51
|
Prevotella melaninogenica, a Sentinel Species of Antibiotic Resistance in Cystic Fibrosis Respiratory Niche? Microorganisms 2021; 9:microorganisms9061275. [PMID: 34208093 PMCID: PMC8230849 DOI: 10.3390/microorganisms9061275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
The importance and abundance of strict anaerobic bacteria in the respiratory microbiota of people with cystic fibrosis (PWCF) is now established through studies based on high-throughput sequencing or extended-culture methods. In CF respiratory niche, one of the most prevalent anaerobic genera is Prevotella, and particularly the species Prevotella melaninogenica. The objective of this study was to evaluate the antibiotic susceptibility of this anaerobic species. Fifty isolates of P. melaninogenica cultured from sputum of 50 PWCF have been included. Antibiotic susceptibility testing was performed using the agar diffusion method. All isolates were susceptible to the following antibiotics: amoxicillin/clavulanic acid, piperacillin/tazobactam, imipenem and metronidazole. A total of 96% of the isolates (48/50) were resistant to amoxicillin (indicating beta-lactamase production), 34% to clindamycin (17/50) and 24% to moxifloxacin (12/50). Moreover, 10% (5/50) were multidrug-resistant. A significant and positive correlation was found between clindamycin resistance and chronic azithromycin administration. This preliminary study on a predominant species of the lung “anaerobiome” shows high percentages of resistance, potentially exacerbated by the initiation of long-term antibiotic therapy in PWCF. The anaerobic resistome characterization, focusing on species rather than genera, is needed in the future to better prevent the emergence of resistance within lung microbiota.
Collapse
|
52
|
Bertelsen A, Elborn JS, Schock BC. Microbial interaction: Prevotella spp. reduce P. aeruginosa induced inflammation in cystic fibrosis bronchial epithelial cells. J Cyst Fibros 2021; 20:682-691. [PMID: 34112603 DOI: 10.1016/j.jcf.2021.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In Cystic Fibrosis (CF) airways, the dehydrated, thick mucus promotes the establishment of persistent polymicrobial infections and drives chronic airways inflammation. This also predisposes the airways to further infections, the vicious, self-perpetuating cycle causing lung damage and progressive lung function decline. The airways are a poly-microbial environment, containing both aerobic and anaerobic bacterial species. Pseudomonas aeruginosa (P. aeruginosa) infections contribute to the excessive inflammatory response in CF, but the role of anaerobic Prevotella spp., frequently found in CF airways, is not known. MATERIALS We assessed innate immune signalling in CF airway epithelial cells in response to clinical strains of P. histicola, P. nigresens and P. aeruginosa. CFBE41o- cells were infected with P. aeruginosa (MOI 100, 2h) followed by infection with P. histicola or P. nigrescens (MOI 100, 2h). Cells were incubated under anaerobic conditions for the duration of the experiments. RESULTS Our study shows that P. histicola and P. nigresens can reduce the growth of P. aeruginosa and dampen the inflammatory response in airway epithelial cells. We specifically illustrate that the presence of the investigated Prevotella spp. reduces Toll-like-receptor (TLR)-4, MAPK, NF-κB(p65) signalling and cytokine release (Interleukin (IL)-6, IL-8) in mixed infections. CONCLUSION Our work, for the first time, strongly indicates a relationship between P. aeruginosa and anaerobic Prevotella spp.. The observed modified NF-κB and MAPK signalling indicates some mechanisms underlying this interaction that could offer a novel therapeutic approach to combat chronic P. aeruginosa infection in people with CF.
