51
|
Miller K, May U, Beecken WD, Hatzichristodoulou G, Böhm M, Fink S. Evidence for benefits and risks of tadalafil as a non-prescription medicine: review and evaluation using the Group Delphi technique to achieve consensus amongst clinical experts. Front Pharmacol 2023; 14:1254706. [PMID: 37876727 PMCID: PMC10590875 DOI: 10.3389/fphar.2023.1254706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
An evidence-based consensus meeting was held with urologists, a pharmacist and a cardiologist to perform a structured benefit-risk analysis of reclassifying tadalafil, a phosphodiesterase type 5 (PDE5) inhibitor for treatment of erectile dysfunction (ED), to be available without prescription in Germany. As per the Brass process endorsed by regulatory authorities, an evidence-based Brass value tree was developed, which identified the incremental benefits and risks that should be considered above the safety and efficacy evidence required for prescription medicines. During the Group Delphi consensus meeting, the expert panel rated the likelihood and clinical impact of each benefit and risk on a scale of 0 (none) to 3 (high). Overall attribute scores were calculated from the product of the mean likelihood and mean clinical impact scores giving a possible score of 0-9. The overall benefit attribute scores ranged from 2.8 to 5.4. The overall risk attribute scores ranged from 0.2 to 2.2 though most were 1.0 or less (3 or more is generally considered to be of concern). On balance, the independent meeting scored the benefits of reclassification of tadalafil higher than the risks and considered the risk mitigation strategies of the packaging label and patient information leaflet (PIL) sufficient.
Collapse
Affiliation(s)
- Kurt Miller
- Department of Urology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Uwe May
- Department of Health Economics and Pharmacoeconomics, Fresenius University of Applied Sciences, Wiesbaden, Germany
| | | | | | - Michael Böhm
- Department of Internal Medicine, University of the Saarland, Homburg Saar, Germany
| | - Stefan Fink
- State Pharmacists’ Association of Thuringia, Erfurt, Germany
| |
Collapse
|
52
|
Tuhy T, Hassoun PM. Clinical features of pulmonary arterial hypertension associated with systemic sclerosis. Front Med (Lausanne) 2023; 10:1264906. [PMID: 37828949 PMCID: PMC10565655 DOI: 10.3389/fmed.2023.1264906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Systemic sclerosis is an autoimmune disorder of the connective tissue characterized by disordered inflammation and fibrosis leading to skin thickening and visceral organ complications. Pulmonary involvement, in the form of pulmonary arterial hypertension and/or interstitial lung disease, is the leading cause of morbidity and mortality among individuals with scleroderma. There are no disease-specific therapies for pulmonary involvement of scleroderma, and pulmonary arterial hypertension in this cohort has typically been associated with worse outcomes and less clinical response to modern therapy compared to other forms of Group I pulmonary hypertension in the classification from the World Symposium on Pulmonary Hypertension. Ongoing research aims to delineate how pathologic microvascular remodeling and fibrosis contribute to this poor response and offer a window into future therapeutic targets.
Collapse
Affiliation(s)
| | - Paul M. Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
53
|
Smukowska-Gorynia A, Gościniak W, Woźniak P, Iwańczyk S, Jaxa-Kwiatkowska K, Sławek-Szmyt S, Janus M, Paluszkiewicz J, Mularek-Kubzdela T. Recent Advances in the Treatment of Pulmonary Arterial Hypertension Associated with Connective Tissue Diseases. Pharmaceuticals (Basel) 2023; 16:1252. [PMID: 37765060 PMCID: PMC10534675 DOI: 10.3390/ph16091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a severe vascular complication of connective tissue diseases (CTD). Patients with CTD may develop PH belonging to diverse groups: (1) pulmonary arterial hypertension (PAH), (2) PH due to left heart disease, (3) secondary PH due to lung disease and/or hypoxia and (4) chronic thromboembolic pulmonary hypertension (CTEPH). PAH most often develops in systemic scleroderma (SSc), mostly in its limited variant. PAH-CTD is a progressive disease characterized by poor prognosis. Therefore, early diagnosis should be established. A specific treatment for PAH-CTD is currently available and recommended: prostacyclin derivative (treprostinil, epoprostenol, iloprost, selexipag), nitric oxide and natriuretic pathway: stimulators of soluble guanylate cyclase (sGC: riociguat) and phosphodiesterase-five inhibitors (PDE5i: sildenafil, tadalafil), endothelin receptor antagonists (ERA: bosentan, macitentan, ambrisentan). Moreover, novel drugs, e.g., sotatercept, have been intensively investigated in clinical trials. We aim to review the literature on recent advances in the treatment strategy and prognosis of patients with PAH-CTD. In this manuscript, we discuss the mechanism of action of PAH-specific drugs and new agents and the latest research conducted on PAH-CTD patients.
Collapse
Affiliation(s)
- Anna Smukowska-Gorynia
- 1st Department of Cardiology, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848 Poznan, Poland; (W.G.); (P.W.); (S.I.); (K.J.-K.); (S.S.-S.); (M.J.); (J.P.); (T.M.-K.)
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Boucly A, Gerges C, Savale L, Jaïs X, Jevnikar M, Montani D, Sitbon O, Humbert M. Pulmonary arterial hypertension. Presse Med 2023; 52:104168. [PMID: 37516248 DOI: 10.1016/j.lpm.2023.104168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease characterised by remodelling of the pulmonary arteries and progressive narrowing of the pulmonary vasculature. This leads to a progressive increase in pulmonary vascular resistance and pulmonary arterial pressure and, if left untreated, to right ventricular failure and death. A correct diagnosis requires a complete work-up including right heart catheterisation performed in a specialised centre. Although our knowledge of the epidemiology, pathology and pathophysiology of the disease, as well as the development of innovative therapies, has progressed in recent decades, PAH remains a serious clinical condition. Current treatments for the disease target the three specific pathways of endothelial dysfunction that characterise PAH: the endothelin, nitric oxide and prostacyclin pathways. The current treatment algorithm is based on the assessment of severity using a multiparametric risk stratification approach at the time of diagnosis (baseline) and at regular follow-up visits. It recommends the initiation of combination therapy in PAH patients without cardiopulmonary comorbidities. The choice of therapy (dual or triple) depends on the initial severity of the condition. The main treatment goal is to achieve low-risk status. Further escalation of treatment is required if low-risk status is not achieved at subsequent follow-up assessments. In the most severe patients, who are already on maximal medical therapy, lung transplantation may be indicated. Recent advances in understanding the pathophysiology of the disease have led to the development of promising emerging therapies targeting dysfunctional pathways beyond endothelial dysfunction, including the TGF-β and PDGF pathways.
Collapse
Affiliation(s)
- Athénaïs Boucly
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Christian Gerges
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Laurent Savale
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| | - Xavier Jaïs
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| | - Mitja Jevnikar
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| | - Olivier Sitbon
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, Faculé de Médicine, Le Kremlin-Bicêtre, France; Service de Pneumologie et Soins Intensifs Respiratoires, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; INSERM UMRS-999, Le Kremlin-Bicêtre, France
| |
Collapse
|
55
|
Ahmed MS, Ghallab M, Ostrow T, Nashawi M, Alagha Z, Levine A, Aronow WS, Lanier GM. Pharmacotherapy of refractory pulmonary arterial hypertension. Expert Opin Pharmacother 2023; 24:1861-1874. [PMID: 37698041 DOI: 10.1080/14656566.2023.2257134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Treatment of refractory pulmonary arterial hypertension (PAH) is challenging and rarely the focus of reviews. The purpose of this review is to discuss current treatment options of refractory PAH, along with the state of research of several new medications. AREAS COVERED We conducted a comprehensive PubMed search on the relevant literature on treating PAH, with a focus on approved and investigational interventions for high-risk patients. Our strategy used keywords 'Treatment' AND 'Pulmonary Hypertension,' without date restrictions, ensuring a thorough survey of available literature for our review. EXPERT OPINION By utilizing serial risk assessment to identify patients remaining intermediate or high-risk, more patients are likely to survive longer. This is done by earlier use of combination or triple therapy with prostacyclin drugs. Current medications for PAH are all essentially vasodilators that improve physiology, but do not truly modify the disease process. The potential application of new investigational medications is exciting as they work by novel pathways likely to change the landscape of refractory PAH treatment.
Collapse
Affiliation(s)
- Mahmoud Samy Ahmed
- Department of Cardiology, Westchester Medical Center, Valhalla, New York, USA
| | - Muhammad Ghallab
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Talia Ostrow
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Mouhamed Nashawi
- Department of Medicine, Baylor Scott & White Health, Dallas, TX, USA
| | - Zakaria Alagha
- Department of Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Avi Levine
- Department of Cardiology, Westchester Medical Center, Valhalla, New York, USA
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center, Valhalla, New York, USA
| | - Gregg M Lanier
- Department of Cardiology, Westchester Medical Center, Valhalla, New York, USA
| |
Collapse
|
56
|
Kularatne M, Boucly A, Savale L, Solinas S, Cheron C, Roche A, Jevnikar M, Jaïs X, Montani D, Humbert M, Sitbon O. Pharmacological management of connective tissue disease-associated pulmonary arterial hypertension. Expert Opin Pharmacother 2023; 24:2101-2115. [PMID: 37869785 DOI: 10.1080/14656566.2023.2273395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a severe, progressive pulmonary vasculopathy (Group 1 Pulmonary Hypertension (PH)) that complicates the course of many connective tissue diseases (CTD). Detailed testing is required to differentiate PAH from other types of PH caused by CTD such as left heart disease (Group 2 PH), pulmonary parenchymal disease (Group 3 PH), and chronic thromboembolic pulmonary hypertension (Group 4 PH). PAH is most frequently seen in systemic sclerosis but can also be seen with systemic lupus erythematosus, mixed CTD, and primary Sjogren's syndrome. AREAS COVERED This review discusses the epidemiology of CTD-associated PAH, outlines the complex diagnosis approach, and finishes with an in-depth discussion on the current treatment paradigm. Focus is placed on challenges faced in the treatment of CTD-associated PAH, (decreased efficacy and poorer tolerance of pharmacological therapies) and includes a discussion on the future investigational treatments. EXPERT OPINION Despite significant advances over the past decades with more aggressive treatment algorithms, CTD-associated PAH patients continue to have poorer survival compared to those with idiopathic PAH. This review highlights factors leading to disparate outcomes compared to other forms of PAH, and discusses on further improvements that may increase quality of life and survival for CTD-associated PAH patients.
Collapse
Affiliation(s)
- Mithum Kularatne
- Division of Respiratory Medicine, Department of Medicine, University of Calgary, Calgary, Canada
| | - Athénaïs Boucly
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Sabina Solinas
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Céline Cheron
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Anne Roche
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Mitja Jevnikar
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Xavier Jaïs
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Olivier Sitbon
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Le Kremlin-Bicêtre, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Centre, DMU 5 Thorinno, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
57
|
Humbert M, Sitbon O, Guignabert C, Savale L, Boucly A, Gallant-Dewavrin M, McLaughlin V, Hoeper MM, Weatherald J. Treatment of pulmonary arterial hypertension: recent progress and a look to the future. THE LANCET. RESPIRATORY MEDICINE 2023; 11:804-819. [PMID: 37591298 DOI: 10.1016/s2213-2600(23)00264-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a severe but treatable form of pre-capillary pulmonary hypertension caused by pulmonary vascular remodelling. As a result of basic science discoveries, randomised controlled trials, studies of real-world data, and the development of clinical practice guidelines, considerable progress has been made in the treatment options and outcomes for patients with PAH, underscoring the importance of seamless translation of information from bench to bedside and, ultimately, to patients. However, PAH still carries a high mortality rate, which emphasises the urgent need for transformative innovations in the field. In this Series paper, written by a group of clinicians, researchers, and a patient with PAH, we review therapeutic approaches and treatment options for PAH. We summarise current knowledge of the cellular and molecular mechanisms of PAH, with an emphasis on emerging treatable pathways and optimisation of current management strategies. In considering future directions for the field, our ambition is to identify therapies with the potential to stall or reverse pulmonary vascular remodelling. We highlight novel therapeutic approaches, the important role of patients as partners in research, and innovative approaches to PAH clinical trials.
