51
|
Xu Y, Wang Q, Chen J, Ma Y, Liu X. Updating a Strategy for Histone Deacetylases and Its Inhibitors in the Potential Treatment of Cerebral Ischemic Stroke. DISEASE MARKERS 2020; 2020:8820803. [PMID: 32963637 PMCID: PMC7492879 DOI: 10.1155/2020/8820803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is one of the severe diseases with a pathological condition that leads to nerve cell dysfunction with seldom available therapy options. Currently, there are few proven effective treatments available for improving cerebral ischemic stroke outcome. However, recently, there is increasing evidence that inhibition of histone deacetylase (HDAC) activity exerts a strong protective effect in in vivo and vitro models of ischemic stroke. Review Summary. HDAC is a posttranslational modification that is negatively regulated by histone acetyltransferase (HATS) and histone deacetylase. Based on function and DNA sequence similarity, histone deacetylases (HDACs) are organized into four different subclasses (I-IV). Modifications of histones play a crucial role in cerebral ischemic affair development after translation by modulating disrupted acetylation homeostasis. HDAC inhibitors (HDACi) mainly exert neuroprotective effects by enhancing histone and nonhistone acetylation levels and enhancing gene expression and protein modification functions. This article reviews HDAC and its inhibitors, hoping to find meaningful therapeutic targets. CONCLUSIONS HDAC may be a new biological target for cerebral ischemic stroke. Future drug development targeting HDAC may make it a potentially effective anticerebral ischemic stroke drug.
Collapse
Affiliation(s)
- Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Jianxin Chen
- Department of Neurology, Jinan First People's Hospital, Shandong Traditional Chinese Medicine University, Jinan, Shandong Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| |
Collapse
|
52
|
Barca C, Foray C, Hermann S, Döring C, Schäfers M, Jacobs AH, Zinnhardt B. Characterization of the inflammatory post-ischemic tissue by full volumetric analysis of a multimodal imaging dataset. Neuroimage 2020; 222:117217. [PMID: 32745676 DOI: 10.1016/j.neuroimage.2020.117217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION In vivo positron emission tomography (PET) and magnetic resonance imaging (MRI) support non-invasive assessment of the spatiotemporal expression of proteins of interest and functional/structural changes. Our work promotes the use of a volumetric analysis on multimodal imaging datasets to assess the spatio-temporal dynamics and interaction of two imaging biomarkers, with a special focus on two neuroinflammation-related biomarkers, the translocator protein (TSPO) and matrix metalloproteinases (MMPs), in the acute and chronic post-ischemic phase. AIM To improve our understating of the neuroinflammatory reaction and tissue heterogeneity during the post ischemic phase, we aimed (i) to assess the spatio-temporal distribution of two radiotracers, [18F]DPA-714 (TSPO) and [18F]BR-351 (MMPs), (ii) to investigate their spatial interaction, including exclusive and overlapping areas, and (iii) their relationship with the T2w-MRI ischemic lesion in a transient middle cerebral artery occlusion (tMCAo) mouse model using an atlas-based volumetric analysis. METHODS As described by Zinnhardt et al. (2015), a total of N = 30 C57BL/6 mice underwent [18F]DPA-714 and [18F]BR-351 PET-CT and subsequent MR imaging 24-48 h (n = 8), 7 ± 1 days (n = 8), 14 ± 1 days (n = 7), and 21 ± 1 days (n = 7) after 30 min transient middle cerebral artery occlusion (tMCAo). To further investigate the spatio-temporal distribution of [18F]DPA-714 and [18F]BR-351, an atlas-based ipsilesional volume of interest (VOI) was applied to co-registered PET-CT images and thresholded by the mean uptake + 2.5*standard deviation of a contralateral striatal control VOI. Mean lesion-to-contralateral ratios (L/C), volume extension (V in voxel), percentages of overlap and exclusive tracer uptake areas were determined. Both tracer volumes were also compared to the lesion extent depicted by T2w-MR imaging. RESULTS Both imaging biomarkers showed a constant small percentage of overlap across all time points (14.0 ± 14.2%). [18F]DPA-714 reached its maximum extent and uptake at day 14 post ischemia (V = 12,143 ± 6262 voxels, L/C = 2.32 ± 0.48). The majority of [18F]DPA-714 volume (82.4 ± 16.1%) was exclusive for [18F]DPA-714 and showed limited overlap with [18F]BR-351 and T2w-MRI lesion volumes. On the other hand, [18F]BR-351 reached its maximum extent already 24-48 h after tMCAo (V = 7279 ± 4518 voxels) and significantly decreased at day 14 (V = 1706 ± 1202 voxels). Focal spots of residual activity were still observed at day 21 post ischemia (L/C = 2.10 ± 0.37). The majority of [18F]BR-351 volume was exclusive for [18F]BR-351 (81.50 ± 25.07%) at 24-48 h and showed 64.84 ± 28.29% of overlap with [18F]DPA-714 from day 14 post ischemia while only 9.28 ± 13.45% of the [18F]BR-351 volume were overlapping the T2w-MRI lesion. The percentage of exclusive area of [18F]DPA-714 and [18F]BR-351 uptakes regarding T2w-MR lesion increased over time, suggesting that TSPO and MMPs are mostly localized in the peri‑infarct region at latter time points. CONCLUSION This study promotes the use of an unbiased volumetric analyses of multi-modal imaging data sets to improve the characterization of pathological tissue heterogeneity. This approach improves our understanding of (i) the dynamics of disease-related multi-modal imaging biomarkers, (ii) their spatiotemporal interactions and (iii) the post-ischemic tissue heterogeneity. Our results indicate acute MMPs activation after tMCAo preceding TSPO-dependent (micro-)gliosis. The spatial distribution of MMPs and gliosis is regionally independent with only minor (< 20%) overlapping areas in peri‑infarct regions.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany.
| | - Claudia Foray
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI)
| | - Christian Döring
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI); Department of Nuclear Medicine, University Hospital Münster, Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany; Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI); Department of Geriatrics, Johanniter Hospital, Bonn, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany; Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI); Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.
| |
Collapse
|
53
|
Stenz KT, Just J, Blauenfeldt RA, Drasbek KR. Extracellular Vesicles in Acute Stroke Diagnostics. Biomedicines 2020; 8:biomedicines8080248. [PMID: 32731351 PMCID: PMC7459954 DOI: 10.3390/biomedicines8080248] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
There is a large unmet need for fast and reliable diagnostics in several diseases. One such disease is stroke, where the efficacy of modern reperfusion therapies is highly time-dependent. Diagnosis of stroke and treatment initiation should be performed as soon as possible, and preferably before arrival at the stroke center. In recent years, several potential blood biomarkers for stroke have been evaluated, but without success. In this review, we will go into detail on the possibility of utilizing extracellular vesicles (EVs) released into the blood as novel biomarkers for stroke diagnostics. EVs are known to reflect the immediate state of the secreting cells and to be able to cross the blood–brain barrier, thus making them attractive as diagnostic biomarkers of brain diseases. Indeed, several studies have reported EV markers that enable differentiation between stroke patients and controls and, to a lesser extent, the ability to correctly classify the different stroke types. Most of the studies rely on the use of sophisticated and time-consuming methods to quantify specific subpopulations of the nanosized EVs. As these methods cannot be easily implemented in a rapid point of care (POC) test, technical developments followed by prospective clinical studies are needed.
Collapse
Affiliation(s)
- Katrine Tang Stenz
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark; (K.T.S.); (J.J.)
- Sino-Danish Center for Education and Research, Beijing 101400, China
- Sino-Danish Center for Education and Research, DK-8000 Aarhus, Denmark
| | - Jesper Just
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark; (K.T.S.); (J.J.)
- Sino-Danish Center for Education and Research, Beijing 101400, China
- Sino-Danish Center for Education and Research, DK-8000 Aarhus, Denmark
| | - Rolf Ankerlund Blauenfeldt
- Department of Neurology, Aarhus University Hospital, DK-8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
| | - Kim Ryun Drasbek
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark; (K.T.S.); (J.J.)
- Sino-Danish Center for Education and Research, Beijing 101400, China
- Sino-Danish Center for Education and Research, DK-8000 Aarhus, Denmark
- Correspondence: ; Tel.: +45-3027-4779
| |
Collapse
|
54
|
Tantingco G, Ryou MG. Normobaric intermittent hypoxic training regulates microglia phenotype and enhances phagocytic activity. Exp Biol Med (Maywood) 2020; 245:740-747. [PMID: 32299228 PMCID: PMC7221485 DOI: 10.1177/1535370220919361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/25/2020] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT The effects of intermittent hypoxic training or conditioning on many pathological conditions have been widely investigated. One of the pathological conditions dealt with intermittent hypoxic training is ischemic stroke. Well-known mechanisms of intermittent hypoxia-induced protection are related to increased energy metabolism and the enhanced antioxidant effects. In the last decades, the role of microglia in the progress of ischemic stroke-related brain damage has been focused. The dual-edge function of microglia indicates that the microglia-mediated inflammatory response is definitely beneficial in the early stage of ischemic stroke, but long-term activation of microglia is rather detrimental during the recovery process. The effect of IHT on microglia polarization is not investigated. This study focused on whether IHT regulates the polarization of microglia without dampening its classic phagocytic function. This study will provide pivotal information regarding the effects of IHT on the long-term effects on the recovery process from ischemic stroke.
Collapse
Affiliation(s)
- Genell Tantingco
- Department of Medical Laboratory Science and Public Health Tarleton State
University, Fort Worth, TX 76104, USA
| | - Myoung-Gwi Ryou
- Department of Medical Laboratory Science and Public Health Tarleton State
University, Fort Worth, TX 76104, USA
- Department of Physiology and Anatomy University of North Texas Health
Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
55
|
Kadir RRA, Bayraktutan U. Urokinase Plasminogen Activator: A Potential Thrombolytic Agent for Ischaemic Stroke. Cell Mol Neurobiol 2020; 40:347-355. [PMID: 31552559 PMCID: PMC11448917 DOI: 10.1007/s10571-019-00737-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Stroke continues to be one of the leading causes of mortality and morbidity worldwide. Restoration of cerebral blood flow by recombinant plasminogen activator (rtPA) with or without mechanical thrombectomy is considered the most effective therapy for rescuing brain tissue from ischaemic damage, but this requires advanced facilities and highly skilled professionals, entailing high costs, thus in resource-limited contexts urokinase plasminogen activator (uPA) is commonly used as an alternative. This literature review summarises the existing studies relating to the potential clinical application of uPA in ischaemic stroke patients. In translational studies of ischaemic stroke, uPA has been shown to promote nerve regeneration and reduce infarct volume and neurological deficits. Clinical trials employing uPA as a thrombolytic agent have replicated these favourable outcomes and reported consistent increases in recanalisation, functional improvement and cerebral haemorrhage rates, similar to those observed with rtPA. Single-chain zymogen pro-urokinase (pro-uPA) and rtPA appear to be complementary and synergistic in their action, suggesting that their co-administration may improve the efficacy of thrombolysis without affecting the overall risk of haemorrhage. Large clinical trials examining the efficacy of uPA or the combination of pro-uPA and rtPA are desperately required to unravel whether either therapeutic approach may be a safe first-line treatment option for patients with ischaemic stroke. In light of the existing limited data, thrombolysis with uPA appears to be a potential alternative to rtPA-mediated reperfusive treatment due to its beneficial effects on the promotion of revascularisation and nerve regeneration.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Stroke, Division of Clinical Neuroscience, School of Medicine, The University of Nottingham, Clinical Sciences Building, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, School of Medicine, The University of Nottingham, Clinical Sciences Building, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
56
|
Matei N, Leahy S, Auvazian S, Thomas B, Blair NP, Shahidi M. Relation of Retinal Oxygen Measures to Electrophysiology and Survival Indicators after Permanent, Incomplete Ischemia in Rats. Transl Stroke Res 2020; 11:1273-1286. [PMID: 32207038 DOI: 10.1007/s12975-020-00799-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
Studies in experimental ischemia models by permanent bilateral common carotid artery occlusion (BCCAO) have reported reduced retinal electrophysiological function, coupled with inner retinal degeneration and gliosis. In the current study, we tested the hypothesis that long-term (up to 14 days) BCCAO impairs oxygen delivery (DO2), which affects oxygen metabolism (MO2) and extraction fraction (OEF), electrophysiological function, morphology, and biochemical pathways. Twenty-one rats underwent BCCAO (N = 12) or sham surgery (N = 9) and were evaluated in separate groups after 3, 7, or 14 days. Electroretinography (ERG), optical coherence tomography, blood flow and vascular oxygen tension imaging, and morphological and biochemical evaluations were performed in both eyes. Reduced ERG b-wave amplitudes and delayed implicit times were reported at 3, 7, and 14 days following BCCAO. Total retinal blood flow, MO2, and DO2 were reduced in all BCCAO groups. OEF was increased in both 3- and 7-day groups, while no significant difference was observed in OEF at 14 days compared to the sham group. At 14 days following BCCAO, total and inner retinal layer thickness was reduced, while the outer nuclear layer thickness and gliosis were increased. There was an increase in nuclei containing fragmented DNA at 3 days following BCCAO. The compensatory elevation in OEF following BCCAO did not meet the tissue demand, resulting in the subsequent reduction of MO2. The associations between retinal MO2, DO2, and retinal function were shown to be significant in the sequelae of persistent ischemia. In sum, measurements of DO2, MO2, and OEF may become useful for characterizing salvageable tissue in vision-threatening pathologies.