Collapse
Affiliation(s)
- Anne Bertelsen
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Lisburn Road, Belfast, UK; Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - J Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Lisburn Road, Belfast, UK; Imperial College London, London, UK
| | - Bettina C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Lisburn Road, Belfast, UK.
| |
Collapse
|
53
|
Thornton CS, Mellett M, Jarand J, Barss L, Field SK, Fisher DA. The respiratory microbiome and nontuberculous mycobacteria: an emerging concern in human health. Eur Respir Rev 2021; 30:30/160/200299. [PMID: 34039671 DOI: 10.1183/16000617.0299-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are diverse microbial species encompassing commensals and pathogens with the ability to cause pulmonary disease in both immunocompetent and immunocompromised individuals. In contrast to Mycobacterium tuberculosis, which has seen a reduction in disease rates in developed countries, the incidence and prevalence of NTM disease is increasing. NTM are difficult to treat with standard antimicrobial regimens and may contain both virulence and antibiotic-resistance genes with potential for pathogenicity. With the advent of molecular techniques, it has been elucidated that these organisms do not reside in isolation and are rather part of a complex milieu of microorganisms within the host lung microbiome. Over the last decade, studies have highlighted the impact of the microbiome on host immunity, metabolism and cell-cell communication. This recognition of a broader community raises the possibility that the microbiome may disrupt the balance between infection and disease. Additionally, NTM disease progression and antimicrobial therapy may affect the healthy steady state of the host and function of the microbiome, contributing to further dysbiosis and clinical deterioration. There have been limited studies assessing how NTM may influence the relationship between microbiome and host. In this review, we highlight available studies about NTM and the microbiome, postulate on virulence mechanisms by which these microorganisms communicate and discuss implications for treatment.
Collapse
Affiliation(s)
- Christina S Thornton
- Division of Respirology, University of Calgary, Calgary, Canada .,Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Joint first authors
| | - Madeline Mellett
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Joint first authors
| | - Julie Jarand
- Division of Respirology, University of Calgary, Calgary, Canada.,Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,TB Services, University of Calgary, Calgary, Canada
| | - Leila Barss
- Division of Respirology, University of Calgary, Calgary, Canada.,Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,TB Services, University of Calgary, Calgary, Canada
| | - Stephen K Field
- Division of Respirology, University of Calgary, Calgary, Canada.,Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,TB Services, University of Calgary, Calgary, Canada
| | - Dina A Fisher
- Division of Respirology, University of Calgary, Calgary, Canada.,Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada.,TB Services, University of Calgary, Calgary, Canada.,Dept of Community Health Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
54
|
Minkiewicz-Zochniak A, Jarzynka S, Iwańska A, Strom K, Iwańczyk B, Bartel M, Mazur M, Pietruczuk-Padzik A, Konieczna M, Augustynowicz-Kopeć E, Olędzka G. Biofilm Formation on Dental Implant Biomaterials by Staphylococcus aureus Strains Isolated from Patients with Cystic Fibrosis. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2030. [PMID: 33920743 PMCID: PMC8073800 DOI: 10.3390/ma14082030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Implants made of ceramic and metallic elements, which are used in dentistry, may either promote or hinder the colonization and adhesion of bacteria to the surface of the biomaterial to varying degrees. The increased interest in the use of dental implants, especially in patients with chronic systemic diseases such as cystic fibrosis (CF), is caused by an increase in disease complications. In this study, we evaluated the differences in the in vitro biofilm formation on the surface of biomaterials commonly used in dentistry (Ti-6Al-4V, cobalt-chromium alloy (CoCr), and zirconia) by Staphylococcus aureus isolated from patients with CF. We demonstrated that S. aureus adherence and growth depends on the type of material used and its surface topography. Weaker bacterial biofilm formation was observed on zirconia surfaces compared to titanium and cobalt-chromium alloy surfaces. Moreover, scanning electron microscopy showed clear differences in bacterial aggregation, depending on the type of biomaterial used. Over the past several decades, S. aureus strains have developed several mechanisms of resistance, especially in patients on chronic antibiotic treatment such as CF. Therefore, the selection of an appropriate implant biomaterial with limited microorganism adhesion characteristics can affect the occurrence and progression of oral cavity infections, particularly in patients with chronic systemic diseases.
Collapse
Affiliation(s)
- Anna Minkiewicz-Zochniak
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Agnieszka Iwańska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.I.); (E.A.-K.)
| | - Kamila Strom
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Bartłomiej Iwańczyk
- The Chair and Department of Oral Surgery, Medical University of Lublin, Karmelicka 7, 20-081 Lublin, Poland;
| | - Marta Bartel
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.B.); (M.M.)