Collapse
Affiliation(s)
- Marc Humbert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France.
| | - Olivier Sitbon
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Christophe Guignabert
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | - Athénaïs Boucly
- INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, ERN-LUNG, Le Kremlin-Bicêtre, France
| | | | - Vallerie McLaughlin
- Department of Internal Medicine, Division of Cardiology, Frankel Cardiovascular Center University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marius M Hoeper
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), Hannover, Germany
| | - Jason Weatherald
- Department of Medicine, Division of Pulmonary Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
58
|
Khan SL, Mathai SC. Scleroderma pulmonary arterial hypertension: the same as idiopathic pulmonary arterial hypertension? Curr Opin Pulm Med 2023; 29:380-390. [PMID: 37461869 PMCID: PMC11334969 DOI: 10.1097/mcp.0000000000001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a common complication of systemic sclerosis (SSc), which confers significant morbidity and mortality. The current therapies and treatment strategies for SSc-associated PAH (SSc-PAH) are informed by those used to treat patients with idiopathic PAH (IPAH). There are, however, important differences between these two diseases that impact diagnosis, treatment, and outcomes. RECENT FINDINGS Both SSc-PAH and IPAH are incompletely understood with ongoing research into the underlying cellular biology that characterize and differentiate the two diseases. Additional research seeks to improve identification among SSc patients in order to diagnose patients earlier in the course of their disease. Novel therapies specifically for SSc-PAH such as rituximab and dimethyl fumarate are under investigation. SUMMARY Although patients with SSc-PAH and IPAH present with similar symptoms, there are significant differences between these two forms of PAH that warrant further investigation and characterization of optimal detection strategies, treatment algorithms, and outcomes assessment.
Collapse
Affiliation(s)
- Sarah L Khan
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
59
|
Hu X, Ding N, Songchen W, Wang R, Chen J, Zhong A, Nan J, Zuo Y, Huang H, Tian D. Lung Transplantation for Pulmonary Arterial Hypertension: Optimized Referral and Listing Based on an Evolving Disease Concept. J Cardiovasc Dev Dis 2023; 10:350. [PMID: 37623363 PMCID: PMC10455552 DOI: 10.3390/jcdd10080350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Pulmonary hypertension (PH) was once a devastating and fatal disease entity, the outlook of which has been significantly improved by the continued progress of medical treatment algorithms. However, some patients still ultimately fail to achieve an adequate clinical response despite receiving maximal medical treatment. Historically, lung transplantation (LTx) has been the only effective therapeutic option that could lead to satisfactory outcomes and save these advanced patients' lives. However, patients with PH tend to have the highest mortality rates on the transplant waiting list; especially after comprehensive medical treatment, they continue to deteriorate very rapidly, eventually missing optimal transplantation windows. Balancing optimized medical treatment with the appropriate timing of referral and listing has been highly controversial in LTx for patients with PH. The 2021 consensus document for the selection of lung transplant candidates from the International Society for Heart and Lung Transplantation (ISHLT) updated the specific recommendations for the LTx referral and listing time for patients with PH based on objective risk stratification. Herein, we review the evolving PH-related concepts and highlight the optimization of LTx referral and listing for patients with PH, as well as their management on the waiting list.
Collapse
Affiliation(s)
- Xiaokun Hu
- Outpatient Department, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Ningying Ding
- Anesthesia Operation Center of West China Hospital/West China School of Nursing, Sichuan University, Chengdu 610041, China;
| | - Wanqiu Songchen
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Ruifeng Wang
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Jing Chen
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Ailing Zhong
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Jinzhu Nan
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Yujie Zuo
- Heart and Lung Transplantation Research Laboratory, North Sichuan Medical College, Nanchong 637000, China; (W.S.); (R.W.); (J.C.); (A.Z.); (J.N.); (Y.Z.)
| | - Heng Huang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dong Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
60
|
Roy S, Kloner RA, Salloum FN, Jovin IS. Cardiac Effects of Phosphodiesterase-5 Inhibitors: Efficacy and Safety. Cardiovasc Drugs Ther 2023; 37:793-806. [PMID: 34652581 PMCID: PMC9010479 DOI: 10.1007/s10557-021-07275-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 01/23/2023]
Abstract
The coexistence of cardiovascular disease and erectile dysfunction is widespread, possibly owing to underlying endothelial dysfunction in both diseases. Millions of patients with cardiovascular disease are prescribed phosphodiesterase-5 (PDE5) inhibitors for the management of erectile dysfunction. Although the role of PDE5 inhibitors in erectile dysfunction therapy is well established, their effects on the cardiovascular system are unclear. Preclinical studies investigating the effect of PDE5 inhibitors on ischemia-reperfusion injury, pressure overload-induced hypertrophy, and chemotoxicity suggested a possible clinical role for each of these medications; however, attempts to translate these findings to the bedside have resulted in mixed outcomes. In this review, we explore the biologic preclinical effects of PDE5 inhibitors in mediating cardioprotection. We then examine clinical trials investigating PDE5 inhibition in patients with heart failure, coronary artery disease, and ventricular arrhythmias and discuss why the studies likely have yet to show positive results and efficacy with PDE5 inhibition despite no safety concerns.
Collapse
Affiliation(s)
- Sumon Roy
- Pauley Heart Center, Virginia Commonwealth University Medical Center, McGuire VAMC, 1201 Broad Rock Boulevard, 111J, Richmond, VA, 23249, USA
| | - Robert A Kloner
- Huntington Medical Research Institute, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fadi N Salloum
- Pauley Heart Center, Virginia Commonwealth University Medical Center, McGuire VAMC, 1201 Broad Rock Boulevard, 111J, Richmond, VA, 23249, USA
| | - Ion S Jovin
- Pauley Heart Center, Virginia Commonwealth University Medical Center, McGuire VAMC, 1201 Broad Rock Boulevard, 111J, Richmond, VA, 23249, USA.
- McGuire Veterans Affairs Medical Center, Richmond, VA, USA.
| |
Collapse
|
61
|
Naud R, Bermudez J, Resseguier N, Nieves A, Coltey B, Dufeu N, Gautier C, Trigui Y, Laine M, Coiffard B, Reynaud-Gaubert M. Impact of targeted pulmonary arterial hypertension therapies in severe pulmonary hypertension in chronic lung diseases. ERJ Open Res 2023; 9:00027-2023. [PMID: 37609598 PMCID: PMC10440677 DOI: 10.1183/23120541.00027-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 08/24/2023] Open
Abstract
Research questions Patients with severe pulmonary hypertension associated with chronic lung disease have a poor prognosis. Targeted pulmonary arterial hypertension therapies might improve exercise capacity and outcome, but there are no guidelines on treatments which are not recommended because of an unproven benefit, with discordant results from few studies in this context. The aim of our study was to evaluate targeted pulmonary arterial hypertension therapies for severe group 3 pulmonary hypertension patients. Study design and methods We conducted an observational retrospective monocentre study on patients with severe group 3 pulmonary hypertension diagnosed on right heart catheterisation treated with targeted therapies. Primary outcome was an improvement of the distance on 6-min walk test of ≥30 m. Secondary end-points included changes in haemodynamics (pulmonary vascular resistance (PVR) and mean pulmonary arterial pressure (mPAP)) and identification of potential predictive factors of therapeutic response. Results 139 patients were enrolled. Most patients had monotherapy with phosphodiesterase 5 inhibitors (n=128; 92%). Mean change in 6-min walk distance was +1.5 m after treatment (p=0.59). Forced expiratory volume in 1 s and forced vital capacity were not predictive factors for response. We found a significant improvement of PVR and mPAP of -1.0 Wood Units (p<0.001) and -4 mmHg (p<0.001), respectively, under treatment. 18% of patients had to withdraw treatment for intolerance. Treatment duration <3 months was associated with poor survival (hazard ratio 2.75, p=0.0005). Conclusion Oral targeted pulmonary arterial hypertension therapies do not improve exercise capacity in patients with severe pulmonary hypertension associated with chronic lung disease, but could improve haemodynamic parameters.
Collapse
Affiliation(s)
- Romain Naud
- Department of Respiratory Medicine and Lung Transplantation, French Pulmonary Hypertension Competence Center (PulmoTension), Marseille, France
- French Reference Network on Rare Respiratory Diseases (RespiFIL), Assistance Publique – Hôpitaux de Marseille (APHM), Hôpital Nord, Marseille, France
- Aix-Marseille University, Marseille, France
- These authors contributed equally
| | - Julien Bermudez
- Department of Respiratory Medicine and Lung Transplantation, French Pulmonary Hypertension Competence Center (PulmoTension), Marseille, France
- French Reference Network on Rare Respiratory Diseases (RespiFIL), Assistance Publique – Hôpitaux de Marseille (APHM), Hôpital Nord, Marseille, France
- Aix-Marseille University, Marseille, France
- These authors contributed equally
| | - Noémie Resseguier
- Aix-Marseille University, Marseille, France
- Department of Epidemiology and Health Economics, Faculty of Medicine, Marseille, France
| | - Ana Nieves
- Department of Respiratory Medicine and Lung Transplantation, French Pulmonary Hypertension Competence Center (PulmoTension), Marseille, France
- French Reference Network on Rare Respiratory Diseases (RespiFIL), Assistance Publique – Hôpitaux de Marseille (APHM), Hôpital Nord, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Bérengère Coltey
- Department of Respiratory Medicine and Lung Transplantation, French Pulmonary Hypertension Competence Center (PulmoTension), Marseille, France
- French Reference Network on Rare Respiratory Diseases (RespiFIL), Assistance Publique – Hôpitaux de Marseille (APHM), Hôpital Nord, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Nadine Dufeu
- Department of Respiratory Medicine and Lung Transplantation, French Pulmonary Hypertension Competence Center (PulmoTension), Marseille, France
- French Reference Network on Rare Respiratory Diseases (RespiFIL), Assistance Publique – Hôpitaux de Marseille (APHM), Hôpital Nord, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Clarisse Gautier
- Department of Respiratory Medicine and Lung Transplantation, French Pulmonary Hypertension Competence Center (PulmoTension), Marseille, France
- French Reference Network on Rare Respiratory Diseases (RespiFIL), Assistance Publique – Hôpitaux de Marseille (APHM), Hôpital Nord, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Youssef Trigui
- Department of Respiratory Medicine, Centre Hospitalier du Pays d'Aix, Aix-En-Provence, France
| | - Marc Laine
- Aix-Marseille University, Marseille, France
- Department of Cardiology, APHM, Hôpital Nord, Marseille, France
| | - Benjamin Coiffard
- Department of Respiratory Medicine and Lung Transplantation, French Pulmonary Hypertension Competence Center (PulmoTension), Marseille, France
- French Reference Network on Rare Respiratory Diseases (RespiFIL), Assistance Publique – Hôpitaux de Marseille (APHM), Hôpital Nord, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Martine Reynaud-Gaubert
- Department of Respiratory Medicine and Lung Transplantation, French Pulmonary Hypertension Competence Center (PulmoTension), Marseille, France
- French Reference Network on Rare Respiratory Diseases (RespiFIL), Assistance Publique – Hôpitaux de Marseille (APHM), Hôpital Nord, Marseille, France
- Aix-Marseille University, Marseille, France
| |
Collapse
|
62
|
Pan HM, McClelland RL, Moutchia J, Appleby DH, Fritz JS, Holmes JH, Minhas J, Palevsky HI, Urbanowicz RJ, Kawut SM, Al-Naamani N. Heterogeneity of treatment effects by risk in pulmonary arterial hypertension. Eur Respir J 2023; 62:2300190. [PMID: 37169384 PMCID: PMC10919241 DOI: 10.1183/13993003.00190-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND It is currently unknown if disease severity modifies response to therapy in pulmonary arterial hypertension (PAH). We aimed to explore if disease severity, as defined by established risk-prediction algorithms, modified response to therapy in randomised clinical trials in PAH. METHODS We performed a meta-analysis using individual participant data from 18 randomised clinical trials of therapy for PAH submitted to the United States Food and Drug Administration to determine if predicted risk of 1-year mortality at randomisation modified the treatment effect on three outcomes: change in 6-min walk distance (6MWD), clinical worsening at 12 weeks and time to clinical worsening. RESULTS Of 6561 patients with a baseline US Registry to Evaluate Early and Long-Term PAH Disease Management (REVEAL 2.0) score, we found that individuals with higher baseline risk had higher probabilities of clinical worsening but no difference in change in 6MWD. We detected a significant interaction of REVEAL 2.0 risk and treatment assignment on change in 6MWD. For every 3-point increase in REVEAL 2.0 score, there was a 12.49 m (95% CI 5.86-19.12 m; p=0.001) greater treatment effect in change in 6MWD. We did not detect a significant risk by treatment interaction on clinical worsening with most of the risk-prediction algorithms. CONCLUSIONS We found that predicted risk of 1-year mortality in PAH modified treatment effect as measured by 6MWD, but not clinical worsening. Our findings highlight the importance of identifying sources of treatment heterogeneity by predicted risk to tailor studies to patients most likely to have the greatest treatment response.
Collapse
Affiliation(s)
- Hao-Min Pan
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Robyn L McClelland
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA, USA
| | - Jude Moutchia
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Dina H Appleby
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jason S Fritz
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John H Holmes
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jasleen Minhas
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Harold I Palevsky
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan J Urbanowicz
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven M Kawut
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nadine Al-Naamani
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
63
|
Caccamo M, Harrell FE, Hemnes AR. Evolution and optimization of clinical trial endpoints and design in pulmonary arterial hypertension. Pulm Circ 2023; 13:e12271. [PMID: 37554146 PMCID: PMC10405062 DOI: 10.1002/pul2.12271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Selection of endpoints for clinical trials in pulmonary arterial hypertension (PAH) is challenging because of the small numbers of patients and the changing expectations of patients, clinicians, and regulators in this evolving therapy area. The most commonly used primary endpoint in PAH trials has been 6-min walk distance (6MWD), leading to the approval of several targeted therapies. However, single surrogate endpoints such as 6MWD or hemodynamic parameters may not correlate with clinical outcomes. Composite endpoints of clinical worsening have been developed to reflect patients' overall condition more accurately, although there is no standard definition of worsening. Recently there has been a shift to composite endpoints assessing clinical improvement, and risk scores developed from registry data are increasingly being used. Biomarkers are another area of interest, although brain natriuretic peptide and its N-terminal prohormone are the only markers used for risk assessment or as endpoints in PAH. A range of other genetic, metabolic, and immunologic markers is currently under investigation, along with conventional and novel imaging modalities. Patient-reported outcomes are an increasingly important part of evaluating new therapies, and several PAH-specific tools are now available. In the future, alternative statistical techniques and trial designs, such as patient enrichment strategies, will play a role in evaluating PAH-targeted therapies. In addition, modern sequencing techniques, imaging analyses, and high-dimensional statistical modeling/machine learning may reveal novel markers that can play a role in the diagnosis and monitoring of PAH.
Collapse
Affiliation(s)
- Marco Caccamo
- Division of CardiologyWVU Heart and Vascular InstituteMorgantownWest VirginiaUSA
| | - Frank E. Harrell
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
64
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
65
|
Cook CM, Craddock VD, Ram AK, Abraham AA, Dhillon NK. HIV and Drug Use: A Tale of Synergy in Pulmonary Vascular Disease Development. Compr Physiol 2023; 13:4659-4683. [PMID: 37358518 PMCID: PMC10693986 DOI: 10.1002/cphy.c210049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Over the past two decades, with the advent and adoption of highly active anti-retroviral therapy, HIV-1 infection, a once fatal and acute illness, has transformed into a chronic disease with people living with HIV (PWH) experiencing increased rates of cardio-pulmonary vascular diseases including life-threatening pulmonary hypertension. Moreover, the chronic consequences of tobacco, alcohol, and drug use are increasingly seen in older PWH. Drug use, specifically, can have pathologic effects on the cardiovascular health of these individuals. The "double hit" of drug use and HIV may increase the risk of HIV-associated pulmonary arterial hypertension (HIV-PAH) and potentiate right heart failure in this population. This article explores the epidemiology and pathophysiology of PAH associated with HIV and recreational drug use and describes the proposed mechanisms by which HIV and drug use, together, can cause pulmonary vascular remodeling and cardiopulmonary hemodynamic compromise. In addition to detailing the proposed cellular and signaling pathways involved in the development of PAH, this article proposes areas ripe for future research, including the influence of gut dysbiosis and cellular senescence on the pathobiology of HIV-PAH. © 2023 American Physiological Society. Compr Physiol 13:4659-4683, 2023.
Collapse
Affiliation(s)
- Christine M Cook
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Vaughn D Craddock
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anil K Ram
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ashrita A Abraham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
66
|
Chen L, Li M, Shen M, Zhu Y, Chen K, Huang X, Zheng C, Wang Q, Lin H, Liao W, Bin J, Ma S, Liao Y. Bioinformatics exploration of potential common therapeutic targets for systemic and pulmonary arterial hypertension-induced myocardial hypertrophy. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37232575 DOI: 10.3724/abbs.2023071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Systemic and pulmonary arterial hypertension (PAH) can induce left and right ventricular hypertrophy, respectively, but common therapeutic targets for both left and right hypertrophy are limited. In this study, we attempt to explore potential common therapeutic targets and screen out potential target drugs for further study. Cardiac mRNA expression profiles in mice with transverse aortic constriction (TAC) and pulmonary arterial constriction (PAC) are obtained from online databases. After bioinformatics analyses, we generate TAC and PAC mouse models to validate the phenotypes of cardiac remodelling as well as the identified hub genes. Bioinformatics analyses show that there are 214 independent differentially expressed genes (DEGs) in GSE136308 (TAC related) and 2607 independent DEGs in GSE30922 (PAC related), while 547 shared DEGs are associated with the function of the extracellular matrix (ECM) or involved in the PI3K-Akt signaling pathway, cytokine-cytokine receptor interactions, and ECM-receptor interactions. We identifyd Fn1, Il6, Col1a1, Igf1, Col1a2, Timp1, Col3a1, Cd44, Ctgf and Postn as hub genes of the shared DEGs, and most of them are associated with myocardial fibrosis. Those hub genes and phenotypes of cardiac remodelling are validated in our TAC and PAC mouse models. Furthermore, we identify dehydroisoandrosterone (DHEA), iloprost and 4,5-dianilinophthalimide (DAPH) as potential therapeutic drugs targeting both left and right ventricular hypertrophy and validate the effect of DHEA. These findings suggest that DHEA could be an effective drug for pressure overload-induced left or right ventricular hypertrophy by regulating the shared hub differentially expressed genes associated with fibrosis.
Collapse
Affiliation(s)
- Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengjia Shen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxia Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Province Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
67
|
Jin Q, Chen D, Zhang X, Zhang F, Zhong D, Lin D, Guan L, Pan W, Zhou D, Ge J. Medical Management of Pulmonary Arterial Hypertension: Current Approaches and Investigational Drugs. Pharmaceutics 2023; 15:1579. [PMID: 37376028 DOI: 10.3390/pharmaceutics15061579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 06/29/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a malignant pulmonary vascular syndrome characterized by a progressive increase in pulmonary vascular resistance and pulmonary arterial pressure, which eventually leads to right heart failure and even death. Although the exact mechanism of PAH is not fully understood, pulmonary vasoconstriction, vascular remodeling, immune and inflammatory responses, and thrombosis are thought to be involved in the development and progression of PAH. In the era of non-targeted agents, PAH had a very dismal prognosis with a median survival time of only 2.8 years. With the deep understanding of the pathophysiological mechanism of PAH as well as advances in drug research, PAH-specific therapeutic drugs have developed rapidly in the past 30 years, but they primarily focus on the three classical signaling pathways, namely the endothelin pathway, nitric oxide pathway, and prostacyclin pathway. These drugs dramatically improved pulmonary hemodynamics, cardiac function, exercise tolerance, quality of life, and prognosis in PAH patients, but could only reduce pulmonary arterial pressure and right ventricular afterload to a limited extent. Current targeted agents delay the progression of PAH but cannot fundamentally reverse pulmonary vascular remodeling. Through unremitting efforts, new therapeutic drugs such as sotatercept have emerged, injecting new vitality into this field. This review comprehensively summarizes the general treatments for PAH, including inotropes and vasopressors, diuretics, anticoagulants, general vasodilators, and anemia management. Additionally, this review elaborates the pharmacological properties and recent research progress of twelve specific drugs targeting three classical signaling pathways, as well as dual-, sequential triple-, and initial triple-therapy strategies based on the aforementioned targeted agents. More crucially, the search for novel therapeutic targets for PAH has never stopped, with great progress in recent years, and this review outlines the potential PAH therapeutic agents currently in the exploratory stage to provide new directions for the treatment of PAH and improve the long-term prognosis of PAH patients.
Collapse
Affiliation(s)
- Qi Jin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Dandan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Feng Zhang
- Department of Cardiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, China
| | - Dongxiang Zhong
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Dawei Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Lihua Guan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Wenzhi Pan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
68
|
Alamri AK, Ma CL, Ryan JJ. Novel Drugs for the Treatment of Pulmonary Arterial Hypertension: Where Are We Going? Drugs 2023; 83:577-585. [PMID: 37017914 PMCID: PMC10074340 DOI: 10.1007/s40265-023-01862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that despite advances in therapy is associated with a 7-year survival of approximately 50%. Several risk factors are associated with developing PAH, include methamphetamine use, scleroderma, human immunodeficiency virus, portal hypertension, and genetic predisposition. PAH can also be idiopathic. There are traditional pathways underlying the pathophysiology of PAH involving nitric oxide, prostacyclin, thromboxane A2, and endothelin-1, resulting in impaired vasodilation, enhanced vasoconstriction and proliferation in the pulmonary vasculature. Established PAH medications targets these pathways; however, this paper aims to discuss novel drugs for treating PAH by targeting new and alternative pathways.
Collapse
Affiliation(s)
- Ayedh K Alamri
- Department of Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA.
- Department of Medicine, College of Medicine, Northern Border University, Arar, 73213, Saudi Arabia.
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA.
| | - Christy L Ma
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| |
Collapse
|
69
|
Moutchia J, McClelland RL, Al-Naamani N, Appleby DH, Blank K, Grinnan D, Holmes JH, Mathai SC, Minhas J, Ventetuolo CE, Zamanian RT, Kawut SM. Minimal Clinically Important Difference in the 6-minute-walk Distance for Patients with Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2023; 207:1070-1079. [PMID: 36629737 PMCID: PMC10112451 DOI: 10.1164/rccm.202208-1547oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Rationale: The 6-minute-walk distance (6MWD) is an important clinical and research metric in pulmonary arterial hypertension (PAH); however, there is no consensus about what minimal change in 6MWD is clinically significant. Objectives: We aimed to determine the minimal clinically important difference in the 6MWD. Methods: We performed a meta-analysis using individual participant data from eight randomized clinical trials of therapy for PAH submitted to the U.S. Food and Drug Administration to derive minimal clinically important differences in the 6MWD. The estimates were externally validated using the Pulmonary Hypertension Association Registry. We anchored the change in 6MWD to the change in the Medical Outcomes Survey Short Form physical component score. Measurements and Main Results: The derivation (clinical trial) and validation (Pulmonary Hypertension Association Registry) samples were comprised of 2,404 and 537 adult patients with PAH, respectively. The mean ± standard deviation age of the derivation sample was 50.5 ± 15.2 years, and 1,849 (77%) were female, similar to the validation sample. The minimal clinically important difference in the derivation sample was 33 meters (95% confidence interval, 27-38), which was almost identical to that in the validation sample (36 m [95% confidence interval, 29-43]). The minimal clinically important difference did not differ by age, sex, race, pulmonary hypertension etiology, body mass index, use of background therapy, or World Health Organization functional class. Conclusions: We estimated a 6MWD minimal clinically important difference of approximately 33 meters for adults with PAH. Our findings can be applied to the design of clinical trials of therapies for PAH.
Collapse
Affiliation(s)
- Jude Moutchia
- Department of Biostatistics, Epidemiology, and Informatics and
| | - Robyn L. McClelland
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington
| | - Nadine Al-Naamani
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dina H. Appleby
- Department of Biostatistics, Epidemiology, and Informatics and
| | - Kristina Blank
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington
| | - Dan Grinnan
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - John H. Holmes
- Department of Biostatistics, Epidemiology, and Informatics and
| | - Stephen C. Mathai
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jasleen Minhas
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Corey E. Ventetuolo
- Departments of Medicine and Health Services, Policy and Practice, Brown University, Providence, Rhode Island; and
| | - Roham T. Zamanian
- Department of Medicine, School of Medicine, Stanford University, Palo Alto, California
| | - Steven M. Kawut
- Department of Biostatistics, Epidemiology, and Informatics and
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
70
|
Perros F, Jutant ÉM, Savale L, Dorfmüller P, Humbert M, Montani D. [Physiopathology and treatment of pulmonary arterial hypertension]. Med Sci (Paris) 2023; 39:359-369. [PMID: 37094269 DOI: 10.1051/medsci/2023053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease affecting mainly the pre-capillary pulmonary vascular bed. However, some forms of the disease have venous/capillary involvement. It is an obstructive remodelling of the pulmonary arterioles coupled with vascular pruning, increasing right ventricular afterload and leading to right heart failure. PAH has a complex pathogeny that is detailed in this review. Current specific treatments target endothelial dysfunction, and primarily aim at vasodilatation. Promising innovative treatments targeting the pulmonary artery remodelling are under development.
Collapse
Affiliation(s)
- Frédéric Perros
- Université Paris-Saclay, faculté de médecine, 94270 Le Kremlin-Bicêtre, France - Inserm UMR-S 999, groupe hospitalier Saint Joseph - Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire, Hôpital Bicêtre, AP-HP, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Étienne-Marie Jutant
- Université de Poitiers, CHU de Poitiers, service de pneumologie, Inserm CIC 1402 Axe IS-ALIVE, Poitiers, France
| | - Laurent Savale
- Université Paris-Saclay, faculté de médecine, 94270 Le Kremlin-Bicêtre, France - Inserm UMR-S 999, groupe hospitalier Saint Joseph - Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire, Hôpital Bicêtre, AP-HP, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Peter Dorfmüller
- Institut für Pathologie, Universitätsklinikum Giessen/Marburg and Deutsches Zentrum für Lungenforschung (DZL), Allemagne
| | - Marc Humbert
- Université Paris-Saclay, faculté de médecine, 94270 Le Kremlin-Bicêtre, France - Inserm UMR-S 999, groupe hospitalier Saint Joseph - Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire, Hôpital Bicêtre, AP-HP, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - David Montani
- Université Paris-Saclay, faculté de médecine, 94270 Le Kremlin-Bicêtre, France - Inserm UMR-S 999, groupe hospitalier Saint Joseph - Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Service de pneumologie et soins intensifs respiratoires, Centre de référence de l'hypertension pulmonaire, Hôpital Bicêtre, AP-HP, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
71
|
Sinanis T, Schmeißer A. Importance of the Mean Rate of Pressure Change of the Pulmonary Artery (dP/dt mean PA) in Patients with Pulmonary Arterial Hypertension. Avicenna J Med 2023; 13:104-110. [PMID: 37435554 PMCID: PMC10332940 DOI: 10.1055/s-0043-1769932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a rare disease of cardiopulmonary circulation characterized by elevated pressure in the pulmonary artery. The right-heart catheter is the gold standard for diagnosis, but there is interest in identifying additional prognostic indicators. The aim of this study was to examine the importance of the rate of pressure change of the pulmonary artery (dP/dt mean PA) in patients with PAH. Methods We retrospectively analyzed data from 142 patients with PAH (exclusively clinical group 1) and examined the statistical correlation of dP/dt mean PA with vascular, right ventricular, and clinical parameters. Data was collected mostly from the right heart catheterization and the transthoracal echocardiography at presentation. Results dP/dt mean PA showed a significant correlation with systolic pressure of the pulmonary artery ( n = 142, R 2 = 56%, p < 0.001), pulmonary vascular resistance ( n = 142, R 2 = 51%, p < 0.001), the rate of pressure change in the right ventricle ( n = 142, R 2 = 53%, p < 0.001), and the right ventricular fractional area change ( n = 110, R 2 = 51%, p < 0.001). Receiver operating characteristic curve analysis showed that dP/dt mean PA had the highest prognostic value in predicting increase in the 6-minute walk test and decrease in the N-terminal-probrain natriuretic peptide after the initiation of PAH therapy, with an area under the curve of 0.73. Conclusion Our findings suggest that dP/dt mean PA may be a useful prognostic indicator in the treatment of patients with PAH, and further research is warranted to validate this parameter.
Collapse
|
72
|
Fike CD, Aschner JL. Pharmacotherapy for Pulmonary Hypertension in Infants with Bronchopulmonary Dysplasia: Past, Present, and Future. Pharmaceuticals (Basel) 2023; 16:503. [PMID: 37111262 PMCID: PMC10141152 DOI: 10.3390/ph16040503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Approximately 8-42% of premature infants with chronic lung disease of prematurity, bronchopulmonary dysplasia (BPD), develop pulmonary hypertension (PH). Infants with BPD-PH carry alarmingly high mortality rates of up to 47%. Effective PH-targeted pharmacotherapies are desperately needed for these infants. Although many PH-targeted pharmacotherapies are commonly used to treat BPD-PH, all current use is off-label. Moreover, all current recommendations for the use of any PH-targeted therapy in infants with BPD-PH are based on expert opinion and consensus statements. Randomized Control Trials (RCTs) are needed to determine the efficacy of PH-targeted treatments in premature infants with or at risk of BPD-PH. Prior to performing efficacy RCTs, studies need to be conducted to obtain pharmacokinetic, pharmacodynamic, and safety data for any pharmacotherapy used in this understudied and fragile patient population. This review will discuss current and needed treatment strategies, identify knowledge deficits, and delineate both challenges to be overcome and approaches to be taken to develop effective PH-targeted pharmacotherapies that will improve outcomes for premature infants with or at risk of developing BPD-PH.
Collapse
Affiliation(s)
- Candice D. Fike
- Department of Pediatrics, University of Utah Health, Salt Lake City, UT 84108, USA
| | - Judy L. Aschner
- Department of Pediatrics, Joseph M. Sanzari Children’s Hospital at Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| |
Collapse
|
73
|
Deep Eutectic Liquids as a Topical Vehicle for Tadalafil: Characterisation and Potential Wound Healing and Antimicrobial Activity. Molecules 2023; 28:molecules28052402. [PMID: 36903651 PMCID: PMC10005105 DOI: 10.3390/molecules28052402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Deep eutectic solvents (DESs) and ionic liquids (ILs) offer novel opportunities for several pharmaceutical applications. Their tunable properties offer control over their design and applications. Choline chloride (CC)-based DESs (referred to as Type III eutectics) offer superior advantages for various pharmaceutical and therapeutic applications. Here, CC-based DESs of tadalafil (TDF), a selective phosphodiesterase type 5 (PDE-5) enzyme inhibitor, were designed for implementation in wound healing. The adopted approach provides formulations for the topical application of TDF, hence avoiding systemic exposure. To this end, the DESs were chosen based on their suitability for topical application. Then, DES formulations of TDF were prepared, yielding a tremendous increase in the equilibrium solubility of TDF. Lidocaine (LDC) was included in the formulation with TDF to provide a local anaesthetic effect, forming F01. The addition of propylene glycol (PG) to the formulation was attempted to reduce the viscosity, forming F02. The formulations were fully characterised using NMR, FTIR and DCS techniques. According to the obtained characterisation results, the drugs were soluble in the DES with no detectable degradation. Our results demonstrated the utility of F01 in wound healing in vivo using cut wound and burn wound models. Significant retraction of the cut wound area was observed within three weeks of the application of F01 when compared with DES. Furthermore, the utilisation of F01 resulted in less scarring of the burn wounds than any other group including the positive control, thus rendering it a candidate formula for burn dressing formulations. We demonstrated that the slower healing process associated with F01 resulted in less scarring potential. Lastly, the antimicrobial activity of the DES formulations was demonstrated against a panel of fungi and bacterial strains, thus providing a unique wound healing process via simultaneous prevention of wound infection. In conclusion, this work presents the design and application of a topical vehicle for TDF with novel biomedical applications.
Collapse
|
74
|
Kukreja RC, Wang R, Koka S, Das A, Samidurai A, Xi L. Treating diabetes with combination of phosphodiesterase 5 inhibitors and hydroxychloroquine-a possible prevention strategy for COVID-19? Mol Cell Biochem 2023; 478:679-696. [PMID: 36036333 PMCID: PMC9421626 DOI: 10.1007/s11010-022-04520-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/30/2022] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes (T2D) is one of the major risk factors for developing cardiovascular disease and the resultant devastating morbidity and mortality. The key features of T2D are hyperglycemia, hyperlipidemia, insulin resistance, and impaired insulin secretion. Patients with diabetes and myocardial infarction have worse prognosis than those without T2D. Moreover, obesity and T2D are recognized risk factors in developing severe form of COVID-19 with higher mortality rate. The current lines of drug therapy are insufficient to control T2D and its serious cardiovascular complications. Phosphodiesterase 5 (PDE5) is a cGMP specific enzyme, which is the target of erectile dysfunction drugs including sildenafil, vardenafil, and tadalafil. Cardioprotective effects of PDE5 inhibitors against ischemia/reperfusion (I/R) injury were reported in normal and diabetic animals. Hydroxychloroquine (HCQ) is a widely used antimalarial and anti-inflammatory drug and its hyperglycemia-controlling effect in diabetic patients is also under investigation. This review provides our perspective of a potential use of combination therapy of PDE5 inhibitor with HCQ to reduce cardiovascular risk factors and myocardial I/R injury in T2D. We previously observed that diabetic mice treated with tadalafil and HCQ had significantly reduced fasting blood glucose and lipid levels, increased plasma insulin and insulin-like growth factor-1 levels, and improved insulin sensitivity, along with smaller myocardial infarct size following I/R. The combination treatment activated Akt/mTOR cellular survival pathway, which was likely responsible for the salutary effects. Therefore, pretreatment with PDE5 inhibitor and HCQ may be a potentially useful therapy not only for controlling T2D but also reducing the rate and severity of COVID-19 infection in the vulnerable population of diabetics.
Collapse
Affiliation(s)
- Rakesh C Kukreja
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| | - Rui Wang
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Saisudha Koka
- Department of Microbiology, Immunology and Pharmacology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916-6024, USA
| | - Anindita Das
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Arun Samidurai
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D, Box 980204, Richmond, VA, 23298-0204, USA.
| |
Collapse
|
75
|
Pi H, Xia L, Ralph DD, Rayner SG, Shojaie A, Leary PJ, Gharib SA. Metabolomic Signatures Associated With Pulmonary Arterial Hypertension Outcomes. Circ Res 2023; 132:254-266. [PMID: 36597887 PMCID: PMC9904878 DOI: 10.1161/circresaha.122.321923] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a complex disease characterized by progressive right ventricular (RV) failure leading to significant morbidity and mortality. Investigating metabolic features and pathways associated with RV dilation, mortality, and measures of disease severity can provide insight into molecular mechanisms, identify subphenotypes, and suggest potential therapeutic targets. METHODS We collected data from a prospective cohort of PAH participants and performed untargeted metabolomic profiling on 1045 metabolites from circulating blood. Analyses were intended to identify metabolomic differences across a range of common metrics in PAH (eg, dilated versus nondilated RV). Partial least squares discriminant analysis was first applied to assess the distinguishability of relevant outcomes. Significantly altered metabolites were then identified using linear regression, and Cox regression models (as appropriate for the specific outcome) with adjustments for age, sex, body mass index, and PAH cause. Models exploring RV maladaptation were further adjusted for pulmonary vascular resistance. Pathway enrichment analysis was performed to identify significantly dysregulated processes. RESULTS A total of 117 participants with PAH were included. Partial least squares discriminant analysis showed cluster differentiation between participants with dilated versus nondilated RVs, survivors versus nonsurvivors, and across a range of NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels, REVEAL 2.0 composite scores, and 6-minute-walk distances. Polyamine and histidine pathways were associated with differences in RV dilation, mortality, NT-proBNP, REVEAL score, and 6-minute walk distance. Acylcarnitine pathways were associated with NT-proBNP, REVEAL score, and 6-minute walk distance. Sphingomyelin pathways were associated with RV dilation and NT-proBNP after adjustment for pulmonary vascular resistance. CONCLUSIONS Distinct plasma metabolomic profiles are associated with RV dilation, mortality, and measures of disease severity in PAH. Polyamine, histidine, and sphingomyelin metabolic pathways represent promising candidates for identifying patients at high risk for poor outcomes and investigation into their roles as markers or mediators of disease progression and RV adaptation.
Collapse
Affiliation(s)
- Hongyang Pi
- University of Washington, Department of Medicine
| | - Lu Xia
- University of Washington, Department of Biostatistics
| | | | | | - Ali Shojaie
- University of Washington, Department of Biostatistics
| | - Peter J. Leary
- University of Washington, Department of Medicine
- University of Washington, Department of Epidemiology
| | | |
Collapse
|
76
|
Condina A, Lykina T. Treatment Outcomes of Diabetic Patients With Erectile Dysfunction Prescribed High-Dose Tadalafil. Cureus 2023; 15:e34812. [PMID: 36915849 PMCID: PMC10008086 DOI: 10.7759/cureus.34812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 02/11/2023] Open
Abstract
Objective: To assess the treatment outcome of diabetic patients with erectile dysfunction who are prescribed an alternate daily high dose of tadalafil over a 120-day treatment period. Methods: This was a single-site, retrospective, observational study of 63 diabetic men with erectile dysfunction prescribed an alternate daily dose of 30mg of tadalafil between January 1, 2021, and December 31, 2021. Treatment outcomes accessed medication compliance, adverse drug reactions, and patient treatment satisfaction at 60- and 120-days treatment. Results: Mean age of patients was 58.3 years and included patients who suffered from comorbidities ranging from hypertension (54.0%), dyslipidemia (52.3%), and depression (9.5%). At 60 days in the study, 69.8% were satisfied and continued the treatment. However, at the end of the 120-treatment period, a low number of men (17.5%) were satisfied with the treatment and therefore did not remain on the treatment protocol. These patients reported a lack of medication dose efficacy (86.5%), non-compliance with treatment as prescribed (65.4%), and adverse drug reactions (30.8%) as reasons for discontinuing treatment. None of the identified patient demographics were significantly associated with 120-day continuous treatment. Similarly, the odds ratio derived from the logistic regression did not demonstrate an association between the selected variables and the outcome of 120-day continuous treatment retention. Conclusion: This retrospective case series study found that 82.5% of diabetic patients were not satisfied with treatment with alternate dosing of 30mg tadalafil to treat their ED at the end of the 120-day treatment period suggesting an alternative treatment plan.
Collapse
Affiliation(s)
| | - Tatiana Lykina
- Allergy and Immunology, Oceania University of Medicine, Samoa, AUS
| |
Collapse
|
77
|
Bousseau S, Sobrano Fais R, Gu S, Frump A, Lahm T. Pathophysiology and new advances in pulmonary hypertension. BMJ MEDICINE 2023; 2:e000137. [PMID: 37051026 PMCID: PMC10083754 DOI: 10.1136/bmjmed-2022-000137] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/02/2023] [Indexed: 04/14/2023]
Abstract
Pulmonary hypertension is a progressive and often fatal cardiopulmonary condition characterised by increased pulmonary arterial pressure, structural changes in the pulmonary circulation, and the formation of vaso-occlusive lesions. These changes lead to increased right ventricular afterload, which often progresses to maladaptive right ventricular remodelling and eventually death. Pulmonary arterial hypertension represents one of the most severe and best studied types of pulmonary hypertension and is consistently targeted by drug treatments. The underlying molecular pathogenesis of pulmonary hypertension is a complex and multifactorial process, but can be characterised by several hallmarks: inflammation, impaired angiogenesis, metabolic alterations, genetic or epigenetic abnormalities, influence of sex and sex hormones, and abnormalities in the right ventricle. Current treatments for pulmonary arterial hypertension and some other types of pulmonary hypertension target pathways involved in the control of pulmonary vascular tone and proliferation; however, these treatments have limited efficacy on patient outcomes. This review describes key features of pulmonary hypertension, discusses current and emerging therapeutic interventions, and points to future directions for research and patient care. Because most progress in the specialty has been made in pulmonary arterial hypertension, this review focuses on this type of pulmonary hypertension. The review highlights key pathophysiological concepts and emerging therapeutic directions, targeting inflammation, cellular metabolism, genetics and epigenetics, sex hormone signalling, bone morphogenetic protein signalling, and inhibition of tyrosine kinase receptors.
Collapse
Affiliation(s)
- Simon Bousseau
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Rafael Sobrano Fais
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
| | - Sue Gu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Pulmonary Research Lab, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrea Frump
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tim Lahm
- Division of Pulmonary, Sleep, and Critical Care Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, CO, USA
| |
Collapse
|
78
|
Swisher JW, Weaver E. The Evolving Management and Treatment Options for Patients with Pulmonary Hypertension: Current Evidence and Challenges. Vasc Health Risk Manag 2023; 19:103-126. [PMID: 36895278 PMCID: PMC9990521 DOI: 10.2147/vhrm.s321025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary hypertension may develop as a disease process specific to pulmonary arteries with no identifiable cause or may occur in relation to other cardiopulmonary and systemic illnesses. The World Health Organization (WHO) classifies pulmonary hypertensive diseases on the basis of primary mechanisms causing increased pulmonary vascular resistance. Effective management of pulmonary hypertension begins with accurately diagnosing and classifying the disease in order to determine appropriate treatment. Pulmonary arterial hypertension (PAH) is a particularly challenging form of pulmonary hypertension as it involves a progressive, hyperproliferative arterial process that leads to right heart failure and death if untreated. Over the last two decades, our understanding of the pathobiology and genetics behind PAH has evolved and led to the development of several targeted disease modifiers that ameliorate hemodynamics and quality of life. Effective risk management strategies and more aggressive treatment protocols have also allowed better outcomes for patients with PAH. For those patients who experience progressive PAH with medical therapy, lung transplantation remains a life-saving option. More recent work has been directed at developing effective treatment strategies for other forms of pulmonary hypertension, such as chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary hypertension due to other lung or heart diseases. The discovery of new disease pathways and modifiers affecting the pulmonary circulation is an ongoing area of intense investigation.
Collapse
Affiliation(s)
- John W Swisher
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| | - Eric Weaver
- East Tennessee Pulmonary Hypertension Center, StatCare Pulmonary Consultants, Knoxville, TN, USA
| |
Collapse
|
79
|
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2023; 61:2200879. [PMID: 36028254 DOI: 10.1183/13993003.00879-2022] [Citation(s) in RCA: 797] [Impact Index Per Article: 398.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France, Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Gabor Kovacs
- University Clinic of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Marius M Hoeper
- Respiratory Medicine, Hannover Medical School, Hanover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), member of the German Centre of Lung Research (DZL), Hanover, Germany
| | - Roberto Badagliacca
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Roma, Italy
- Dipartimento Cardio-Toraco-Vascolare e Chirurgia dei Trapianti d'Organo, Policlinico Umberto I, Roma, Italy
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Beatrix Children's Hospital, Dept of Paediatric Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Margarita Brida
- Department of Sports and Rehabilitation Medicine, Medical Faculty University of Rijeka, Rijeka, Croatia
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton and Harefield Hospitals, Guys and St Thomas's NHS Trust, London, UK
| | - Jørn Carlsen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J S Coats
- Faculty of Medicine, University of Warwick, Coventry, UK
- Faculty of Medicine, Monash University, Melbourne, Australia
| | - Pilar Escribano-Subias
- Pulmonary Hypertension Unit, Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBER-CV (Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pisana Ferrari
- ESC Patient Forum, Sophia Antipolis, France
- AIPI, Associazione Italiana Ipertensione Polmonare, Bologna, Italy
| | - Diogenes S Ferreira
- Alergia e Imunologia, Hospital de Clinicas, Universidade Federal do Parana, Curitiba, Brazil
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, University Hospital Giessen, Justus-Liebig University, Giessen, Germany
- Department of Pneumology, Kerckhoff Klinik, Bad Nauheim, Germany
- Department of Medicine, Imperial College London, London, UK
| | - George Giannakoulas
- Cardiology Department, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Eckhard Mayer
- Thoracic Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Gergely Meszaros
- ESC Patient Forum, Sophia Antipolis, France
- European Lung Foundation (ELF), Sheffield, UK
| | - Blin Nagavci
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Karen M Olsson
- Clinic of Respiratory Medicine, Hannover Medical School, member of the German Center of Lung Research (DZL), Hannover, Germany
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Diseases Unit, Royal Papworth Hospital, Cambridge, UK
| | | | - Göran Rådegran
- Department of Cardiology, Clinical Sciences Lund, Faculty of Medicine, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Gerald Simonneau
- Faculté Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Centre de Référence de l'Hypertension Pulmonaire, Hopital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Olivier Sitbon
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
- Faculté Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Mark Toshner
- Dept of Medicine, Heart Lung Research Institute, University of Cambridge, Royal Papworth NHS Trust, Cambridge, UK
| | - Jean-Luc Vachiery
- Department of Cardiology, Pulmonary Vascular Diseases and Heart Failure Clinic, HUB Hôpital Erasme, Brussels, Belgium
| | | | - Marion Delcroix
- Clinical Department of Respiratory Diseases, Centre of Pulmonary Vascular Diseases, University Hospitals of Leuven, Leuven, Belgium
- The two chairpersons (M. Delcroix and S. Rosenkranz) contributed equally to the document and are joint corresponding authors
| | - Stephan Rosenkranz
- Clinic III for Internal Medicine (Department of Cardiology, Pulmonology and Intensive Care Medicine), and Cologne Cardiovascular Research Center (CCRC), Heart Center at the University Hospital Cologne, Köln, Germany
- The two chairpersons (M. Delcroix and S. Rosenkranz) contributed equally to the document and are joint corresponding authors
| |
Collapse
|
80
|
Ghosh S, Johanns TM, Chheda MG, Liu E, Butt O, Abraham C, Badiyan S, Huang Y, DeNardo D, Kim AH, Hallahan D, Thotala D, Huang J. A pilot phase Ib study to evaluate tadalafil to overcome immunosuppression during chemoradiotherapy for IDH-wild-type glioblastoma. Neurooncol Adv 2023; 5:vdad088. [PMID: 37554225 PMCID: PMC10406429 DOI: 10.1093/noajnl/vdad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) are critical regulators of immunosuppression and radioresistance in glioblastoma (GBM). The primary objective of this pilot phase Ib study was to validate the on-target effect of tadalafil on inhibiting MDSCs in peripheral blood and its safety when combined with chemoradiotherapy in GBM patients. Methods Patients with newly diagnosed IDH-wild-type GBM received radiation therapy (RT) and temozolomide (TMZ) combined with oral tadalafil for 2 months. A historical cohort of 12 GBM patients treated with RT and TMZ was used as the comparison group. The ratio of MDSCs, T cells, and cytokines at week 6 of RT compared to baseline were analyzed using flow cytometry. Progression-free survival (PFS) and overall survival (OS) were estimated by the Kaplan-Meier method. Results Tadalafil was well tolerated with no dose-limiting toxicity among 16 evaluable patients. The tadalafil cohort had a significantly lower ratio of circulating MDSCs than the control: granulocytic-MDSCs (mean 0.78 versus 3.21, respectively, P = 0.01) and monocytic-MDSCs (1.02 versus 1.96, respectively, P = 0.006). Tadalafil increased the CD8 ratio compared to the control (1.99 versus 0.70, respectively, P < 0.001), especially the PD-1-CD8 T cells expressing Ki-67, CD38, HLA-DR, CD28, and granzyme B. Proinflammatory cytokine IL-1β was also significantly increased after tadalafil compared to the control. The tadalafil cohort did not have significantly different PFS and OS than the historical control. Conclusions Concurrent tadalafil is well tolerated during chemoradiotherapy for GBM. Tadalafil is associated with a reduction of peripheral MDSCs after chemoradiotherapy and increased CD8 T-cell proliferation and activation.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Tanner M Johanns
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Milan G Chheda
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric Liu
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Omar Butt
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher Abraham
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shahed Badiyan
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - David DeNardo
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dennis Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri, USA
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
81
|
How to Treat Right Heart Failure. Tips for Clinicians in Everyday Practice. Heart Fail Clin 2023; 19:125-135. [DOI: 10.1016/j.hfc.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
82
|
Cardiopulmonary Exercise Testing in Pulmonary Arterial Hypertension. Heart Fail Clin 2023; 19:35-43. [DOI: 10.1016/j.hfc.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
83
|
Muacevic A, Adler JR, Ganipineni VDP, Gorle SA, Gaddipati S, Bseiso A, Pizzorno G, Shaik TA. Effect of Phosphodiesterase-5 (PDE-5) Inhibitors on Clinical Outcomes in Patients With Pulmonary Hypertension: A Meta-Analysis of Randomized Control Trials. Cureus 2023; 15:e33363. [PMID: 36751241 PMCID: PMC9897597 DOI: 10.7759/cureus.33363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/05/2023] Open
Abstract
We intended to summarize the most recent research pertaining to the use of phosphodiesterase-5 (PDE5) inhibitors in pulmonary hypertension in light of recent developments in the knowledge of the pathophysiological mechanisms and treatments for pulmonary hypertension, with major contributions in the area in the last decade. The aim of this meta-analysis is to determine the efficacy of PDE5 inhibitors for pulmonary hypertension in adults. We followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines to carry out this meta-analysis. Online database searching to identify eligible trials was performed in MEDLINE, EMBASE, and the Cochrane Library by two authors independently. Outcomes assessed in the current meta-analysis included change in the cardiac index from baseline in liters per minute per square meter (L/min/m2), mean peripheral arterial pressure (PAP) in mm Hg, mortality, hospitalization, and six-minute walking distance (6MWD) in meters (m). Overall, 17 articles met the inclusion criteria and were included in the current meta-analysis. PDE5 inhibitors significantly improve cardiac index (mean difference: 0.18, 95% CI: 0.04, 0.32, p-value: 0.01), mean PAP (mean difference: -5.61, 95% CI: -7.60, -3.62, p-value: 0.01), and 6MWD (mean difference: 26.26, 95% CI: 16.95, 35.57, p-value: 0.001) as compared to the patients in the control group. No significant difference was found in terms of risk of mortality (risk ratio (RR): 0.51, 95% CI: 0.17, 1.54) and risk of hospitalization (RR: 0.59, 95% CI: 0.23, 1.55) between the two groups. The current meta-analysis concluded that PDE5 inhibitors improve 6MWD, mean PAP, and cardiac index in patients with pulmonary hypertension. However, no significant difference was reported in terms of mortality and hospitalization between the two groups.
Collapse
|
84
|
Narechania S, Malesker MA. Drug Interactions Associated With Therapies for Pulmonary Arterial Hypertension. J Pharm Technol 2022; 38:349-359. [PMID: 36311309 PMCID: PMC9608103 DOI: 10.1177/87551225221114001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Objective: To evaluate the potential for drug interactions with therapies for pulmonary arterial hypertension (PAH). Treatments include calcium channel blockers, phosphodiesterase type 5 inhibitors, endothelin receptor antagonists, guanylate cyclase stimulators, prostacyclin analogues, and prostacyclin receptor agonists. Data Sources: A systemic literature search (January 1980-December 2021) was performed using PubMed and EBSCO to locate relevant articles. The mesh terms used included each specific medication available as well as "drug interactions." DAILYMED was used for product-specific drug interactions. Study Selection and Data Extraction: The search was conducted to identify drug interactions with PAH treatments. The search was limited to those articles studying human applications with PAH treatments and publications using the English language. Case reports, clinical trials, review articles, treatment guidelines, and package labeling were selected for inclusion. Data Synthesis: Primary literature and package labeling indicate that PAH treatments are subject to pharmacokinetic and pharmacodynamic interactions. The management of PAH is rapidly evolving. As more and more evidence becomes available for the use of combination therapy in PAH, the increasing use of combination therapy increases the risk of drug-drug interactions. Pulmonary arterial hypertension is also associated with other comorbidities that require concomitant pharmacotherapy. Conclusion: The available literature indicates that PAH therapies are associated with clinically significant drug interactions and the potential for subsequent adverse reactions. Clinicians in all practice settings should be mindful that increased awareness of drug interactions with PAH therapy will ensure optimal management and patient safety.
Collapse
Affiliation(s)
- Shraddha Narechania
- Department of Pulmonary, Critical Care and Sleep Medicine, CHI Health Creighton University Medical Center, University Campus, Omaha, NE, USA
| | - Mark A Malesker
- Pharmacy Practice, Creighton University School of Pharmacy and Health Professions, Omaha, NE, USA
| |
Collapse
|
85
|
Zhu J, Yang L, Jia Y, Balistrieri A, Fraidenburg DR, Wang J, Tang H, Yuan JXJ. Pathogenic Mechanisms of Pulmonary Arterial Hypertension: Homeostasis Imbalance of Endothelium-Derived Relaxing and Contracting Factors. JACC. ASIA 2022; 2:787-802. [PMID: 36713766 PMCID: PMC9877237 DOI: 10.1016/j.jacasi.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease. Sustained pulmonary vasoconstriction and concentric pulmonary vascular remodeling contribute to the elevated pulmonary vascular resistance and pulmonary artery pressure in PAH. Endothelial cells regulate vascular tension by producing endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs). Homeostasis of EDRF and EDCF production has been identified as a marker of the endothelium integrity. Impaired synthesis or release of EDRFs induces persistent vascular contraction and pulmonary artery remodeling, which subsequently leads to the development and progression of PAH. In this review, the authors summarize how EDRFs and EDCFs affect pulmonary vascular homeostasis, with special attention to the recently published novel mechanisms related to endothelial dysfunction in PAH and drugs associated with EDRFs and EDCFs.
Collapse
Key Words
- 5-HT, 5-hydroxytryptamine
- ACE, angiotensin-converting enzyme
- EC, endothelial cell
- EDCF, endothelium-derived contracting factor
- EDRF, endothelium-derived relaxing factor
- ET, endothelin
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cell
- PG, prostaglandin
- TPH, tryptophan hydroxylase
- TXA2, thromboxane A2
- cGMP, cyclic guanosine monophosphate
- endothelial dysfunction
- endothelium-derived relaxing factor
- pulmonary arterial hypertension
- vascular homeostasis
Collapse
Affiliation(s)
- Jinsheng Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yangfan Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Dustin R. Fraidenburg
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
86
|
Weatherald J, Boucly A, Peters A, Montani D, Prasad K, Psotka MA, Zannad F, Gomberg-Maitland M, McLaughlin V, Simonneau G, Humbert M. The evolving landscape of pulmonary arterial hypertension clinical trials. Lancet 2022; 400:1884-1898. [PMID: 36436527 DOI: 10.1016/s0140-6736(22)01601-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
Although it is a rare disease, the number of available therapeutic options for treating pulmonary arterial hypertension has increased since the late 1990s, with multiple drugs developed that are shown to be effective in phase 3 randomised controlled trials. Despite considerable advancements in pulmonary arterial hypertension treatment, prognosis remains poor. Existing therapies target pulmonary endothelial dysfunction with vasodilation and anti-proliferative effects. Novel therapies that target proliferative vascular remodelling and affect important outcomes are urgently needed. There is need for additional innovations in clinical trial design so that all emerging candidate therapies can be rigorously studied. Pulmonary arterial hypertension trial design has shifted from short-term submaximal exercise capacity as a primary endpoint, to larger clinical event-driven trial outcomes. Event-driven pulmonary arterial hypertension trials could face feasibility and efficiency issues in the future because increasing sample sizes and longer follow-up durations are needed, which would be problematic in such a rare disease. Enrichment strategies, innovative and alternative trial designs, and novel trial endpoints are potential solutions that could improve the efficiency of future pulmonary arterial hypertension trials while maintaining robustness and clinically meaningful evidence.
Collapse
Affiliation(s)
- Jason Weatherald
- Department of Medicine, Division of Pulmonary Medicine, University of Alberta, Edmonton, AB, Canada
| | - Athénaïs Boucly
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Anthony Peters
- Duke University Medical Center, Duke Clinical Research Institute, Durham, NC, USA
| | - David Montani
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Krishna Prasad
- Medicines and Healthcare products Regulatory Agency, London, UK
| | - Mitchell A Psotka
- Inova Heart and Vascular Institute, Falls Church, VA, USA; United States Food and Drug Administration, Silver Spring, MD, USA
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique, Cardiovascular and Renal Clinical Trialists, Université de Lorraine, Nancy, France
| | - Mardi Gomberg-Maitland
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vallerie McLaughlin
- Department of Internal Medicine, Division of Cardiology, Frankel Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI , USA
| | - Gérald Simonneau
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
| |
Collapse
|
87
|
Zhao J, Wang Q, Deng X, Qian J, Tian Z, Liu Y, Li M, Zeng X. The treatment strategy of connective tissue disease associated pulmonary arterial hypertension: Evolving into the future. Pharmacol Ther 2022; 239:108192. [DOI: 10.1016/j.pharmthera.2022.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
|
88
|
Otani N, Tomoe T, Kawabe A, Sugiyama T, Horie Y, Sugimura H, Yasu T, Nakamoto T. Recent Advances in the Treatment of Pulmonary Arterial Hypertension. Pharmaceuticals (Basel) 2022; 15:1277. [PMID: 36297387 PMCID: PMC9609229 DOI: 10.3390/ph15101277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 09/29/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease in which stenosis or obstruction of the pulmonary arteries (PAs) causes an increase in PA pressure, leading to right-sided heart failure and death. Basic research has revealed a decrease in the levels of endogenous vasodilators, such as prostacyclin, and an increase in the levels of endogenous vasoconstrictors, such as endothelin, in patients with PAH, leading to the development of therapeutic agents. Currently, therapeutic agents for PAH target three pathways that are selective for PAs: the prostacyclin, endothelin, and nitric oxide pathways. These treatments improve the prognosis of PAH patients. In this review, we introduce new drug therapies and provide an overview of the current therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Takaaki Nakamoto
- Department of Cardiology, Dokkyo Medical University Nikkyo Medical Center, 632 Takatoku, Nikko 321-2593, Japan
| |
Collapse
|
89
|
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022; 43:3618-3731. [PMID: 36017548 DOI: 10.1093/eurheartj/ehac237] [Citation(s) in RCA: 1734] [Impact Index Per Article: 578.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
90
|
Hoeper MM, Dwivedi K, Pausch C, Lewis RA, Olsson KM, Huscher D, Pittrow D, Grünig E, Staehler G, Vizza CD, Gall H, Distler O, Opitz C, Gibbs JSR, Delcroix M, Park DH, Ghofrani HA, Ewert R, Kaemmerer H, Kabitz HJ, Skowasch D, Behr J, Milger K, Lange TJ, Wilkens H, Seyfarth HJ, Held M, Dumitrescu D, Tsangaris I, Vonk-Noordegraaf A, Ulrich S, Klose H, Claussen M, Eisenmann S, Schmidt KH, Swift AJ, Thompson AAR, Elliot CA, Rosenkranz S, Condliffe R, Kiely DG, Halank M. Phenotyping of idiopathic pulmonary arterial hypertension: a registry analysis. THE LANCET. RESPIRATORY MEDICINE 2022; 10:937-948. [PMID: 35777416 PMCID: PMC9514996 DOI: 10.1016/s2213-2600(22)00097-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Among patients meeting diagnostic criteria for idiopathic pulmonary arterial hypertension (IPAH), there is an emerging lung phenotype characterised by a low diffusion capacity for carbon monoxide (DLCO) and a smoking history. The present study aimed at a detailed characterisation of these patients. METHODS We analysed data from two European pulmonary hypertension registries, COMPERA (launched in 2007) and ASPIRE (from 2001 onwards), to identify patients diagnosed with IPAH and a lung phenotype defined by a DLCO of less than 45% predicted and a smoking history. We compared patient characteristics, response to therapy, and survival of these patients to patients with classical IPAH (defined by the absence of cardiopulmonary comorbidities and a DLCO of 45% or more predicted) and patients with pulmonary hypertension due to lung disease (group 3 pulmonary hypertension). FINDINGS The analysis included 128 (COMPERA) and 185 (ASPIRE) patients with classical IPAH, 268 (COMPERA) and 139 (ASPIRE) patients with IPAH and a lung phenotype, and 910 (COMPERA) and 375 (ASPIRE) patients with pulmonary hypertension due to lung disease. Most patients with IPAH and a lung phenotype had normal or near normal spirometry, a severe reduction in DLCO, with the majority having no or a mild degree of parenchymal lung involvement on chest computed tomography. Patients with IPAH and a lung phenotype (median age, 72 years [IQR 65-78] in COMPERA and 71 years [65-76] in ASPIRE) and patients with group 3 pulmonary hypertension (median age 71 years [65-77] in COMPERA and 69 years [63-74] in ASPIRE) were older than those with classical IPAH (median age, 45 years [32-60] in COMPERA and 52 years [38-64] in ASPIRE; p<0·0001 for IPAH with a lung phenotype vs classical IPAH in both registries). While 99 (77%) patients in COMPERA and 133 (72%) patients in ASPIRE with classical IPAH were female, there was a lower proportion of female patients in the IPAH and a lung phenotype cohort (95 [35%] COMPERA; 75 [54%] ASPIRE), which was similar to group 3 pulmonary hypertension (336 [37%] COMPERA; 148 [39%] ASPIRE]). Response to pulmonary arterial hypertension therapies at first follow-up was available from COMPERA. Improvements in WHO functional class were observed in 54% of patients with classical IPAH, 26% of patients with IPAH with a lung phenotype, and 22% of patients with group 3 pulmonary hypertension (p<0·0001 for classical IPAH vs IPAH and a lung phenotype, and p=0·194 for IPAH and a lung phenotype vs group 3 pulmonary hypertension); median improvements in 6 min walking distance were 63 m, 25 m, and 23 m for these cohorts respectively (p=0·0015 for classical IPAH vs IPAH and a lung phenotype, and p=0·64 for IPAH and a lung phenotype vs group 3 pulmonary hypertension), and median reductions in N-terminal-pro-brain-natriuretic-peptide were 58%, 27%, and 16% respectively (p=0·0043 for classical IPAH vs IPAH and a lung phenotype, and p=0·14 for IPAH and a lung phenotype vs group 3 pulmonary hypertension). In both registries, survival of patients with IPAH and a lung phenotype (1 year, 89% in COMPERA and 79% in ASPIRE; 5 years, 31% in COMPERA and 21% in ASPIRE) and group 3 pulmonary hypertension (1 year, 78% in COMPERA and 64% in ASPIRE; 5 years, 26% in COMPERA and 18% in ASPIRE) was worse than survival of patients with classical IPAH (1 year, 95% in COMPERA and 98% in ASPIRE; 5 years, 84% in COMPERA and 80% in ASPIRE; p<0·0001 for IPAH with a lung phenotype vs classical IPAH in both registries). INTERPRETATION A cohort of patients meeting diagnostic criteria for IPAH with a distinct, presumably smoking-related form of pulmonary hypertension accompanied by a low DLCO, resemble patients with pulmonary hypertension due to lung disease rather than classical IPAH. These observations have pathogenetic, diagnostic, and therapeutic implications, which require further exploration. FUNDING COMPERA is funded by unrestricted grants from Acceleron, Bayer, GlaxoSmithKline, Janssen, and OMT. The ASPIRE Registry is supported by Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
Collapse
Affiliation(s)
- Marius M Hoeper
- Clinic of Respiratory Medicine, Hannover Medical School, member of the German Center of Lung Research (DZL), Germany.
