51
|
AMP hydrolysis reduction in blood plasma of breast cancer elderly patients after different treatments. Mol Cell Biochem 2021; 476:3719-3727. [PMID: 34089473 DOI: 10.1007/s11010-021-04199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Adenine nucleotides are important signaling molecules that mediate biological functions in many conditions, including cancer. The enzymes CD39 and CD73 produce adenosine in the extracellular milieu that has a very important role in tumor development. This study aimed to evaluate nucleotide hydrolysis in the plasma blood of breast cancer elderly patients. In this prospective cohort study, we investigated the ectonucleotidases activity in breast cancer elderly patients, at the moment of diagnosis and after treatment. Control group consisted of elderly women without cancer diagnostic. The nucleotide hydrolysis assay was performed by the malachite green method and used ATP, ADP, or AMP as substrates. Paired t test or Wilcoxon rank-sum test was used. Our data showed that breast cancer patients presented high levels of ATP and AMP hydrolyses when compared to control group at the moment of diagnosis. When analyzing the differences between the samples at the time of diagnostic and 6 months after treatment, we observed a significant reduction on CD73 activity after all treatments used: surgery, chemotherapy, radiotherapy, or hormone therapy. The results with APCP, a specific CD73 inhibitor, showed that the AMP hydrolysis was inhibited in all conditions evaluated. We observed a diminished ADPase activity in the patients without metastasis when compared to metastatic breast cancer patients. The results showed that AMP hydrolysis was reduced in the blood plasma of breast cancer elderly patients after different treatments. This study strengthens the potential role of CD73 enzyme as a biomarker for breast cancer treatment response.
Collapse
|
52
|
Qiang Q, Manalo JM, Sun H, Zhang Y, Song A, Wen AQ, Wen YE, Chen C, Liu H, Cui Y, Nemkov T, Reisz JA, Edwards III G, Perreira FA, Kellems RE, Soto C, D’Alessandro A, Xia Y. Erythrocyte adenosine A2B receptor prevents cognitive and auditory dysfunction by promoting hypoxic and metabolic reprogramming. PLoS Biol 2021; 19:e3001239. [PMID: 34138843 PMCID: PMC8211187 DOI: 10.1371/journal.pbio.3001239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia drives aging and promotes age-related cognition and hearing functional decline. Despite the role of erythrocytes in oxygen (O2) transport, their role in the onset of aging and age-related cognitive decline and hearing loss (HL) remains undetermined. Recent studies revealed that signaling through the erythrocyte adenosine A2B receptor (ADORA2B) promotes O2 release to counteract hypoxia at high altitude. However, nothing is known about a role for erythrocyte ADORA2B in age-related functional decline. Here, we report that loss of murine erythrocyte-specific ADORA2B (eAdora2b-/-) accelerates early onset of age-related impairments in spatial learning, memory, and hearing ability. eAdora2b-/- mice display the early aging-like cellular and molecular features including the proliferation and activation of microglia and macrophages, elevation of pro-inflammatory cytokines, and attenuation of hypoxia-induced glycolytic gene expression to counteract hypoxia in the hippocampus (HIP), cortex, or cochlea. Hypoxia sufficiently accelerates early onset of cognitive and cochlear functional decline and inflammatory response in eAdora2b-/- mice. Mechanistically, erythrocyte ADORA2B-mediated activation of AMP-activated protein kinase (AMPK) and bisphosphoglycerate mutase (BPGM) promotes hypoxic and metabolic reprogramming to enhance production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific metabolite triggering O2 delivery. Significantly, this finding led us to further discover that murine erythroblast ADORA2B and BPGM mRNA levels and erythrocyte BPGM activity are reduced during normal aging. Overall, we determined that erythrocyte ADORA2B-BPGM axis is a key component for anti-aging and anti-age-related functional decline.
Collapse
Affiliation(s)
- Qingfen Qiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Jeanne M. Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Alexander Q. Wen
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of California at San Diego, La Jolla, California, United States of America
| | - Y. Edward Wen
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Changhan Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Cui
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - George Edwards III
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Fred A. Perreira
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rodney E. Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Claudio Soto
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| |
Collapse
|
53
|
Wang L, Ren C, Li Y, Gao C, Li N, Li H, Wu D, He X, Xia C, Ji X. Remote ischemic conditioning enhances oxygen supply to ischemic brain tissue in a mouse model of stroke: Role of elevated 2,3-biphosphoglycerate in erythrocytes. J Cereb Blood Flow Metab 2021; 41:1277-1290. [PMID: 32933360 PMCID: PMC8142126 DOI: 10.1177/0271678x20952264] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxygen supply for ischemic brain tissue during stroke is critical to neuroprotection. Remote ischemic conditioning (RIC) treatment is effective for stroke. However, it is not known whether RIC can improve brain tissue oxygen supply. In current study, we employed a mouse model of stroke created by middle cerebral artery occlusion (MCAO) to investigate the effect of RIC on oxygen supply to the ischemic brain tissue using a hypoxyprobe system. Erythrocyte oxygen-carrying capacity and tissue oxygen exchange were assessed by measuring oxygenated hemoglobin and oxygen dissociation curve. We found that RIC significantly mitigated hypoxic signals and decreased neural cell death, thereby preserving neurological functions. The tissue oxygen exchange was markedly enhanced, along with the elevated hemoglobin P50 and right-shifted oxygen dissociation curve. Intriguingly, RIC markedly elevated 2,3-biphosphoglycerate (2,3-BPG) levels in erythrocyte, and the erythrocyte 2,3-BPG levels were highly negatively correlated with the hypoxia in the ischemic brain tissue. Further, adoptive transfusion of 2,3-BPG-rich erythrocytes prepared from RIC-treated mice significantly enhanced the oxygen supply to the ischemic tissue in MCAO mouse model. Collectively, RIC protects against ischemic stroke through improving oxygen supply to the ischemic brain tissue where the enhanced tissue oxygen delivery and exchange by RIC-induced 2,3-BPG-rich erythrocytes may play a role.
Collapse
Affiliation(s)
- Lin Wang
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yang Li
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Deparment of Neurology, China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoduo He
- Deparment of Neurology, China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changqing Xia
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Geriatric Medical Research Center, Beijing, China.,Deparment of Neurology, China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| |
Collapse
|
54
|
Coppi E, Cencetti F, Cherchi F, Venturini M, Donati C, Bruni P, Pedata F, Pugliese AM. A 2 B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Front Neurosci 2021; 15:677988. [PMID: 34135730 PMCID: PMC8202686 DOI: 10.3389/fnins.2021.677988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
55
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
56
|
Wang X, Fang Y, Huang Q, Xu P, Lenahan C, Lu J, Zheng J, Dong X, Shao A, Zhang J. An updated review of autophagy in ischemic stroke: From mechanisms to therapies. Exp Neurol 2021; 340:113684. [PMID: 33676918 DOI: 10.1016/j.expneurol.2021.113684] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Stroke is a leading cause of mortality and morbidity worldwide. Understanding the underlying mechanisms is important for developing effective therapies for treating stroke. Autophagy is a self-eating cellular catabolic pathway, which plays a crucial homeostatic role in the regulation of cell survival. Increasing evidence shows that autophagy, observed in various cell types, plays a critical role in brain pathology after ischemic stroke. Therefore, the regulation of autophagy can be a potential target for ischemic stroke treatment. In the present review, we summarize the recent progress that research has made regarding autophagy and ischemic stroke, including common signaling pathways, the role of autophagic subtypes (e.g. mitophagy, pexophagy, aggrephagy, endoplasmic reticulum-phagy, and lipophagy) in ischemic stroke, as well as the current methods for autophagy detection and potential therapeutic strategy.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingxia Huang
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Penglei Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, USA; Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Dong
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
57
|
Wang G, Huang Y, Zhang N, Liu W, Wang C, Zhu X, Ni X. Hydrogen Sulfide Is a Regulator of Hemoglobin Oxygen-Carrying Capacity via Controlling 2,3-BPG Production in Erythrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8877691. [PMID: 33628390 PMCID: PMC7896853 DOI: 10.1155/2021/8877691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
Hydrogen sulfide (H2S) is naturally synthesized in a wide range of mammalian tissues. Whether H2S is involved in the regulation of erythrocyte functions remains unknown. Using mice with a genetic deficiency in a H2S natural synthesis enzyme cystathionine-γ-lyase (CSE) and high-throughput metabolomic profiling, we found that levels of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), an erythroid-specific metabolite negatively regulating hemoglobin- (Hb-) oxygen (O2) binding affinity, were increased in CSE knockout (Cse -/-) mice under normoxia. Consistently, the 50% oxygen saturation (P50) value was increased in erythrocytes of Cse -/- mice. These effects were reversed by treatment with H2S donor GYY4137. In the models of cultured mouse and human erythrocytes, we found that H2S directly acts on erythrocytes to decrease 2,3-BPG production, thereby enhancing Hb-O2 binding affinity. Mouse genetic studies showed that H2S produced by peripheral tissues has a tonic inhibitory effect on 2,3-BPG production and consequently maintains Hb-O2 binding affinity in erythrocytes. We further revealed that H2S promotes Hb release from the membrane to the cytosol and consequently enhances bisphosphoglycerate mutase (BPGM) anchoring to the membrane. These processes might be associated with S-sulfhydration of Hb. Moreover, hypoxia decreased the circulatory H2S level and increased the erythrocyte 2,3-BPG content in mice, which could be reversed by GYY4137 treatment. Altogether, our study revealed a novel signaling pathway that regulates oxygen-carrying capacity in erythrocytes and highlights a previously unrecognized role of H2S in erythrocyte 2,3-BPG production.
Collapse
Affiliation(s)
- Gang Wang
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Huang
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
- General Hospital of Southern Theater Command, Guangzhou, 510010 Guangdong, China
| | - Ningning Zhang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Wenhu Liu
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Changnan Wang
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xiaoyan Zhu
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| | - Xin Ni
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
58
|
Nemkov T, Stefanoni D, Bordbar A, Issaian A, Palsson BO, Dumont LJ, Hay A, Song A, Xia Y, Redzic JS, Eisenmesser EZ, Zimring JC, Kleinman S, Hansen KC, Busch MP, D'Alessandro A. Blood donor exposome and impact of common drugs on red blood cell metabolism. JCI Insight 2021; 6:146175. [PMID: 33351786 PMCID: PMC7934844 DOI: 10.1172/jci.insight.146175] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Computational models based on recent maps of the RBC proteome suggest that mature erythrocytes may harbor targets for common drugs. This prediction is relevant to RBC storage in the blood bank, in which the impact of small molecule drugs or other xenometabolites deriving from dietary, iatrogenic, or environmental exposures (“exposome”) may alter erythrocyte energy and redox metabolism and, in so doing, affect red cell storage quality and posttransfusion efficacy. To test this prediction, here we provide a comprehensive characterization of the blood donor exposome, including the detection of common prescription and over-the-counter drugs in blood units donated by 250 healthy volunteers in the Recipient Epidemiology and Donor Evaluation Study III Red Blood Cell–Omics (REDS-III RBC-Omics) Study. Based on high-throughput drug screenings of 1366 FDA-approved drugs, we report that approximately 65% of the tested drugs had an impact on erythrocyte metabolism. Machine learning models built using metabolites as predictors were able to accurately predict drugs for several drug classes/targets (bisphosphonates, anticholinergics, calcium channel blockers, adrenergics, proton pump inhibitors, antimetabolites, selective serotonin reuptake inhibitors, and mTOR), suggesting that these drugs have a direct, conserved, and substantial impact on erythrocyte metabolism. As a proof of principle, here we show that the antacid ranitidine — though rarely detected in the blood donor population — has a strong effect on RBC markers of storage quality in vitro. We thus show that supplementation of blood units stored in bags with ranitidine could — through mechanisms involving sphingosine 1–phosphate–dependent modulation of erythrocyte glycolysis and/or direct binding to hemoglobin — improve erythrocyte metabolism and storage quality.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Aaron Issaian
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Ariel Hay
- University of Virginia, Charlottesville, Virginia, USA
| | - Anren Song
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yang Xia
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | | |
Collapse
|
59
|
Acute Cycling Exercise Induces Changes in Red Blood Cell Deformability and Membrane Lipid Remodeling. Int J Mol Sci 2021; 22:ijms22020896. [PMID: 33477427 PMCID: PMC7831009 DOI: 10.3390/ijms22020896] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Here we describe the effects of a controlled, 30 min, high-intensity cycling test on blood rheology and the metabolic profiles of red blood cells (RBCs) and plasma from well-trained males. RBCs demonstrated decreased deformability and trended toward increased generation of microparticles after the test. Meanwhile, metabolomics and lipidomics highlighted oxidative stress and activation of membrane lipid remodeling mechanisms in order to cope with altered properties of circulation resulting from physical exertion during the cycling test. Of note, intermediates from coenzyme A (CoA) synthesis for conjugation to fatty acyl chains, in parallel with reversible conversion of carnitine and acylcarnitines, emerged as metabolites that significantly correlate with RBC deformability and the generation of microparticles during exercise. Taken together, we propose that RBC membrane remodeling and repair plays an active role in the physiologic response to exercise by altering RBC properties.
Collapse
|
60
|
Ghoteimi R, Braka A, Rodriguez C, Cros-Perrial E, Tai Nguyen V, Uttaro JP, Mathé C, Chaloin L, Ménétrier-Caux C, Jordheim LP, Peyrottes S. 4-Substituted-1,2,3-triazolo nucleotide analogues as CD73 inhibitors, their synthesis, in vitro screening, kinetic and in silico studies. Bioorg Chem 2020; 107:104577. [PMID: 33450542 DOI: 10.1016/j.bioorg.2020.104577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Three series of nucleotide analogues were synthesized and evaluated as potential CD73 inhibitors. Nucleobase replacement consisted in connecting the appropriate aromatic or purine residues through a triazole moiety that is generated from 1,3-dipolar cycloaddition. The first series is related to 4-substituted-1,2,3-triazolo-β-hydroxyphosphonate ribonucleosides. Additional analogues were also obtained, in which the phosphonate group was replaced by a bisphosphonate pattern (P-C-P-C, series 2) or the ribose moiety was removed leading to acyclic derivatives (series 3). The β-hydroxyphosphonylphosphonate ribonucleosides (series 2) were found to be potent inhibitors of CD73 using both purified recombinant protein and cell-based assays. Two compounds (2a and 2b) that contained a bis(trifluoromethyl)phenyl or a naphthyl substituents proved to be the most potent inhibitors, with IC50 values of 4.8 ± 0.8 µM and 0.86 ± 0.2 µM, compared to the standard AOPCP (IC50 value of 3.8 ± 0.9 µM), and were able to reverse the adenosine-mediated immune suppression on human T cells. This series of compounds illustrates a new type of CD73 inhibitors.
Collapse
Affiliation(s)
- Rayane Ghoteimi
- Institut des Biomolécules Max Mousseron (IBMM), Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Abdennour Braka
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Univ. Montpellier, CNRS, 34293 Montpellier, France
| | - Céline Rodriguez
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Emeline Cros-Perrial
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Van Tai Nguyen
- Institut des Biomolécules Max Mousseron (IBMM), Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Jean-Pierre Uttaro
- Institut des Biomolécules Max Mousseron (IBMM), Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Christophe Mathé
- Institut des Biomolécules Max Mousseron (IBMM), Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Univ. Montpellier, CNRS, 34293 Montpellier, France
| | - Christine Ménétrier-Caux
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Lars Petter Jordheim
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France.
| |
Collapse
|
61
|
Coppi E, Dettori I, Cherchi F, Bulli I, Venturini M, Lana D, Giovannini MG, Pedata F, Pugliese AM. A 2B Adenosine Receptors: When Outsiders May Become an Attractive Target to Treat Brain Ischemia or Demyelination. Int J Mol Sci 2020; 21:E9697. [PMID: 33353217 PMCID: PMC7766015 DOI: 10.3390/ijms21249697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Adenosine is a signaling molecule, which, by activating its receptors, acts as an important player after cerebral ischemia. Here, we review data in the literature describing A2BR-mediated effects in models of cerebral ischemia obtained in vivo by the occlusion of the middle cerebral artery (MCAo) or in vitro by oxygen-glucose deprivation (OGD) in hippocampal slices. Adenosine plays an apparently contradictory role in this receptor subtype depending on whether it is activated on neuro-glial cells or peripheral blood vessels and/or inflammatory cells after ischemia. Indeed, A2BRs participate in the early glutamate-mediated excitotoxicity responsible for neuronal and synaptic loss in the CA1 hippocampus. On the contrary, later after ischemia, the same receptors have a protective role in tissue damage and functional impairments, reducing inflammatory cell infiltration and neuroinflammation by central and/or peripheral mechanisms. Of note, demyelination following brain ischemia, or autoimmune neuroinflammatory reactions, are also profoundly affected by A2BRs since they are expressed by oligodendroglia where their activation inhibits cell maturation and expression of myelin-related proteins. In conclusion, data in the literature indicate the A2BRs as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (I.D.); (F.C.); (I.B.); (M.V.); (F.P.); (A.M.P.)
| |
Collapse
|
62
|
Yegutkin GG. Adenosine metabolism in the vascular system. Biochem Pharmacol 2020; 187:114373. [PMID: 33340515 DOI: 10.1016/j.bcp.2020.114373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
The concept of extracellular purinergic signaling was first proposed by Geoffrey Burnstock in the early 1970s. Since then, extracellular ATP and its metabolites ADP and adenosine have attracted an enormous amount of attention in terms of their involvement in a wide range of immunomodulatory, thromboregulatory, angiogenic, vasoactive and other pathophysiological activities in different organs and tissues, including the vascular system. In addition to significant progress in understanding the properties of nucleotide- and adenosine-selective receptors, recent studies have begun to uncover the complexity of regulatory mechanisms governing the duration and magnitude of the purinergic signaling cascade. This knowledge has led to the development of new paradigms in understanding the entire purinome by taking into account the multitude of signaling and metabolic pathways involved in biological effects of ATP and adenosine and compartmentalization of the adenosine system. Along with the "canonical route" of ATP breakdown to adenosine via sequential ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) and ecto-5'-nucleotidase/CD73 activities, it has now become clear that purine metabolism is the result of concerted effort between ATP release, its metabolism through redundant nucleotide-inactivating and counteracting ATP-regenerating ectoenzymatic pathways, as well as cellular nucleoside uptake and phosphorylation of adenosine to ATP through complex phosphotransfer reactions. In this review I provide an overview of key enzymes involved in adenosine metabolic network, with special emphasis on the emerging roles of purine-converting ectoenzymes as novel targets for cancer and vascular therapies.
Collapse
|
63
|
Thomas T, Stefanoni D, Dzieciatkowska M, Issaian A, Nemkov T, Hill RC, Francis RO, Hudson KE, Buehler PW, Zimring JC, Hod EA, Hansen KC, Spitalnik SL, D’Alessandro A. Evidence of Structural Protein Damage and Membrane Lipid Remodeling in Red Blood Cells from COVID-19 Patients. J Proteome Res 2020; 19:4455-4469. [PMID: 33103907 PMCID: PMC7640979 DOI: 10.1021/acs.jproteome.0c00606] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 beta coronavirus is the etiological driver of COVID-19 disease, which is primarily characterized by shortness of breath, persistent dry cough, and fever. Because they transport oxygen, red blood cells (RBCs) may play a role in the severity of hypoxemia in COVID-19 patients. The present study combines state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly diagnosed COVID-19 patients. RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, in particular, short- and medium-chain saturated fatty acids, acyl-carnitines, and sphingolipids. Nonetheless, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, or mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume. Taken together, these results suggest a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. Increases in RBC glycolytic metabolites are consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading and metabolic rewiring toward the hexose monophosphate shunt, RBCs from COVID-19 patients may be less capable of responding to environmental variations in hemoglobin oxygen saturation/oxidant stress when traveling from the lungs to peripheral capillaries and vice versa.
Collapse
Affiliation(s)
- Tiffany Thomas
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Aaron Issaian
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Richard O Francis
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Krystalyn E. Hudson
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Paul W. Buehler
- Department of Pathology, University of Maryland, Baltimore, MD, USA
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Eldad A. Hod
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Steven L. Spitalnik
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
64
|
Manalo JM, Liu H, Ding D, Hicks J, Sun H, Salvi R, Kellems RE, Pereira FA, Xia Y. Adenosine A2B receptor: A pathogenic factor and a therapeutic target for sensorineural hearing loss. FASEB J 2020; 34:15771-15787. [PMID: 33131093 DOI: 10.1096/fj.202000939r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Over 466 million people worldwide are diagnosed with hearing loss (HL). About 90% of HL cases are sensorineural HL (SNHL) with treatments limited to hearing aids and cochlear implants with no FDA-approved drugs. Intriguingly, ADA-deficient patients have been reported to have bilateral SNHL, however, its underlying cellular and molecular basis remain unknown. We report that Ada-/- mice, phenocopying ADA-deficient humans, displayed SNHL. Ada-/- mice cochlea with elevated adenosine caused substantial nerve fiber demyelination and mild hair cell loss. ADA enzyme therapy in these mice normalized cochlear adenosine levels, attenuated SNHL, and prevented demyelination. Additionally, ADA enzyme therapy rescued SNHL by restoring nerve fiber structure in Ada-/- mice post two-week drug withdrawal. Moreover, elevated cochlear adenosine in untreated mice was associated with enhanced Adora2b gene expression. Preclinically, ADORA2B-specific antagonist treatment in Ada-/- mice significantly improved HL, nerve fiber density, and myelin compaction. We also provided genetic evidence that ADORA2B is detrimental for age-related SNHL by impairing cochlear myelination in WT aged mice. Overall, understanding purinergic molecular signaling in SNHL in Ada-/- mice allows us to further discover that ADORA2B is also a pathogenic factor underlying aged-related SNHL by impairing cochlear myelination and lowering cochlear adenosine levels or blocking ADORA2B signaling are effective therapies for SNHL.