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.B.); (M.M.)
| | - Anna Pietruczuk-Padzik
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Małgorzata Konieczna
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.I.); (E.A.-K.)
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| |
Collapse
|
55
|
Mac Aogáin M, Narayana JK, Tiew PY, Ali NABM, Yong VFL, Jaggi TK, Lim AYH, Keir HR, Dicker AJ, Thng KX, Tsang A, Ivan FX, Poh ME, Oriano M, Aliberti S, Blasi F, Low TB, Ong TH, Oliver B, Giam YH, Tee A, Koh MS, Abisheganaden JA, Tsaneva-Atanasova K, Chalmers JD, Chotirmall SH. Integrative microbiomics in bronchiectasis exacerbations. Nat Med 2021; 27:688-699. [PMID: 33820995 DOI: 10.1038/s41591-021-01289-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Bronchiectasis, a progressive chronic airway disease, is characterized by microbial colonization and infection. We present an approach to the multi-biome that integrates bacterial, viral and fungal communities in bronchiectasis through weighted similarity network fusion ( https://integrative-microbiomics.ntu.edu.sg ). Patients at greatest risk of exacerbation have less complex microbial co-occurrence networks, reduced diversity and a higher degree of antagonistic interactions in their airway microbiome. Furthermore, longitudinal interactome dynamics reveals microbial antagonism during exacerbation, which resolves following treatment in an otherwise stable multi-biome. Assessment of the Pseudomonas interactome shows that interaction networks, rather than abundance alone, are associated with exacerbation risk, and that incorporation of microbial interaction data improves clinical prediction models. Shotgun metagenomic sequencing of an independent cohort validated the multi-biome interactions detected in targeted analysis and confirmed the association with exacerbation. Integrative microbiomics captures microbial interactions to determine exacerbation risk, which cannot be appreciated by the study of a single microbial group. Antibiotic strategies probably target the interaction networks rather than individual microbes, providing a fresh approach to the understanding of respiratory infection.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | | | - Valerie Fei Lee Yong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Albert Yick Hou Lim
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Holly R Keir
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Alison J Dicker
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Kai Xian Thng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Akina Tsang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Mau Ern Poh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Martina Oriano
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Aliberti
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Teck Boon Low
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore, Singapore
| | - Thun How Ong
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Brian Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yan Hui Giam
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Augustine Tee
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore, Singapore
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | | | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - James D Chalmers
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
56
|
Xing Z, Li H, Li M, Gao R, Guo C, Mi S. Disequilibrium in chicken gut microflora with avian colibacillosis is related to microenvironment damaged by antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143058. [PMID: 33127154 DOI: 10.1016/j.scitotenv.2020.143058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The avian colibacillosis outbreak is a disease that threatens public health, poultry production, and economic interests, even after antibiotic feed addition. It is known that avian pathogenic E. coli is a major pathogenic factor; however, the systemic characteristics of gut flora in disease samples and how pathogens grow remain unknown. To study these issues in depth, we used the whole microbial genome shotgun sequencing technique to compare entire microbes in diseased and healthy broiler chickens. We found that it was not only E. coli that increased substantially, but most pathogenic flora also increased significantly in diseased samples. Subsequently, we proved that aminoglycoside antibiotic resistance genes were mainly found in non-E. coli strains. This suggests that E. coli survival under antibiotic stress was due to the cooperative resistance from non-E. coli strains. Among all these increasing strains, attaching and effacing pathogens could damage host intestinal epithelial cells to release oxygen in the gut to make the microenvironment more adaptable for E. coli strains. Furthermore, we observed that the functions of the T4SS/T6SS secretion system were dramatically enhanced, which could help E. coli to compete and enlarge their living spaces. Ultimately, pathogenic E. coli accumulated to cause avian colibacillosis. This study provides a new insight into intestinal microecology in diseased individuals, which would propose new treatment options for avian colibacillosis from a metagenome perspective.
Collapse
Affiliation(s)
- Zhikai Xing
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Ran Gao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chongye Guo
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China.
| | - Shuangli Mi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
57
|
Lamoureux C, Guilloux CA, Beauruelle C, Gouriou S, Ramel S, Dirou A, Le Bihan J, Revert K, Ropars T, Lagrafeuille R, Vallet S, Le Berre R, Nowak E, Héry-Arnaud G. An observational study of anaerobic bacteria in cystic fibrosis lung using culture dependant and independent approaches. Sci Rep 2021; 11:6845. [PMID: 33767218 PMCID: PMC7994387 DOI: 10.1038/s41598-021-85592-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Strict anaerobes are undeniably important residents of the cystic fibrosis (CF) lung but are still unknowns. The main objectives of this study were to describe anaerobic bacteria diversity in CF airway microbiota and to evaluate the association with lung function. An observational study was conducted during eight months. A hundred and one patients were enrolled in the study, and 150 sputum samples were collected using a sterile sample kit designed to preserve anaerobic conditions. An extended-culture approach on 112 sputa and a molecular approach (quantitative PCR targeting three of the main anaerobic genera in CF lung: Prevotella, Veillonella, and Fusobacterium) on 141 sputa were developed. On culture, 91.1% of sputa were positive for at least one anaerobic bacterial species, with an average of six anaerobic species detected per sputum. Thirty-one anaerobic genera and 69 species were found, which is the largest anaerobe diversity ever reported in CF lungs. Better lung function (defined as Forced Expiratory Volume in one second > 70%) was significantly associated with higher quantification of Veillonella. These results raise the question of the potential impact of anaerobes on lung function.
Collapse
Affiliation(s)
- Claudie Lamoureux
- INSERM, EFS, Univ Brest, UMR 1078, GGB, 29200, Brest, France
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Boulevard Tanguy Prigent, 29200, Brest, France
| | | | - Clémence Beauruelle
- INSERM, EFS, Univ Brest, UMR 1078, GGB, 29200, Brest, France
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Boulevard Tanguy Prigent, 29200, Brest, France
| | | | - Sophie Ramel
- Cystic Fibrosis Center of Roscoff, Fondation Ildys, Roscoff, France
| | - Anne Dirou
- Cystic Fibrosis Center of Roscoff, Fondation Ildys, Roscoff, France
| | - Jean Le Bihan
- Cystic Fibrosis Center of Roscoff, Fondation Ildys, Roscoff, France
| | - Krista Revert
- Cystic Fibrosis Center of Roscoff, Fondation Ildys, Roscoff, France
| | - Thomas Ropars
- Cystic Fibrosis Center of Roscoff, Fondation Ildys, Roscoff, France
| | | | - Sophie Vallet
- INSERM, EFS, Univ Brest, UMR 1078, GGB, 29200, Brest, France
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Boulevard Tanguy Prigent, 29200, Brest, France
| | - Rozenn Le Berre
- INSERM, EFS, Univ Brest, UMR 1078, GGB, 29200, Brest, France
- Department of Pulmonary and Internal Medicine, Brest University Hospital, Brest, France
| | - Emmanuel Nowak
- INSERM CIC 1412, Brest University Hospital, Brest, France
| | - Geneviève Héry-Arnaud
- INSERM, EFS, Univ Brest, UMR 1078, GGB, 29200, Brest, France.
- Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Boulevard Tanguy Prigent, 29200, Brest, France.
| |
Collapse
|
58
|
Abstract
Cystic fibrosis patients frequently suffer from recurring respiratory infections caused by colonizing pathogenic and commensal bacteria. Although modern therapies can sometimes alleviate respiratory symptoms by ameliorating residual function of the protein responsible for the disorder, management of chronic respiratory infections remains an issue. In cystic fibrosis, dynamic and complex communities of microbial pathogens and commensals can colonize the lung. Cultured isolates from lung sputum reveal high inter- and intraindividual variability in pathogen strains, sequence variants, and phenotypes; disease progression likely depends on the precise combination of infecting lineages. Routine clinical protocols, however, provide a limited overview of the colonizer populations. Therefore, a more comprehensive and precise identification and characterization of infecting lineages could assist in making corresponding decisions on treatment. Here, we describe longitudinal tracking for four cystic fibrosis patients who exhibited extreme clinical phenotypes and, thus, were selected from a pilot cohort of 11 patients with repeated sampling for more than a year. Following metagenomics sequencing of lung sputum, we find that the taxonomic identity of individual colonizer lineages can be easily established. Crucially, even superficially clonal pathogens can be subdivided into multiple sublineages at the sequence level. By tracking individual allelic differences over time, an assembly-free clustering approach allows us to reconstruct multiple lineage-specific genomes with clear structural differences. Our study showcases a culture-independent shotgun metagenomics approach for longitudinal tracking of sublineage pathogen dynamics, opening up the possibility of using such methods to assist in monitoring disease progression through providing high-resolution routine characterization of the cystic fibrosis lung microbiome.
Collapse
|
59
|
Abstract
Cystic fibrosis (CF) is the most common, lethal genetic disease among the Caucasian population. The leading cause of mortality is recurrent acute exacerbations resulting in chronic airway inflammation and subsequent downward progression of pulmonary function. Traditionally, these periods of clinical deterioration have been associated with several principal pathogens. However, a growing body of literature has demonstrated a polymicrobial lower respiratory community compromised of facultative and obligate anaerobes. Despite the understanding of a complex bacterial milieu in CF patient airways, specific roles of anaerobes in disease progression have not been established. In this paper, we first present a brief review of the anaerobic microorganisms that have been identified within CF lower respiratory airways. Next, we discuss the potential contribution of these organisms to CF disease progression, in part by pathogenic potential and also through synergistic interaction with principal pathogens. Finally, we propose a variety of clinical scenarios in which these anaerobic organisms indirectly facilitate principal CF pathogens by modulating host defense and contribute to treatment failure by antibiotic inactivation. These mechanisms may affect patient clinical outcomes and contribute to further disease progression.
Collapse
|
60
|
Outcomes of cystic fibrosis pulmonary exacerbations treated with antibiotics with activity against anaerobic bacteria. J Cyst Fibros 2021; 20:926-931. [PMID: 33612403 DOI: 10.1016/j.jcf.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 02/07/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Obligate and facultative anaerobic bacteria are prevalent in cystic fibrosis (CF) airways. Increases in anaerobe relative abundance have been associated with CF pulmonary exacerbations (PEx); however, the impact of antibiotic treatment of anaerobes during PEx is unknown. We hypothesized that PEx treated with antibiotics with activity against anaerobes would improve outcomes compared to antibiotics without anaerobic activity. METHODS This was a single-center, retrospective study of people with CF, ages 6 years and older, treated with intravenous (IV) antibiotics for PEx. IV antibiotics were classified as either broad or minimal anaerobic activity. PEx treated with broad anaerobe coverage were propensity-score matched to PEx treated with minimal anaerobic coverage. The primary outcome, % of baseline % predicted forced expiratory volume in one second (ppFEV1) recovered, was compared between antibiotic categories with a linear mixed model. The secondary outcome, time to next PEx, was assessed using a Prentice Williams Petersen model. RESULTS 514 PEx from 182 patients were included. Broad anaerobe coverage was used in 27% of PEx, and was used more often for older patients (p < 0.001) with worse baseline ppFEV1 (p < 0.001), and with Achromobacter (p < 0.001) or Burkholderia infections (p = 0.002). In the matched PEx, broad anaerobe coverage was not a significant predictor of % of baseline ppFEV1 recovered (∆ppFEV1 = -2.4, p = 0.09). Broad anaerobe coverage was also not a significant predictor of time to next PEx (HR 0.89, 95% CI 0.7-1.13, p = 0.35). CONCLUSIONS In this single center, retrospective study, antibiotics with broad activity against anaerobes were not associated with improved outcomes of CF PEx.
Collapse
|
61
|
Hagihara M, Kato H, Shibata Y, Sakanashi D, Asai N, Suematsu H, Yamagishi Y, Mikamo H. In vivo pharmacodynamics of lascufloxacin and levofloxacin against Streptococcus pneumoniae and Prevotella intermedia in a pneumonia mixed-infection mouse model. Anaerobe 2021; 69:102346. [PMID: 33600958 DOI: 10.1016/j.anaerobe.2021.102346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
This study aimed to evaluate the antimicrobial activity of a new quinolone, lascufloxacin, for the treatment of complicated pneumonia caused by Streptococcus pneumoniae and Prevotella intermedia using a neutropenic mice pneumonia mixed-infection model. In this study, one S. pneumoniae and four P. intermedia isolates were utilized. Antimicrobial efficacy was calculated for each isolate as the reduction of the bacterial count comparatively to the non-treated mice (log10 colony forming units (cfu)/mL) obtained in the lungs of the treated mice after 24 h. Consequently, the bacterial densities of S. pneumoniae (KY-9) and P. intermedia (335) in the lungs of control animals were 8.20 ± 0.19 log10 cfu/mL and 5.26 ± 1.50 log10 cfu/mL, respectively. At human-simulated doses, lascufloxacin and levofloxacin showed high antimicrobial activities against not only S. pneumoniae (lascufloxacin: 1.88 ± 0.43 log10 cfu/mL, p < 0.001; levofloxacin 4.30 ± 0.75 log10 cfu/mL, p < 0.001), but also P. intermedia (lascufloxacin: 1.54 ± 0.57 log10 cfu/mL, p < 0.001; levofloxacin: 2.79 ± 0.55 log10 cfu/mL, p = 0.0102). Additionally, levofloxacin demonstrated attenuated antimicrobial efficacies against S. pneumoniae in the mixed-infection model compared with that in the single infection model. In contrast, lascufloxacin showed enhanced antimicrobial activities against S. pneumoniae and P. intermedia in the mixed-infection model. In conclusion, lascufloxacin resulted in enhanced efficacies against S. pneumoniae and P. intermedia, in both the single and mixed-infection models used. These data support the clinical utility of lascufloxacin for use against S. pneumoniae and P. intermedia in the treatment of pneumonia.
Collapse
Affiliation(s)
- Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute, 480-1195, Japan; Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Hideo Kato
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Yuichi Shibata
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Daisuke Sakanashi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Hiroyuki Suematsu
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan.
| |
Collapse
|
62
|
Liquid Chromatography Mass Spectrometry Detection of Antibiotic Agents in Sputum from Persons with Cystic Fibrosis. Antimicrob Agents Chemother 2021; 65:AAC.00927-20. [PMID: 33139284 DOI: 10.1128/aac.00927-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For ∼37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.
Collapse
|
63
|
Sala V, Cnudde SJ, Murabito A, Massarotti A, Hirsch E, Ghigo A. Therapeutic peptides for the treatment of cystic fibrosis: Challenges and perspectives. Eur J Med Chem 2021; 213:113191. [PMID: 33493828 DOI: 10.1016/j.ejmech.2021.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common amongst rare genetic diseases, affecting more than 70.000 people worldwide. CF is characterized by a dysfunctional chloride channel, termed cystic fibrosis conductance regulator (CFTR), which leads to the production of a thick and viscous mucus layer that clogs the lungs of CF patients and traps pathogens, leading to chronic infections and inflammation and, ultimately, lung damage. In recent years, the use of peptides for the treatment of respiratory diseases, including CF, has gained growing interest. Therapeutic peptides for CF include antimicrobial peptides, inhibitors of proteases, and modulators of ion channels, among others. Peptides display unique features that make them appealing candidates for clinical translation, like specificity of action, high efficacy, and low toxicity. Nevertheless, the intrinsic properties of peptides, together with the need of delivering these compounds locally, e.g. by inhalation, raise a number of concerns in the development of peptide therapeutics for CF lung disease. In this review, we discuss the challenges related to the use of peptides for the treatment of CF lung disease through inhalation, which include retention within mucus, proteolysis, immunogenicity and aggregation. Strategies for overcoming major shortcomings of peptide therapeutics will be presented, together with recent developments in peptide design and optimization, including computational analysis and high-throughput screening.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sophie Julie Cnudde
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alberto Massarotti
- Department of Pharmaceutical Science, University of Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Kither Biotech S.r.l., Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Kither Biotech S.r.l., