responders and super-responder patients with fusion CRT pacing. These findings may have important implications in patient selection and follow-up.
Collapse
Affiliation(s)
- Andra Gurgu
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Constantin-Tudor Luca
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Vacarescu
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Lucian Petrescu
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Emilia-Violeta Goanta
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Mihai-Andrei Lazar
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Diana-Aurora Arnăutu
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Dragos Cozma
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
70
|
Atabekov TA, Khlynin MS, Mishkina AI, Batalov RE, Sazonova SI, Krivolapov SN, Saushkin VV, Varlamova YV, Zavadovsky KV, Popov SV. The Value of Left Ventricular Mechanical Dyssynchrony and Scar Burden in the Combined Assessment of Factors Associated with Cardiac Resynchronization Therapy Response in Patients with CRT-D. J Clin Med 2023; 12:jcm12062120. [PMID: 36983123 PMCID: PMC10059815 DOI: 10.3390/jcm12062120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Cardiac resynchronization therapy (CRT) improves the outcome in patients with heart failure (HF). However, approximately 30% of patients are nonresponsive to CRT. The aim of this study was to determine the role of the left ventricular (LV) mechanical dyssynchrony (MD) and scar burden as predictors of CRT response. Methods: In this study, we included 56 patients with HF and the left bundle-branch block with QRS duration ≥ 150 ms who underwent CRT-D implantation. In addition to a full examination, myocardial perfusion imaging and gated blood-pool single-photon emission computed tomography were performed. Patients were grouped based on the response to CRT assessed via echocardiography (decrease in LV end-systolic volume ≥15% or/and improvement in the LV ejection fraction ≥5%). Results: In total, 45 patients (80.3%) were responders and 11 (19.7%) were nonresponders to CRT. In multivariate logistic regression, LV anterior-wall standard deviation (adjusted odds ratio (OR) 1.5275; 95% confidence interval (CI) 1.1472–2.0340; p = 0.0037), summed rest score (OR 0.7299; 95% CI 0.5627–0.9469; p = 0.0178), and HF nonischemic etiology (OR 20.1425; 95% CI 1.2719–318.9961; p = 0.0331) were the independent predictors of CRT response. Conclusion: Scar burden and MD assessed using cardiac scintigraphy are associated with response to CRT.
Collapse
|
71
|
Deering TF, Karimianpour A. The road to improving cardiac resynchronization therapy outcomes: Paved with gold or an alchemist's dead end? Heart Rhythm O2 2023; 4:88-89. [PMID: 36873312 PMCID: PMC9975001 DOI: 10.1016/j.hroo.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
72
|
Monge García MI, Jian Z, Hatib F, Settles JJ, Cecconi M, Pinsky MR. Relationship between intraventricular mechanical dyssynchrony and left ventricular systolic and diastolic performance: An in vivo experimental study. Physiol Rep 2023; 11:e15607. [PMID: 36808901 PMCID: PMC9937795 DOI: 10.14814/phy2.15607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
Left ventricular mechanical dyssynchrony (LVMD) refers to the nonuniformity in mechanical contraction and relaxation timing in different ventricular segments. We aimed to determine the relationship between LVMD and LV performance, as assessed by ventriculo-arterial coupling (VAC), LV mechanical efficiency (LVeff ), left ventricular ejection fraction (LVEF), and diastolic function during sequential experimental changes in loading and contractile conditions. Thirteen Yorkshire pigs submitted to three consecutive stages with two opposite interventions each: changes in afterload (phenylephrine/nitroprusside), preload (bleeding/reinfusion and fluid bolus), and contractility (esmolol/dobutamine). LV pressure-volume data were obtained with a conductance catheter. Segmental mechanical dyssynchrony was assessed by global, systolic, and diastolic dyssynchrony (DYS) and internal flow fraction (IFF). Late systolic LVMD was related to an impaired VAC, LVeff , and LVEF, whereas diastolic LVMD was associated with delayed LV relaxation (logistic tau), decreased LV peak filling rate, and increased atrial contribution to LV filling. The hemodynamic factors related to LVMD were contractility, afterload, and heart rate. However, the relationship between these factors differed throughout the cardiac cycle. LVMD plays a significant role in LV systolic and diastolic performance and is associated with hemodynamic factors and intraventricular conduction.
Collapse
Affiliation(s)
| | | | | | | | - Maurizio Cecconi
- Department Anaesthesia and Intensive Care Units, Humanitas Research HospitalHumanitas UniversityMilanItaly
| | - Michael R. Pinsky
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
73
|
Left bundle branch pacing on mechanical synchrony and myocardial work in bradycardia patients. Int J Cardiovasc Imaging 2023; 39:369-378. [PMID: 36322262 DOI: 10.1007/s10554-022-02742-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Left bundle branch pacing (LBBP) has emerged as a novel physiological pacing method to produce narrower QRS duration, but whether it could restore mechanical synchrony and improve myocardial work still lacks sufficient evidence. Therefore, the goal of this study was to evaluate mechanical synchrony and myocardial work in LBBP. We collected 20 patients with LBBP due to symptomatic bradycardia and another 29 age-matched patients with right ventricular pacing (RVP). For LBBP patients, cardiac electro-mechanical synchrony and myocardial work were measured at baseline and 7 days after implantation and compared with the RVP patients. In the LBBP group, paced QRS duration and mechanical synchrony were not significantly different from baseline(all P > 0.05), but significantly smaller than that in the RVP group (all P<0.05). Meanwhile, global longitudinal strain (GLS) in LBBP was greater than that in the RVP group (17.7 ± 3.5% vs. 14.8 ± 3.1%, P < 0.05). Global myocardial work index and global constructive work were also better than that in the RVP group(all P<0.05). Global work efficiency was 91.9 ± 3.1%, which was greater when compared with RVP (P < 0.05). LBBP provides better cardiac electro-mechanical synchrony and more effective myocardial work than that in RVP, thus improving global heart function.
Collapse
|
74
|
He Z, Zhang X, Zhao C, Ling X, Malhotra S, Qian Z, Wang Y, Hou X, Zou J, Zhou W. A method using deep learning to discover new predictors from left-ventricular mechanical dyssynchrony for CRT response. J Nucl Cardiol 2023; 30:201-213. [PMID: 35915327 PMCID: PMC10961110 DOI: 10.1007/s12350-022-03067-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Studies have shown that the conventional parameters characterizing left ventricular mechanical dyssynchrony (LVMD) measured on gated SPECT myocardial perfusion imaging (MPI) have their own statistical limitations in predicting cardiac resynchronization therapy (CRT) response. The purpose of this study is to discover new predictors from the polarmaps of LVMD by deep learning to help select heart failure patients with a high likelihood of response to CRT. METHODS One hundred and fifty-seven patients who underwent rest gated SPECT MPI were enrolled in this study. CRT response was defined as an increase in left ventricular ejection fraction (LVEF) > 5% at 6 [Formula: see text] 1 month follow up. The autoencoder (AE) technique, an unsupervised deep learning method, was applied to the polarmaps of LVMD to extract new predictors characterizing LVMD. Pearson correlation analysis was used to explain the relationships between new predictors and existing clinical parameters. Patients from the IAEA VISION-CRT trial were used for an external validation. Heatmaps were used to interpret the AE-extracted feature. RESULTS Complete data were obtained in 130 patients, and 68.5% of them were classified as CRT responders. After variable selection by feature importance ranking and correlation analysis, one AE-extracted LVMD predictor was included in the statistical analysis. This new AE-extracted LVMD predictor showed statistical significance in the univariate (OR 2.00, P = .026) and multivariate (OR 1.11, P = .021) analyses, respectively. Moreover, the new AE-extracted LVMD predictor not only had incremental value over PBW and significant clinical variables, including QRS duration and left ventricular end-systolic volume (AUC 0.74 vs 0.72, LH 7.33, P = .007), but also showed encouraging predictive value in the 165 patients from the IAEA VISION-CRT trial (P < .1). The heatmaps for calculation of the AE-extracted predictor showed higher weights on the anterior, lateral, and inferior myocardial walls, which are recommended as LV pacing sites in clinical practice. CONCLUSIONS AE techniques have significant value in the discovery of new clinical predictors. The new AE-extracted LVMD predictor extracted from the baseline gated SPECT MPI has the potential to improve the prediction of CRT response.
Collapse
Affiliation(s)
- Zhuo He
- College of Computing, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA
| | - Xinwei Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Chen Zhao
- College of Computing, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA
| | - Xing Ling
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, USA
| | - Saurabh Malhotra
- Division of Cardiology, Cook County Health and Hospitals System, Chicago, IL, USA
- Division of Cardiology, Rush Medical College, Chicago, IL, USA
| | - Zhiyong Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Yao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Xiaofeng Hou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Jiangang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China.
| | - Weihua Zhou
- College of Computing, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA.
- Center for Biocomputing and Digital Health, Institute of Computing and Cybersystems, Health Research Institute, Michigan Technological University, Houghton, MI, 49931, USA.
| |
Collapse
|
75
|
Travin MI. The challenges of using radionuclide imaging to guide cardiac device implantation in patients with heart failure. J Nucl Cardiol 2023; 30:383-387. [PMID: 36053464 DOI: 10.1007/s12350-022-03088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Mark I Travin
- Division of Nuclear Medicine, Department of Radiology, Montefiore Medical Center and the Albert Einstein College of Medicine, 111 E. 210th Street, Bronx, NY, 10467-2490, USA.
| |
Collapse
|
76
|
Layec J, Decroocq M, Delelis F, Appert L, Guyomar Y, Riolet C, Dumortier H, Mailliet A, Tribouilloy C, Maréchaux S, Menet A. Dyssynchrony and Response to Cardiac Resynchronization Therapy in Heart Failure Patients With Unfavorable Electrical Characteristics. JACC Cardiovasc Imaging 2023:S1936-878X(23)00027-X. [PMID: 37038875 DOI: 10.1016/j.jcmg.2022.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 04/12/2023]
Abstract
BACKGROUND Among heart failure (HF) patients undergoing cardiac resynchronization therapy (CRT), those with unfavorable electrical characteristics (UEC) are less frequently CRT responders. OBJECTIVES In this study, the authors sought to evaluate the relationship between preprocedural echocardiographic parameters of electromechanical dyssynchrony (EMD) and outcome following CRT. METHODS Among 551 patients receiving CRT, 121 with UEC, defined as atypical left bundle branch, presence of right bundle branch block, or unspecified intraventricular conduction disturbance, were enrolled. Indices of EMD were presence of septal flash, apical rocking, septal deformation patterns, and global wasted work (GWW), determined with the use of speckle-tracking strain echocardiography. Endpoints were response to CRT, defined as a relative decrease in left ventricular end-systolic volume ≥15% at 9-month postoperative follow-up, and all-cause death or HF hospitalization during follow-up. RESULTS Among the 121 patients, 68 (56%) were CRT responders. In multivariate analysis, GWW ≥200 mm Hg% (adjusted odds ratio [aOR]: 4.17 [95% CI: 1.33-14.56]; P = 0.0182) and longitudinal strain septal contraction patterns 1 and 2 (aOR: 10.05 [95% CI: 2.82-43.97]; P < 0.001) were associated with CRT response. During a 46-month follow-up (IQR: 42-55 months), survival free from death or HF hospitalization increased with the number of positive criteria (87% for 2, 59% for 1, and 27% for 0). After adjustment for established predictors of outcome in patients receiving CRT, absence of either of the 2 criteria remained associated with a considerable increased risk of death and/or HF hospitalization (adjusted HR: 4.83 [95% CI: 1.84-12.68]; P = 0.001). CONCLUSIONS In patients with UEC, echocardiographic assessment of EMD may help to select patients who will derive benefit from CRT.
Collapse
Affiliation(s)
- Jeremy Layec
- Laboratoire ETHICS, Groupement des Hôpitaux de l'Institut Catholique de Lille, Service de Cardiologie, USIC, Université Catholique de Lille, Lille, France
| | - Marie Decroocq
- Laboratoire ETHICS, Groupement des Hôpitaux de l'Institut Catholique de Lille, Service de Cardiologie, USIC, Université Catholique de Lille, Lille, France
| | - Francois Delelis
- Laboratoire ETHICS, Groupement des Hôpitaux de l'Institut Catholique de Lille, Service de Cardiologie, USIC, Université Catholique de Lille, Lille, France
| | - Ludovic Appert
- Laboratoire ETHICS, Groupement des Hôpitaux de l'Institut Catholique de Lille, Service de Cardiologie, USIC, Université Catholique de Lille, Lille, France
| | - Yves Guyomar
- Laboratoire ETHICS, Groupement des Hôpitaux de l'Institut Catholique de Lille, Service de Cardiologie, USIC, Université Catholique de Lille, Lille, France
| | - Clémence Riolet
- Laboratoire ETHICS, Groupement des Hôpitaux de l'Institut Catholique de Lille, Service de Cardiologie, USIC, Université Catholique de Lille, Lille, France
| | - Hélène Dumortier
- Laboratoire ETHICS, Groupement des Hôpitaux de l'Institut Catholique de Lille, Service de Cardiologie, USIC, Université Catholique de Lille, Lille, France
| | - Amandine Mailliet
- Laboratoire ETHICS, Groupement des Hôpitaux de l'Institut Catholique de Lille, Service de Cardiologie, USIC, Université Catholique de Lille, Lille, France
| | - Christophe Tribouilloy
- Departement de Cardiologie, CHU Amiens, Amiens, France; UR UPJV 7517, Université Jules Verne de Picardie, Amiens, France
| | - Sylvestre Maréchaux
- Laboratoire ETHICS, Groupement des Hôpitaux de l'Institut Catholique de Lille, Service de Cardiologie, USIC, Université Catholique de Lille, Lille, France.
| | - Aymeric Menet
- Laboratoire ETHICS, Groupement des Hôpitaux de l'Institut Catholique de Lille, Service de Cardiologie, USIC, Université Catholique de Lille, Lille, France
| |
Collapse
|
77
|
Galli E, Baritussio A, Sitges M, Donnellan E, Jaber WA, Gimelli A. Multi-modality imaging to guide the implantation of cardiac electronic devices in heart failure: is the sum greater than the individual components? Eur Heart J Cardiovasc Imaging 2023; 24:163-176. [PMID: 36458875 DOI: 10.1093/ehjci/jeac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Heart failure is a clinical syndrome with an increasing prevalence and incidence worldwide that impacts patients' quality of life, morbidity, and mortality. Implantable cardioverter-defibrillator and cardiac resynchronization therapy are pillars of managing patients with HF and reduced left ventricular ejection fraction. Despite the advances in cardiac imaging, the assessment of patients needing cardiac implantable electronic devices relies essentially on the measure of left ventricular ejection fraction. However, multi-modality imaging can provide important information concerning the aetiology of heart failure, the extent and localization of myocardial scar, and the pathophysiological mechanisms of left ventricular conduction delay. This paper aims to highlight the main novelties and progress in the field of multi-modality imaging to identify patients who will benefit from cardiac resynchronization therapy and/or implantable cardioverter-defibrillator. We also want to underscore the boundaries that prevent the application of imaging-derived parameters to patients who will benefit from cardiac implantable electronic devices and orient the choice of the device. Finally, we aim at providing some reflections for future research in this field.
Collapse
Affiliation(s)
- Elena Galli
- Department of Cardiology, University Hospital of Rennes, 35000 Rue Henri Le Guilloux, Rennes, France
| | - Anna Baritussio
- Cardiology, Department of Cardiac, Vascular, Thoracic Sciences and Public Health, University Hospital of Padua, 35121 Via Nicolò Giustiniani, Padua, Italy
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, 08036 C. de Villarroel, Barcelona, Spain
| | - Eoin Donnellan
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Wael A Jaber
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Alessia Gimelli
- Fondazione Toscana G. Monasterio, 56124 Via Giuseppe Moruzzi, Pisa, Italy
| |
Collapse
|
78
|
Teixeira RA, Fagundes AA, Baggio Junior JM, Oliveira JCD, Medeiros PDTJ, Valdigem BP, Teno LAC, Silva RT, Melo CSD, Elias Neto J, Moraes Júnior AV, Pedrosa AAA, Porto FM, Brito Júnior HLD, Souza TGSE, Mateos JCP, Moraes LGBD, Forno ARJD, D'Avila ALB, Cavaco DADM, Kuniyoshi RR, Pimentel M, Camanho LEM, Saad EB, Zimerman LI, Oliveira EB, Scanavacca MI, Martinelli Filho M, Lima CEBD, Peixoto GDL, Darrieux FCDC, Duarte JDOP, Galvão Filho SDS, Costa ERB, Mateo EIP, Melo SLD, Rodrigues TDR, Rocha EA, Hachul DT, Lorga Filho AM, Nishioka SAD, Gadelha EB, Costa R, Andrade VSD, Torres GG, Oliveira Neto NRD, Lucchese FA, Murad H, Wanderley Neto J, Brofman PRS, Almeida RMS, Leal JCF. Brazilian Guidelines for Cardiac Implantable Electronic Devices - 2023. Arq Bras Cardiol 2023; 120:e20220892. [PMID: 36700596 PMCID: PMC10389103 DOI: 10.36660/abc.20220892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | - Rodrigo Tavares Silva
- Universidade de Franca (UNIFRAN), Franca, SP - Brasil
- Centro Universitário Municipal de Franca (Uni-FACEF), Franca, SP - Brasil
| | | | - Jorge Elias Neto
- Universidade Federal do Espírito Santo (UFES), Vitória, ES - Brasil
| | - Antonio Vitor Moraes Júnior
- Santa Casa de Ribeirão Preto, Ribeirão Preto, SP - Brasil
- Unimed de Ribeirão Preto, Ribeirão Preto, SP - Brasil
| | - Anisio Alexandre Andrade Pedrosa
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Luis Gustavo Belo de Moraes
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brasil
| | | | | | | | | | - Mauricio Pimentel
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | | | - Eduardo Benchimol Saad
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brasil
- Hospital Samaritano, Rio de Janeiro, RJ - Brasil
| | | | | | - Mauricio Ibrahim Scanavacca
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | - Martino Martinelli Filho
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | - Carlos Eduardo Batista de Lima
- Hospital Universitário da Universidade Federal do Piauí (UFPI), Teresina, PI - Brasil
- Empresa Brasileira de Serviços Hospitalares (EBSERH), Brasília, DF - Brasil
| | | | - Francisco Carlos da Costa Darrieux
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Sissy Lara De Melo
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Eduardo Arrais Rocha
- Hospital Universitário Walter Cantídio, Universidade Federal do Ceará (UFC), Fortaleza, CE - Brasil
| | - Denise Tessariol Hachul
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Silvana Angelina D'Orio Nishioka
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Roberto Costa
- Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | - Gustavo Gomes Torres
- Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN - Brasil
| | | | | | - Henrique Murad
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brasil
| | | | | | - Rui M S Almeida
- Centro Universitário Fundação Assis Gurgacz, Cascavel, PR - Brasil
| | | |
Collapse
|
79
|
Asensio-Nogueira J, Salgado-Aranda R, Sánchez-Corral E, Fernández-González B, García-Fernández FJ, Martín-González FJ, Villagraz-Tecedor L, Gómez-Llorente M, Álvarez-Calderón M, Pérez-Rivera JÁ. Differences in the prognostic value of the electrocardiographic pattern after cardiac resynchronization therapy according to age. Arch Gerontol Geriatr 2023; 104:104826. [PMID: 36223692 DOI: 10.1016/j.archger.2022.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES In this cohort study, we analyzed if a specific pattern in three leads of the electrocardiogram (Rs in V1, Qr in aVL, or rS in I) was associated with outcomes after cardiac resynchronization therapy (CRT) depending on age. METHODS Patients with CRT devices were included from January 2012 to April 2019. We divided the sample into 2 groups, those with age ≥ 75 years old and those younger. The primary endpoint was a composite of all-cause death and heart failure (HF) hospitalization at 1 year. RESULTS We included 111 patients. Patients older than 75 years (26.1%, n = 29) had a significantly higher rate of hypertension and atrial fibrillation and received less frequently optimal medical therapy. The patterns were observed in 32 (39.0%) younger patients and 11 (37.9%) older patients. Patients who presented any of them had a lower incidence of the primary endpoint in the younger group (0 vs. 14%, p = 0.029), but not in the older group (9.1 vs. 27.8%, p = 0.24). The presence of a basal QRS duration greater than 160 ms was associated with a higher rate of the primary endpoint in the elderly (50 vs. 13%, p = 0.015), but not in the younger group (16.7 vs. 7.1%, p = 0.254). CONCLUSIONS The presence of the selected patterns after CRT is associated with a lower incidence of all-cause death and hospitalization for HF in patients younger than 75 years, but not in those older than 75 years. Conversely, baseline QRS duration was associated with worse outcomes in older patients, but not in the younger group.
Collapse
Affiliation(s)
- Juan Asensio-Nogueira
- Department of Cardiology, Hospital Universitario de Burgos, Av. Islas Baleares, 3, Burgos 09006, Spain.
| | - Ricardo Salgado-Aranda
- Department of Cardiology, Hospital Universitario Clínico San Carlos, Calle del Profesor Martín Lagos, Madrid 28040, Spain
| | - Ester Sánchez-Corral
- Department of Cardiology, Hospital Universitario de Burgos, Av. Islas Baleares, 3, Burgos 09006, Spain
| | | | | | | | - Lola Villagraz-Tecedor
- Department of Cardiology, Hospital Universitario de Burgos, Av. Islas Baleares, 3, Burgos 09006, Spain
| | - Marta Gómez-Llorente
- Department of Cardiology, Hospital Universitario de Burgos, Av. Islas Baleares, 3, Burgos 09006, Spain
| | - Marcos Álvarez-Calderón
- Department of Cardiology, Hospital Universitario de Burgos, Av. Islas Baleares, 3, Burgos 09006, Spain
| | - José-Ángel Pérez-Rivera
- Department of Cardiology, Hospital Universitario de Burgos, Av. Islas Baleares, 3, Burgos 09006, Spain; Facultad de Ciencias de la Salud, Universidad Isabel I, Calle de Fernán González, 76, Burgos 09003, Spain
| |
Collapse
|
80
|
Albatat M, Finsberg HN, Arevalo H, Sundnes J, Bergsland J, Balasingham I, Odland HH. Regional Left Ventricular Fiber Stress Analysis for Cardiac Resynchronization Therapy Response. Ann Biomed Eng 2023; 51:343-351. [PMID: 35900706 PMCID: PMC9867665 DOI: 10.1007/s10439-022-03030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/18/2022] [Indexed: 01/26/2023]
Abstract
Cardiac resynchronization therapy (CRT) is an effective treatment for a subgroup of heart failure (HF) patients, but more than 30% of those selected do not improve after CRT implantation. Imperfect pre-procedural criteria for patient selection and optimization are the main causes of the high non-response rate. In this study, we evaluated a novel measure for assessing CRT response. We used a computational modeling framework to calculate the regional stress of the left ventricular wall of seven CRT patients and seven healthy controls. The standard deviation of regional wall stress at the time of mitral valve closure (SD_MVC) was used to quantify dyssynchrony and compared between patients and controls and among the patients. The results show that SD_MVC is significantly lower in controls than patients and correlates with long-term response in patients, based on end-diastolic volume reduction. In contrast to our initial hypothesis, patients with lower SD_MVC respond better to therapy. The patient with the highest SD_MVC was the only non-responder in the patient cohort. The distribution of fiber stress at the beginning of the isovolumetric phase seems to correlate with the degree of response and the use of this measurement could potentially improve selection criteria for CRT implantation. Further studies with a larger cohort of patients are needed to validate these results.
Collapse
Affiliation(s)
- Mohammad Albatat
- grid.55325.340000 0004 0389 8485Intervention Centre, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Henrik Nicolay Finsberg
- grid.419255.e0000 0004 4649 0885Department of Computational Physiology, Simula Research Laboratory, Fornebu, Norway
| | - Hermenegild Arevalo
- grid.419255.e0000 0004 4649 0885Department of Computational Physiology, Simula Research Laboratory, Fornebu, Norway
| | - Joakim Sundnes
- grid.419255.e0000 0004 4649 0885Department of Computational Physiology, Simula Research Laboratory, Fornebu, Norway
| | - Jacob Bergsland
- grid.55325.340000 0004 0389 8485Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Ilangko Balasingham
- grid.55325.340000 0004 0389 8485Intervention Centre, Oslo University Hospital, Oslo, Norway ,grid.5947.f0000 0001 1516 2393Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hans Henrik Odland
- grid.55325.340000 0004 0389 8485Department of Cardiology and Department of Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
81
|
Left ventricular dyssynchrony after TAVR: What it means and how should we treat it? Heart Rhythm 2023; 20:29-30. [PMID: 35988906 DOI: 10.1016/j.hrthm.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 02/08/2023]
|
82
|
Brown CD, Burns KV, Harbin MM, Espinosa EA, Olson MD, Bank AJ. Cardiac resynchronization therapy optimization in nonresponders and incomplete responders using electrical dyssynchrony mapping. Heart Rhythm 2022; 19:1965-1973. [PMID: 35940458 DOI: 10.1016/j.hrthm.2022.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Nonresponse to cardiac resynchronization therapy (CRT) occurs in ∼30%-50% of patients. There are no well-accepted clinical approaches for optimizing CRT in nonresponders. OBJECTIVE The purpose of this study was to demonstrate the effect of CRT optimization using electrical dyssynchrony mapping on left ventricular (LV) function, size, and dyssynchrony in selected patients with nonresponse/incomplete response to CRT. METHODS We studied 39 patients with underlying left bundle branch block or interventricular conduction delay who had an LV ejection fraction of ≤40% after receiving CRT and had significant electrical dyssynchrony. Electrical dyssynchrony was measured at multiple atrioventricular delays and interventricular delays. The QRS area between combinations of 9 anterior and 9 posterior electrograms (QRS area under the curve) was calculated, and cardiac resynchronization index (CRI) was defined as the percent change in QRS area under the curve compared to native conduction. Electrical dyssynchrony maps depicted CRI over the wide range of settings tested. Patients were programmed to an optimal device setting, and echocardiograms were recorded 5.9 ± 3.7 months postoptimization. RESULTS CRI increased from 49.4% ± 24.0% to 90.8% ± 10.5%. CRT optimization significantly improved LV ejection fraction from 31.8% ± 4.7% to 36.3% ± 5.9% (P < .001) and LV end-systolic volume from 108.5 ± 37.6 to 98.0 ± 37.5 mL (P = .009). Speckle-tracking measures of LV strain significantly improved by 2.4% ± 4.5% (transverse; P = .002) and 1.0% ± 2.6% (longitudinal; P = .017). Aortic to pulmonic valve opening time, a measure of interventricular dyssynchrony, significantly (P = .040) decreased by 14.9 ± 39.4 ms. CONCLUSION CRT optimization of electrical dyssynchrony using a novel electrical dyssynchrony mapping technology significantly improves LV systolic function, LV end-systolic volume, and mechanical dyssynchrony. This methodology offers a noninvasive, practical clinical approach to treating nonresponders and incomplete responders to CRT.
Collapse
Affiliation(s)
| | - Kevin V Burns
- Minneapolis Heart Institute East, Allina Health, St. Paul, Minnesota
| | - Michelle M Harbin
- Minneapolis Heart Institute East, Allina Health, St. Paul, Minnesota
| | | | - Matthew D Olson
- Minneapolis Heart Institute East, Allina Health, St. Paul, Minnesota
| | - Alan J Bank
- Minneapolis Heart Institute East, Allina Health, St. Paul, Minnesota; Cardiology Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Heart Rhythm Science Center, Minneapolis Heart Institute Foundation, Minneapolis, Minnesota.
| |
Collapse
|
83
|
Abstract
PURPOSE OF THE REVIEW Dyssynchrony occurs when portions of the cardiac chambers contract in an uncoordinated fashion. Ventricular dyssynchrony primarily impacts the left ventricle and may result in heart failure. This entity is recognized as a major contributor to the development and progression of heart failure. A hallmark of dyssynchronous heart failure (HFd) is left ventricular recovery after dyssynchrony is corrected. This review discusses the current understanding of pathophysiology of HFd and provides clinical examples and current techniques for treatment. RECENT FINDINGS Data show that HFd responds poorly to medical therapy. Cardiac resynchronization therapy (CRT) in the form of conventional biventricular pacing (BVP) is of proven benefit in HFd, but is limited by a significant non-responder rate. Recently, conduction system pacing (His bundle or left bundle branch area pacing) has also shown promise in correcting HFd. HFd should be recognized as a distinct etiology of heart failure; HFd responds best to CRT.
Collapse
Affiliation(s)
- Sean J Dikdan
- Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA
| | | | - Behzad B Pavri
- Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA.
| |
Collapse
|
84
|
Al-Mashat M, Borgquist R, Carlsson M, Arheden H, Jögi J. Pulmonary perfusion and NYHA classification improve after cardiac resynchronization therapy. J Nucl Cardiol 2022; 29:2974-2983. [PMID: 34750725 PMCID: PMC9834347 DOI: 10.1007/s12350-021-02848-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Evaluation of cardiac resynchronization therapy (CRT) often includes New York Heart Association (NYHA) classification, and echocardiography. However, these measures have limitations. Perfusion gradients from ventilation/perfusion single-photon emission computed tomography (V/P SPECT) are related to left-heart filling pressures and have been validated against invasive right-heart catheterization. The aim was to assess if changes in perfusion gradients are associated with improvements in heart failure (HF) symptoms after CRT, and if they correlate with currently used diagnostic methods in the follow-up of patients with HF after receiving CRT. METHODS AND RESULTS Nineteen patients underwent V/P SPECT, echocardiography, NYHA classification, and the quality-of-life scoring system "Minnesota living with HF" (MLWHF), before and after CRT. CRT caused improvement in perfusion gradients from V/P SPECT which were associated with improvements in NYHA classification (P = .0456), whereas improvements in end-systolic volume (LVESV) from echocardiography were not. After receiving CRT, the proportion of patients who improved was lower using LVESV (n = 7/19, 37%) than perfusion gradients (n = 13/19, 68%). Neither change in perfusion gradients nor LVESV was associated with changes in MLWHF (P = 1.0, respectively). CONCLUSIONS Measurement of perfusion gradients from V/P SPECT is a promising quantitative user-independent surrogate measure of left-sided filling pressure in the assessment of CRT response in patients with HF.
Collapse
Affiliation(s)
- Mariam Al-Mashat
- Clinical Physiology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Entrégatan 7, 22185, Lund, Sweden
| | - Rasmus Borgquist
- Cardiology, Arrhythmia Section, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| | - Marcus Carlsson
- Clinical Physiology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Entrégatan 7, 22185, Lund, Sweden
| | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Entrégatan 7, 22185, Lund, Sweden
| | - Jonas Jögi
- Clinical Physiology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Entrégatan 7, 22185, Lund, Sweden.
| |
Collapse
|
85
|
Wouters P, Schoots T, Niemeijer V, Spee RF, Kemps H. Does recovery from submaximal exercise predict response to cardiac resynchronisation therapy? Open Heart 2022; 9:openhrt-2022-002047. [PMID: 36376007 PMCID: PMC9664270 DOI: 10.1136/openhrt-2022-002047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background Exercise parameters are not routinely incorporated in decision making for cardiac resynchronisation therapy (CRT). Submaximal exercise parameters better reflect daily functional capacity of heart failure patients than parameters measured at maximal exertion, and may therefore better predict response to CRT. We compared various exercise parameters, and sought to establish which best predict CRT response. Methods In 31 patients with chronic heart failure (61% male; age 68±7 years), submaximal and maximal cycling testing was performed before and 3 months after CRT. Submaximal oxygen onset (τVO2 onset) and recovery kinetics (τVO2 recovery), peak oxygen uptake (VO2 peak) and oxygen uptake efficiency slope (OUES) where measured. Response was defined as ≥15% relative reduction in end-systolic volume. Results After controlling for age, New York Heart Association and VO2 peak, fast submaximal VO2 kinetics were significantly associated with response to CRT, measured either during onset or recovery of submaximal exercise (area under the curve, AUC=0.719 for both; p<0.05). By contrast, VO2 peak (AUC=0.632; p=0.199) and OUES (AUC=0.577; p=0.469) were not associated with response. Among patients with fast onset and recovery kinetics, below 60 s, a significantly higher percentage of responders was observed (91% and 92% vs 43% and 40%, respectively). Conclusions Impaired VO2 kinetics may serve as an objective marker of submaximal exercise capacity that is age-independently associated with non-response following CRT, whereas maximal exercise parameters are not. Assessment of VO2 kinetics is feasible and easy to perform, but larger studies should confirm their clinical utility.
Collapse
Affiliation(s)
- Philippe Wouters
- Department of Cardiology, Máxima Medisch Centrum, Eindhoven, The Netherlands .,Department of Cardiology, University Medical Centre, Utrecht, The Netherlands
| | - Thijs Schoots
- Department of Cardiology, Máxima Medisch Centrum, Eindhoven, The Netherlands.,Technical University of Eindhoven, Eindhoven, The Netherlands
| | - Victor Niemeijer
- Department of Sports Medicine, Elkerliek Hospital, Helmond, The Netherlands
| | - Ruud F Spee
- Department of Cardiology, Máxima Medisch Centrum, Eindhoven, The Netherlands
| | - Hareld Kemps
- Department of Cardiology, Máxima Medisch Centrum, Eindhoven, The Netherlands.,Technical University of Eindhoven, Eindhoven, The Netherlands
| |
Collapse
|
86
|
Vij A, Malhotra S. Identifying CRT responders: Moving from electrical to mechanical dyssynchrony. J Nucl Cardiol 2022; 29:2649-2651. [PMID: 35141842 DOI: 10.1007/s12350-022-02914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Aviral Vij
- Division of Cardiology, Cook County Health, Chicago, IL, 60612, USA
- Division of Cardiology, Rush Medical College, Chicago, USA
| | - Saurabh Malhotra
- Division of Cardiology, Cook County Health, Chicago, IL, 60612, USA.
- Division of Cardiology, Rush Medical College, Chicago, USA.
| |
Collapse
|
87
|
Hoyt RH, Kelley BP, Harry MJ, Marcus RH. Hemodynamic Doppler echocardiographic evaluation of permanent His bundle and biventricular pacing after AV nodal ablation. IJC HEART & VASCULATURE 2022; 42:101102. [PMID: 36161234 PMCID: PMC9493057 DOI: 10.1016/j.ijcha.2022.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022]
Abstract
placing after atrioventricular (AV) nodal ablation for permanent atrial fibrillation (AF) may include cardiac resynchronization therapy (CRT) with either His bundle pacing (HBP) or biventricular pacing (BVP), or conventional single site right ventricular apical pacing (RVAP). To determine the relationship between pacing method and hemodynamic outcome, we used Doppler echocardiographic methods to evaluate left ventricular (LV) hemodynamics after AV nodal ablation and either HBP, BVP, or RVAP. Method 20 patients were evaluated > 6 months after AV nodal ablation, 10 each with chronic HBP or BVP, and all with RVAP lead. Doppler echocardiography was used to measure 3 parameters indicative of CRT: 1) LV dP/dt, 2) the LV pre-ejection interval, and 3) myocardial performance index, relative to intra-patient RVAP. Results Primary endpoint of LV dP/dt on average improved by > 17% with both HBP and BVP, compared to RVAP. HBP but not BVP, had improvement across all three parameters. Conclusion HBP provides LV electromechanical synchrony across multiple echo Doppler parameters. Both HBP and BVP were hemodynamically superior to RVAP following AV nodal ablation.
Collapse
Affiliation(s)
- Robert H Hoyt
- Iowa Heart Center, West Des Moines, Iowa. Dr. Kelley is affiliated with Des Moines University of Osteopathic Medicine, Iowa
| | - Brian P Kelley
- Iowa Heart Center, West Des Moines, Iowa. Dr. Kelley is affiliated with Des Moines University of Osteopathic Medicine, Iowa
| | - Mark J Harry
- Iowa Heart Center, West Des Moines, Iowa. Dr. Kelley is affiliated with Des Moines University of Osteopathic Medicine, Iowa
| | - Richard H Marcus
- Iowa Heart Center, West Des Moines, Iowa. Dr. Kelley is affiliated with Des Moines University of Osteopathic Medicine, Iowa
| |
Collapse
|
88
|
Hua J, Kong Q, Chen Q. Alternative pacing strategies for optimal cardiac resynchronization therapy. Front Cardiovasc Med 2022; 9:923394. [PMID: 36237907 PMCID: PMC9551024 DOI: 10.3389/fcvm.2022.923394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiac resynchronization therapy (CRT) via biventricular pacing (BVP) improves morbidity, mortality, and quality of life, especially in subsets of patients with impaired cardiac function and wide QRS. However, the rate of unsuccessful or complicated left ventricular (LV) lead placement through coronary sinus is 5-7%, and the rate of "CRT non-response" is approximately 30%. These reasons have pushed physicians and engineers to collaborate to overcome the challenges of LV lead implantation. Thus, various alternatives to BVP have been proposed to improve CRT effectiveness. His bundle pacing (HBP) has been increasingly used by activating the His-Purkinje system but is constrained by challenging implantation, low success rates, high and often unstable thresholds, and low perception. Therefore, the concept of pacing a specialized conduction system distal to the His bundle to bypass the block region was proposed. Multiple clinical studies have demonstrated that left bundle branch area pacing (LBBAP) has comparable electrical resynchronization with HBP but is superior in terms of simpler operation, higher success rates, lower and stable capture thresholds, and higher perception. Despite their well-demonstrated effectiveness, the transvenous lead-related complications remain major limitations. Recently, leadless LV pacing has been developed and demonstrated effective for these challenging patient cohorts. This article focuses on the current state and latest progress in HBP, LBBAP, and leadless LV pacing as alternatives for failed or non-responsive conventional CRT as well as their limits and prospects.
Collapse
Affiliation(s)
| | | | - Qi Chen
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
89
|
Chung ES, Rickard J, Lu X, DerSarkissian M, Zichlin ML, Cheung HC, Swartz N, Greatsinger A, Duh MS. Real-world clinical burden among patients with and without heart failure worsening after cardiac resynchronization therapy. Curr Med Res Opin 2022; 38:1489-1498. [PMID: 35727103 DOI: 10.1080/03007995.2022.2092374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Cardiac resynchronization therapy (CRT) can improve cardiac function in patients with heart failure (HF); however, in some patients, HF worsens despite CRT. This study characterized the long-term clinical burden of patients with and without HF worsening (HFW) within 6 months post CRT implantation. METHODS A claims database (2007-2018) was used to identify two cohorts of adults: those with HFW within 180 days post-CRT and those with no HFW (NHFW). The evaluated clinical outcomes were cardiovascular events/complications, HF-related interventions, hospice enrollment, and all-cause mortality. Inverse probability of treatment weighting (IPTW) was used to adjust for confounders; adjusted comparisons were assessed using weighted Cox proportional hazard ratios (HRs). RESULTS Among the 12,753 adults analyzed (HFW: N = 4,785; NHFW: N = 7,968), the mean age was 72 years and the mean duration of follow-up was approximately 2 years. The clinical burden was greater for HFW than for NHFW in terms of all-cause mortality (19.7% vs. 12.1%) and occurrence of atrial fibrillation (57.4% vs. 51.2%). In the IPTW-adjusted Cox proportional hazard analyses, patients with HFW had a 54% higher average hazard of experiencing all-cause mortality compared to NHFW (adjusted average HR = 1.54, 95% confidence interval [CI]: 1.41-1.70; p < .001). Of the clinical events experienced by ≥5% of patients, the greatest differences in average hazard were for HF decompensation (adjusted average HR = 1.83, 95% CI: 1.60-2.09) and HF decompensation or death (HR = 1.63, 95%CI: 1.50-1.77). CONCLUSION Patients with early HFW post-CRT experienced a significantly higher clinical burden than those without HFW. Vigilance for signs of worsening HF in the first 6 months post-CRT is warranted.
Collapse
Affiliation(s)
- Eugene S Chung
- The Lindner Clinical Research Center at The Christ Hospital, Cincinnati, OH, USA
| | | | - Xiaoxiao Lu
- Medtronic Global CRHF Headquarters, Mounds View, MN, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Kowlgi GN, Tan AY, Kaszala K, Kontos MC, Lozano P, Ellenbogen KA, Huizar JF. Left ventricular dyssynchrony as marker of early dysfunction in premature ventricular contraction-induced cardiomyopathy. Front Cardiovasc Med 2022; 9:978341. [PMID: 36148047 PMCID: PMC9485544 DOI: 10.3389/fcvm.2022.978341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/03/2022] [Indexed: 01/16/2023] Open
Abstract
Background Strain imaging has been suggested as a tool to detect early left ventricular (LV) dysfunction due to frequent premature ventricular contractions (PVCs) in patients with preserved LV ejection fraction (EF). However, the progression of intraventricular dyssynchrony (IVD), radial, and circumferential strain (RS, CS) in PVC-cardiomyopathy (CM) are unknown. The aim of this study was to elucidate the progression patterns of CS, IVD, and electro-mechanical latency (EML) in PVC-CM. Methods and results Pacemakers were implanted in 20 canines to reproduce ventricular bigeminy at 200ms (PVCs n = 11) for 12 weeks and compared to a sham group (n = 9). We obtained echocardiograms at baseline, 4-, 8- and 12-weeks. RS and CS were obtained at the LV mid-cavitary level. IVD was defined as the time between the earliest and latest peak RS. EML was defined as the time between the onset of QRS and the earliest peak RS. LVEF (62 ± 5 to 42 ± 7%, p < 0.01), CS (-18 ± 3 to -12 ± 3, p < 0.01), and EML (219 ± 37 to 283 ± 46ms, p = 0.02) changed significantly in the PVC group. Peak CS (-18 ± 3 to -14 ± 4, p = 0.02) and IVD (49 ± 31 to 122 ± 103, p = 0.05) had a significant change at 4-weeks despite preserved LVEF (51 ± 5%). IVD normalized while EML increased at weeks 8 and 12. Conclusion Our findings consolidate the existing theory that changes in strain precede changes in LVEF in PVC-CM. While IVD becomes abnormal early in the development of PVC-CM, it pseudo-normalizes at advanced stages due to further increases in EML suggestive of cardiac contractility remodeling. These findings are consistent with recent published data where abnormal LV mechanics could be part of a substrate that can predispose to worse outcome in PVC-Cardiomyopathy.
Collapse
Affiliation(s)
- Gurukripa N. Kowlgi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Alex Y. Tan
- Division of Cardiovascular Diseases, Department of Internal Medicine, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States
| | - Karoly Kaszala
- Division of Cardiovascular Diseases, Department of Internal Medicine, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States
| | - Michael C. Kontos
- Division of Cardiovascular Diseases, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Pedro Lozano
- Department of Cardiovascular Diseases, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kenneth A. Ellenbogen
- Division of Cardiovascular Diseases, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Jose F. Huizar
- Division of Cardiovascular Diseases, Department of Internal Medicine, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, United States,Division of Cardiovascular Diseases, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States,*Correspondence: Jose F. Huizar, ; ;
| |
Collapse
|
91
|
Valzania C, Mei R, Biffi M. Three-dimensional left ventricular mechanical dyssynchrony assessed by myocardial perfusion gated-SPECT: Is there a role in cardiac resynchronization therapy? J Nucl Cardiol 2022; 29:1626-1628. [PMID: 33864225 DOI: 10.1007/s12350-021-02614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Cinzia Valzania
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S.Orsola, Via Massarenti 9, 40138, Bologna, Italy.
| | - Riccardo Mei
- Department of Nuclear Medicine, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S.Orsola, Bologna, Italy
| | - Mauro Biffi
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S.Orsola, Via Massarenti 9, 40138, Bologna, Italy
| |
Collapse
|
92
|
Manohar A, Colvert GM, Yang J, Chen Z, Ledesma-Carbayo MJ, Kronborg MB, Sommer A, Nørgaard BL, Nielsen JC, McVeigh ER. Prediction of Cardiac Resynchronization Therapy Response Using a Lead Placement Score Derived From 4-Dimensional Computed Tomography. Circ Cardiovasc Imaging 2022; 15:e014165. [PMID: 35973012 PMCID: PMC9558060 DOI: 10.1161/circimaging.122.014165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) is an effective treatment for patients with heart failure; however, 30% of patients do not respond to the treatment. We sought to derive patient-specific left ventricle maps of lead placement scores (LPS) that highlight target pacing lead sites for achieving a higher probability of CRT response. METHODS Eighty-two subjects recruited for the ImagingCRT trial (Empiric Versus Imaging Guided Left Ventricular Lead Placement in Cardiac Resynchronization Therapy) were retrospectively analyzed. All 82 subjects had 2 contrast-enhanced full cardiac cycle 4-dimensional computed tomography scans: a baseline and a 6-month follow-up scan. CRT response was defined as a reduction in computed tomography-derived end-systolic volume ≥15%. Eight left ventricle features derived from the baseline scans were used to train a support vector machine via a bagging approach. An LPS map over the left ventricle was created for each subject as a linear combination of the support vector machine feature weights and the subject's own feature vector. Performance for distinguishing responders was performed on the original 82 subjects. RESULTS Fifty-two (63%) subjects were responders. Subjects with an LPS≤Q1 (lower-quartile) had a posttest probability of responding of 14% (3/21), while subjects with an LPS≥ Q3 (upper-quartile) had a posttest probability of responding of 90% (19/21). Subjects with Q1 CONCLUSIONS An LPS map was defined using 4-dimensional computed tomography-derived features of left ventricular mechanics. The LPS correlated with CRT response, reclassifying 25% of the subjects into low probability of response, 25% into high probability of response, and 50% unchanged. These encouraging results highlight the potential utility of 4-dimensional computed tomography in guiding patient selection for CRT. The present findings need verification in larger independent data sets and prospective trials.
Collapse
Affiliation(s)
- Ashish Manohar
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Gabrielle M. Colvert
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - James Yang
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Zhennong Chen
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Maria J. Ledesma-Carbayo
- Biomedical Image Technologies Laboratory, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | | | - Anders Sommer
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Jens Cosedis Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Elliot R. McVeigh
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Medicine, Cardiovascular Division, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
93
|
Doi T, Nakata T, Noto T, Mita T, Yuda S, Hashimoto A. Improved risk-stratification in heart failure patients with mid-range to severe abnormalities of QRS duration and systolic function using mechanical dyssynchrony assessed by myocardial perfusion-gated SPECT. J Nucl Cardiol 2022; 29:1611-1625. [PMID: 33629244 DOI: 10.1007/s12350-021-02554-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The use of left ventricular mechanical dyssynchrony (LVMD), which has been reported to be responsible for unfavorable outcomes, might improve conventional risk-stratification by clinical indices including QRS duration (QRSd) and systolic dysfunction in patients with heart failure (HF). METHODS AND RESULTS Following measurements of 12-lead QRSd and left ventricular ejection fraction (LVEF), three-dimensional (3-D) LVMD was evaluated as a standard deviation (phase SD) of regional mechanical systolic phase angles by gated myocardial perfusion imaging in 829 HF patients. Patients were followed up for a mean period of 37 months with a primary endpoint of lethal cardiac events (CEs). In an overall multivariate Cox proportional hazards model, phase SDs were identified as significant prognostic determinants independently. The patients were divided into 4 groups by combining with the cut-off values of LVEF (35% and 50%) and QRSd (130 ms and 150 ms). The groups with lower LVEF and prolonged QRSd more frequently had CEs than did the other groups. Patient groups with LVEF < 35% and with 35% ≦ LVEF < 50% were differentiated into low-risk and high-risk categories by using an optimal phase SD cut-off value of both QRSd thresholds. CONCLUSIONS 3-D LVMD can risk-stratify HF patients with mid-range as well as severe abnormalities of QRSd and systolic dysfunction.
Collapse
Affiliation(s)
- Takahiro Doi
- Department of Cardiology, Teine Kijinkai Hospital, Sapporo, Hokkaido, Japan.
| | - Tomoaki Nakata
- Department of Cardiology, Hakodate Goryokaku Hospital, Hakodate, Japan
| | - Takahiro Noto
- Department of Cardiology, Teine Kijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Tomohiro Mita
- Department of Cardiology, Teine Kijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Satoshi Yuda
- Department of Cardiology, Teine Kijinkai Hospital, Sapporo, Hokkaido, Japan
| | - Akiyoshi Hashimoto
- Department of Cardiology, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
94
|
Zhang F, Wang Y. Left ventricular mechanical dyssynchrony in patients with heart failure: What is the next step? J Nucl Cardiol 2022; 29:1629-1631. [PMID: 33709331 DOI: 10.1007/s12350-021-02578-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Feifei Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, Jiangsu Province, 213003, China
- Changzhou Key Laboratory of Molecular Imaging, Changzhou, Jiangsu Province, China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Street, Changzhou, Jiangsu Province, 213003, China.
- Changzhou Key Laboratory of Molecular Imaging, Changzhou, Jiangsu Province, China.
| |
Collapse
|
95
|
Varrias D, De La Hoz MA, Zhao M, Pujol M, Orencole M, Venkata VS, Zordok MA, Luong K, Rana F, Lau E, Ibrahim N, Newton-Cheh C, Heist K, Singh J, Das S. Sex-Specific Differences in Ventricular Remodeling and Response After Cardiac Resynchronization Therapy. Am J Cardiol 2022; 174:68-75. [PMID: 35473782 DOI: 10.1016/j.amjcard.2022.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/18/2023]
Abstract
In this study, we investigated the baseline characteristics and "trajectories" of clinical response in men and women after cardiac resynchronization therapy (CRT) implantation. Although women enjoy improved echocardiographic response after CRT compared with men, the kinetics of this response and its relation to functional performance and outcomes are less clear. We identified 592 patients who underwent CRT implantation at our center between 2004 and 2017 and were serially followed in a multidisciplinary clinic. Longitudinal linear mixed effects regression for cardiac response was specified, including interaction terms between time after CRT and sex , and Cox regression models were used to assess differences in all-cause mortality by gender after CRT. Women in our cohort were younger than men, had less frequent ischemic etiology of heart failure (24% vs 60% in men), a shorter QRS (151 vs 161 ms) and more frequent left bundle branch block (77% vs 52%) at baseline. Women had a greater improvement in left ventricular ejection fraction that was evident starting at approximately 1-month after CRT. We did not observe effect modification by gender in New York Heart Association class or 6-minute walk distance after CRT. Although women had improved mortality after CRT, after adjustment for potential confounders, gender was not associated with mortality after CRT. In conclusion, women were more likely to have CRT implantation for left bundle branch block and exhibited improved echocardiographic but not functional response within the first year after CRT. Clinical outcomes after CRT were not associated with gender in adjusted analysis.
Collapse
|
96
|
Miyajima K, Urushida T, Tamura T, Masuda S, Okazaki A, Takashima Y, Watanabe T, Kawaguchi Y, Wakabayashi Y, Maekawa Y. Assessing cardiac mechanical dyssynchrony in left bundle branch area pacing and right ventricular septal pacing using myocardial perfusion scintigraphy in the acute phase of pacemaker implantation. J Cardiovasc Electrophysiol 2022; 33:1826-1836. [PMID: 35748386 DOI: 10.1111/jce.15609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Left bundle branch area pacing (LBBAP) has recently been reported to be a new, clinically feasible and safe physiological pacing strategy. The present study aims to investigate the usefulness of LBBAP in reducing mechanical dyssynchrony compared with right ventricular septal pacing (RVSP). METHODS AND RESULTS A total of 39 LBBAP patients, 42 RVSP patients, and 93 healthy control participants were retrospectively evaluated. We compared phase analysis- (bandwidth, phase standard deviation [PSD], entropy) and regional wall motion analysis parameters. Wall motion analysis parameters included the time to the end-systolic frame (TES) assessed using single-photon emission computed tomography analysis. The maximum differences between segmental TES (MDTES), the standard deviation of TES (SDTES), and the TES difference between the lateral and septal segments (DTES-LS) were obtained. All phase analysis parameters were significantly smaller in the LBBAP group than in the RVSP group (bandwidth: LBBAP, 74 ± 31° vs. RVSP, 102 ± 59°, p=0.009; PSD: LBBAP, 19 ± 6.7° vs. RVSP, 26 ± 15°, p=0.007; entropy: LBBAP, 0.57 ± 0.07 vs. RVSP, 0.62 ± 0.11 p=0.009). The regional wall motion analysis parameters were also smaller in the LBBAP group than in the RVSP group (MDTES:LBBAP, 17 ± 7.1% vs. RVSP, 25 ± 14%, p=0.004; SDTES :LBBAP, 4.5 ± 1.7% vs. RVSP, 6.0 ± 3.5%, p=0.015; DTES-LS: LBBAP, 4.1 ± 3.4% vs. RVSP, 7.1 ± 5.4%, p=0.004). All phase analysis and wall motion analysis parameters were same in the LBBAP and control groups. CONCLUSION LBBAP may reduce mechanical dyssynchrony and achieve greater physiological ventricular activation than RVSP. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Keisuke Miyajima
- Department of Cardiology, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Tsuyoshi Urushida
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takumi Tamura
- Department of Cardiology, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Sakito Masuda
- Department of Cardiology, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Ayako Okazaki
- Department of Cardiology, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Yasuyo Takashima
- Department of Cardiology, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Tomoyuki Watanabe
- Department of Cardiology, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Yoshitaka Kawaguchi
- Department of Cardiology, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Yasushi Wakabayashi
- Department of Cardiology, Seirei Mikatahara General Hospital, Hamamatsu, Shizuoka, Japan
| | - Yuichiro Maekawa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
97
|
Visco V, Radano I, Campanile A, Ravera A, Silverio A, Masarone D, Pacileo G, Correale M, Mazzeo P, Dattilo G, Giallauria F, Cuomo A, Mercurio V, Tocchetti CG, Di Pietro P, Carrizzo A, Citro R, Galasso G, Vecchione C, Ciccarelli M. Predictors of sacubitril/valsartan high dose tolerability in a real world population with HFrEF. ESC Heart Fail 2022; 9:2909-2917. [PMID: 35702942 DOI: 10.1002/ehf2.13982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 11/09/2022] Open
Abstract
AIMS The angiotensin receptor-neprilysin inhibitor (ARNI) sacubitril/valsartan (Sac/Val) demonstrated to be superior to enalapril in reducing hospitalizations, cardiovascular and all-cause mortality in patients with ambulatory heart failure and reduced ejection fraction (HFrEF), in particular when it is maximally up-titrated. Unfortunately, the target dose is achieved in less than 50% of HFrEF patients, thus undermining the beneficial effects on the outcomes. In this study, we aimed to evaluate the role of Sac/Val and its titration dose on reverse cardiac remodelling and determine which echocardiographic index best predicts the up-titration success. METHODS AND RESULTS From January 2020 to June 2021, we retrospectively identified 95 patients (65.6 [59.1-72.8] years; 15.8% females) with chronic HFrEF who were prescribed Sac/Val from the HF Clinics of 5 Italian University Hospitals and evaluated the tolerability of Sac/Val high dose (the ability of the patient to achieve and stably tolerate the maximum dose) as the primary endpoint in the cohort. We used a multivariable logistic regression analysis, with a stepwise backward selection method, to determine the independent predictors of Sac/Val maximum dose tolerability, using, as candidate predictors, only variables with a P-value < 0.1 in the univariate analyses. Candidate predictors identified for the multivariable backward logistic regression analysis were age, sex, body mass index (BMI), chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), dyslipidaemia, atrial fibrillation, systolic blood pressure (SBP), baseline tolerability of ACEi/ARBs maximum dose, left ventricle global longitudinal strain (LVgLS), LV ejection fraction (EF), tricuspid annulus plane systolic excursion (TAPSE), right ventricle (RV) fractional area change (FAC), RV global and free wall longitudinal strain (RVgLS and RV-FW-LS). After the multivariable analysis, only one categorical (ACEi/ARBs maximum dose at baseline) and three continuous (younger age, higher SBP, and higher TAPSE), resulted significantly associated with the study outcome variable with a strong discriminatory capacity (area under the curve 0.874, 95% confidence interval (CI) (0.794-0.954) to predict maximum Sac/Val dose tolerability. CONCLUSIONS Our study is the first to analyse the potential role of echocardiography and, in particular, of RV dysfunction, measured by TAPSE, in predicting Sac/Val maximum dose tolerability. Therefore, patients with RV dysfunction (baseline TAPSE <16 mm, in our cohort) might benefit from a different strategy to titrate Sac/Val, such as starting from the lowest dose and/or waiting for a more extended period of observation before attempting with the higher doses.