Collapse
Affiliation(s)
- Nathanael Matei
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Sophie Leahy
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Selin Auvazian
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Biju Thomas
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Norman P Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
57
|
Optogenetic translocation of protons out of penumbral neurons is protective in a rodent model of focal cerebral ischemia. Brain Stimul 2020; 13:881-890. [PMID: 32289721 DOI: 10.1016/j.brs.2020.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intracellular acidosis in the ischemic penumbra can contribute to further cell death, effectively enlarging the infarct core. Restoring the acid-base balance may enhance tissue survivability after cerebral ischemia. OBJECTIVE This study investigated whether translocating protons out of penumbral neurons could mitigate tissue acidification and induce neuroprotection in a rodent model of acute cerebral ischemia. METHODS We modulated the penumbral neurons via a light-driven pump to translocate protons out (i.e., archaerhodopsin/ArchT group) or into (i.e., channelrhodopsin-2/ChR2 group) neurons after focal cerebral ischemia in rats. Intracellular pH values were imaged via neutral red (NR) fluorescence and cerebral blood flow (CBF) was monitored through laser speckle contrast imaging (LSCI). Global CBF responses to electrical stimulation of the hindlimbs were obtained 24 h and 48 h after ischemia to assess neurological function. Behavioral and histological outcomes were evaluated 48 h after ischemia. A control group without gene modification was included. RESULTS The reduction of relative pH (RpH), the amplitude of negative peak of hypoemic response (RNP) and the hemispheric lateralization index (LI) in ArchT group were significantly less than those of the ChR2 or control group. Moreover, RpH was strongly correlated with RNP (r = 0.60) and LI (r24h = 0.80, r48h = 0.59). In addition, behavioral and histological results supported a neuroprotective effect of countering neuronal acidosis in penumbra through optogenetic stimulation. CONCLUSION(S) These results indicate that countering intracellular acidosis by optogenetically translocating protons out of penumbral neurons during the acute ischemic stage could induce protection after ischemic brain injury.
Collapse
|
58
|
Deletion of a Neuronal Drp1 Activator Protects against Cerebral Ischemia. J Neurosci 2020; 40:3119-3129. [PMID: 32144179 DOI: 10.1523/jneurosci.1926-19.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial fission catalyzed by dynamin-related protein 1 (Drp1) is necessary for mitochondrial biogenesis and maintenance of healthy mitochondria. However, excessive fission has been associated with multiple neurodegenerative disorders, and we recently reported that mice with smaller mitochondria are sensitized to ischemic stroke injury. Although pharmacological Drp1 inhibition has been put forward as neuroprotective, the specificity and mechanism of the inhibitor used is controversial. Here, we provide genetic evidence that Drp1 inhibition is neuroprotective. Drp1 is activated by dephosphorylation of an inhibitory phosphorylation site, Ser637. We identify Bβ2, a mitochondria-localized protein phosphatase 2A (PP2A) regulatory subunit, as a neuron-specific Drp1 activator in vivo Bβ2 KO mice of both sexes display elongated mitochondria in neurons and are protected from cerebral ischemic injury. Functionally, deletion of Bβ2 and maintained Drp1 Ser637 phosphorylation improved mitochondrial respiratory capacity, Ca2+ homeostasis, and attenuated superoxide production in response to ischemia and excitotoxicity in vitro and ex vivo Last, deletion of Bβ2 rescued excessive stroke damage associated with dephosphorylation of Drp1 S637 and mitochondrial fission. These results indicate that the state of mitochondrial connectivity and PP2A/Bβ2-mediated dephosphorylation of Drp1 play a critical role in determining the severity of cerebral ischemic injury. Therefore, Bβ2 may represent a target for prophylactic neuroprotective therapy in populations at high risk of stroke.SIGNIFICANCE STATEMENT With recent advances in clinical practice including mechanical thrombectomy up to 24 h after the ischemic event, there is resurgent interest in neuroprotective stroke therapies. In this study, we demonstrate reduced stroke damage in the brain of mice lacking the Bβ2 regulatory subunit of protein phosphatase 2A, which we have shown previously acts as a positive regulator of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). Importantly, we provide evidence that deletion of Bβ2 can rescue excessive ischemic damage in mice lacking the mitochondrial PKA scaffold AKAP1, apparently via opposing effects on Drp1 S637 phosphorylation. These results highlight reversible phosphorylation in bidirectional regulation of Drp1 activity and identify Bβ2 as a potential pharmacological target to protect the brain from stroke injury.
Collapse
|
59
|
Franklin A, Gianduzzo T, Yaxley J, Kua B, Coughlin G, Samaratunga H, Gianduzzo T. Use of a trizonal schema to assess targeting accuracy in prostatic fusion biopsy. BJU Int 2020; 126 Suppl 1:6-11. [PMID: 32104968 DOI: 10.1111/bju.14974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To describe the use of a novel 'trizonal' biopsy schema in which 'near-target' biopsies are taken adjacent to the MRI lesion, in addition to target and systematic biopsies, to determine the accuracy of prostate MRI fusion systems. PARTICIPANTS AND METHODS A trizonal biopsy technique was used to evaluate 75 men with small Prostate Imaging Reporting and Data System (PI-RADS) 3-5 MRI lesions (<15 mm) identified from a prospective cohort of 290 men undergoing multiparametric magnetic resonance imaging (MRI) for suspected prostate cancer at a single high-volume institution between September 2017 and May 2019. In addition to target and systematic biopsies, near-target biopsies were taken 4 mm from the apparent border of the MRI lesion. Comparisons were made between highest International Society of Urological Pathology grade and longest tumour length. RESULTS Fifty-three men with significant prostate cancer in the same quadrant as the target were included in the final analysis. The percentages of positive cores from target, near-target and MRI-negative zones were 66%, 39% and 17%, respectively. Significant cancer was detected in the near-target zone in 77% of cases when the target zone was positive. A total of 17% of participants were upgraded by a median (range) of 1 (1-3) grades through the addition of near-target cores. Notably, 9% of men were diagnosed with clinically significant prostate cancer solely via the near-target biopsy cores when the target cores were negative. CONCLUSION The use of near-target biopsies as part of a trizonal biopsy schema provides a novel methodology to optimize clinically significant prostate cancer detection.
Collapse
Affiliation(s)
- Anthony Franklin
- Wesley Medical Research, Wesley Hospital, University of Queensland
| | | | - John Yaxley
- Royal Brisbane and Women's Hospital, Wesley Hospital, University of Queensland
| | | | | | | | | |
Collapse
|
60
|
Yang J, Zhao J, Liu X, Zhu R. LncRNAs a New Target for Post-Stroke Recovery. Curr Pharm Des 2020; 26:3115-3121. [PMID: 32096739 DOI: 10.2174/1381612826666200225141414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
Abstract
LncRNAs (long non-coding RNAs) are endogenous molecules, involved in complicated biological processes. Increasing evidence has shown that lncRNAs play a vital role in the post-stroke pathophysiology. Furthermore, several lncRNAs were reported to mediate ischemia cascade processes include apoptosis, bloodbrain barier breakdown, angiogenesis, microglial activation induced neuroinflammation which can cause neuron injury and influence neuron recovery after ischemic stroke. In our study, we first summarize current development about lncRNAs and post-stroke, focus on the regulatory roles of lncRNAs on pathophysiology after stroke. We also reviewed genetic variation in lncRNA associated with functional outcome after ischemic stroke. Additionally, lncRNA-based therapeutics offer promising strategies to decrease brain damage and promote neurological recovery following ischemic stroke. We believe that lncRNAs will become promising for the frontier strategies for IS and can open up a new path for the treatment of IS in the future.
Collapse
Affiliation(s)
- Jun Yang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xu Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
61
|
Anna R, Rolf R, Mark C. Update of the organoprotective properties of xenon and argon: from bench to beside. Intensive Care Med Exp 2020; 8:11. [PMID: 32096000 PMCID: PMC7040108 DOI: 10.1186/s40635-020-0294-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023] Open
Abstract
The growth of the elderly population has led to an increase in patients with myocardial infarction and stroke (Wajngarten and Silva, Eur Cardiol 14: 111–115, 2019). Patients receiving treatment for ST-segment-elevation myocardial infarction (STEMI) highly profit from early reperfusion therapy under 3 h from the onset of symptoms. However, mortality from STEMI remains high due to the increase in age and comorbidities (Menees et al., N Engl J Med 369: 901–909, 2013). These factors also account for patients with acute ischaemic stroke. Reperfusion therapy has been established as the gold standard within the first 4 to 5 h after onset of symptoms (Powers et al., Stroke 49: e46-e110, 2018). Nonetheless, not all patients are eligible for reperfusion therapy. The same is true for traumatic brain injury patients. Due to the complexity of acute myocardial and central nervous injury (CNS), finding organ protective substances to improve the function of remote myocardium and the ischaemic penumbra of the brain is urgent. This narrative review focuses on the noble gases argon and xenon and their possible cardiac, renal and neuroprotectant properties in the elderly high-risk (surgical) population. The article will provide an overview of the latest experimental and clinical studies. It is beyond the scope of this review to give a detailed summary of the mechanistic understanding of organ protection by xenon and argon.
Collapse
Affiliation(s)
- Roehl Anna
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany.
| | - Rossaint Rolf
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| | - Coburn Mark
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52072, Aachen, Germany
| |
Collapse
|
62
|
Bazmandegan G, Shamsizadeh A, FathiNajafi M, Assadollahi Z, Allahtavakoli M, Kamiab Z, Vakilian A, Moghadam-Ahmadi A, Amirteimoury M, Boroushaki MT. Iranian brown propolis possesses neuroprotective effect against ischemic neuronal damage in mice. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.34172/jhp.2020.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction: Stroke is one of the leading causes of death and disability worldwide. Propolis, a polyphenol-rich resinous product processed by honeybees from a variety of plant sources, has a set of biological activities. We investigated the neuroprotective effect of Iranian brown propolis (IBP) in a mouse model of permanent middle cerebral artery occlusion (MCAO). Methods: Experimentally, water extracts of propolis (WEPs) were obtained from Kerman (KeWEP) and Khorasan Razavi (KhWEP) provinces, Iran. The chemical characterization and total polyphenol content of WEPs were determined using the Folin–Ciocalteu assay and gas chromatography-mass spectrometry (GC-MS). Animals were divided into eight experimental groups including: sham, control, and three groups each of which KeWEP- and KhWEP-treated mice. The drugs were administered at doses of 30, 100 and 200 mg/kg, intraperitoneally (IP), during four different time points. Infarct volume and brain edema were measured at 48 h. Behavioral tests were evaluated at 4, 24 and 48-hour post stroke. Results: The total polyphenol content was 1100 and 1400 mg/L in KhWEP and KeWEP respectively. Compared to the control group, the doses of 100 and 200 mg/kg in both samples decreased infarct volume. Brain edema was also reduced in all treatment groups. The dose of 200 mg/kg in both samples and 100 mg/kg in the KeWEP-treated group significantly increased grasping ability. Sensory-motor function was improved in all groups, too. Conclusion: These results suggest that IBP may reduce ischemic brain injury by its neuroprotective effect on focal cerebral ischemia.