Collapse
Affiliation(s)
- Jeanne M Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dalian Ding
- Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - John Hicks
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Hong Sun
- Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Richard Salvi
- Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fred A Pereira
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
65
|
Adaptative mechanism of the equilibrative nucleoside transporter 1 (ENT-1) and blood adenosine levels in elite freedivers. Eur J Appl Physiol 2020; 121:279-285. [PMID: 33052430 DOI: 10.1007/s00421-020-04523-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Long static or intense dynamic apnoea-like high-altitude exposure is inducing hypoxia. Adenosine is known to participate to the adaptive response to hypoxia leading to the control of heart rate, blood pressure and vasodilation. Extracellular adenosine level is controlled through the equilibrative nucleoside transporter 1 (ENT-1) and the enzyme adenosine deaminase (ADA). The aim of this study was to determine the control of adenosine blood level (ABL) via ENT-1 and ADA during apnoea-induced hypoxia in elite freedivers was similar to high-altitude adaptation. METHODS Ten freediver champions and ten controls were studied. Biological (e.g. ENT-1, ADA, ABL, PaO2, PaCO2 and pH) and cardiovascular (e.g. heart rate, arterial pressure) parameters were measured at rest and after a submaximal dry static apnoea. RESULTS In freedivers, ABL was higher than in control participants in basal condition and increased more in response to apnoea. Also, freedivers showed an ADA increased in response to apnoea. Finally, ENT-1 level and function were reduced for the free divers. CONCLUSION Our results suggest in freedivers the presence of an adaptive mechanism similar to the one observed in human exposed to chronic hypoxia induced by high-altitude environment.
Collapse
|
66
|
Abstract
Oxygen affinity to haemoglobin is indicated by the p50 value (pO2 at 50% O2Hb) and critically determines cellular oxygen availability. Although high Hb-O2 affinity can cause tissue hypoxia under conditions of well O2 saturated blood, individual differences in p50 are commonly not considered in clinical routine. Here, we investigated the diversity in Hb-O2 affinity in the context of physiological relevance. Oxyhaemoglobin dissociation curves (ODCs) of 60 volunteers (18–40 years, both sexes, either endurance trained or untrained) were measured at rest and after maximum exercise (VO2max) test. At rest, p50 values of all participants ranged over 7 mmHg. For comparison, right shift of ODC after VO2max test, representing the maximal physiological range to release oxygen to the tissue, indicated a p50 difference of up to 10 mmHg. P50 at rest differs significantly between women and men, with women showing lower Hb-O2 affinity that is determined by higher 2,3-BPG and BPGM levels. Regular endurance exercise did not alter baseline Hb-O2 affinity. Thus, p50 diversity is already high at baseline level and needs to be considered under conditions of impaired tissue oxygenation. For fast prediction of Hb-O2 affinity by blood gas analysis, only venous but not capillary blood samples can be recommended.
Collapse
|
67
|
Allard B, Allard D, Buisseret L, Stagg J. The adenosine pathway in immuno-oncology. Nat Rev Clin Oncol 2020; 17:611-629. [PMID: 32514148 DOI: 10.1038/s41571-020-0382-2] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer immunotherapy based on immune-checkpoint inhibition or adoptive cell therapy has revolutionized cancer care. Nevertheless, a large proportion of patients do not benefit from such treatments. Over the past decade, remarkable progress has been made in the development of 'next-generation' therapeutics in immuno-oncology, with inhibitors of extracellular adenosine (eADO) signalling constituting an expanding class of agents. Induced by tissue hypoxia, inflammation, tissue repair and specific oncogenic pathways, the adenosinergic axis is a broadly immunosuppressive pathway that regulates both innate and adaptive immune responses. Inhibition of eADO-generating enzymes and/or eADO receptors can promote antitumour immunity through multiple mechanisms, including enhancement of T cell and natural killer cell function, suppression of the pro-tumourigenic effects of myeloid cells and other immunoregulatory cells, and promotion of antigen presentation. With several clinical trials currently evaluating inhibitors of the eADO pathway in patients with cancer, we herein review the pathophysiological function of eADO with a focus on effects on antitumour immunity. We also discuss the treatment opportunities, potential limitations and biomarker-based strategies related to adenosine-targeted therapy in oncology.
Collapse
Affiliation(s)
- Bertrand Allard
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - David Allard
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Laurence Buisseret
- Department of Medical Oncology, Institut Jules Bordet, Brussels, Belgium
| | - John Stagg
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
68
|
Downregulated Recycling Process but Not De Novo Synthesis of Glutathione Limits Antioxidant Capacity of Erythrocytes in Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7834252. [PMID: 32963701 PMCID: PMC7492869 DOI: 10.1155/2020/7834252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
Red blood cells (RBCs) are susceptible to sustained free radical damage during circulation, while the changes of antioxidant capacity and regulatory mechanism of RBCs under different oxygen gradients remain unclear. Here, we investigated the changes of oxidative damage and antioxidant capacity of RBCs in different oxygen gradients and identified the underlying mechanisms using an in vitro model of the hypoxanthine/xanthine oxidase (HX/XO) system. In the present study, we reported that the hypoxic RBCs showed much higher oxidative stress injury and lower antioxidant capacity compared with normoxic RBCs. In addition, we found that the disturbance of the recycling process, but not de novo synthesis of glutathione (GSH), accounted for the significantly decreased antioxidant capacity of hypoxic RBCs compared to normoxic RBCs. We further elucidated the underlying molecular mechanism by which oxidative phosphorylation of Band 3 blocked the hexose monophosphate pathway (HMP) and decreased NADPH production aggravating the dysfunction of GSH synthesis in hypoxic RBCs under oxidative conditions.
Collapse
|
69
|
Abstract
Pulmonary arterial hypertension (PAH) is a life‐threatening disease characterized by increased pulmonary arterial pressure and pulmonary vascular resistance, which result in an increase in afterload imposed onto the right ventricle, leading to right heart failure. Current therapies are incapable of reversing the disease progression. Thus, the identification of novel and potential therapeutic targets is urgently needed. An alteration of nucleotide‐ and nucleoside‐activated purinergic signaling has been proposed as a potential contributor in the pathogenesis of PAH. Adenosine‐mediated purinergic 1 receptor activation, particularly A2AR activation, reduces pulmonary vascular resistance and attenuates pulmonary vascular remodeling and right ventricle hypertrophy, thereby exerting a protective effect. Conversely, A2BR activation induces pulmonary vascular remodeling, and is therefore deleterious. ATP‐mediated P2X7R activation and ADP‐mediated activation of P2Y1R and P2Y12R play a role in pulmonary vascular tone, vascular remodeling, and inflammation in PAH. Recent studies have revealed a role of ectonucleotidase nucleoside triphosphate diphosphohydrolase, that degrades ATP/ADP, in regulation of pulmonary vascular remodeling. Interestingly, existing evidence that adenosine activates erythrocyte A2BR signaling, counteracting hypoxia‐induced pulmonary injury, and that ATP release is impaired in erythrocyte in PAH implies erythrocyte dysfunction as an important trigger to affect purinergic signaling for pathogenesis of PAH. The present review focuses on current knowledge on alteration of nucleot(s)ide‐mediated purinergic signaling as a potential disease mechanism underlying the development of PAH.
Collapse
Affiliation(s)
- Zongye Cai
- Division of Experimental Cardiology Department of Cardiology Erasmus MCUniversity Medical Center Rotterdam Rotterdam the Netherlands
| | - Ly Tu
- INSERM UMR_S 999Hôpital Marie Lannelongue Le Plessis-Robinson France.,School of Medicine Université Paris-Saclay Kremlin-Bicêtre France
| | - Christophe Guignabert
- INSERM UMR_S 999Hôpital Marie Lannelongue Le Plessis-Robinson France.,School of Medicine Université Paris-Saclay Kremlin-Bicêtre France
| | - Daphne Merkus
- Division of Experimental Cardiology Department of Cardiology Erasmus MCUniversity Medical Center Rotterdam Rotterdam the Netherlands.,Walter Brendel Center of Experimental Medicine LMU Munich Munich Germany.,German Center for Cardiovascular Research, Partner Site MunichMunich Heart Alliance Munich Germany
| | - Zhichao Zhou
- Division of Cardiology Department of Medicine Karolinska University HospitalKarolinska Institutet Stockholm Sweden
| |
Collapse
|
70
|
Xie T, Chen C, Peng Z, Brown BC, Reisz JA, Xu P, Zhou Z, Song A, Zhang Y, Bogdanov MV, Kellems RE, D'Alessandro A, Zhang W, Xia Y. Erythrocyte Metabolic Reprogramming by Sphingosine 1-Phosphate in Chronic Kidney Disease and Therapies. Circ Res 2020; 127:360-375. [PMID: 32284030 DOI: 10.1161/circresaha.119.316298] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Hypoxia promotes renal damage and progression of chronic kidney disease (CKD). The erythrocyte is the only cell type for oxygen (O2) delivery. Sphingosine 1-phosphate (S1P)-a highly enriched biolipid in erythrocytes-is recently reported to be induced under high altitude in normal humans to enhance O2 delivery. However, nothing is known about erythrocyte S1P in CKD. OBJECTIVE To investigate the function and metabolic basis of erythrocyte S1P in CKD with a goal to explore potential therapeutics. METHODS AND RESULTS Using erythrocyte-specific SphK1 (sphingosine kinase 1; the only enzyme to produce S1P in erythrocytes) knockout mice (eSphK1-/-) in an experimental model of hypertensive CKD with Ang II (angiotensin II) infusion, we found severe renal hypoxia, hypertension, proteinuria, and fibrosis in Ang II-infused eSphk1-/- mice compared with controls. Untargeted metabolomics profiling and in vivo U-13C6 isotopically labeled glucose flux analysis revealed that SphK1 is required for channeling glucose metabolism toward glycolysis versus pentose phosphate pathway, resulting in enhanced erythroid-specific Rapoport-Luebering shunt in Ang II-infused mice. Mechanistically, increased erythrocyte S1P functioning intracellularly activates AMPK (AMP-activated protein kinase) 1α and BPGM (bisphosphoglycerate mutase) by reducing ceramide/S1P ratio and inhibiting PP2A (protein phosphatase 2A), leading to increased 2,3-bisphosphoglycerate (an erythrocyte-specific metabolite negatively regulating Hb [hemoglobin]-O2-binding affinity) production and thus more O2 delivery to counteract kidney hypoxia and progression to CKD. Preclinical studies revealed that an AMPK agonist or a PP2A inhibitor rescued the severe CKD phenotype in Ang II-infused eSphK1-/- mice and prevented development of CKD in the control mice by inducing 2,3-bisphosphoglycerate production and thus enhancing renal oxygenation. Translational research validated mouse findings in erythrocytes of hypertensive CKD patients and cultured human erythrocytes. CONCLUSIONS Our study elucidates the beneficial role of eSphk1-S1P in hypertensive CKD by channeling glucose metabolism toward Rapoport-Luebering shunt and inducing 2,3-bisphosphoglycerate production and O2 delivery via a PP2A-AMPK1α signaling pathway. These findings reveal the metabolic and molecular basis of erythrocyte S1P in CKD and new therapeutic avenues.
Collapse
Affiliation(s)
- Tingting Xie
- From the Rheumatology and Immunology (T.X.), Xiangya Hospital, Central South University, Changsha, Hunan, China.,Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Changhan Chen
- Otolaryngology Head and Neck Surgery (C.C.), Xiangya Hospital, Central South University, Changsha, Hunan, China.,Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Zhangzhe Peng
- Nephrology (Z.P.), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Benjamin C Brown
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (B.C.B., J.A.R., A.D.)
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (B.C.B., J.A.R., A.D.)
| | - Ping Xu
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Zhen Zhou
- Division of Medical Genetics, Department of Internal Medicine (Z.Z.), University of Texas McGovern Medical School at Houston
| | - Anren Song
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Yujin Zhang
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Mikhail V Bogdanov
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Rodney E Kellems
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston.,MDAnderson-UTHealth Graduate School of Biomedical Science, Houston, TX (R.E.K., Y.X.)
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora (B.C.B., J.A.R., A.D.)
| | - Weiru Zhang
- General Medicine (W.Z.), Xiangya Hospital, Central South University, Changsha, Hunan, China.,Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston
| | - Yang Xia
- Biochemistry and Molecular Biology (T.X., C.C., P.X., A.S., Y.Z., M.V.B., R.E.K., W.Z., Y.X.), University of Texas McGovern Medical School at Houston.,MDAnderson-UTHealth Graduate School of Biomedical Science, Houston, TX (R.E.K., Y.X.)
| |
Collapse
|
71
|
Deng B, Liu W, Pu L, Wang X, Duan R, Wang T, Wang Z, Du L, Gao Z, Chen Z. Quantitative Proteomics Reveals the Effects of Resveratrol on High-Altitude Polycythemia Treatment. Proteomics 2020; 20:e1900423. [PMID: 32468662 DOI: 10.1002/pmic.201900423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/18/2020] [Indexed: 12/17/2022]
Abstract
High-altitude polycythemia (HAPC) is a common plateau chronic disease in which red blood cells are compensatory hyperproliferative due to high altitude hypoxic environment. HAPC severely affects the physical and mental health of populations on the plateau. However, the pathogenesis and treatment of HAPC has been rarely investigated. Here, the hypoxia-induced HAPC model of rat is established, in which hemoglobin concentration significantly increases and platelets clearly decrease. The effect of resveratrol upon hypoxia enables HAPC remission and makes hemoglobin and platelet tend to a normal level. Furthermore, quantitative proteomics is applied to investigate the plasma proteome variation and the underlying molecular regulation during HAPC occurrence and treatment with resveratrol. Hypoxia promotes erythrocyte developing and differentiating and disrupts cytoskeleton organization. Notably, the resveratrol administration reverses the proteome change pattern due to hypoxia and contributes to plateau adaption. Quantitative verification of differentially expressed proteins confirms the roles of resveratrol in HAPC. Resveratrol is expected to be useful for HAPC treatment.
Collapse
Affiliation(s)
- Bingnan Deng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Lingling Pu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Ruifeng Duan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tianhui Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zirou Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Lianqun Du
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhixian Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| |
Collapse
|
72
|
Thomas T, Stefanoni D, Dzieciatkowska M, Issaian A, Nemkov T, Hill RC, Francis RO, Hudson KE, Buehler PW, Zimring JC, Hod EA, Hansen KC, Spitalnik SL, D'Alessandro A. Evidence for structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32637980 DOI: 10.1101/2020.06.29.20142703] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The SARS-CoV-2 beta coronavirus is the etiological driver of COVID-19 disease, which is primarily characterized by shortness of breath, persistent dry cough, and fever. Because they transport oxygen, red blood cells (RBCs) may play a role in the severity of hypoxemia in COVID-19 patients. The present study combines state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly-diagnosed COVID-19 patients. RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, especially short and medium chain saturated fatty acids, acyl-carnitines, and sphingolipids. Nonetheless, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, and mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume. Taken together, these results suggest a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. Increases in RBC glycolytic metabolites are consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading, RBCs from COVID-19 patients may be incapable of responding to environmental variations in hemoglobin oxygen saturation when traveling from the lungs to peripheral capillaries and, as such, may have a compromised capacity to transport and deliver oxygen.
Collapse
|
73
|
Sayama S, Song A, Brown BC, Couturier J, Cai X, Xu P, Chen C, Zheng Y, Iriyama T, Sibai B, Longo M, Kellems RE, D'Alessandro A, Xia Y. Maternal erythrocyte ENT1-mediated AMPK activation counteracts placental hypoxia and supports fetal growth. JCI Insight 2020; 5:130205. [PMID: 32434995 DOI: 10.1172/jci.insight.130205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Insufficient O2 supply is frequently associated with fetal growth restriction (FGR), a leading cause of perinatal mortality and morbidity. Although the erythrocyte is the most abundant and only cell type to deliver O2 in our body, its function and regulatory mechanism in FGR remain unknown. Here, we report that genetic ablation of mouse erythrocyte equilibrative nucleoside transporter 1 (eENT1) in dams, but not placentas or fetuses, results in FGR. Unbiased high-throughput metabolic profiling coupled with in vitro and in vivo flux analyses with isotopically labeled tracers led us to discover that maternal eENT1-dependent adenosine uptake is critical in activating AMPK by controlling the AMP/ATP ratio and its downstream target, bisphosphoglycerate mutase (BPGM); in turn, BPGM mediates 2,3-BPG production, which enhances O2 delivery to maintain placental oxygenation. Mechanistically and functionally, we revealed that genetic ablation of maternal eENT1 increases placental HIF-1α; preferentially reduces placental large neutral aa transporter 1 (LAT1) expression, activity, and aa supply; and induces FGR. Translationally, we revealed that elevated HIF-1α directly reduces LAT1 gene expression in cultured human trophoblasts. We demonstrate the importance and molecular insight of maternal eENT1 in fetal growth and open up potentially new diagnostic and therapeutic possibilities for FGR.
Collapse
Affiliation(s)
- Seisuke Sayama
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Obstetrics & Gynecology, University of Tokyo, Japan
| | - Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Benjamin C Brown
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Xiaoli Cai
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Xu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Changhan Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yangxi Zheng
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Takayuki Iriyama
- Department of Obstetrics & Gynecology, University of Tokyo, Japan
| | - Baha Sibai
- Department of Obstetrics, Gynecology, and Reproductive Sciences, and
| | - Monica Longo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, and
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
74
|
Verin AD, Batori R, Kovacs-Kasa A, Cherian-Shaw M, Kumar S, Czikora I, Karoor V, Strassheim D, Stenmark KR, Gerasimovskaya EV. Extracellular adenosine enhances pulmonary artery vasa vasorum endothelial cell barrier function via Gi/ELMO1/Rac1/PKA-dependent signaling mechanisms. Am J Physiol Cell Physiol 2020; 319:C183-C193. [PMID: 32432925 DOI: 10.1152/ajpcell.00505.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vasa vasorum (VV), the microvascular network around large vessels, has been recognized as an important contributor to the pathological vascular remodeling in cardiovascular diseases. In bovine and rat models of hypoxic pulmonary hypertension (PH), we have previously shown that chronic hypoxia profoundly increased pulmonary artery (PA) VV permeability, associated with infiltration of inflammatory and progenitor cells in the arterial wall, perivascular inflammation, and structural vascular remodeling. Extracellular adenosine was shown to exhibit a barrier-protective effect on VV endothelial cells (VVEC) via cAMP-independent mechanisms, which involved adenosine A1 receptor-mediated activation of Gi-phosphoinositide 3-kinase-Akt pathway and actin cytoskeleton remodeling. Using VVEC isolated from the adventitia of calf PA, in this study we investigated in more detail the mechanisms linking Gi activation to downstream barrier protection pathways. Using a small-interference RNA (siRNA) technique and transendothelial electrical resistance assay, we found that the adaptor protein, engulfment and cell motility 1 (ELMO1), the tyrosine phosphatase Src homology region 2 domain-containing phosphatase-2, and atypical Gi- and Rac1-mediated protein kinase A activation are implicated in VVEC barrier enhancement. In contrast, the actin-interacting GTP-binding protein, girdin, and the p21-activated kinase 1 downstream target, LIM kinase, are not involved in this response. In addition, adenosine-dependent cytoskeletal rearrangement involves activation of cofilin and inactivation of ezrin-radixin-moesin regulatory cytoskeletal proteins, consistent with a barrier-protective mechanism. Collectively, our data indicate that targeting adenosine receptors and downstream barrier-protective pathways in VVEC may have a potential translational significance in developing pharmacological approach for the VV barrier protection in PH.
Collapse
Affiliation(s)
| | - Robert Batori
- Augusta University Vascular Biology Center, Augusta, Georgia
| | | | | | - Sanjiv Kumar
- Augusta University Vascular Biology Center, Augusta, Georgia
| | - Istvan Czikora
- Augusta University Vascular Biology Center, Augusta, Georgia
| | - Vijaya Karoor
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Derek Strassheim
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | |
Collapse
|
75
|
Metabolomic and molecular insights into sickle cell disease and innovative therapies. Blood Adv 2020; 3:1347-1355. [PMID: 31015210 DOI: 10.1182/bloodadvances.2018030619] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
Sickle cell disease (SCD) is an autosomal-recessive hemolytic disorder with high morbidity and mortality. The pathophysiology of SCD is characterized by the polymerization of deoxygenated intracellular sickle hemoglobin, which causes the sickling of erythrocytes. The recent development of metabolomics, the newest member of the "omics" family, has provided a powerful new research strategy to accurately measure functional phenotypes that are the net result of genomic, transcriptomic, and proteomic changes. Metabolomics changes respond faster to external stimuli than any other "ome" and are especially appropriate for surveilling the metabolic profile of erythrocytes. In this review, we summarize recent pioneering research that exploited cutting-edge metabolomics and state-of-the-art isotopically labeled nutrient flux analysis to monitor and trace intracellular metabolism in SCD mice and humans. Genetic, structural, biochemical, and molecular studies in mice and humans demonstrate unrecognized intracellular signaling pathways, including purinergic and sphingolipid signaling networks that promote hypoxic metabolic reprogramming by channeling glucose metabolism to glycolysis via the pentose phosphate pathway. In turn, this hypoxic metabolic reprogramming induces 2,3-bisphosphoglycerate production, deoxygenation of sickle hemoglobin, polymerization, and sickling. Additionally, we review the detrimental role of an impaired Lands' cycle, which contributes to sickling, inflammation, and disease progression. Thus, metabolomic profiling allows us to identify the pathological role of adenosine signaling and S1P-mediated erythrocyte hypoxic metabolic reprogramming and hypoxia-induced impaired Lands' cycle in SCD. These findings further reveal that the inhibition of adenosine and S1P signaling cascade and the restoration of an imbalanced Lands' cycle have potent preclinical efficacy in counteracting sickling, inflammation, and disease progression.
Collapse
|
76
|
D'Alessandro A, Fu X, Reisz JA, Kanias T, Page GP, Stone M, Kleinman S, Zimring JC, Busch M. Stored RBC metabolism as a function of caffeine levels. Transfusion 2020; 60:1197-1211. [PMID: 32394461 DOI: 10.1111/trf.15813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Coffee consumption is extremely common in the United States. Coffee is rich with caffeine, a psychoactive, purinergic antagonist of adenosine receptors, which regulate red blood cell energy and redox metabolism. Since red blood cell (purine) metabolism is a critical component to the red cell storage lesion, here we set out to investigate whether caffeine levels correlated with alterations of energy and redox metabolism in stored red blood cells. STUDY DESIGN AND METHODS We measured the levels of caffeine and its main metabolites in 599 samples from the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study via ultra-high-pressure-liquid chromatography coupled to high-resolution mass spectrometry and correlated them to global metabolomic and lipidomic analyses of RBCs stored for 10, 23, and 42 days. RESULTS Caffeine levels positively correlated with increased levels of the main red cell antioxidant, glutathione, and its metabolic intermediates in glutathione-dependent detoxification pathways of oxidized lipids and sugar aldehydes. Caffeine levels were positively correlated with transamination products and substrates, tryptophan, and indole metabolites. Expectedly, since caffeine and its metabolites belong to the family of xanthine purines, all xanthine metabolites were significantly increased in the subjects with the highest levels of caffeine. However, high-energy phosphate compounds ATP and DPG were not affected by caffeine levels, despite decreases in glucose oxidation products-both via glycolysis and the pentose phosphate pathway. CONCLUSION Though preliminary, this study is suggestive of a beneficial correlation between the caffeine levels and improved antioxidant capacity of stored red cells.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado.,Vitalant Research Institute, Denver, Colorado.,Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado.,Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | | | - Michael Busch
- Vitalant Research Institute, San Francisco, California
| | | |
Collapse
|
77
|
Adenosine and the Cardiovascular System: The Good and the Bad. J Clin Med 2020; 9:jcm9051366. [PMID: 32384746 PMCID: PMC7290927 DOI: 10.3390/jcm9051366] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine is a nucleoside that impacts the cardiovascular system via the activation of its membrane receptors, named A1R, A2AR, A2BR and A3R. Adenosine is released during hypoxia, ischemia, beta-adrenergic stimulation or inflammation and impacts heart rhythm and produces strong vasodilation in the systemic, coronary or pulmonary vascular system. This review summarizes the main role of adenosine on the cardiovascular system in several diseases and conditions. Adenosine release participates directly in the pathophysiology of atrial fibrillation and neurohumoral syncope. Adenosine has a key role in the adaptive response in pulmonary hypertension and heart failure, with the most relevant effects being slowing of heart rhythm, coronary vasodilation and decreasing blood pressure. In other conditions, such as altitude or apnea-induced hypoxia, obstructive sleep apnea, or systemic hypertension, the adenosinergic system activation appears in a context of an adaptive response. Due to its short half-life, adenosine allows very rapid adaptation of the cardiovascular system. Finally, the effects of adenosine on the cardiovascular system are sometimes beneficial and other times harmful. Future research should aim to develop modulating agents of adenosine receptors to slow down or conversely amplify the adenosinergic response according to the occurrence of different pathologic conditions.
Collapse
|
78
|
D’Alessandro A, Xia Y. Erythrocyte adaptive metabolic reprogramming under physiological and pathological hypoxia. Curr Opin Hematol 2020; 27:155-162. [PMID: 32141895 PMCID: PMC8900923 DOI: 10.1097/moh.0000000000000574] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW The erythrocyte is the most abundant cell type in our body, acting as both a carrier/deliverer and sensor of oxygen (O2). Erythrocyte O2 delivery capacity is finely regulated by sophisticated metabolic control. In recent years, unbiased and robust human metabolomics screening and mouse genetic studies have advanced erythroid research revealing the differential role of erythrocyte hypoxic metabolic reprogramming in normal individuals at high altitudes and patients facing hypoxia, such as sickle cell disease (SCD) and chronic kidney disease (CKD). Here we summarize recent progress and highlight potential therapeutic possibilities. RECENT FINDINGS Initial studies showed that elevated soluble CD73 (sCD73, converts AMP to adenosine) results in increased circulating adenosine that activates the A2B adenosine receptor (ADORA2B). Signaling through this axis is co-operatively strengthened by erythrocyte-specific synthesis of sphingosine-1-phosphate (S1P). Ultimately, these mechanisms promote the generation of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific allosteric modulator that decreases haemoglobin--O2-binding affinity, and thus, induces deoxygenated sickle Hb (deoxyHbS), deoxyHbS polymerization, sickling, chronic inflammation and tissue damage in SCD. Similar to SCD, plasma adenosine and erythrocyte S1P are elevated in humans ascending to high altitude. At high altitude, these two metabolites are beneficial to induce erythrocyte metabolic reprogramming and the synthesis of 2,3-BPG, and thus, increase O2 delivery to counteract hypoxic tissue damage. Follow-up studies showed that erythrocyte equilibrative nucleoside transporter 1 (eENT1) is a key purinergic cellular component controlling plasma adenosine in humans at high altitude and mice under hypoxia and underlies the quicker and higher elevation of plasma adenosine upon re-ascent because of prior hypoxia-induced degradation of eENT1. More recent studies demonstrated the beneficial role of erythrocyte ADORA2B-mediated 2,3-BPG production in CKD. SUMMARY Taken together, these findings revealed the differential role of erythrocyte hypoxic metabolic reprogramming in normal humans at high altitude and patients with CKD vs. SCD patients and immediately suggest differential and precision therapies to counteract hypoxia among these groups.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
- MDAnderson-UTHealth Graduate School of Biomedical Science, Houston, TX, 77030, USA
| |
Collapse
|
79
|
Wang M, Guo X, Zhao H, Lv J, Wang H, An Y. Adenosine A 2B receptor activation stimulates alveolar fluid clearance through alveolar epithelial sodium channel via cAMP pathway in endotoxin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 318:L787-L800. [PMID: 32129084 DOI: 10.1152/ajplung.00195.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clinical studies have established that the capacity of removing excess fluid from alveoli is impaired in most patients with acute respiratory distress syndrome. Impaired alveolar fluid clearance (AFC) correlates with poor outcomes. Adenosine A2B receptor (A2BAR) has the lowest affinity with adenosine among four adenosine receptors. It is documented that A2BAR can activate adenylyl cyclase (AC) resulting in elevated cAMP. Based on the understanding that cAMP is a key regulator of epithelial sodium channel (ENaC), which is the limited step in sodium transport, we hypothesized that A2BAR signaling may affect AFC in acute lung injury (ALI) through regulating ENaC via cAMP, thus attenuating pulmonary edema. To address this, we utilized pharmacological approaches to determine the role of A2BAR in AFC in rats with endotoxin-induced lung injury and further focused on the mechanisms in vitro. We observed elevated pulmonary A2BAR level in rats with ALI and the similar upregulation in alveolar epithelial cells exposed to LPS. A2BAR stimulation significantly attenuated pulmonary edema during ALI, an effect that was associated with enhanced AFC and increased ENaC expression. The regulatory effects of A2BAR on ENaC-α expression were further verified in cultured alveolar epithelial type II (ATII) cells. More importantly, activation of A2BAR dramatically increased amiloride-sensitive Na+ currents in ATII cells. Moreover, we observed that A2BAR activation stimulated cAMP accumulation, whereas the cAMP inhibitor abolished the regulatory effect of A2BAR on ENaC-α expression, suggesting that A2BAR activation regulates ENaC-α expression via cAMP-dependent mechanism. Together, these findings suggest that signaling through alveolar epithelial A2BAR promotes alveolar fluid balance during endotoxin-induced ALI by regulating ENaC via cAMP pathway, raising the hopes for treatment of pulmonary edema due to ALI.
Collapse
Affiliation(s)
- Mengnan Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xiaoxia Guo
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Jie Lv
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Huixia Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
80
|
LI X, LI W, FENG S, WANG R. [Research progress on mechanism in adaptation of hemoglobin to plateau hypoxia]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:674-681. [PMID: 31955543 PMCID: PMC8800677 DOI: 10.3785/j.issn.1008-9292.2019.12.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Low oxygen partial pressure is the main cause of acute mountain sickness.Hemoglobin plays a crucial physiological role in the binding, utilization, transportation and release of oxygen in the body. To increase the capacity of oxygen binding of hemoglobin or the capacity of oxygen supply in tissues can help alleviate altitude sickness. However, increasing hemoglobin content has certain limitations. Using techniques from molecular biology, researchers are looking for endogenous or exogenous substances that can regulate the conformation of hemoglobin to increase oxygen uptake in the alveoli, or the availability of alveolar oxygen in the tissues. At present, the research on allosteric modulators to improve the affinity of hemoglobin has made some progress, and research on applying this mechanism to plateau hypoxia is also underway. This article reviews the relationship between hemoglobin and hypoxia, the structure of hemoglobin and the role of various allosteric modulators in hypoxia, which would provide information for finding new substances regulating the conformation of hemoglobin.
Collapse
Affiliation(s)
| | | | - Shilan FENG
- 封士兰(1957-), 女, 教授, 博士生导师, 主要从事中药中化学成分分离分析研究, E-mail:
| | - Rong WANG
- 王荣(1969-), 男, 博士, 主任药师, 教授, 博士生导师, 主要从事高原药代动力学等研究, E-mail:
;
https://orcid.org/0000-0001-9139-7311
| |
Collapse
|
81
|
Chang Y, Zhang W, Chen K, Wang Z, Xia S, Li H. Metabonomics window into plateau hypoxia. J Int Med Res 2019; 47:5441-5452. [PMID: 31594434 PMCID: PMC6862876 DOI: 10.1177/0300060519879323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Oxygen deficiency in the plateau environment weakens aerobic metabolism and reduces the energy supply, leading to high-altitude diseases including decreased circulatory function, decreased nutrient and energy supply to tissues and organs, and decreased waste discharge. The involvement of many metabolic pathways is reflected in dramatic changes in levels of endogenous small molecule metabolites. Metabolomics represents a promising technique for mechanistic studies and drug screening, and metabonomics, or quantitative metabolomics, has been increasingly applied to the study of hypoxic diseases and their pathogenesis, as well as to pharmacodynamics at high altitudes. In this article, we review the recent literature on the pathogenesis of altitude hypoxia and the clinical and preclinical metabonomics of drug interventions. Endogenous metabolites and metabolic pathways change significantly under high-altitude hypoxia. Some drug interventions have also been shown to regulate pathway metabolism, and the problems of applying metabonomics to hypoxic diseases at high altitude and the prospects for its future application are summarized.
Collapse
Affiliation(s)
- Yue Chang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People’s Armed Police Force, Tianjin, China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Wen Zhang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People’s Armed Police Force, Tianjin, China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Kai Chen
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People’s Armed Police Force, Tianjin, China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Zhenguo Wang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People’s Armed Police Force, Tianjin, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People’s Armed Police Force, Tianjin, China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Hai Li
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
- Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, Tianjin, China
| |
Collapse
|
82
|
Tang Z, Ye W, Chen H, Kuang X, Guo J, Xiang M, Peng C, Chen X, Liu H. Role of purines in regulation of metabolic reprogramming. Purinergic Signal 2019; 15:423-438. [PMID: 31493132 DOI: 10.1007/s11302-019-09676-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Purines, among most influential molecules, are reported to have essential biological function by regulating various cell types. A large number of studies have led to the discovery of many biological functions of the purine nucleotides such as ATP, ADP, and adenosine, as signaling molecules that engage G protein-coupled or ligand-gated ion channel receptors. The role of purines in the regulation of cellular functions at the gene or protein level has been well documented. With the advances in multiomics, including those from metabolomic and bioinformatic analyses, metabolic reprogramming was identified as a key mechanism involved in the regulation of cellular function under physiological or pathological conditions. Recent studies suggest that purines or purine-derived products contribute to important regulatory functions in many fundamental biological and pathological processes related to metabolic reprogramming. Therefore, this review summarizes the role and potential mechanism of purines in the regulation of metabolic reprogramming. In particular, the molecular mechanisms of extracellular purine- and intracellular purine-mediated metabolic regulation in various cells during disease development are discussed. In summary, our review provides an extensive resource for studying the regulatory role of purines in metabolic reprogramming and sheds light on the utilization of the corresponding peptides or proteins for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Zhenwei Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Wenrui Ye
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Haotian Chen
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Xinwei Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minmin Xiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
83
|
Peng Z, Luo R, Xie T, Zhang W, Liu H, Wang W, Tao L, Kellems RE, Xia Y. Erythrocyte Adenosine A2B Receptor-Mediated AMPK Activation: A Missing Component Counteracting CKD by Promoting Oxygen Delivery. J Am Soc Nephrol 2019; 30:1413-1424. [PMID: 31278195 DOI: 10.1681/asn.2018080862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxygen deprivation or hypoxia in the kidney drives CKD and contributes to end organ damage. The erythrocyte's role in delivery of oxygen (O2) is regulated by hypoxia, but the effects of CKD are unknown. METHODS We screened all of the metabolites in the whole blood of mice infused with angiotensin II (Ang II) at 140 ng/kg per minute up to 14 days to simulate CKD and compared their metabolites with those from untreated mice. Mice lacking a receptor on their erythrocytes called ADORA2B, which increases O2 delivery, and patients with CKD were studied to assess the role of ADORA2B-mediated O2 delivery in CKD. RESULTS Untargeted metabolomics showed increased production of 2,3-biphosphoglycerate (2,3-BPG), an erythrocyte-specific metabolite promoting O2 delivery, in mice given Ang II to induce CKD. Genetic studies in mice revealed that erythrocyte ADORA2B signaling leads to AMPK-stimulated activation of BPG mutase, promoting 2,3-BPG production and O2 delivery to counteract kidney hypoxia, tissue damage, and disease progression in Ang II-induced CKD. Enhancing AMPK activation in mice offset kidney hypoxia by triggering 2,3-BPG production and O2 delivery. Patients with CKD had higher 2,3-BPG levels, AMPK activity, and O2 delivery in their erythrocytes compared with controls. Changes were proportional to disease severity, suggesting a protective effect. CONCLUSIONS Mouse and human evidence reveals that ADORA2B-AMPK signaling cascade-induced 2,3-BPG production promotes O2 delivery by erythrocytes to counteract kidney hypoxia and progression of CKD. These findings pave a way to novel therapeutic avenues in CKD targeting this pathway.
Collapse
Affiliation(s)
- Zhangzhe Peng
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Renna Luo
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tingting Xie
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Department of Rheumatology and Immunology and
| | - Weiru Zhang
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Department of Rheumatology and Immunology and
| | - Hong Liu
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and.,Graduate School of Biomedical Science, University of Texas at Houston, Houston, Texas
| | - Wei Wang
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rodney E Kellems
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Graduate School of Biomedical Science, University of Texas at Houston, Houston, Texas
| | - Yang Xia
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas; .,Graduate School of Biomedical Science, University of Texas at Houston, Houston, Texas
| |
Collapse
|
84
|
Protect, repair, destroy or sacrifice: a role of oxidative stress biology in inter-donor variability of blood storage? BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:281-288. [PMID: 31184577 DOI: 10.2450/2019.0072-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022]
Abstract
Red blood cells (RBCs) have been historically regarded as a critical model to investigate cellular and oxidant stress biology. First of all, they are constantly exposed to oxidant stress, as their main function is to transport and deliver oxygen to tissues. Second, they are devoid of de novo protein synthesis capacity, which prevents RBCs from replacing irreversibly oxidised proteins with newly synthesised ones. As such, RBCs have evolved to (i) protect themselves from oxidant stress, in order to prevent oxidant damage from reactive species; (ii) repair oxidatively damaged proteins, through mechanisms that involve glutathione and one-carbon metabolism; (iii) destroy irreversibly oxidised proteins through proteasomal or protease-dependent degradation; and (iv) sacrifice membrane portions through mechanism of vesiculation. In this brief review we will summarize these processes and their relevance to RBC redox biology (within the context of blood storage), with a focus on how polymorphisms in RBC antioxidant responses could contribute to explaining the heterogeneity in the progression and severity of the RBC storage lesion that can be observed across the healthy donor population.
Collapse
|
85
|
D'Alessandro A. From omics technologies to personalized transfusion medicine. Expert Rev Proteomics 2019; 16:215-225. [PMID: 30654673 DOI: 10.1080/14789450.2019.1571917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Blood transfusion is the single most frequent in-hospital medical procedure, a life-saving intervention for millions of recipients worldwide every year. Storage in the blood bank is an enabling strategy for this critical procedure, as it logistically solves the issue of making ~110 million units available for transfusion every year. Unfortunately, storage in the blood bank promotes a series of biochemical and morphological changes to the red blood cell that compromise the integrity and functionality of the erythrocyte in vitro and in animal models, and could negatively impact transfusion outcomes in the recipient. Areas covered: While commenting on the clinical relevance of the storage lesion is beyond the scope of this manuscript, here we will review recent advancements in our understanding of the storage lesion as gleaned through omics technologies. We will focus on how the omics-scale appreciation of the biological variability at the donor and recipient level is impacting our understanding of red blood cell storage biology. Expert commentary: Omics technologies are paving the way for personalized transfusion medicine, a discipline that promises to revolutionize a critical field in medical practice. The era of recipient-tailored additives, processing, and storage strategies may not be too far distant in the future.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
- b Department of Medicine - Division of Hematology , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
86
|
Gehrke S, Rice S, Stefanoni D, Wilkerson RB, Nemkov T, Reisz JA, Hansen KC, Lucas A, Cabrales P, Drew K, D'Alessandro A. Red Blood Cell Metabolic Responses to Torpor and Arousal in the Hibernator Arctic Ground Squirrel. J Proteome Res 2019; 18:1827-1841. [PMID: 30793910 DOI: 10.1021/acs.jproteome.9b00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arctic ground squirrels provide a unique model to investigate metabolic responses to hibernation in mammals. During winter months these rodents are exposed to severe hypothermia, prolonged fasting, and hypoxemia. In the light of their role in oxygen transport/off-loading and owing to the absence of nuclei and organelles (and thus de novo protein synthesis capacity), mature red blood cells have evolved metabolic programs to counteract physiological or pathological hypoxemia. However, red blood cell metabolism in hibernation has not yet been investigated. Here we employed targeted and untargeted metabolomics approaches to investigate erythrocyte metabolism during entrance to torpor to arousal, with a high resolution of the intermediate time points. We report that torpor and arousal promote metabolism through glycolysis and pentose phosphate pathway, respectively, consistent with previous models of oxygen-dependent metabolic modulation in mature erythrocytes. Erythrocytes from hibernating squirrels showed up to 100-fold lower levels of biomarkers of reperfusion injury, such as the pro-inflammatory dicarboxylate succinate. Altered tryptophan metabolism during torpor was here correlated to the accumulation of potentially neurotoxic catabolites kynurenine, quinolinate, and picolinate. Arousal was accompanied by alterations of sulfur metabolism, including sudden spikes in a metabolite putatively identified as thiorphan (level 1 confidence)-a potent inhibitor of several metalloproteases that play a crucial role in nociception and inflammatory complication to reperfusion secondary to ischemia or hemorrhage. Preliminary studies in rats showed that intravenous injection of thiorphan prior to resuscitation mitigates metabolic and cytokine markers of reperfusion injury, etiological contributors to inflammatory complications after shock.
Collapse
Affiliation(s)
- Sarah Gehrke
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Sarah Rice
- Department of Chemistry and Biochemistry , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Rebecca B Wilkerson
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Alfredo Lucas
- Department of Bioengineering , University of California San Diego , La Jolla , California 92093 , United States
| | - Pedro Cabrales
- Department of Bioengineering , University of California San Diego , La Jolla , California 92093 , United States
| | - Kelly Drew
- Department of Chemistry and Biochemistry , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
87
|
|
88
|
Sun Y, Zhu Y, Zhong X, Chen X, Wang J, Ying G. Crosstalk Between Autophagy and Cerebral Ischemia. Front Neurosci 2019; 12:1022. [PMID: 30692904 PMCID: PMC6339887 DOI: 10.3389/fnins.2018.01022] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
With the use of advanced electron microscopy and molecular biology tools, several studies have shown that autophagy is involved in the development of ischemic stroke. A series of molecular mechanisms are involved in the regulation of autophagy. In this work, the possible molecular mechanisms involved in autophagy during ischemic stroke were reviewed and new potential targets for the study and treatment of ischemic stroke were provided.
Collapse
Affiliation(s)
- Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yuanhan Zhu
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xiaojun Zhong
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xinle Chen
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jun Wang
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Guozheng Ying
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
89
|
Beidleman BA, Fulco CS, Glickman EL, Cymerman A, Kenefick RW, Cadarette BS, Andrew SP, Staab JE, Sils IV, Muza SR. Acute Mountain Sickness is Reduced Following 2 Days of Staging During Subsequent Ascent to 4300 m. High Alt Med Biol 2018; 19:329-338. [PMID: 30517038 DOI: 10.1089/ham.2018.0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To determine whether 2 days of staging at 2500-3500 m, combined with either high or low physical activity, reduces acute mountain sickness (AMS) during subsequent ascent to 4300 m. METHODS Three independent groups of unacclimatized men and women were staged for 2 days at either 2500 m (n = 18), 3000 m (n = 16), or 3500 m (n = 15) before ascending and living for 2 days at 4300 m and compared with a control group that directly ascended to 4300 m (n = 12). All individuals departed to the staging altitudes or 4300 m after spending one night at 2000 m during which they breathed supplemental oxygen to simulate sea level conditions. Half in each group participated in ∼3 hours of daily physical activity while half were sedentary. Women accounted for ∼25% of each group. AMS incidence was assessed using the Environmental Symptoms Questionnaire. AMS was classified as mild (≥0.7 and <1.5), moderate (≥1.5 and <2.6), and severe (≥2.6). RESULTS While staging, the incidence of AMS was lower (p < 0.001) in the 2500 m (0%), 3000 m (13%), and 3500 m (40%) staged groups than the direct ascent control group (83%). After ascent to 4300 m, the incidence of AMS was lower in the 3000 m (43%) and 3500 m (40%) groups than the 2500 m group (67%) and direct ascent control (83%). Neither activity level nor sex influenced the incidence of AMS during further ascent to 4300 m. CONCLUSIONS Two days of staging at either 3000 or 3500 m, with or without physical activity, reduced AMS during subsequent ascent to 4300 m but staging at 3000 m may be recommended because of less incidence of AMS.
Collapse
Affiliation(s)
- Beth A Beidleman
- 1 Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Charles S Fulco
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Allen Cymerman
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Robert W Kenefick
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Bruce S Cadarette
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Sean P Andrew
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Janet E Staab
- 3 Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Ingrid V Sils
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stephen R Muza
- 4 Strategic Scientific Management Office, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
90
|
Saini S, Vats P, Bayen S, Gaur P, Ray K, Kishore K, Sartmyrzaeva M, Akunov A, Maripov A, Sarybaev A, Kumar B, Singh SB. Global expression profiling and pathway analysis in two different population groups in relation to high altitude. Funct Integr Genomics 2018; 19:205-215. [PMID: 30341547 DOI: 10.1007/s10142-018-0637-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 09/14/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022]
Abstract
High altitude (HA) is associated with number of stresses. Response of these stresses may vary in different populations depending upon altitude, duration of residency, ancestry, geographical variation, lifestyle, and ethnicities. For understanding population variability in transcriptome, array-based global gene expression profiling was performed on extracted RNA of male volunteers of two different lowland population groups, i.e., Indians and Kyrgyz, at baseline and day 7 of HA exposure (3200 m). A total of 97 genes were differentially expressed at basal in Kyrgyz as compared to Indians (82 downregulated and 15 upregulated), and 196 were differentially expressed on day 7 of HA (118 downregulated and 78 upregulated). Ingenuity Pathway Analysis and gene ontology highlighted eIF2 signaling with most significant negative activation z score at basal in Kyrgyz compared to Indians with downregulation of various L- and S-ribosomal proteins indicating marked translational repression. On day 7, cAMP-mediated signaling is most enriched with positive activation z score in Kyrgyz compared to Indians. Plasma cAMP levels were higher in Kyrgyz on day 7 compared to Indians. Extracellular adenosine levels were elevated in both the groups upon HA, but higher in Kyrgyz compared to Indians. Valedictory qRT-PCR showed upregulation of ADORA2B and CD73 along with downregulation of ENTs in Kyrgyz compared to Indians indicating elevated levels of extracellular nucleotides mainly adenosine and activation of extracellular cAMP-adenosine pathway which as per literature triggers endogenous protective mechanisms under stress conditions like hypoxia. Thus, transcriptome changes at HA are population-specific, and it may be necessary to take care while interposing similar results in different populations.
Collapse
Affiliation(s)
- Supriya Saini
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Praveen Vats
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
- Endocrinology and Metabolism Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | | | - Priya Gaur
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Koushik Ray
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Krishna Kishore
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Meerim Sartmyrzaeva
- Kyrgyz Indian Mountain Biomedical Research Centre, Togolok Moldo Str 3, 720040, Bishkek, Kyrgyz Republic
| | - Almaz Akunov
- Kyrgyz Indian Mountain Biomedical Research Centre, Togolok Moldo Str 3, 720040, Bishkek, Kyrgyz Republic
| | - Abdirashit Maripov
- Kyrgyz Indian Mountain Biomedical Research Centre, Togolok Moldo Str 3, 720040, Bishkek, Kyrgyz Republic
| | - Akpay Sarybaev
- Kyrgyz Indian Mountain Biomedical Research Centre, Togolok Moldo Str 3, 720040, Bishkek, Kyrgyz Republic
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Shashi Bala Singh
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
91
|
Nemkov T, Reisz JA, Xia Y, Zimring JC, D’Alessandro A. Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic functions beyond oxygen transport. Expert Rev Proteomics 2018; 15:855-864. [DOI: 10.1080/14789450.2018.1531710] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Aurora, CO, USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Aurora, CO, USA
| | - Yang Xia
- Department of Biochemistry, University of Texas Houston – McGovern Medical School , Houston, TX, USA
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Aurora, CO, USA
| |
Collapse
|
92
|
Reisz JA, Nemkov T, Dzieciatkowska M, Culp-Hill R, Stefanoni D, Hill RC, Yoshida T, Dunham A, Kanias T, Dumont LJ, Busch M, Eisenmesser EZ, Zimring JC, Hansen KC, D'Alessandro A. Methylation of protein aspartates and deamidated asparagines as a function of blood bank storage and oxidative stress in human red blood cells. Transfusion 2018; 58:2978-2991. [PMID: 30312994 DOI: 10.1111/trf.14936] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Being devoid of de novo protein synthesis capacity, red blood cells (RBCs) have evolved to recycle oxidatively damaged proteins via mechanisms that involve methylation of dehydrated and deamidated aspartate and asparagine residues. Here we hypothesize that such mechanisms are relevant to routine storage in the blood bank. STUDY DESIGN AND METHODS Within the framework of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, packed RBC units (n = 599) were stored under blood bank conditions for 10, 23, and 42 days and profiled for oxidative hemolysis and time-dependent metabolic dysregulation of the trans-sulfuration pathway. RESULTS In these units, methionine consumption positively correlated with storage age and oxidative hemolysis. Mechanistic studies show that this phenomenon is favored by oxidative stress or hyperoxic storage (sulfur dioxide >95%), and prevented by hypoxia or methyltransferase inhibition. Through a combination of proteomics approaches and 13 C-methionine tracing, we observed oxidation-induced increases in both Asn deamidation to Asp and formation of methyl-Asp on key structural proteins and enzymes, including Band 3, hemoglobin, ankyrin, 4.1, spectrin beta, aldolase, glyceraldehyde 3-phosphate dehydrogenase, biphosphoglycerate mutase, lactate dehydrogenase and catalase. Methylated regions tended to map proximal to the active site (e.g., N316 of glyceraldehyde 3-phosphate dehydrogenase) and/or residues interacting with the N-terminal cytosolic domain of Band 3. CONCLUSION While methylation of basic amino acid residues serves as an epigenetic modification in nucleated cells, protein methylation at carboxylate side chains and deamidated asparagines is a nonepigenetic posttranslational sensor of oxidative stress and refrigerated storage in anucleated human RBCs.
Collapse
Affiliation(s)
- Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Tamir Kanias
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Michael Busch
- Blood Systems Research Institute, San Francisco, California
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
93
|
Abstract
The ubiquitous adenine nucleoside adenosine (Ado), which plays an important role in cellular energetics, is released from cells under physiologic and pathophysiologic conditions. Another source of extracellular Ado is rapid degradation of extracellular adenosine 5′-triphosphate (ATP) by ectoenzymes. Extracellular Ado acts as an autocrine and paracrine agent by the activation of G protein-coupled cell surface receptors (GPCRs), designated as A1, A2A, A2B, and A3. Almost four decades ago, published data have indicated that Ado could play a role in immune-mediated histamine release from pulmonary mast cells. Since then, numerous studies have indicated that Ado’s signal transductions are involved in various pulmonary pathologies including asthma and COPD. This chapter is a succinct review of recent studies in this field.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
94
|
Zhao Y, Wang X, Noviana M, Hou M. Nitric oxide in red blood cell adaptation to hypoxia. Acta Biochim Biophys Sin (Shanghai) 2018; 50:621-634. [PMID: 29860301 DOI: 10.1093/abbs/gmy055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) appears to be involved in virtually every aspect of cardiovascular biology. Most attention has been focused on the role of endothelial-derived NO in basal blood flow regulation by relaxing vascular smooth muscle; however, it is now known that NO derived from red blood cells (RBCs) plays a fundamental role in vascular homeostasis by enhancing oxygen (O2) release at the cellular and physiological level. Hypoxia is an often seen problem in diverse conditions; systemic adaptations to hypoxia permit people to adjust to the hypoxic environment at high altitudes and to disease processes. In addition to the cardiopulmonary and hematologic adaptations that support systemic O2 delivery in hypoxia, RBCs assist through newly described NO-based mechanisms, in line with their vital role in O2 transport and delivery. Furthermore, to increase the local blood flow in proportion to metabolic demand, NO regulates membrane mechanical properties thereby modulating RBC deformability and O2 carrying-releasing function. In this review article, we focus on the effect of NO bioactivity on RBC-based mechanisms that regulate blood flow and RBC deformability. RBC adaptations to hypoxia are summarized, with particular attention to NO-dependent S-nitrosylation of membrane proteins and hemoglobin (S-nitrosohemoglobin). The NO/S-nitrosylation/RBC vasoregulatory cascade contributes fundamentally to the molecular understanding of the role of NO in human adaptation to hypoxia and may inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Yajin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Milody Noviana
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Man Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
95
|
Gao ZG, Inoue A, Jacobson KA. On the G protein-coupling selectivity of the native A 2B adenosine receptor. Biochem Pharmacol 2018; 151:201-213. [PMID: 29225130 PMCID: PMC5899946 DOI: 10.1016/j.bcp.2017.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
A2B adenosine receptor (A2BAR) activation induces Gs-dependent cyclic AMP accumulation. However, A2BAR G protein-coupling to other signaling events, e.g. ERK1/2 and calcium, is not well documented. We explored Gi, Gq/11 and Gs coupling in 1321 N1 astrocytoma, HEK293, and T24 bladder cancer cells endogenously expressing human A2BAR, using NECA or nonnucleoside BAY60-6583 as agonist, selective Gi, Gs and Gq/11 blockers, and CRISPR/Cas9-based Gq- and Gs-null HEK293 cells. In HEK293 cells, A2BAR-mediated ERK1/2 activity occurred via both Gi and Gs, but not Gq/11. However, HEK293 cell calcium mobilization was completely blocked by Gq/11 inhibitor UBO-QIC and by Gq/11 knockout. In T24 cells, Gi was solely responsible for A2BAR-mediated ERK1/2 stimulation, and Gs suppressed ERK1/2 activity. A2BAR-mediated intracellular calcium mobilization in T24 cells was mainly via Gi, although Gs may also play a role, but Gq/11 is not involved. In 1321 N1 astrocytoma cells A2BAR activation suppressed rather than stimulated ERK1/2 activity. The ERK1/2 activity decrease was reversed by Gs downregulation using cholera toxin, but potentiated by Gi inhibitor pertussis toxin, and UBO-QIC had no effect. EPACs played an important role in A2BAR-mediated ERK1/2 signaling in all three cells. Thus, A2BAR may: couple to the same downstream pathway via different G proteins in different cell types; activate different downstream events via different G proteins in the same cell type; activate Gi and Gs, which have opposing or synergistic roles in different cell types/signaling pathways. The findings, relevant to drug discovery, address some reported controversial roles of A2BAR and could apply to signaling mechanisms in other GPCRs.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
96
|
Reisz JA, Barrett AS, Nemkov T, Hansen KC, D'Alessandro A. When nature's robots go rogue: exploring protein homeostasis dysfunction and the implications for understanding human aging disease pathologies. Expert Rev Proteomics 2018; 15:293-309. [PMID: 29540077 PMCID: PMC6174679 DOI: 10.1080/14789450.2018.1453362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Proteins have been historically regarded as 'nature's robots': Molecular machines that are essential to cellular/extracellular physical mechanical properties and catalyze key reactions for cell/system viability. However, these robots are kept in check by other protein-based machinery to preserve proteome integrity and stability. During aging, protein homeostasis is challenged by oxidation, decreased synthesis, and increasingly inefficient mechanisms responsible for repairing or degrading damaged proteins. In addition, disruptions to protein homeostasis are hallmarks of many neurodegenerative diseases and diseases disproportionately affecting the elderly. Areas covered: Here we summarize age- and disease-related changes to the protein machinery responsible for preserving proteostasis and describe how both aging and disease can each exacerbate damage initiated by the other. We focus on alteration of proteostasis as an etiological or phenomenological factor in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, along with Down syndrome, ophthalmic pathologies, and cancer. Expert commentary: Understanding the mechanisms of proteostasis and their dysregulation in health and disease will represent an essential breakthrough in the treatment of many (senescence-associated) pathologies. Strides in this field are currently underway and largely attributable to the introduction of high-throughput omics technologies and their combination with novel approaches to explore structural and cross-link biochemistry.
Collapse
Affiliation(s)
- Julie A Reisz
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Alexander S Barrett
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Travis Nemkov
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Kirk C Hansen
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
97
|
Kauffenstein G, Yegutkin GG, Khiati S, Pomozi V, Le Saux O, Leftheriotis G, Lenaers G, Henrion D, Martin L. Alteration of Extracellular Nucleotide Metabolism in Pseudoxanthoma Elasticum. J Invest Dermatol 2018; 138:1862-1870. [PMID: 29501384 DOI: 10.1016/j.jid.2018.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/02/2018] [Accepted: 02/15/2018] [Indexed: 01/06/2023]
Abstract
Pseudoxanthoma elasticum (PXE) is a rare genetic condition primarily caused by hepatic ABCC6 transporter dysfunction. Most clinical manifestations of PXE are due to premature calcification of elastic fibers. However, the vascular impact of PXE is pleiotropic and remains ill defined. ABCC6 expression has recently been associated with cellular nucleotide export. We studied the impact of ABCC6 deficiency on blood levels of adenosine triphosphate and related metabolites and on soluble nucleotidase activities in PXE patients and Abcc6-/- mice. In addition, we investigated the expression of genes encoding ectocellular purinergic signaling proteins in mouse liver and aorta. Plasma adenosine triphosphate and pyrophosphate levels were significantly reduced in PXE patients and in Abcc6-/- mice, whereas adenosine concentration was not modified. Moreover, 5'-nucleotidase/CD73 activity was increased in the serum of PXE patients and Abcc6-/- mice. Consistent with alterations of purinergic signaling, the expression of genes involved in purine and phosphate transport/metabolism was dramatically modified in Abcc6-/- mouse aorta, with much less impact on the liver. ABCC6 deficiency causes impaired vascular homeostasis and tissue perfusion. Our findings suggest that these alterations are linked to changes in extracellular nucleotide metabolism that are remote from the liver. This opens new perspectives for the understanding of PXE pathophysiology.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- MITOVASC-UMR CNRS 6015 INSERM U1083, Angers University, France; University Hospital of Angers, Angers, France.
| | - Gennady G Yegutkin
- Department of Microbiology and Immunology, MediCity Research Laboratory, University of Turku, Finland
| | - Salim Khiati
- MITOVASC-UMR CNRS 6015 INSERM U1083, Angers University, France
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | | | - Guy Lenaers
- MITOVASC-UMR CNRS 6015 INSERM U1083, Angers University, France
| | - Daniel Henrion
- MITOVASC-UMR CNRS 6015 INSERM U1083, Angers University, France
| | - Ludovic Martin
- MITOVASC-UMR CNRS 6015 INSERM U1083, Angers University, France; University Hospital of Angers, Angers, France
| |
Collapse
|
98
|
Tzounakas VL, Gevi F, Georgatzakou HT, Zolla L, Papassideri IS, Kriebardis AG, Rinalducci S, Antonelou MH. Redox Status, Procoagulant Activity, and Metabolome of Fresh Frozen Plasma in Glucose 6-Phosphate Dehydrogenase Deficiency. Front Med (Lausanne) 2018; 5:16. [PMID: 29459896 PMCID: PMC5807665 DOI: 10.3389/fmed.2018.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Transfusion of fresh frozen plasma (FFP) helps in maintaining the coagulation parameters in patients with acquired multiple coagulation factor deficiencies and severe bleeding. However, along with coagulation factors and procoagulant extracellular vesicles (EVs), numerous bioactive and probably donor-related factors (metabolites, oxidized components, etc.) are also carried to the recipient. The X-linked glucose 6-phosphate dehydrogenase deficiency (G6PD-), the most common human enzyme genetic defect, mainly affects males. By undermining the redox metabolism, the G6PD- cells are susceptible to the deleterious effects of oxidants. Considering the preferential transfusion of FFP from male donors, this study aimed at the assessment of FFP units derived from G6PD- males compared with control, to show whether they are comparable at physiological, metabolic and redox homeostasis levels. METHODS The quality of n = 12 G6PD- and control FFP units was tested after 12 months of storage, by using hemolysis, redox, and procoagulant activity-targeted biochemical assays, flow cytometry for EV enumeration and phenotyping, untargeted metabolomics, in addition to statistical and bioinformatics tools. RESULTS Higher procoagulant activity, phosphatidylserine positive EVs, RBC-vesiculation, and antioxidant capacity but lower oxidative modifications in lipids and proteins were detected in G6PD- FFP compared with controls. The FFP EVs varied in number, cell origin, and lipid/protein composition. Pathway analysis highlighted the riboflavin, purine, and glycerolipid/glycerophospholipid metabolisms as the most altered pathways with high impact in G6PD-. Multivariate and univariate analysis of FFP metabolomes showed excess of diacylglycerols, glycerophosphoinositol, aconitate, and ornithine but a deficiency in riboflavin, flavin mononucleotide, adenine, and arginine, among others, levels in G6PD- FFPs compared with control. CONCLUSION Our results point toward a different redox, lipid metabolism, and EV profile in the G6PD- FFP units. Certain FFP-needed patients may be at greatest benefit of receiving FFP intrinsically endowed by both procoagulant and antioxidant activities. However, the clinical outcome of G6PD- FFP transfusion would likely be affected by various other factors, including the signaling potential of the differentially expressed metabolites and EVs, the degree of G6PD-, the redox status in the recipient, the amount of FFP units transfused, and probably, the storage interval of the FFP, which deserve further investigation by future studies.
Collapse
Affiliation(s)
- Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Hara T. Georgatzakou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G. Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
99
|
Strewe C, Zeller R, Feuerecker M, Hoerl M, Matzel S, Kumprej I, Crispin A, Johannes B, Debevec T, Mekjavic IB, Eiken O, Thiel M, Schelling G, Choukèr A. PlanHab Study: Consequences of combined normobaric hypoxia and bed rest on adenosine kinetics. Sci Rep 2018; 8:1762. [PMID: 29379127 PMCID: PMC5788919 DOI: 10.1038/s41598-018-20045-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
Adenosine plays a role in the energy supply of cells and provokes differential, hormone-like functions in circulating cells and various tissues. Its release is importantly regulated by oxygen tension. This renders adenosine and its kinetics interesting to investigate in humans subjected to low oxygen conditions. Especially for space exploration scenarios, hypoxic conditions - together with reduced gravity - represent two foreseen living conditions when planning manned long-duration space missions or planetary habitats. The PlanHab study investigated microgravity through inactivity in bed rest and normobaric hypoxia to examine their independent or combined effect on adenosine and its kinetics. Healthy male subjects (n = 14) completed three 21-day interventions: hypoxic bed rest (HBR); hypoxic ambulatory confinement (HAMB); normoxic bed rest (NBR). The interventions were separated by 4 months. Our hypothesis of a hypoxia-triggered increase in adenosine was confirmed in HAMB but unexpectedly also in NBR. However, the highest adenosine levels were noted following HBR. Furthermore, the percentage of hemolysis was elevated in HBR whereas endothelial integrity markers stayed low in all three interventions. In summary, these data suggest that neocytolysis accounts for these effects while we could reduce evidence for microcirculatory changes.
Collapse
Affiliation(s)
- C Strewe
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Munich, Germany
| | - R Zeller
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Munich, Germany
| | - M Feuerecker
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Munich, Germany
| | - M Hoerl
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Munich, Germany
| | - S Matzel
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Munich, Germany
| | - I Kumprej
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Munich, Germany.,Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - A Crispin
- Institute for Medical Information Processing, Biometry and Epidemiology, Klinikum Großhadern, University of Munich, Munich, Germany
| | - B Johannes
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - T Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - I B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - O Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Center, School of Technology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - M Thiel
- Department of Anaesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - G Schelling
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Munich, Germany
| | - A Choukèr
- Department of Anaesthesiology, University Hospital, LMU Munich, Laboratory of Translational Research "Stress and Immunity", Munich, Germany.
| |
Collapse
|
100
|
D'Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, Ježek P, Li M, Zhang H, Gupte SA, Stenmark KR. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 2018; 28. [PMID: 28637353 PMCID: PMC5737722 DOI: 10.1089/ars.2017.7217] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. CRITICAL ISSUES Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. FUTURE DIRECTIONS For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 28, 230-250.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- 1 Department of Biochemistry and Molecular Genetics, University of Colorado - Denver , Colorado
| | - Karim C El Kasmi
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.,3 Department of Pediatric Gastroenterology, University of Colorado - Denver , Colorado
| | - Lydie Plecitá-Hlavatá
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Min Li
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Hui Zhang
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Sachin A Gupte
- 5 Department of Pharmacology, School of Medicine, New York Medical College , Valhalla, New York
| | - Kurt R Stenmark
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| |
Collapse
|