| | - Krit Dwivedi
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Christine Pausch
- GWT-TUD, Epidemiological Centre, Technical University Dresden, Dresden, Germany
| | - Robert A Lewis
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Karen M Olsson
- Clinic of Respiratory Medicine, Hannover Medical School, member of the German Center of Lung Research (DZL), Germany
| | - Doerte Huscher
- Institute of Biometry and Clinical Epidemiology, and Berlin Insitute of Health, Charité-Universitätsmedizin, Berlin, Germany
| | - David Pittrow
- GWT-TUD, Epidemiological Centre, Technical University Dresden, Dresden, Germany; Institute for Clinical Pharmacology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Translational Lung Research Center Heidelberg, member of the German Center for Lung Research (DZL), Germany
| | | | - Carmine Dario Vizza
- Dipartimento di Scienze Cliniche Internistiche, Anestiologiche e Cardiolohiche, Sapienza, University of Rome, Rome, Italy
| | - Henning Gall
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian Opitz
- Department of Cardiology, DRK Kliniken Berlin Westend, Berlin, Germany
| | - John Simon R Gibbs
- Department of Cardiology, National Heart & Lung Institute, Imperial College London, London, UK
| | - Marion Delcroix
- Clinical Department of Respiratory Diseases, University Hospitals of Leuven and Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, Katholieke Universiteit Leuven University of Leuven, Leuven, Belgium
| | - Da-Hee Park
- Clinic of Respiratory Medicine, Hannover Medical School, member of the German Center of Lung Research (DZL), Germany
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, Giessen, Germany; Department of Medicine, Imperial College London, London, UK
| | - Ralf Ewert
- Clinic of Internal Medicine, Department of Respiratory Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Harald Kaemmerer
- Deutsches Herzzentrum München, Klinik für angeborene Herzfehler und Kinderkardiologie; TU München, Munich, Germany
| | - Hans-Joachim Kabitz
- Gemeinnützige Krankenhausbetriebsgesellschaft Konstanz, Medizinische Klinik II, Konstanz, Germany
| | - Dirk Skowasch
- Universitätsklinikum Bonn, Medizinische Klinik und Poliklinik II, Innere Medizin - Kardiologie/Pneumologie, Bonn, Germany
| | - Juergen Behr
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Germany
| | - Katrin Milger
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Germany
| | - Tobias J Lange
- University Medical Center Regensburg, Department of Internal Medicine II, Regensburg, Germany
| | - Heinrike Wilkens
- Klinik für Innere Medizin V, Pneumologie, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Hans-Jürgen Seyfarth
- Universitätsklinikum Leipzig, Medizinische Klinik und Poliklinik II, Abteilung für Pneumologie, Leipzig, Germany
| | - Matthias Held
- Department of Internal Medicine, Respiratory Medicine and Ventilatory Support, Medical Mission Hospital, Central Clinic Würzburg, Germany
| | - Daniel Dumitrescu
- Clinic for General and Interventional Cardiology and Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Iraklis Tsangaris
- Attikon University Hospital, 2nd Critical Care Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Anton Vonk-Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, dept of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Silvia Ulrich
- Clinic of Pulmonology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hans Klose
- Department of Respiratory Medicine, Eppendorf University Hospital, Hamburg, Germany
| | - Martin Claussen
- LungenClinic Grosshansdorf, Fachabteilung Pneumologie, Großhansdorf, Germany
| | - Stephan Eisenmann
- Universitätsklinikum Halle, Klinik für Innere Medizin I, Department of Respiratory Medicine, Halle, Germany
| | - Kai-Helge Schmidt
- Department of Cardiology and Center of Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andrew J Swift
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alfred A Roger Thompson
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Charlie A Elliot
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Stephan Rosenkranz
- Clinic III for Internal Medicine (Cardiology) and Center for Molecular Medicine, and the Cologne Cardiovascular Research Center, University of Cologne, Germany
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Michael Halank
- Universitätsklinikum Carl Gustav Carus der Technischen Universität Dresden, Medizinische Klinik und Poliklinik I, Dresden, Germany
| |
Collapse
|
91
|
Harari S, Wells AU, Wuyts WA, Nathan SD, Kirchgaessler KU, Bengus M, Behr J. The 6-min walk test as a primary end-point in interstitial lung disease. Eur Respir Rev 2022; 31:31/165/220087. [PMID: 36002171 DOI: 10.1183/16000617.0087-2022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
There is a need for clinical trial end-points to better assess how patients feel and function, so that interventions can be developed which alleviate symptoms and improve quality of life. Use of 6-min walk test (6MWT) outcomes as a primary end-point in interstitial lung disease (ILD) trials is growing, particularly for drugs targeting concurrent pulmonary hypertension. However, 6MWT outcomes may be influenced differentially by interstitial lung and pulmonary vascular components of ILD, making interpretation complicated. We propose that using 6MWT outcomes, including 6-min walk distance or oxygen desaturation, as primary end-points should depend upon the study population (how advanced the ILD is; whether vasculopathy is significant), the degree of disease progression, and, importantly, the effect of study treatment expected. We argue that the 6MWT as a single outcome measure is suitable as a primary end-point if the treatment goal is to improve functional performance or prevent disease progression within a study population of patients with advanced ILD or those with ILD and co-existent vasculopathy. In addition, we discuss the potential of composite primary end-points incorporating 6MWT outcomes, outlining important considerations to ensure that they are appropriate for the study population and treatment goals.
Collapse
Affiliation(s)
- Sergio Harari
- Dept of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,U.O. di Pneumologia e Terapia Semi-Intensiva Respiratoria, Ospedale San Guiseppe, MultiMedica IRCCS, Milan, Italy
| | - Athol U Wells
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK
| | - Wim A Wuyts
- Unit for Interstitial Lung Diseases, University of Leuven, Leuven, Belgium
| | - Steven D Nathan
- The Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | | | | | - Jürgen Behr
- Dept of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany .,Asklepios Fachkliniken München-Gauting, Comprehensive Pneumology Center, Munich, Germany
| |
Collapse
|
92
|
Pitre T, Su J, Cui S, Scanlan R, Chiang C, Husnudinov R, Khalid MF, Khan N, Leung G, Mikhail D, Saadat P, Shahid S, Mah J, Mielniczuk L, Zeraatkar D, Mehta S. Medications for the treatment of pulmonary arterial hypertension: a systematic review and network meta-analysis. Eur Respir Rev 2022; 31:31/165/220036. [PMID: 35948391 DOI: 10.1183/16000617.0036-2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND There is no consensus on the most effective treatments of pulmonary arterial hypertension (PAH). Our objective was to compare effects of medications for PAH. METHODS We searched MEDLINE, Embase, the Cochrane Central Register of Controlled Trials and Clinicaltrials.gov from inception to December 2021. We performed a frequentist random-effects network meta-analysis on all included trials. We rated the certainty of the evidence using the Grades of Recommendation, Assessment, Development, and Evaluation approach. RESULTS We included 53 randomised controlled trials with 10 670 patients. Combination therapy with endothelin receptor antagonist (ERA) plus phosphodiesterase-5 inhibitors (PDE5i) reduced clinical worsening (120.7 fewer events per 1000, 95% CI 136.8-93.4 fewer; high certainty) and was superior to either ERA or PDE5i alone, both of which reduced clinical worsening, as did riociguat monotherapy (all high certainty). PDE5i (24.9 fewer deaths per 1000, 95% CI 35.2 fewer to 2.1 more); intravenous/subcutaneous prostanoids (18.3 fewer deaths per 1000, 95% CI 28.6 fewer deaths to 0) and riociguat (29.1 fewer deaths per 1000, 95% CI 38.6 fewer to 8.7 more) probably reduce mortality as compared to placebo (all moderate certainty). Combination therapy with ERA+PDE5i (49.9 m, 95% CI 25.9-73.8 m) and riociguat (49.5 m, 95% CI 17.3-81.7 m) probably increase 6-min walk distance as compared to placebo (moderate certainty). CONCLUSION Current PAH treatments improve clinically important outcomes, although the degree and certainty of benefit vary between treatments.
Collapse
Affiliation(s)
- Tyler Pitre
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Johnny Su
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sonya Cui
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ryan Scanlan
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Christopher Chiang
- Division of Internal Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Renata Husnudinov
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | | | - Nadia Khan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Gareth Leung
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David Mikhail
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Pakeezah Saadat
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Shaneela Shahid
- Health Research Methods Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Jasmine Mah
- Dept of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | - Dena Zeraatkar
- Health Research Methods Evidence and Impact, McMaster University, Hamilton, ON, Canada.,Harvard Medical School, Harvard University, Boston, MA, USA.,D. Zeraatkar and S. Mehta contributed equally to this article as senior authors and supervised the work
| | - Sanjay Mehta
- Southwest Ontario PH Clinic, Division of Respirology, Dept of Medicine, Lawson Health Research Institute, London Health Sciences Centre, Schulich School of Medicine, Western University, London, ON, Canada.,PHA Canada, Vancouver, BC, Canada.,D. Zeraatkar and S. Mehta contributed equally to this article as senior authors and supervised the work
| |
Collapse
|
93
|
Badagliacca R, Vizza CD, Lang I, Sadushi-Kolici R, Papa S, Manzi G, Filomena D, Ogawa A, Shimokawahara H, Matsubara H. Pulmonary pressure recovery in idiopathic, hereditary and drug and toxin-induced pulmonary arterial hypertension: Determinants and clinical impact. Vascul Pharmacol 2022; 146:107099. [PMID: 36058492 DOI: 10.1016/j.vph.2022.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Over the past two decades randomized controlled trials of combination treatments for Pulmonary Arterial Hypertension (PAH) have demonstrated improvements of clinical status but only modest reductions in mean pulmonary pressure (mPAP). Recent experiences with upfront combination treatments including parenteral prostacyclins have shown more substantial mPAP reductions, and have provided grounds for reconsiderations of treatment. OBJECTIVES To evaluate the possibility of achieving mPAP <25 mmHg with current treatments, its determinants and the prognostic impact of mPAP reduction. METHODS 267 consecutive idiopathic, hereditary and drug and toxin-induced PAH patients treated with targeted therapies from three expert centers were followed with periodic clinical and hemodynamic assessments for survival detection. RESULTS Fifty-four (20.2%) patients achieved a mPAP <25 mmHg over 58 months (IQR 27-90) of treatment. Determinants of mPAP <25 mmHg were mPAP at diagnosis (HR 0.96, 95C.I. 0.93-0.98, p = 0.002) and an upfront combination strategy (double oral combination: HR 2.3, 95C.I. 1.10-4.76, p = 0.02; one oral plus parenteral prostanoid: HR 3.6, 95C.I. 1.39-9.37, p = 0.008; triple combination employing parenteral prostanoids: HR 12.9, 95C.I. 4.9-33.2, p = 0.0001). Seventy-three patients (27.3%) died. Survival rates were 90%, 79%, 70%, 55%, and 42% at 1, 3, 5, 10, and 15 years, respectively. Mean PAP during follow-up, days from diagnosis to prostanoid initiation and prostanoid maximum dose emerged as independent predictors of survival (Uno-C-index: 0.85). A mPAP ≤35 mmHg during follow-up was identified as the best cutoff value for prediction of survival. CONCLUSIONS Reduction to a mean PAP ≤ 35 mmHg appears to be a meaningful treatment target in idiopathic, hereditary and drug and toxin-induced pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy.
| | - Carmine Dario Vizza
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Irene Lang
- Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Silvia Papa
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Giovanna Manzi
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Domenico Filomena
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Aiko Ogawa
- Department of Clinical Science, Okayama Medical Center, Japan
| | | | | |
Collapse
|
94
|
New progress in diagnosis and treatment of pulmonary arterial hypertension. J Cardiothorac Surg 2022; 17:216. [PMID: 36038916 PMCID: PMC9422157 DOI: 10.1186/s13019-022-01947-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease. Although great progress has been made in its diagnosis and treatment in recent years, its mortality rate is still very significant. The pathophysiology and pathogenesis of PAH are complex and involve endothelial dysfunction, chronic inflammation, smooth muscle cell proliferation, pulmonary arteriole occlusion, antiapoptosis and pulmonary vascular remodeling. These factors will accelerate the progression of the disease, leading to poor prognosis. Therefore, accurate etiological diagnosis, treatment and prognosis judgment are particularly important. Here, we systematically review the pathophysiology, diagnosis, genetics, prognosis and treatment of PAH.
Collapse
|
95
|
Tremblay É, Gosselin C, Mai V, Lajoie AC, Kilo R, Weatherald J, Lacasse Y, Bonnet S, Lega JC, Provencher S. Assessment of Clinical Worsening End Points as a Surrogate for Mortality in Pulmonary Arterial Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Circulation 2022; 146:597-612. [PMID: 35862151 DOI: 10.1161/circulationaha.121.058635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Clinical worsening (CW) is a composite end point commonly used in pulmonary arterial hypertension (PAH) trials. We aimed to assess the trial-level surrogacy of CW for mortality in PAH trials, and whether the various CW components were similar in terms of frequency of occurrence, treatment-related relative risk (RR) reduction, and importance to patients. METHODS We searched MEDLINE, Embase, and the Cochrane Library (January 1990 to December 2020) for trials evaluating the effects of PAH therapies on CW. The coefficient of determination between the RR for CW and mortality was assessed by regression analysis. The frequency of occurrence, RR reduction, and importance to patients of the CW components were assessed. RESULTS We included 35 independent cohorts (9450 patients). PAH therapies significantly reduced CW events (RR, 0.64 [95% CI, 0.55-0.73]), including PAH-related hospitalizations (RR, 0.61 [95% CI, 0.47-0.79]), treatment escalation (RR, 0.57 [95% CI, 0.38-0.84]) and symptomatic progression (RR, 0.58 [95% CI, 0.48-0.69]), and modestly reduced all-cause mortality when incorporating deaths occurring after a primary CW-defining event (RR, 0.860 [95% CI, 0.742-0.997]). However, the effects of PAH-specific therapies on CW only modestly correlated with their effects on mortality (R2trial, 0.35 [95% CI, 0.10-0.59]; P<0.0001), and the gradient in the treatment effect across component end points was large in the majority of trials. The weighted proportions of CW-defining events were hospitalization (33.5%) and symptomatic progression (32.3%), whereas death (6.7%), treatment escalation (5.6%), and transplantation/atrioseptostomy (0.2%) were infrequent. CW events were driven by the occurrence of events of major (49%) and mild-to-moderate (37%) importance to patients, with 14% of the events valued as critical. CONCLUSIONS PAH therapies significantly reduced CW events, but study-level CW is not a surrogate for mortality in PAH trials. Moreover, components of CW largely vary in frequency, response to therapy, and importance to patients and are thus not interchangeable. REGISTRATION URL: https://www.crd.york.ac.uk/PROSPERO; Unique identifier: CRD42020178949.
Collapse
Affiliation(s)
- Élodie Tremblay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| | - Camille Gosselin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| | - Vicky Mai
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| | - Annie C Lajoie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| | - Roubi Kilo
- Pôle De Santé Publique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69310, Pierre-Bénite, France (R.K.)
| | - Jason Weatherald
- Department of Medicine, Division of Respiratory Medicine, Libin Cardiovascular Institute, University of Calgary, Canada (J.W.)
| | - Yves Lacasse
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Department of Medicine (Y.L., S.B., S.P.), Université Laval, Quebec City, Canada
| | - Sebastien Bonnet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Department of Medicine (Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| | - Jean-Christophe Lega
- Université de Lyon, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Centre national de la recherche scientifique, F-69100, Groupe d'Etude Multidisciplinaire des Maladies Thrombotiques, Department of Internal and Vascular Medicine, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69310, Lyon, France (J.-C.L.)
| | - Steeve Provencher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center (E.T., C.G., V.M., A.C.L., Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Department of Medicine (Y.L., S.B., S.P.), Université Laval, Quebec City, Canada.,Pulmonary Hypertension Research Group Quebec City, Canada (E.T., C.G., V.M., A.C.L., S.B., S.P.)
| |
Collapse
|
96
|
Zhu HR, Kuang HY, Li Q, Ji XJ. Effects of oral targeted treatments in pulmonary arterial hypertension: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:915470. [PMID: 35983180 PMCID: PMC9378982 DOI: 10.3389/fcvm.2022.915470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background Although pulmonary arterial hypertension (PAH) is a fatal disease, specific drugs have been used to treat PAH. These drugs predominantly target these three pathobiological pathways: Endothelin receptor antagonist (ERA), nitric oxide (NO), and prostanoids pathways. In this review, we aimed to analyze the efficacy and safety of oral targeted treatments for PAH. Methods The national library of medicine (MEDLINE), excerpta medica database (EMBASE), and Cochrane Central Register of Controlled Trials databases were searched. Randomized controlled trials that compared the oral targeted drugs with placebos were selected. We calculated odds ratios (ORs) with 95% confidence intervals (CIs) for variables with dichotomous outcomes, and standardized mean differences with continuous outcomes variables. Additionally, the mean of the differences for the 6-min walk distance (6MWD) was analyzed. Results In total, 23 studies involving 7,121 patients were included in this study. These studies show that orally PAH-specific drugs could decrease the risk of clinical worsening events, with an OR of 0.55 (p < 0.001). Furthermore, these drugs could improve exercise capacity, showing a 21.74-m increase in 6MWD (95% CI: 17.53–25.95 m) and cause a greater amelioration of functional class (OR = 0.60, 95% CI: 0.47–0.76). Additionally, subgroup analysis indicated that compared with placebo, ERAs, and drugs in the NO pathway were most effective and safe, which are associated with an improvement in exercise capacity, 6MWD, and worsening events-free survival rate. Conclusion Nitric oxide exhibited the most prominent clinical effect on exercise tolerance. However, in the subgroup analysis, oral targeted drugs of different pathways show applicability to different populations, which highlights the need for precise treatment in the clinical setting. Systematic Review Registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=297946], identifier [CRD 42022297946].
Collapse
Affiliation(s)
- Hui-ru Zhu
- National Clinical Research Center for Child Health and Disorders, Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Hong-yu Kuang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Li
- Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-juan Ji
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- *Correspondence: Xiao-juan Ji,
| |
Collapse
|
97
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
98
|
Mares A, Mukherjee D, Lange RA, Nickel NP. Targeted Therapies in Patients with Pulmonary Arterial Hypertension Due to Congenital Heart Disease. Curr Vasc Pharmacol 2022; 20:341-360. [PMID: 36125818 DOI: 10.2174/1570161120666220811150853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiovascular disease leading to right heart failure and death if untreated. Medical therapies for PAH have evolved substantially over the last decades and are associated with improvements in functional class, quality of life, and survival. PAH-targeted therapies now consist of multiple inhaled, oral, subcutaneous, and intravenous therapies targeting the phosphodiesterase, guanylate cyclase, endothelin and prostacyclin pathways. Patients with congenital heart disease (CHD) are at high risk of developing PAH and growing evidence exists that PAH-targeted therapy can be beneficial in PAH-CHD. However, the PAH-CHD patient population is challenging to treat due to the heterogeneity and complexity of their cardiac lesions and associated comorbidities. Furthermore, most high-quality randomized placebo-controlled trials investigating the effects of PAH-targeted therapies only included a minority of PAH-CHD patients. Few randomized, controlled trials have investigated the effects of PAH-targeted therapy in pre-specified PAH-CHD populations. Consequently, the results of these clinical trials cannot be extrapolated broadly to the PAH-CHD population. This review summarizes the data from high-quality clinical PAH treatment trials with a specific focus on the PAH-CHD population.
Collapse
Affiliation(s)
- Adriana Mares
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA
| | - Debabrata Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA.,Department of Internal Medicine, Division of Cardiology, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA
| | - Richard A Lange
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA.,Department of Internal Medicine, Division of Cardiology, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA
| | - Nils P Nickel
- Department of Internal Medicine, Division of Cardiology, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA.,Department of Internal Medicine, Division of Pulmonology and Critical Care Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, 79905, USA
| |
Collapse
|
99
|
Pregnancy in Pulmonary Arterial Hypertension: A Multidisciplinary Approach. J Cardiovasc Dev Dis 2022; 9:jcdd9060196. [PMID: 35735825 PMCID: PMC9225127 DOI: 10.3390/jcdd9060196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH), a female predominant disease, carries a high maternal and fetal mortality in pregnancy despite improved insight and the development of novel therapies. The high risk is attributed to the adaptive changes that take place to promote healthy fetal development during pregnancy, which can adversely affect the already compromised right ventricle in patients with PAH. While in the prior era emphasis was placed on termination of pregnancy, here we will illustrate through a multidisciplinary approach and meticulous planning at an expert center, these high-risk women can undergo successful childbirth.
Collapse
|
100
|
Urbanowicz RJ, Holmes JH, Appleby D, Narasimhan V, Durborow S, Al-Naamani N, Fernando M, Kawut SM. A Semi-Automated Term Harmonization Pipeline Applied to Pulmonary Arterial Hypertension Clinical Trials. Methods Inf Med 2022; 61:3-10. [PMID: 34820791 PMCID: PMC9978994 DOI: 10.1055/s-0041-1739361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Data harmonization is essential to integrate individual participant data from multiple sites, time periods, and trials for meta-analysis. The process of mapping terms and phrases to an ontology is complicated by typographic errors, abbreviations, truncation, and plurality. We sought to harmonize medical history (MH) and adverse events (AE) term records across 21 randomized clinical trials in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. METHODS We developed and applied a semi-automated harmonization pipeline for use with domain-expert annotators to resolve ambiguous term mappings using exact and fuzzy matching. We summarized MH and AE term mapping success, including map quality measures, and imputation of a generalizing term hierarchy as defined by the applied Medical Dictionary for Regulatory Activities (MedDRA) ontology standard. RESULTS Over 99.6% of both MH (N = 37,105) and AE (N = 58,170) records were successfully mapped to MedDRA low-level terms. Automated exact matching accounted for 74.9% of MH and 85.5% of AE mappings. Term recommendations from fuzzy matching in the pipeline facilitated annotator mapping of the remaining 24.9% of MH and 13.8% of AE records. Imputation of the generalized MedDRA term hierarchy was unambiguous in 85.2% of high-level terms, 99.4% of high-level group terms, and 99.5% of system organ class in MH, and 75% of high-level terms, 98.3% of high-level group terms, and 98.4% of system organ class in AE. CONCLUSION This pipeline dramatically reduced the burden of manual annotation for MH and AE term harmonization and could be adapted to other data integration efforts.
Collapse
Affiliation(s)
- Ryan J. Urbanowicz
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - John H. Holmes
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Dina Appleby
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Vanamala Narasimhan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Stephen Durborow
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Nadine Al-Naamani
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Melissa Fernando
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Steven M. Kawut
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|