Collapse
Affiliation(s)
- Gholamreza Bazmandegan
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohsen FathiNajafi
- Razi Vaccine and Serum Research Institute, Mashhad Branch, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - Zahra Assadollahi
- Department of Epidemiology and Biostatistics, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Kamiab
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Family Medicine, Ali-Ibn Abi-Talib Hospital , School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Vakilian
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Neurology, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amir Moghadam-Ahmadi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Neurology, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Morteza Amirteimoury
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Taher Boroushaki
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
63
|
Bian Y, Yamashita T, Taira Y, Shang J, Tsunoda K, Feng T, Sasaki R, Liu X, Shi X, Tadokoro K, Nomura E, Matsumoto N, Osakada Y, Omote Y, Takemoto M, Hishikawa N, Ohta Y, Abe K. A Polyphenolic Complex Attenuates Inflammatory Response and Blood- Brain Barrier Disruption. Curr Neurovasc Res 2020; 17:286-293. [PMID: 32416676 DOI: 10.2174/1567202617666200517105727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cerebral ischemia causes a strong inflammatory response. Neumentix is a dietary supplement containing 14.9% rosmarinic acid and 29.9% total phenolic content, which has been proved to be beneficial against inflammatory response. Therefore, Neumentix's effect on anti-inflammatory and blood brain barrier (BBB) disruption in transient middle cerebral artery occlusion (tMCAO) model mice is investigated in this study. METHODS After the pretreatment of vehicle or Neumentix 134 mg/kg/d, intraperitoneal injection (i.p.) (containing rosmarinic acid 20 mg/kg/d) for 14 days, mice were subjected to tMCAO for 60 min and kept receiving vehicle or Neumentix daily 5 days afterward. RESULTS Neumentix treatment ameliorated neurobehavioral impairment in the corner test (5d after tMCAO, **P<0.01), reduced infarct volume (#P<0.05), suppressed expression of ionized calciumbinding adapter molecule-1 (Iba-1), tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) (###P<0.001), and improved the integrity of BBB (§P<0.05) at 5 days after tMCAO. CONCLUSION The present study provided an evidence of Neumentix's anti-inflammatory and neuroprotection effect against BBB disruption on experimental tMCAO model mice, suggesting that Neumentix could be a potential therapeutic agent for stroke.
Collapse
Affiliation(s)
- Yuting Bian
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Taira
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jingwei Shang
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichiro Tsunoda
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tian Feng
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryo Sasaki
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Xia Liu
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Xiaowen Shi
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koh Tadokoro
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Emi Nomura
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Namiko Matsumoto
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Osakada
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshio Omote
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
64
|
Li F, Liu WC, Wang Q, Sun Y, Wang H, Jin X. NG2-glia cell proliferation and differentiation by glial growth factor 2 (GGF2), a strategy to promote functional recovery after ischemic stroke. Biochem Pharmacol 2019; 171:113720. [PMID: 31751533 DOI: 10.1016/j.bcp.2019.113720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
Stroke is the leading cause of adult disability. Spontaneous functional recovery occurs after ischemic stroke, but it is very limited. Therefore, it is urgent to find a strategy to promote functional recovery after stroke in clinical setting. Gray matter damage has received extensive attention owing to the important roles of the gray matter in synaptic plasticity, cognitive, and motor function. However, stroke also causes white matter damage, which accounts for half of the infarct volume and can be aggravated by blood brain barrier damage. Disruption of white matter integrity, which is characterized by death of oligodendrocytes (OLs), loss of myelin, and axonal injury, greatly contributes to impaired neurological function. Impaired proliferation and differentiation of OL precursor cell (OPC, NG2-glia cells) play an important role in limited functional recovery after ischemic stroke and inhibitor of differentiation 2 (ID2) is a key factor controlling NG2-glia cells differentiation. It has been reported that the number of NG2-glia cells in the peri-infarction area significantly increases after ischemic stroke and glial growth factor (GGF2) administration promotes the proliferation and differentiation of NG2-glia cells as well as functional recovery after spinal cord injury. On the basis of the important roles of GGF2 in functional recovery and those of ID2 in NG2-glia cell proliferation and differentiation, we propose that after binding with the ErBb receptor on the surface of NG2-glia cells, GGF2 promotes NG2-glia cell proliferation and differentiation, thereby repairing BBB and white matter integrity and promoting neural functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Fei Li
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Wen-Cao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanyun Sun
- Jiangsu Key Laboratory of Neuro-Psychiatry Research and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai, China.
| | - Xinchun Jin
- Jiangsu Key Laboratory of Neuro-Psychiatry Research and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai, China.
| |
Collapse
|
65
|
Akhmedov A, Bonetti NR, Reiner MF, Spescha RD, Amstalden H, Merlini M, Gaul DS, Diaz-Cañestro C, Briand-Schumacher S, Spescha RS, Semerano A, Giacalone G, Savarese G, Montecucco F, Kulic L, Nitsch RM, Matter CM, Kullak-Ublick GA, Sessa M, Lüscher TF, Beer JH, Liberale L, Camici GG. Deleterious role of endothelial lectin-like oxidized low-density lipoprotein receptor-1 in ischaemia/reperfusion cerebral injury. J Cereb Blood Flow Metab 2019; 39:2233-2245. [PMID: 30073881 PMCID: PMC6827115 DOI: 10.1177/0271678x18793266] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/14/2018] [Accepted: 07/01/2018] [Indexed: 11/17/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is implicated in cardiovascular disease by modulating apoptosis and oxidative stress. We hypothesized that LOX-1 may be involved in pathophysiology of stroke by mediating ischaemia/reperfusion (I/R)-dependent cell death. Transient middle cerebral artery occlusion (tMCAO) was performed in wild-type (WT) mice, endothelial-specific LOX-1 transgenic mice (eLOX-1TG) and WT animals treated with LOX-1 silencing RNA (siRNA). In WT mice exposed to tMCAO, LOX-1 expression and function were increased in the MCA. Compared to WT animals, eLOX-1TG mice displayed increased stroke volumes and worsened outcome after I/R. Conversely, LOX-1-silencing decreased both stroke volume and neurological impairment. Similarly, in HBMVECs, hypoxia/reoxygenation increased LOX-1 expression, while LOX-1 overexpressing cells showed increased death following hypoxia reoxygenation. Increased caspase-3 activation was observed following LOX-1 overexpression both in vivo and in vitro, thus representing a likely mediator. Finally, monocytes from ischaemic stroke patients exhibited increased LOX-1 expression which also correlated with disease severity. Our data unequivocally demonstrate a key role for LOX-1 in determining outcome following I/R brain damage. Our findings could be corroborated in human brain endothelial cells and monocytes from patients, underscoring their translational relevance and suggesting siRNA-mediated LOX-1 knockdown as a novel therapeutic strategy for stroke patients.
Collapse
Affiliation(s)
- Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
| | - Nicole R Bonetti
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| | - Martin F Reiner
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| | - Remo D Spescha
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
| | - Heidi Amstalden
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
| | - Mario Merlini
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
| | - Daniel S Gaul
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
| | - Candela Diaz-Cañestro
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
| | | | - Rebecca S Spescha
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
- Zurich Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Aurora Semerano
- Department of Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Giacomo Giacalone
- Department of Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Luka Kulic
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
- Zurich Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
- Zurich Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Maria Sessa
- Department of Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Jürg H Beer
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| | - Luca Liberale
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Schlieren, Switzerland
- Zurich Neuroscience Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
66
|
Mukda S, Tsai CY, Leu S, Yang JL, Chan SHH. Pinin protects astrocytes from cell death after acute ischemic stroke via maintenance of mitochondrial anti-apoptotic and bioenergetics functions. J Biomed Sci 2019; 26:43. [PMID: 31167655 PMCID: PMC6549339 DOI: 10.1186/s12929-019-0538-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/26/2019] [Indexed: 11/27/2022] Open
Abstract
Background Stroke is the second most common cause of deaths worldwide. After an ischemic stroke, the proliferated reactive astrocytes in the peri-infarct areas play a beneficial role in neuronal survival. As such, astrocytes have gradually become a target for neuroprotection in stroke. The present study assessed the hypothesis that Pinin (Pnn), originally identified as a nuclear and desmosome-associated protein and is now known to possess anti-apoptotic capacity, protects astrocytes from cell death after ischemic stroke and delineated the underlying mechanisms. Methods In in vivo experiments, adult male Sprague-Dawley rats (12-week old) were used to induce acute focal cerebral ischemia employing the middle cerebral artery occlusion (MCAO) method. In in vitro experiments, postnatal day 1 (P1) Sprague-Dawley rat pups were used to prepare cultures of primary astrocytes. Oxygen-glucose deprivation (OGD) and re-oxygenation (OGD/R) procedures were employed to mimic the hypoxic-ischemic condition of stroke in those astrocytes. Results We found in the peri-infarct area of the ipsilateral cortex and striatum in Sprague-Dawley rats after transient MCAO an increase in Pnn expression that correlated positively with the time-course of infarction as detected by T2-weighted imaging and triphenyltetrazolium chloride staining, augmented number of reactive astrocytes that double-labelled with Pnn as determined by immunofluorescence, and enhanced cytotoxic edema as revealed by diffusion weighted imaging; but mirrored the decreased cleaved caspase-3 as measured by western blot. In an OGD and OGD/R model using primary cultured astrocytes, treatment with Pnn siRNA doubled the chance of surviving astrocytes to manifest cell death as revealed by flow cytometry, and blunted activated ERK signaling, reduced Bcl-2 expression and augmented cleaved caspase 3 detected by western blot in the normoxia, OGD or OGD/R group. Gene-knockdown of Pnn also impeded the reversal from decline in cell viability, elevation in lactate dehydrogenase leakage and decrease in ATP production in the OGD/R group. Conclusion We conclude that the endogenous Pnn participates in neuroprotection after acute ischemic stroke by preserving the viability of astrocytes that survived the ischemic challenge via maintenance of mitochondrial anti-apoptotic and bioenergetics functions. Electronic supplementary material The online version of this article (10.1186/s12929-019-0538-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Rd, Kaohsiung, 83301, Taiwan
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Rd, Kaohsiung, 83301, Taiwan
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Rd, Kaohsiung, 83301, Taiwan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Rd, Kaohsiung, 83301, Taiwan
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Rd, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
67
|
Liu J, Nolte K, Brook G, Liebenstund L, Weinandy A, Höllig A, Veldeman M, Willuweit A, Langen KJ, Rossaint R, Coburn M. Post-stroke treatment with argon attenuated brain injury, reduced brain inflammation and enhanced M2 microglia/macrophage polarization: a randomized controlled animal study. Crit Care 2019; 23:198. [PMID: 31159847 PMCID: PMC6547472 DOI: 10.1186/s13054-019-2493-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In recent years, argon has been shown to exert neuroprotective effects in an array of models. However, the mechanisms by which argon exerts its neuroprotective characteristics remain unclear. Accumulating evidence imply that argon may exert neuroprotective effects via modulating the activation and polarization of microglia/macrophages after ischemic stroke. In the present study, we analyzed the underlying neuroprotective effects of delayed argon application until 7 days after reperfusion and explored the potential mechanisms. METHODS Twenty-one male Wistar rats underwent transient middle cerebral artery occlusion or sham surgery randomly for 2 h using the endoluminal thread model. Three hours after transient middle cerebral artery occlusion induction and 1 h after reperfusion, animals received either 50% vol Argon/50% vol O2 or 50% vol N2/50% vol O2 for 1 h. The primary outcome was the 6-point neuroscore from 24 h to d7 after reperfusion. Histological analyses including infarct volume, survival of neurons (NeuN) at the ischemic boundary zone, white matter integrity (Luxol Fast Blue), microglia/macrophage activation (Iba1), and polarization (Iba1/Arginase1 double staining) on d7 were conducted as well. Sample size calculation was performed using nQuery Advisor + nTerim 4.0. Independent t test, one-way ANOVA and repeated measures ANOVA were performed, respectively, for statistical analysis (SPSS 23.0). RESULTS The 6-point neuroscore from 24 h to d7 after reperfusion showed that tMCAO Ar group displayed significantly improved neurological performance compared to tMCAO N2 group (p = 0.026). The relative numbers of NeuN-positive cells in the ROIs of tMCAO Ar group significantly increased compared to tMCAO N2 group (p = 0.010 for cortex and p = 0.011 for subcortex). Argon significantly suppressed the microglia/macrophage activation as revealed by Iba1 staining (p = 0.0076) and promoted the M2 microglia/macrophage polarization as revealed by Iba1/Arginase 1 double staining (p = 0.000095). CONCLUSIONS Argon administration with a 3 h delay after stroke onset and 1 h after reperfusion significantly alleviated neurological deficit within the first week and preserved the neurons at the ischemic boundary zone 7 days after stroke. Moreover, argon reduced the excessive microglia/macrophage activation and promoted the switch of microglia/macrophage polarization towards the anti-inflammatory M2 phenotype. Studies making efforts to further elucidate the protective mechanisms and to benefit the translational application are of great value.