Collapse
Affiliation(s)
- Valeria Visco
- Chair of Cardiology, Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Ilaria Radano
- Chair of Cardiology, Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Alfonso Campanile
- Department of Cardiology, "San Giovanni di Dio e Ruggi D'Aragona" Hopital-University, Salerno, Italy
| | - Amelia Ravera
- Department of Cardiology, "San Giovanni di Dio e Ruggi D'Aragona" Hopital-University, Salerno, Italy
| | - Angelo Silverio
- Chair of Cardiology, Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Salerno, Italy
| | | | | | - Michele Correale
- Cardiology Department, Ospedali Riuniti University Hospital, Foggia, Italy
| | - Pietro Mazzeo
- Cardiology Department, Ospedali Riuniti University Hospital, Foggia, Italy
| | - Giuseppe Dattilo
- Department of Clinical and Experimental Medicine, Operative Unit of Cardiology, University of Messina, Messina, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Alessandra Cuomo
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), Federico II University, Naples, Italy.,Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy.,Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Paola Di Pietro
- Chair of Cardiology, Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Albino Carrizzo
- Chair of Cardiology, Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Salerno, Italy.,Vascular Pathophysiology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Rodolfo Citro
- Department of Cardiology, "San Giovanni di Dio e Ruggi D'Aragona" Hopital-University, Salerno, Italy
| | - Gennaro Galasso
- Chair of Cardiology, Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Carmine Vecchione
- Chair of Cardiology, Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Salerno, Italy.,Vascular Pathophysiology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Michele Ciccarelli
- Chair of Cardiology, Department of Medicine, Surgery and Dentistry, Schola Medica Salernitana, University of Salerno, Salerno, Italy
| |
Collapse
|
98
|
Villegas-Martinez M, Krogh MR, Andersen ØS, Sletten OJ, Wajdan A, Odland HH, Elle OJ, Remme EW. Tracking Early Systolic Motion for Assessing Acute Response to Cardiac Resynchronization Therapy in Real Time. Front Physiol 2022; 13:903784. [PMID: 35721553 PMCID: PMC9201723 DOI: 10.3389/fphys.2022.903784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
An abnormal systolic motion is frequently observed in patients with left bundle branch block (LBBB), and it has been proposed as a predictor of response to cardiac resynchronization therapy (CRT). Our goal was to investigate if this motion can be monitored with miniaturized sensors feasible for clinical use to identify response to CRT in real time. Motion sensors were attached to the septum and the left ventricular (LV) lateral wall of eighteen anesthetized dogs. Recordings were performed during baseline, after induction of LBBB, and during biventricular pacing. The abnormal contraction pattern in LBBB was quantified by the septal flash index (SFI) equal to the early systolic shortening of the LV septal-to-lateral wall diameter divided by the maximum shortening achieved during ejection. In baseline, with normal electrical activation, there was limited early-systolic shortening and SFI was low (9 ± 8%). After induction of LBBB, this shortening and the SFI significantly increased (88 ± 34%, p < 0.001). Subsequently, CRT reduced it approximately back to baseline values (13 ± 13%, p < 0.001 vs. LBBB). The study showed the feasibility of using miniaturized sensors for continuous monitoring of the abnormal systolic motion of the LV in LBBB and how such sensors can be used to assess response to pacing in real time to guide CRT implantation.
Collapse
Affiliation(s)
- Manuel Villegas-Martinez
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Magnus Reinsfelt Krogh
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | | | - Ole Jakob Sletten
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Department of Cardiology and Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| | - Ali Wajdan
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Hans Henrik Odland
- Department of Cardiology and Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| | - Ole Jakob Elle
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Espen W. Remme
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- *Correspondence: Espen W. Remme,
| |
Collapse
|
99
|
de Amorim Fernandes F, Peix A, Giubbini R, Karthikeyan G, Massardo T, Patel C, Pabon LM, Jimenez-Heffernan A, Alexanderson E, Butt S, Kumar A, Marin V, Morozova O, Paez D, Mesquita CT, Garcia EV. Reproducibility of global LV function and dyssynchrony parameters derived from phase analysis of gated myocardial perfusion SPECT: A multicenter comparison with core laboratory setting. J Nucl Cardiol 2022; 29:952-961. [PMID: 33083983 DOI: 10.1007/s12350-020-02397-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Gated myocardial perfusion scintigraphy (GMPS) phase analysis is an important tool to investigate the physiology of left ventricular (LV) dyssynchrony. We aimed to test the performance of GMPS LV function and phase analysis in different clinical settings and on a diverse population. METHODS This is a post hoc analysis of a prospective, non-randomized, multinational, multicenter cohort study. Clinical evaluation and GMPS prior to cardiac resynchronization therapy (CRT)(baseline) and 6-month post CRT (follow-up) were done. LV end-systolic volume (LVESV), LV end-diastolic volume (LVEDV), LV ejection fraction (LVEF), LV phase standard deviation (LVPSD), and percentage of left ventricle non-viable (PLVNV) were obtained by 10 centers and compared to the core lab. RESULTS 276 GMPS studies had all data available from individual sites and from core lab. There were no statistically significant differences between all variables except for LVPSD. When subjects with no mechanical dyssynchrony were excluded, LVPSD difference became non-significant. LVESV, LVEF, LVPSD and PLVNV had strong correlation in site against core lab comparison. Bland-Altman plots demonstrated good agreement. CONCLUSIONS The presented correlation and agreement of LV function and dyssynchrony analysis over different sites with a diverse sample corroborate the strength of GMPS in the management of heart failure in clinical practice.
Collapse
Affiliation(s)
- Fernando de Amorim Fernandes
- Nuclear Medicine Department, Hospital Universitario Antonio Pedro-EBSERH-UFF, 303 Marquês de Parana street, Niterói, Rio de Janeiro, 24033-900, Brazil.
| | - Amalia Peix
- Nuclear Medicine Department, Institute of Cardiology, La Habana, Cuba
| | | | | | | | - Chetan Patel
- All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | - Sadaf Butt
- Oncology and Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Alka Kumar
- Dr. B L Kapur Memorial Hospital, New Delhi, India
| | | | - Olga Morozova
- Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Diana Paez
- Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Claudio T Mesquita
- Nuclear Medicine Department, Hospital Universitario Antonio Pedro-EBSERH-UFF, 303 Marquês de Parana street, Niterói, Rio de Janeiro, 24033-900, Brazil
| | | |
Collapse
|
100
|
Sakatani T, Kasahara T, Irie D, Tsubakimoto Y, Matsuo A, Fujita H, Inoue K. Prognostic value of left ventricular mechanical dyssynchrony induced by exercise stress in patients with normal myocardial perfusion single-photon emission computed tomography. J Nucl Cardiol 2022; 29:1-10. [PMID: 33083982 DOI: 10.1007/s12350-020-02389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Left ventricular mechanical dyssynchrony (LVMD) induced by exercise stress was reported to be clinically useful in detecting multivessel coronary artery diseases. The aim of this study was to compare the prognostic value of LVMD induced by pharmacological stress with that induced by exercise stress. METHODS We retrospectively examined 918 consecutive patients who underwent exercise (N = 310) or pharmacological stress (N = 608) 99mTc-tetrofosmin single-photon emission computed tomography (SPECT) with normal myocardial perfusion. LVMD was evaluated by phase analysis as the indices of phase bandwidth and phase standard deviation (PSD). RESULTS During the follow-up period (2.2 ± 1.9 years), 74 major cardiac events (MCEs) occurred (7 cases of cardiac death, 17 cases of heart failure, and 50 cases of coronary intervention). In global patients, the indices of LVMD on rest images were significantly greater in patients with MCEs (bandwidth (°): 51 ± 31 vs 37 ± 21, P = .001, PSD: 14 ± 9 vs 10 ± 6, P = .001). The exercise stress bandwidth was significantly higher in patients with MCEs (62 ± 37° vs 42 ± 21°, P = .026), as was the pharmacological stress bandwidth (57 ± 35° vs 43 ± 24°, P = .006). Multivariate analysis demonstrated the exercise stress bandwidth to be an independent predictor of MCEs (HR 1.017, CI 1.003 to 1.032, P = .019), but the pharmacological stress bandwidth had no influence on MCEs. CONCLUSIONS LVMD induced by exercise stress was an independent predictor of MCEs in patients with normal perfusion SPECT, whereas that induced by pharmacological stress had no association with further events.
Collapse
Affiliation(s)
- Tomohiko Sakatani
- Department of Cardiology, Japanese Red Cross Kyoto Daini Hospital, 355-5 Haruobi-Cho, Kamigyo-Ku, Kyoto, 602-8026, Japan.
| | - Takeru Kasahara
- Department of Cardiology, Japanese Red Cross Kyoto Daini Hospital, 355-5 Haruobi-Cho, Kamigyo-Ku, Kyoto, 602-8026, Japan
| | - Daisuke Irie
- Department of Cardiology, Japanese Red Cross Kyoto Daini Hospital, 355-5 Haruobi-Cho, Kamigyo-Ku, Kyoto, 602-8026, Japan
| | - Yoshinori Tsubakimoto
- Department of Cardiology, Japanese Red Cross Kyoto Daini Hospital, 355-5 Haruobi-Cho, Kamigyo-Ku, Kyoto, 602-8026, Japan
| | - Akiko Matsuo
- Department of Cardiology, Japanese Red Cross Kyoto Daini Hospital, 355-5 Haruobi-Cho, Kamigyo-Ku, Kyoto, 602-8026, Japan
| | - Hiroshi Fujita
- Department of Cardiology, North Medical Center, Kyoto Prefectural University of Medicine, 481 Otokoyama, Yosano-cho, Kyoto, 629-2261, Japan
| | - Keiji Inoue
- Department of Cardiology, Japanese Red Cross Kyoto Daini Hospital, 355-5 Haruobi-Cho, Kamigyo-Ku, Kyoto, 602-8026, Japan
| |
Collapse
|