Collapse
Affiliation(s)
- Jingjin Liu
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Kay Nolte
- Department of Neuropathology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Gary Brook
- Department of Neuropathology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Lisa Liebenstund
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Agnieszka Weinandy
- Department of Neuropathology, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Anke Höllig
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Michael Veldeman
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| |
Collapse
|
68
|
Sotomayor-Sobrino M, Ochoa-Aguilar A, Méndez-Cuesta L, Gómez-Acevedo C. Neuroimmunological interactions in stroke. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
69
|
Choi WJ, Li Y, Wang RK. Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of Permanent Focal Ischemia. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1427-1437. [PMID: 30714910 PMCID: PMC6660833 DOI: 10.1109/tmi.2019.2895779] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cerebral ischemic stroke causes injury to brain tissue characterized by a complex cascade of neuronal and vascular events. Imaging during the early stages of its development allows prediction of tissue infarction and penumbra so that optimal intervention can be determined in order to salvage brain function impairment. Therefore, there is a critical need for novel imaging techniques that can characterize brain injury in the earliest phases of the ischemic stroke. This paper examined optical coherence tomography (OCT) for imaging acute injury in experimental ischemic stroke in vivo. Based on endogenous optical scattering signals provided by OCT imaging, we have developed a single, integrated imaging platform enabling the measurement of changes in blood perfusion, blood flow, erythrocyte velocity, and light attenuation within a cortical tissue, during focal cerebral ischemia in a mouse model. During the acute phase (from 5 min to the first few hours following the blood occlusion), the multi-parametric OCT imaging revealed multiple hemodynamic and tissue scattering responses in vivo, including cerebral blood flow deficits, capillary non-perfusion, displacement of penetrating vessels, and increased light attenuation in the cortical tissue at risk that are spatially correlated with the infarct core, as determined by postmortem staining with triphenyltetrazolium chloride. The use of multi-parametric OCT imaging may aid in the comprehensive evaluation of ischemic lesions during the early stages of stroke, thereby providing essential knowledge for guiding treatment decisions.
Collapse
Affiliation(s)
- Woo June Choi
- School of Electrical and Electronics Engineering, College of ICT Engineering, Chung-Ang University, Seoul, 06974, Korea
| | - Yuandong Li
- Department of Bioengineering, University of Washington, Seattle WA 98195, USA
| | - Ruikang K. Wang
- Corresponding author, phone: 206-616-5025; fax: 206-616-5025;
| |
Collapse
|
70
|
|
71
|
A New Paradigm Shift in Acute Ischemic Stroke, Large Vessel Occlusions, and Endovascular Therapy. J Emerg Med 2018; 56:258-266. [PMID: 30528709 DOI: 10.1016/j.jemermed.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND In the past three years, there have been several major studies published on the use of endovascular therapy (EVT) in large vessel occlusion (LVO) acute ischemic stroke. With multiple publications in such a short amount of time, it is difficult to keep up with the evolving landscape of ischemic stroke therapy. OBJECTIVE This narrative review discusses recent randomized controlled trials evaluating EVT and its effects on acute ischemic stroke management. DISCUSSION Ischemic stroke is the most common type of stroke overall, and recanalization is the predominant focus in stroke therapy to improve outcomes. Treatment first focused on systemic thrombolysis for ischemic stroke, followed by studies evaluating the use of thrombolysis with EVT. Early research did not find a benefit to EVT; however, recent studies using current devices and with narrow selection criteria demonstrate significant benefit to EVT in LVOs. In patients with LVOs and perfusion mismatches, reperfusion rates are higher with EVT compared with systemic thrombolysis alone. Recognition of patients with small infarct cores and large areas of ischemic but salvageable brain tissue up to 24 h after symptom onset stresses the need for advanced imaging to recognize the target group. CONCLUSIONS EVT technology for acute ischemic stroke has now become more efficient, minimizing complications and improving the efficacy of EVT. Several viable interventions for a small subgroup of patients with ischemic stroke up to 24 h after symptoms onset can significantly improve patient outcomes.
Collapse
|
72
|
Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci 2018; 19:ijms19092834. [PMID: 30235837 PMCID: PMC6164443 DOI: 10.3390/ijms19092834] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023] Open
Abstract
When a main artery of the brain occludes, a cellular response involving multiple cell types follows. Cells directly affected by the lack of glucose and oxygen in the neuronal core die by necrosis. In the periphery surrounding the ischemic core (the so-called penumbra) neurons, astrocytes, microglia, oligodendrocytes, pericytes, and endothelial cells react to detrimental factors such as excitotoxicity, oxidative stress, and inflammation in different ways. The fate of the neurons in this area is multifactorial, and communication between all the players is important for survival. This review focuses on the latest research relating to synaptic loss and the release of apoptotic bodies and other extracellular vesicles for cellular communication in stroke. We also point out possible treatment options related to increasing neuronal survival and regeneration in the penumbra.
Collapse
|
73
|
AKAP1 Protects from Cerebral Ischemic Stroke by Inhibiting Drp1-Dependent Mitochondrial Fission. J Neurosci 2018; 38:8233-8242. [PMID: 30093535 PMCID: PMC6146498 DOI: 10.1523/jneurosci.0649-18.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial fission and fusion impact numerous cellular functions and neurons are particularly sensitive to perturbations in mitochondrial dynamics. Here we describe that male mice lacking the mitochondrial A-kinase anchoring protein 1 (AKAP1) exhibit increased sensitivity in the transient middle cerebral artery occlusion model of focal ischemia. At the ultrastructural level, AKAP1-/- mice have smaller mitochondria and increased contacts between mitochondria and the endoplasmic reticulum in the brain. Mechanistically, deletion of AKAP1 dysregulates complex II of the electron transport chain, increases superoxide production, and impairs Ca2+ homeostasis in neurons subjected to excitotoxic glutamate. Ca2+ deregulation in neurons lacking AKAP1 can be attributed to loss of inhibitory phosphorylation of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) at the protein kinase A (PKA) site Ser637. Our results indicate that inhibition of Drp1-dependent mitochondrial fission by the outer mitochondrial AKAP1/PKA complex protects neurons from ischemic stroke by maintaining respiratory chain activity, inhibiting superoxide production, and delaying Ca2+ deregulation. They also provide the first genetic evidence that Drp1 inhibition may be of therapeutic relevance for the treatment of stroke and neurodegeneration.SIGNIFICANCE STATEMENT Previous work suggests that activation of dynamin-related protein 1 (Drp1) and mitochondrial fission contribute to ischemic injury in the brain. However, the specificity and efficacy of the pharmacological Drp1 inhibitor mdivi-1 that was used has now been discredited by several high-profile studies. Our report is timely and highly impactful because it provides the first evidence that genetic disinhibition of Drp1 via knock-out of the mitochondrial protein kinase A (PKA) scaffold AKAP1 exacerbates stroke injury in mice. Mechanistically, we show that electron transport deficiency, increased superoxide production, and Ca2+ overload result from genetic disinhibition of Drp1. In summary, our work settles current controversies regarding the role of mitochondrial fission in neuronal injury, provides mechanisms, and suggests that fission inhibitors hold promise as future therapeutic agents.
Collapse
|
74
|
le Feber J, Dummer A, Hassink GC, van Putten MJAM, Hofmeijer J. Evolution of Excitation-Inhibition Ratio in Cortical Cultures Exposed to Hypoxia. Front Cell Neurosci 2018; 12:183. [PMID: 30018536 PMCID: PMC6037832 DOI: 10.3389/fncel.2018.00183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/11/2018] [Indexed: 11/24/2022] Open
Abstract
In the core of a brain infarct, neuronal death occurs within minutes after loss of perfusion. In the penumbra, a surrounding area with some residual perfusion, neurons initially remain structurally intact, but hypoxia-induced synaptic failure impedes neuronal activity. Penumbral activity may recover or further deteriorate, reflecting cell death. Mechanisms leading to either outcome remain ill-understood, but may involve changes in the excitation to inhibition (E/I) ratio. The E/I ratio is determined by structural (relative densities of excitatory and inhibitory synapses) and functional factors (synaptic strengths). Clinical studies demonstrated excitability alterations in regions surrounding the infarct core. These may be related to structural E/I changes, but the effects of hypoxia /ischemia on structural connectivity have not yet been investigated, and the role of structural connectivity changes in excitability alterations remains unclear. We investigated the evolution of the structural E/I ratio and associated network excitability in cortical cultures exposed to severe hypoxia of varying duration. 6–12 h of hypoxia reduced the total synaptic density. In particular, the inhibitory synaptic density dropped significantly, resulting in an elevated E/I ratio. Initially, this does not lead to increased excitability due to hypoxia-induced synaptic failure. Increased excitability becomes apparent upon reoxygenation after 6 or 12 h, but not after 24 h. After 24 h of hypoxia, structural patterns of vesicular glutamate stainings change. This possibly reflects disassembly of excitatory synapses, and may account for the irreversible reduction of activity and stimulus responses seen after 24 h.
Collapse
Affiliation(s)
- Joost le Feber
- Clinical Neurophysiology, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Anneloes Dummer
- Clinical Neurophysiology, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Gerco C Hassink
- Clinical Neurophysiology, TechMed Centre, University of Twente, Enschede, Netherlands.,Biomedical Signals and Systems, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Michel J A M van Putten
- Clinical Neurophysiology, TechMed Centre, University of Twente, Enschede, Netherlands.,Department of Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, TechMed Centre, University of Twente, Enschede, Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| |
Collapse
|
75
|
Bandla A, Liao LD, Chan SJ, Ling JM, Liu YH, Shih YYI, Pan HC, Wong PTH, Lai HY, King NKK, Chen YY, Ng WH, Thakor NV. Simultaneous functional photoacoustic microscopy and electrocorticography reveal the impact of rtPA on dynamic neurovascular functions after cerebral ischemia. J Cereb Blood Flow Metab 2018; 38:980-995. [PMID: 28685662 PMCID: PMC5999003 DOI: 10.1177/0271678x17712399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The advance of thrombolytic therapy has been hampered by the lack of optimization of the therapy during the hyperacute phase of focal ischemia. Here, we investigate neurovascular dynamics using a custom-designed hybrid electrocorticography (ECoG)-functional photoacoustic microscopy (fPAM) imaging system during the hyperacute phase (first 6 h) of photothrombotic ischemia (PTI) in male Wistar rats following recombinant tissue plasminogen activator (rtPA)-mediated thrombolysis. We reported, for the first time, the changes in neural activity and cerebral hemodynamic responses following rtPA infusion at different time points post PTI. Interestingly, very early administration of rtPA (< 1 h post PTI) resulted in only partial recovery of neurovascular dynamics (specifically , neural activity recovered to 71 ± 3.5% of baseline and hemodynamics to only 52 ± 2.6% of baseline) and late administration of rtPA (> 4 h post PTI) resulted in the deterioration of neurovascular function. A therapeutic window between 1 and 3 h post PTI was found to improve recovery of neurovascular function (i.e. significant restoration of neural activity to 93 ± 4.2% of baseline and hemodynamics to 81 ± 2.1% of baseline, respectively). The novel combination of fPAM and ECoG enables direct mapping of neurovascular dynamics and serves as a platform to evaluate potential interventions for stroke.
Collapse
Affiliation(s)
- Aishwarya Bandla
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,2 Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Lun-De Liao
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,3 Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Taiwan, R.O.C
| | - Su Jing Chan
- 4 Department of Radiology, Massachusetts General Hospital and Harvard Medical School, MA, USA.,5 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ji Min Ling
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,6 Department of Neurosurgery, National Neuroscience Institute, Singapore.,7 SingHealth Duke-NUS Neuroscience Academic Clinical Program, National Neuroscience Institute, Singapore
| | - Yu-Hang Liu
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,8 Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Yen-Yu Ian Shih
- 9 Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Han-Chi Pan
- 3 Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Taiwan, R.O.C
| | - Peter Tsun-Hon Wong
- 5 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hsin-Yi Lai
- 10 Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, China
| | | | - You-Yin Chen
- 11 Department of Biomedical Engineering, National Yang Ming University, Taiwan, R.O.C
| | - Wai Hoe Ng
- 6 Department of Neurosurgery, National Neuroscience Institute, Singapore.,7 SingHealth Duke-NUS Neuroscience Academic Clinical Program, National Neuroscience Institute, Singapore
| | - Nitish V Thakor
- 1 Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.,2 Department of Biomedical Engineering, National University of Singapore, Singapore.,8 Department of Electrical and Computer Engineering, National University of Singapore, Singapore.,12 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
76
|
Lin L, Bivard A, Kleinig T, Spratt NJ, Levi CR, Yang Q, Parsons MW. Correction for Delay and Dispersion Results in More Accurate Cerebral Blood Flow Ischemic Core Measurement in Acute Stroke. Stroke 2018; 49:924-930. [DOI: 10.1161/strokeaha.117.019562] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/09/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Longting Lin
- From the School of Medicine and Public Health, University of Newcastle, Australia (L.L., A.B., N.J.S., C.R.L., M.W.P.); Department of Neurology, Royal Adelaide Hospital, Australia (T.K.); Department of Neurology, John Hunter Hospital, Newcastle, Australia (N.J.S., C.R.L., M.W.P.); and Apollo Medical Imaging Technology Pty Ltd, Melbourne, VIC, Australia (Q.Y.)
| | - Andrew Bivard
- From the School of Medicine and Public Health, University of Newcastle, Australia (L.L., A.B., N.J.S., C.R.L., M.W.P.); Department of Neurology, Royal Adelaide Hospital, Australia (T.K.); Department of Neurology, John Hunter Hospital, Newcastle, Australia (N.J.S., C.R.L., M.W.P.); and Apollo Medical Imaging Technology Pty Ltd, Melbourne, VIC, Australia (Q.Y.)
| | - Timothy Kleinig
- From the School of Medicine and Public Health, University of Newcastle, Australia (L.L., A.B., N.J.S., C.R.L., M.W.P.); Department of Neurology, Royal Adelaide Hospital, Australia (T.K.); Department of Neurology, John Hunter Hospital, Newcastle, Australia (N.J.S., C.R.L., M.W.P.); and Apollo Medical Imaging Technology Pty Ltd, Melbourne, VIC, Australia (Q.Y.)
| | - Neil J. Spratt
- From the School of Medicine and Public Health, University of Newcastle, Australia (L.L., A.B., N.J.S., C.R.L., M.W.P.); Department of Neurology, Royal Adelaide Hospital, Australia (T.K.); Department of Neurology, John Hunter Hospital, Newcastle, Australia (N.J.S., C.R.L., M.W.P.); and Apollo Medical Imaging Technology Pty Ltd, Melbourne, VIC, Australia (Q.Y.)
| | - Christopher R. Levi
- From the School of Medicine and Public Health, University of Newcastle, Australia (L.L., A.B., N.J.S., C.R.L., M.W.P.); Department of Neurology, Royal Adelaide Hospital, Australia (T.K.); Department of Neurology, John Hunter Hospital, Newcastle, Australia (N.J.S., C.R.L., M.W.P.); and Apollo Medical Imaging Technology Pty Ltd, Melbourne, VIC, Australia (Q.Y.)
| | - Qing Yang
- From the School of Medicine and Public Health, University of Newcastle, Australia (L.L., A.B., N.J.S., C.R.L., M.W.P.); Department of Neurology, Royal Adelaide Hospital, Australia (T.K.); Department of Neurology, John Hunter Hospital, Newcastle, Australia (N.J.S., C.R.L., M.W.P.); and Apollo Medical Imaging Technology Pty Ltd, Melbourne, VIC, Australia (Q.Y.)
| | - Mark W. Parsons
- From the School of Medicine and Public Health, University of Newcastle, Australia (L.L., A.B., N.J.S., C.R.L., M.W.P.); Department of Neurology, Royal Adelaide Hospital, Australia (T.K.); Department of Neurology, John Hunter Hospital, Newcastle, Australia (N.J.S., C.R.L., M.W.P.); and Apollo Medical Imaging Technology Pty Ltd, Melbourne, VIC, Australia (Q.Y.)
| |
Collapse
|
77
|
Jones EV, Bernardinelli Y, Zarruk JG, Chierzi S, Murai KK. SPARC and GluA1-Containing AMPA Receptors Promote Neuronal Health Following CNS Injury. Front Cell Neurosci 2018; 12:22. [PMID: 29449802 PMCID: PMC5799273 DOI: 10.3389/fncel.2018.00022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022] Open
Abstract
The proper formation and maintenance of functional synapses in the central nervous system (CNS) requires communication between neurons and astrocytes and the ability of astrocytes to release neuromodulatory molecules. Previously, we described a novel role for the astrocyte-secreted matricellular protein SPARC (Secreted Protein, Acidic and Rich in Cysteine) in regulating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and plasticity at developing synapses. SPARC is highly expressed by astrocytes and microglia during CNS development but its level is reduced in adulthood. Interestingly, SPARC has been shown to be upregulated in CNS injury and disease. However, the role of SPARC upregulation in these contexts is not fully understood. In this study, we investigated the effect of chronic SPARC administration on glutamate receptors on mature hippocampal neuron cultures and following CNS injury. We found that SPARC treatment increased the number of GluA1-containing AMPARs at synapses and enhanced synaptic function. Furthermore, we determined that the increase in synaptic strength induced by SPARC could be inhibited by Philanthotoxin-433, a blocker of homomeric GluA1-containing AMPARs. We then investigated the effect of SPARC treatment on neuronal health in an injury context where SPARC expression is upregulated. We found that SPARC levels are increased in astrocytes and microglia following middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. Remarkably, chronic pre-treatment with SPARC prevented OGD-induced loss of synaptic GluA1. Furthermore, SPARC treatment reduced neuronal death through Philanthotoxin-433 sensitive GluA1 receptors. Taken together, this study suggests a novel role for SPARC and GluA1 in promoting neuronal health and recovery following CNS damage.
Collapse
Affiliation(s)
- Emma V Jones
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | | | - Juan G Zarruk
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Sabrina Chierzi
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
78
|
Abstract
Stroke consists of the loss of cerebral functions resulting from the interruption of blood supply to a region of the brain, and represents the second cause of death and the leading cause of major disability in adults in Europe. Stroke is a very active field of research at preclinical and clinical levels, and Magnetic Resonance Imaging (MRI) is one of the most powerful tools that scientist and clinicians have for the study of the onset, evolution and consequences of this devastating disease, as well as for the monitoring of the success of available treatments, or for the development of novel therapeutic strategies.MRI can tackle the study of stroke from different points of view, and at scales ranging from subcellular to systems biology level. Magnetic resonance spectroscopy (MRS) allows the noninvasive measurement of the levels of principal metabolites in the brain, and how they change during the course of the disease, or in response to therapy. Glutamate, in particular, is very important in the field of stroke. Several anatomical MR techniques allow the characterization of the lesion volumes, the formation of cytotoxic and vasogenic edema, changes in cerebral blood flow and volume, structural changes in gray and white matter, the obtaining of the vascular architecture and status, etc. At functional level, diverse modalities of functional MRI (fMRI) allow the assessment of the alteration in the function and organization of neuronal networks of the subject under study, as a consequence of the disease or in response to treatment. Finally, emerging imaging modalities that include temperature and pH mapping of the brain, imaging by chemical exchange saturation transfer effect (CEST), all of them closely related to tissue status, or the use of contrast agents for the targeting of tissue in theranostic approaches or for cell tracking studies in cell-based therapies, etc., are only a few examples of the power and versatility of MRI as a definitive tool for the study of stroke.In this work we will set our focus on preclinical imaging of stroke models, emphasizing the most commonly used imaging modalities in a stroke-dedicated research laboratory. However, advanced techniques will be briefly discussed, providing references to specialized literature for more advanced readers. Thus, the aim of this chapter consist in the description of a simple imaging protocol for the study of the most important and common aspects of stroke in a research laboratory.
Collapse
Affiliation(s)
- Pedro Ramos-Cabrer
- Molecular Imaging Unit, CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain.
| | - Daniel Padro
- Molecular Imaging Unit, CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
| |
Collapse
|
79
|
The Role of Circular RNAs in Cerebral Ischemic Diseases: Ischemic Stroke and Cerebral Ischemia/Reperfusion Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:309-325. [PMID: 30259377 DOI: 10.1007/978-981-13-1426-1_25] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cerebral ischemic diseases including ischemic stroke and cerebral ischemia reperfusion injury can result in serious dysfunction of the brain, which leads to extremely high mortality and disability. There are no effective therapeutics for cerebral ischemic diseases to date. Circular RNAs are a kind of newly investigated noncoding RNAs. It is reported that circular RNAs are enriched in multiple organs, especially abundant in the brain, which indicates that circular RNAs may be involved in cerebral physiological and pathological processes. In this chapter, we will firstly review the pathophysiology, underlying mechanisms, and current treatments of cerebral ischemic diseases including ischemic stroke and cerebral ischemia/reperfusion injury. Secondly, the characteristics and function of circular RNAs will be outlined, and then we are going to introduce the roles circular RNAs play in human diseases. Finally, we will summarize the function of circular RNAs in cerebral ischemic diseases.
Collapse
|
80
|
Dai J, Qiu YM, Ma ZW, Yan GF, Zhou J, Li SQ, Wu H, Jin YC, Zhang XH. Neuroprotective effect of baicalin on focal cerebral ischemia in rats. Neural Regen Res 2018; 13:2129-2133. [PMID: 30323141 PMCID: PMC6199937 DOI: 10.4103/1673-5374.241464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Baicalin, a flavonoid compound from the root of the herb Scutellaria baicalensis Georgi, has been widely used to treat patients with inflammatory disease. The aim of this study was to assess the efficacy of baicalin in a rat model of focal cerebral ischemia. Adult male Sprague-Dawley rat models of cerebral artery occlusion were established and then randomly and equally divided into three groups: ischemia (cerebral ischemia and reperfusion), valproic acid (cerebral ischemia and reperfusion + three intraperitoneal injections of valproic acid; positive control), and baicalin (cerebral ischemia and reperfusion + intraperitoneal injection of baicalin for 21 days). Neurological deficits were assessed using the postural reflex test and forelimb placing test at 3, 7, 14, and 21 days after ischemia. Rat cerebral infarct volume was measured using 2,3,5-triphenyltetrazolium chloride (TTC) staining method. Pathological change of ischemic brain tissue was assessed using hematoxylin-eosin staining. In the baicalin group, rat neurological function was obviously improved, cerebral infarct volume was obviously reduced, and the pathological impairment of ischemic brain tissue was obviously alleviated compared to the ischemia group. Cerebral infarct volume was similar in the valproic acid and baicalin groups. These findings suggest that baicalin has a neuroprotective effect on cerebral ischemia.
Collapse
Affiliation(s)
- Jiong Dai
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Ming Qiu
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Wen Ma
- Department of of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Feng Yan
- Department of of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhou
- Department of of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan-Quan Li
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wu
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Chao Jin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
81
|
Freitas-Andrade M, She J, Bechberger J, Naus CC, Sin WC. Acute connexin43 temporal and spatial expression in response to ischemic stroke. J Cell Commun Signal 2017; 12:193-204. [PMID: 29134540 DOI: 10.1007/s12079-017-0430-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Connexin43 (Cx43) gap junctions expressed in astrocytes can significantly impact neuronal survival in stroke. However, little is known regarding Cx43 spatial and temporal expression during the initial stages of brain ischemia. Using immunohistochemistry and Western blot analysis, we examined Cx43 spatial and temporal expression as a function of neuronal injury within the first 24 h after permanent middle cerebral artery occlusion (pMCAO). Western blot analysis showed a significant increase in Cx43 protein expression in the core ischemic area at 2 and 3 h after pMCAO. However, after 6 h of pMCAO Cx43 levels were significantly reduced. This reduction was due to cell death and concomitant Cx43 degradation in the expanding focal ischemic region, while the peri-infarct zone revealed intense Cx43 staining. The neuronal cell-death marker Fluoro-Jade C labeled injured neurons faintly at 1 h post-pMCAO with a time-dependent increase in both intensity and size of punctate staining. In addition, decreased microtubule-associated protein 2 (MAP2) immunoreactivity and thionin staining similarly indicated cell damage beginning at 1 h after pMCAO. Taken together, Cx43 expression is sensitive to neuronal injury and can be detected as early as 2 h post-pMCAO. These findings underscore Cx43 gap junction as a potential early target for therapeutic intervention in ischemic stroke.
Collapse
Affiliation(s)
- Moises Freitas-Andrade
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jennifer She
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - John Bechberger
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Wun Chey Sin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
82
|
Berger M, Ponnusamy V, Greene N, Cooter M, Nadler JW, Friedman A, McDonagh DL, Laskowitz DT, Newman MF, Shaw LM, Warner DS, Mathew JP, James ML. The Effect of Propofol vs. Isoflurane Anesthesia on Postoperative Changes in Cerebrospinal Fluid Cytokine Levels: Results from a Randomized Trial. Front Immunol 2017; 8:1528. [PMID: 29181002 PMCID: PMC5694037 DOI: 10.3389/fimmu.2017.01528] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
Introduction Aside from direct effects on neurotransmission, inhaled and intravenous anesthetics have immunomodulatory properties. In vitro and mouse model studies suggest that propofol inhibits, while isoflurane increases, neuroinflammation. If these findings translate to humans, they could be clinically important since neuroinflammation has detrimental effects on neurocognitive function in numerous disease states. Materials and methods To examine whether propofol and isoflurane differentially modulate neuroinflammation in humans, cytokines were measured in a secondary analysis of cerebrospinal fluid (CSF) samples from patients prospectively randomized to receive anesthetic maintenance with propofol vs. isoflurane (registered with http://www.clinicaltrials.gov, identifier NCT01640275). We measured CSF levels of EGF, eotaxin, G-CSF, GM-CSF, IFN-α2, IL-1RA, IL-6, IL-7, IL-8, IL-10, IP-10, MCP-1, MIP-1α, MIP-1β, and TNF-α before and 24 h after intracranial surgery in these study patients. Results After Bonferroni correction for multiple comparisons, we found significant increases from before to 24 h after surgery in G-CSF, IL-10, IL-1RA, IL-6, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β, and TNF-α. However, we found no difference in cytokine levels at baseline or 24 h after surgery between propofol- (n = 19) and isoflurane-treated (n = 21) patients (p > 0.05 for all comparisons). Increases in CSF IL-6, IL-8, IP-10, and MCP-1 levels directly correlated with each other and with postoperative CSF elevations in tau, a neural injury biomarker. We observed CSF cytokine increases up to 10-fold higher after intracranial surgery than previously reported after other types of surgery. Discussion These data clarify the magnitude of neuroinflammation after intracranial surgery, and raise the possibility that a coordinated neuroinflammatory response may play a role in neural injury after surgery.
Collapse
Affiliation(s)
- Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Vikram Ponnusamy
- University of Missouri School of Medicine, Columbia, MO, United States
| | - Nathaniel Greene
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Mary Cooter
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Jacob W Nadler
- Neurosurgical Anesthesiology, Postanesthesia Care Unit, Department of Anesthesiology, University of Rochester, Rochester, NY, United States
| | - Allan Friedman
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - David L McDonagh
- Department of Anesthesiology & Pain Management, Neurological Surgery, Neurology and Neurotherapeutics, University of Texas, Southwestern, Dallas, TX, United States
| | - Daniel T Laskowitz
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States.,Department of Neurology, Duke University Medical Center, Durham, NC, United States.,Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Mark F Newman
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States.,Private Diagnostic Clinic, Duke University Medical Center, Durham, NC, United States
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David S Warner
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States.,Department of Neurobiology, Duke University Medical Center, Durham, NC, United States.,Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Michael L James
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States.,Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | | |
Collapse
|
83
|
Boisserand LSB, Lemasson B, Hirschler L, Moisan A, Hubert V, Barbier EL, Rémy C, Detante O. Multiparametric magnetic resonance imaging including oxygenation mapping of experimental ischaemic stroke. J Cereb Blood Flow Metab 2017; 37:2196-2207. [PMID: 27466373 PMCID: PMC5464712 DOI: 10.1177/0271678x16662044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent advances in MRI methodology, such as microvascular and brain oxygenation (StO2) imaging, may prove useful in obtaining information about the severity of the acute stroke. We assessed the potential of StO2 to detect the ischaemic core in the acute phase compared to apparent diffusion coefficient and to predict the final necrosis. Sprague-Dawley rats (n = 38) were imaged during acute stroke (D0) and 21 days after (D21). A multiparametric MRI protocol was performed at 4.7T to characterize brain damage within three region of interest: 'LesionD0' (diffusion), 'Mismatch' representing penumbra (perfusion/diffusion) and 'Hypoxia' (voxels < 40% of StO2 within the region of interest LesionD0). Voxel-based analysis of stroke revealed heterogeneity of the region of interest LesionD0, which included voxels with different degrees of oxygenation decrease. This finding was supported by a dramatic decrease of vascular and perfusion parameters within the region of interest hypoxia. This zone presented the lowest values of almost all parameters analysed, indicating a higher severity. Our study demonstrates the potential of StO2 magnetic resonance imaging to more accurately detect the ischaemic core without the inclusion of any reversible ischaemic damage. Our follow-up study indicates that apparent diffusion coefficient imaging overestimated the final necrosis while StO2 imaging did not.
Collapse
Affiliation(s)
- Ligia Simões Braga Boisserand
- 1 Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France.,2 Inserm, U1216, Grenoble, France.,3 CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Benjamin Lemasson
- 1 Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France.,2 Inserm, U1216, Grenoble, France
| | - Lydiane Hirschler
- 1 Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France.,2 Inserm, U1216, Grenoble, France.,4 Bruker Biospin, Ettlingen, Germany
| | - Anaïck Moisan
- 1 Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France.,2 Inserm, U1216, Grenoble, France.,5 Cell Therapy and Engineering Unit, EFS Rhône Alpes, Saint Ismier, France
| | - Violaine Hubert
- 1 Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - Emmanuel L Barbier
- 1 Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France.,2 Inserm, U1216, Grenoble, France
| | - Chantal Rémy
- 1 Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France.,2 Inserm, U1216, Grenoble, France
| | - Olivier Detante
- 1 Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France.,2 Inserm, U1216, Grenoble, France.,6 CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
84
|
Da Silva-Candal A, Argibay B, Iglesias-Rey R, Vargas Z, Vieites-Prado A, López-Arias E, Rodríguez-Castro E, López-Dequidt I, Rodríguez-Yáñez M, Piñeiro Y, Sobrino T, Campos F, Rivas J, Castillo J. Vectorized nanodelivery systems for ischemic stroke: a concept and a need. J Nanobiotechnology 2017; 15:30. [PMID: 28399863 PMCID: PMC5387212 DOI: 10.1186/s12951-017-0264-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Neurological diseases of diverse aetiologies have significant effects on the quality of life of patients. The limited self-repairing capacity of the brain is considered to be the origin of the irreversible and progressive nature of many neurological diseases. Therefore, neuroprotection is an important goal shared by many clinical neurologists and neuroscientists. In this review, we discuss the main obstacles that have prevented the implementation of experimental neuroprotective strategies in humans and propose alternative avenues for the use of neuroprotection as a feasible therapeutic approach. Special attention is devoted to nanotechnology, which is a new approach for developing highly specific and localized biomedical solutions for the study of the multiple mechanisms involved in stroke. Nanotechnology is contributing to personalized neuroprotection by allowing us to identify mechanisms, determine optimal therapeutic windows, and protect patients from brain damage. In summary, multiple aspects of these new players in biomedicine should be considered in future in vivo and in vitro studies with the aim of improving their applicability to clinical studies.
Collapse
Affiliation(s)
- Andrés Da Silva-Candal
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Bárbara Argibay
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Zulema Vargas
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain
| | - Alba Vieites-Prado
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Esteban López-Arias
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Emilio Rodríguez-Castro
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Yolanda Piñeiro
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - Francisco Campos
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain
| | - José Rivas
- Nanomag Laboratory, Department of Applied Physics, Technological Research Institute, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15782, Santiago de Compostela, Spain.
| | - José Castillo
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, Universidade de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), c/Travesa da Choupana, s/n, 15706, Santiago de Compostela, Spain.
| |
Collapse
|
85
|
Abstract
The presence of a salvageable penumbra, a region of ischemic brain tissue with sufficient energy for short-term survival, has been widely agreed as the premise for thrombolytic therapy with tissue plasminogen activator (tPA), which remains the only United States Food and Drug Administration (FDA) approved treatment for acute ischemia stroke. However, the use of tPA has been profoundly constrained due to its narrow therapeutic time window and the increased risk of potentially deadly hemorrhagic transformation (HT). Blood brain barrier (BBB) damage within the thrombolytic time window is an indicator for tPA-induced HT and both normobaric hyperoxia (NBO) and hypothermia have been shown to protect the BBB from ischemia/reperfusion injury. Therefore, providing the O2 as soon as possible (NBO treatment), freezing the brain (hypothermia treatment) to slow down ischemia-induced BBB damage or their combined use may extend the time window for the treatment of tPA. In this review, we summarize the protective effects of NBO, hypothermia or their use combined with tPA on ischemia stroke, based on which, the combination of NBO and hypothermia may be an ideal early stroke treatment to preserve the ischemic penumbra. Given this, there is an urge for large randomized controlled trials to address the effect.
Collapse
Affiliation(s)
- Wen-Cao Liu
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Xin-Chun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
86
|
Sandvig I, Gadjanski I, Vlaski-Lafarge M, Buzanska L, Loncaric D, Sarnowska A, Rodriguez L, Sandvig A, Ivanovic Z. Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue. Stem Cells Dev 2017; 26:554-565. [PMID: 28103744 DOI: 10.1089/scd.2016.0268] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
High post-transplantation cell mortality is the main limitation of various approaches that are aimed at improving regeneration of injured neural tissue by an injection of neural stem cells (NSCs) and mesenchymal stromal cells (MStroCs) in and/or around the lesion. Therefore, it is of paramount importance to identify efficient ways to increase cell transplant viability. We have previously proposed the "evolutionary stem cell paradigm," which explains the association between stem cell anaerobic/microaerophilic metabolic set-up and stem cell self-renewal and inhibition of differentiation. Applying these principles, we have identified the main critical point in the collection and preparation of these cells for experimental therapy: exposure of the cells to atmospheric O2, that is, to oxygen concentrations that are several times higher than the physiologically relevant ones. In this way, the primitive anaerobic cells become either inactivated or adapted, through commitment and differentiation, to highly aerobic conditions (20%-21% O2 in atmospheric air). This inadvertently compromises the cells' survival once they are transplanted into normal tissue, especially in the hypoxic/anoxic/ischemic environment, which is typical of central nervous system (CNS) lesions. In addition to the findings suggesting that stem cells can shift to glycolysis and can proliferate in anoxia, recent studies also propose that stem cells may be able to proliferate in completely anaerobic or ischemic conditions by relying on anaerobic mitochondrial respiration. In this systematic review, we propose strategies to enhance the survival of NSCs and MStroCs that are implanted in hypoxic/ischemic neural tissue by harnessing their anaerobic nature and maintaining as well as enhancing their anaerobic properties via appropriate ex vivo conditioning.
Collapse
Affiliation(s)
- Ioanna Sandvig
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ivana Gadjanski
- 2 Innovation Center, Faculty of Mechanical Engineering, University of Belgrade , Belgrade, Serbia .,3 Belgrade Metropolitan University , Belgrade, Serbia
| | - Marija Vlaski-Lafarge
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Leonora Buzanska
- 6 Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy Sciences, Warsaw, Poland
| | - Darija Loncaric
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Ana Sarnowska
- 6 Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy Sciences, Warsaw, Poland
| | - Laura Rodriguez
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| | - Axel Sandvig
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway .,7 Division of Pharmacology and Clinical Neurosciences, Department of Neurosurgery and Clinical Neurophysiology, Umeå University Hospital , Umeå, Sweden
| | - Zoran Ivanovic
- 4 French Blood Institute (EFS) , Aquitaine-Limousin Branch, Bordeaux, France .,5 U1035 INSERM/Bordeaux University , Bordeaux Cedex, France
| |
Collapse
|
87
|
The neuroprotective compound P7C3-A20 promotes neurogenesis and improves cognitive function after ischemic stroke. Exp Neurol 2017; 290:63-73. [PMID: 28077334 DOI: 10.1016/j.expneurol.2017.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a devastating condition with few therapeutic interventions available. The neuroprotective compound P7C3-A20 inhibits mature neuronal cell death while also increasing the net magnitude of postnatal neurogenesis in models of neurodegeneration and acute injury. P7C3 compounds enhance flux of nicotinamide adenine dinucleotide (NAD) in mammalian cells, a proposed therapeutic approach to treating cerebral ischemia. The effectiveness of P7C3-A20 treatment on chronic histopathological and behavioral outcomes and neurogenesis after ischemic stroke has not previously been established. Here, a transient middle cerebral artery occlusion in rats was followed by twice daily injection of P7C3-A20 or vehicle for 7days. P7C3-A20-treated rats performed significantly better than vehicle-treated controls in sensorimotor cylinder and grid-walk tasks, and in a chronic test of spatial learning and memory. These behavioral improvements with P7C3-A20 treatment were correlated with significantly decreased cortical and hippocampal atrophy, and associated with increased neurogenesis in the subventricular zone and hippocampal dentate gyrus subgranular zone. Furthermore, cerebral ischemia significantly reduced NAD in the cortex but P7C3-A20 treatment restored NAD to sham levels. Thus, P7C3-A20 treatment mitigates neurodegeneration and augments repair in the brain after focal ischemia, which translates into chronic behavioral improvement. This suggests a new therapeutic approach of using P7C3 compounds to safely augment NAD and thereby promote two independent processes critical to protecting the brain from ischemic stroke: mature neuron survival and postnatal neurogenesis throughout the post-ischemic brain.
Collapse
|
88
|
Martín-Aragón Baudel MAS, Poole AV, Darlison MG. Chloride co-transporters as possible therapeutic targets for stroke. J Neurochem 2016; 140:195-209. [PMID: 27861901 DOI: 10.1111/jnc.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of death and disability worldwide. The major type of stroke is an ischaemic one, which is caused by a blockage that interrupts blood flow to the brain. There are currently very few pharmacological strategies to reduce the damage and social burden triggered by this pathology. The harm caused by the interruption of blood flow to the brain unfolds in the subsequent hours and days, so it is critical to identify new therapeutic targets that could reduce neuronal death associated with the spread of the damage. Here, we review some of the key molecular mechanisms involved in the progression of neuronal death, focusing on some new and promising studies. In particular, we focus on the potential of the chloride co-transporter (CCC) family of proteins, mediators of the GABAergic response, both during the early and later stages of stroke, to promote neuroprotection and recovery. Different studies of CCCs during the chronic and recovery phases post-stroke reveal the importance of timing when considering CCCs as potential neuroprotective and/or neuromodulator targets. The molecular regulatory mechanisms of the two main neuronal CCCs, NKCC1 and KCC2, are further discussed as an indirect approach for promoting neuroprotection and neurorehabilitation following an ischaemic insult. Finally, we mention the likely importance of combining different strategies in order to achieve more effective therapies.
Collapse
Affiliation(s)
| | - Amy V Poole
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| | - Mark G Darlison
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| |
Collapse
|
89
|
French BR, Boddepalli RS, Govindarajan R. Acute Ischemic Stroke: Current Status and Future Directions. MISSOURI MEDICINE 2016; 113:480-486. [PMID: 30228538 PMCID: PMC6139763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The evolving knowledge on stroke in conjunction with advances in the field of imaging, treatment approaches using recombinant tissue plasminogen activator (rtPA) or thrombectomy devices in recanalization, and efficient emergency stroke workflow processes have opened new frontiers in managing patients with an acute ischemic stroke. These frontiers have been reformed and overcome in overcoming the decades-long watch and wait approach towards patients with ischemic stroke. In this article, we focus on the current strategies for managing ischemic stroke and conclude by providing a brief overview of anticipating developments that can transform future stroke treatments.
Collapse
Affiliation(s)
- Brandi R French
- Brandi R. French, MD, Assistant Professor of Clinical Vascular Neurology, Medical Director of Inpatient Neurosciences Unit in the Department of Neurology, University of Missouri - Columbia, Missouri
| | - Raja S Boddepalli
- Raja S. Boddepalli, MD, Research Assistant in the Department of Neurology, University of Missouri - Columbia, Missouri
| | - Raghav Govindarajan
- Raghav Govindarajan MD, FISQua, FACSc, FCCP, MSMA member since 2013 and 2017 Boone County Medical society President, Assistant Professor in the Department of Neurology, University of Missouri - Columbia, Missouri
| |
Collapse
|
90
|
Sotomayor-Sobrino MA, Ochoa-Aguilar A, Méndez-Cuesta LA, Gómez-Acevedo C. Neuroimmunological interactions in stroke. Neurologia 2016; 34:326-335. [PMID: 27776957 DOI: 10.1016/j.nrl.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/25/2016] [Accepted: 08/30/2016] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Stroke is one of the leading causes of death in the world; its incidence is increasing due to increased life expectancy. However, treatment options for these patients are limited since no clinically effective drugs have been developed to date. DEVELOPMENT According to clinical evidence, a number of neurochemical changes take place after stroke, including energy depletion, increased free radical synthesis, calcium accumulation, neurotransmitter imbalance, excitotoxicity, and, at a later stage, immune system activation leading to inflammation. Immune response has been shown to be a major factor in disease progression. The release of proinflammatory cytokines such as TNF increase brain damage secondary to excitotoxicity and calcium accumulation, and promote free radical synthesis and cell death through various mechanisms. On the other hand, certain anti-inflammatory cytokines, such as IL-10 and IL-4, have been shown to have a neuroprotective effect and even promote neurogenesis and synapse remodeling, which makes immune modulation a promising treatment approach. CONCLUSIONS Understanding the relationship between the immune system and the nervous system not only deepens our knowledge of stroke but also provides new diagnostic, prognostic, and therapeutic strategies that may increase the quality of life of stroke patients.
Collapse
Affiliation(s)
- M A Sotomayor-Sobrino
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - A Ochoa-Aguilar
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - L A Méndez-Cuesta
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - C Gómez-Acevedo
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
91
|
Soni S, Ruhela RK, Medhi B. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective. Adv Pharm Bull 2016; 6:319-335. [PMID: 27766216 DOI: 10.15171/apb.2016.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 08/25/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go.
Collapse
Affiliation(s)
- Shringika Soni
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Rakesh Kumar Ruhela
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| |
Collapse
|
92
|
Abstract
Tissue growth and regeneration are autonomous, stem-cell-mediated processes in which stem cells within the organ self-renew and differentiate to create new cells, leading to new tissue. The processes of growth and regeneration require communication and interplay between neighboring cells. In particular, cell competition, which is a process in which viable cells are actively eliminated by more competitive cells, has been increasingly implicated to play an important role. Here, we discuss the existing literature regarding the current landscape of cell competition, including classical pathways and models, fitness fingerprint mechanisms, and immune system mechanisms of cell competition. We further discuss the clinical relevance of cell competition in the physiological processes of tissue growth and regeneration, highlighting studies in clinically important disease models, including oncological, neurological, and cardiovascular diseases.
Collapse
Affiliation(s)
- Rajan Gogna
- Institut für Zellbiologie, University of Bern, CH-3012 Bern, Switzerland; .,Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire 03766
| | - Kevin Shee
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire 03766
| | - Eduardo Moreno
- Institut für Zellbiologie, University of Bern, CH-3012 Bern, Switzerland;
| |
Collapse
|
93
|
Clinical recovery and health-related quality of life in ischaemic stroke survivors receiving thrombolytic treatment: a 1-year follow-up study. J Thromb Thrombolysis 2016; 43:91-97. [DOI: 10.1007/s11239-016-1419-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
94
|
Ock S, Jo S, Lee JB, Jin Y, Jeong T, Yoon J, Park B. Comprehensive interpretation of hyperglycemia and hyperosmolality on the clinical outcomes among ischemic stroke patients. Am J Emerg Med 2016; 34:2343-2350. [PMID: 27614372 DOI: 10.1016/j.ajem.2016.08.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Hyperglycemia and hyperosmolality are associated with poor outcomes among acute ischemic stroke (AIS) patients. OBJECTIVES We evaluated the association between hyperglycemia and hyperosmolality, as a combination measure, with poor outcome among AIS patients. METHODS We conducted a retrospective study of AIS patients admitted to the study hospital emergency department between January and December 2014. Hyperglycemia was defined as serum glucose >144 mg/dL, and hyperosmolality was defined as a serum osmolality >295 mOsm/kg. After excluding hypoglycemia and hypoosmolality, the enrolled patients were classified into the following 4 subgroups: normoglycemia-normoosmolality, hyperglycemia-normoosmolality (HGNO), normoglycemia-hyperosmolality (NGHO), and hyperglycemia-normoosmolality (HGHO). The primary outcome was poor neurological status at 6 months, which was defined as a modified Rankin scale score ≥2. RESULTS Six hundred seven patients were included. The primary outcome was 336 (55.4%), and it was highest in the HGNO group (69.6%, 103/148), followed by the HGHO group (67.9%, 53/78), the NGHO group (57.3%, 43/75) and the normoglycemia-normoosmolality group (44.7%, 137/306). The multivariable logistic regression analysis revealed that HGNO and HGHO remained significant factors, with primary outcomes (adjusted odds ratio, 2.08; 95% confidence interval, 1.16-3.71) and 2.93 (1.45-5.91), respectively), whereas NGHO was not a significant factor. Cases of extremely high sodium levels were few in the NGHO and HGHO groups, whereas considerable cases of extremely high glucose level were observed in the HGHO group. CONCLUSION Hyperglycemia was associated with poor outcome, even after excluding the effect of hyperosmolality. However, hyperosmolality without hyperglycemia was not associated with poor outcome. An additive effect, likely reflecting severe hyperglycemia, was observed.
Collapse
Affiliation(s)
- Seunghun Ock
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Chonbuk National University and Biomedical Research Institute of Chonbuk National University Hospital, Jeonju-si, Republic of Korea
| | - Sion Jo
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Chonbuk National University and Biomedical Research Institute of Chonbuk National University Hospital, Jeonju-si, Republic of Korea.
| | - Jae Baek Lee
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Chonbuk National University and Biomedical Research Institute of Chonbuk National University Hospital, Jeonju-si, Republic of Korea
| | - Youngho Jin
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Chonbuk National University and Biomedical Research Institute of Chonbuk National University Hospital, Jeonju-si, Republic of Korea
| | - Taeoh Jeong
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Chonbuk National University and Biomedical Research Institute of Chonbuk National University Hospital, Jeonju-si, Republic of Korea
| | - Jaechol Yoon
- Department of Emergency Medicine, Research Institute of Clinical Medicine of Chonbuk National University and Biomedical Research Institute of Chonbuk National University Hospital, Jeonju-si, Republic of Korea
| | - Boyoung Park
- National Cancer Control Institute, National Cancer Center, Goyang-si, Kyunggi-do, Republic of Korea
| |
Collapse
|
95
|
Affiliation(s)
- David McLeod
- Academic Department, Manchester Royal Eye Hospital and University of Manchester Centre for Ophthalmology & Vision Research, Manchester, UK
| |
Collapse
|
96
|
Liu H, Jablonska A, Li Y, Cao S, Liu D, Chen H, Van Zijl PCM, Bulte JW, Janowski M, Walczak P, Liu G. Label-free CEST MRI Detection of Citicoline-Liposome Drug Delivery in Ischemic Stroke. Am J Cancer Res 2016; 6:1588-600. [PMID: 27446492 PMCID: PMC4955057 DOI: 10.7150/thno.15492] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/01/2016] [Indexed: 12/21/2022] Open
Abstract
Citicoline (CDPC) is a natural supplement with well-documented neuroprotective effects in the treatment of neurodegenerative diseases. In the present study, we sought to exploit citicoline as a theranostic agent with its inherent chemical exchange saturation transfer (CEST) MRI signal, which can be directly used as an MRI guidance in the citicoline drug delivery. Our in vitro CEST MRI results showed citicoline has two inherent CEST signals at +1 and +2 ppm, attributed to exchangeable hydroxyl and amine protons, respectively. To facilitate the targeted drug delivery of citicoline to ischemic regions, we prepared liposomes encapsulating citicoline (CDPC-lipo) and characterized the particle properties and CEST MRI properties. The in vivo CEST MRI detection of liposomal citicoline was then examined in a rat brain model of unilateral transient ischemia induced by a two-hour middle cerebral artery occlusion. The results showed that the delivery of CPDC-lipo to the brain ischemic areas could be monitored and quantified by CEST MRI. When administered intra-arterially, CDPC-lipo clearly demonstrated a detectable CEST MRI contrast at 2 ppm. CEST MRI revealed that liposomes preferentially accumulated in the areas of ischemia with a disrupted blood-brain-barrier. We furthermore used CEST MRI to detect the improvement in drug delivery using CDPC-lipo targeted against vascular cell adhesion molecule (VCAM)-1 in the same animal model. The MRI findings were validated using fluorescence microscopy. Hence, liposomal citicoline represents a prototype theranostic system, where the therapeutic agent can be detected directly by CEST MRI in a label-free fashion.
Collapse
|
97
|
Normobaric Hyperoxia Extends Neuro- and Vaso-Protection of N-Acetylcysteine in Transient Focal Ischemia. Mol Neurobiol 2016; 54:3418-3427. [PMID: 27177548 DOI: 10.1007/s12035-016-9932-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/04/2016] [Indexed: 01/04/2023]
Abstract
N-acetylcysteine (NAC), a precursor of glutathione that reduces reperfusion-induced injury, has been shown protection when it was administered pre-ischemia. However, less is known about the effect when it was given post-ischemia and there is no positive result associated with anti-oxidant in clinical trials. This study investigated the neuro- and vaso-protection of post-ischemia NAC administration as well as combining NAC with normobaric hyperoxia (NBO). Male Sprague-Dawley rats were exposed to NBO or normoxia during 2-h occlusion of the middle cerebral artery, followed by 48-h reperfusion. NAC or vehicle was intraperitoneally administered to rats immediately before reperfusion onset. NAC and NBO treatments produced 1.2 and 30 % reduction of infarction volume, respectively, and combination treatment showed greater reduction (59.8 %) as well as more decrease of hemispheric swelling volume. Of note, combination therapy showed improved neurological assessment and motor function which were sustained for 7 days after reperfusion. We also determined that the combination therapy showed greater inhibitory effects on tight junction protein degradation accompanied by Evan's blue extravasation, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) induction, and poly ADP-ribose polymerase (PARP)-1 activation in ischemic brain tissue. Our results showed that although post-ischemia NAC administration had limited protection, combination treatment of NAC plus NBO effectively prevented blood-brain barrier (BBB) damage and significantly improved the outcome of brain injury, providing new evidence to support the concept that "cocktail" treatment targeting different stages provides better neuro- and vaso-protection than current individual treatment that has all failed in their clinical trials.
Collapse
|
98
|
Qian C, Li PC, Jiao Y, Yao HH, Chen YC, Yang J, Ding J, Yang XY, Teng GJ. Precise Characterization of the Penumbra Revealed by MRI: A Modified Photothrombotic Stroke Model Study. PLoS One 2016; 11:e0153756. [PMID: 27093556 PMCID: PMC4836676 DOI: 10.1371/journal.pone.0153756] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/04/2016] [Indexed: 11/18/2022] Open
Abstract
Aims To precisely characterize the penumbra by MRI based on a modified photothrombotic stroke mouse model. Methods The proximal middle cerebral artery was occluded by a convenient laser system in conjunction with an intravenous injection of Rose Bengal in mice. And the suture MCAO model was performed in seven mice as a comparison of the reproducibility. One hour after occlusion, the penumbra was defined in six random photothrombotic stroke mice by mismatch between perfusion-weighted imaging and the apparent diffusion coefficient map on a home-made workstation. After imaging, three random mice of them were chosen to perform the reperfusion surgery. And the other three mice were sacrificed to stain for several potential penumbra markers, such as c-fos and heart shock protein 90. In the remaining mice, the evolution of the lesions was detected on the apparent diffusion coefficient map, diffusion-weighted imaging and T2-weighted imaging at 1, 3, 6, 12 and 24 hours. After evaluating the neurological deficit scores, the brains were sectioned and stained by triphenyltetrazolium chloride and Nissl. Results The mice subjected to photothrombosis showed significant behavioral deficits. One hour after occlusion, the low perfusion areas on the perfusion-weighted imaging interlaced with the hypointense areas on the apparent diffusion coefficient map, demonstrating that the penumbra was located both surrounding and inside the lesions. This phenomenon was subsequently confirmed by the c-fos and heart shock protein 90 staining. The final T2-weighted images of the mice subjected to the reperfusion surgery were also consistent with the penumbra images at one hour. At early stages, the lesions were clearly identified on the apparent diffusion coefficient map; the volumes of the lesions on the diffusion-weighted imaging and T2-weighted imaging did not reach a maximum until 12 hours. The coefficient of variation (CV) of the final lesions in the photothrombotic stroke mice was 21.7% (0.08 of 0.37) on T2-weighted imaging and 27.8% (0.10 of 0.35) on triphenyltetrazolium chloride, representing a high reproducibility (n = 7). While the CV of the lesions in the MCAO stroke mice was only 70% (0.24 of 0.34, n = 4). Conclusions This study has provided a precise imaging definition of the penumbra based on a reproducible photothrombotic stroke mouse model.
Collapse
Affiliation(s)
- Cheng Qian
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Pei-Cheng Li
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Hong-Hong Yao
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Yu-Chen Chen
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jian Yang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jie Ding
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiang-Yu Yang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- * E-mail:
| |
Collapse
|
99
|
Liang LJ, Yang JM, Jin XC. Cocktail treatment, a promising strategy to treat acute cerebral ischemic stroke? Med Gas Res 2016; 6:33-38. [PMID: 27826421 PMCID: PMC5075681 DOI: 10.4103/2045-9912.179343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Up to now, over 1,000 experimental treatments found in cells and rodents have been difficult to translate to human ischemic stroke. Since ischemia and reperfusion, two separate stages of ischemic stroke, have different pathophysiological mechanisms leading to brain injury, a combination of protective agents targeting ischemia and reperfusion respectively may obtain substantially better results than a single agent. Normobaric hyperoxia (NBO) has been shown to exhibit neuro- and vaso-protective effects by improving tissue oxygenation when it is given during ischemia, however the effect of NBO would diminish when the duration of ischemia and reperfusion was extended. Therefore, during reperfusion drug treatment targeting inflammation, oxidative stress and free radical scavenger would be a useful adjuvant to extend the therapeutic window of tissue plasminogen activator, the only United States Food and Drug Administration (FDA) approved treatment for acute ischemic stroke. In this review, we discussed the neuro- and vaso-protective effects of NBO and recent finding of combining NBO with other drugs.
Collapse
Affiliation(s)
- Li-Jun Liang
- Children's Hospital of Shanxi Province, Taiyuan, Shanxi Province, China
| | - Jin-Ming Yang
- Children's Hospital of Shanxi Province, Taiyuan, Shanxi Province, China
| | - Xin-Chun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
100
|
CT Permeability Imaging Predicts Clinical Outcomes in Acute Ischemic Stroke Patients Treated with Intra-arterial Thrombolytic Therapy. Mol Neurobiol 2016; 54:2539-2546. [PMID: 26988262 DOI: 10.1007/s12035-016-9838-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
In this study, we determined whether a prediction of final infarct volume (FIV) and clinical outcomes in patients with an acute stroke is improved by using a contrast transfer coefficient (K trans) as a biomarker for blood-brain barrier (BBB) dysfunction. Here, consecutive patients admitted with signs and symptoms suggesting acute hemispheric stroke were included in this study. Ninety-eight participants with intra-arterial therapy were assessed (46 female). Definition of predicted FIV was performed using conventional perfusion CT (PCT-PIV) parameters alone and in combination with K trans (K trans-PIV). Multiple logistic regression analyses and linear regression modeling were conducted to determine independent predictors of the 90-day modified Rankin score (mRS) and FIV, respectively. We found that patients with favorable outcomes were younger and had lower National Institutes of Health Stroke Scale (NIHSS) score, smaller PCT-PIV, K trans-PIV, and smaller FIV (P < 0.001). K trans-PIV showed good correlation with FIV (P < 00.001, R 2 = 0.6997). In the regression analyses, K trans-PIV was the best predictor of clinical outcomes (P = 0.009, odds ratio (OR) = 1.960) and also the best predictor for FIV (F = 75.590, P < 0.0001). In conclusion, combining PCT and K trans maps derived from first-pass PCT can identify at-risk cerebral ischemic tissue more precisely than perfusion parameters alone. This provides improved accuracy in predicting FIV and clinical outcomes.
Collapse
|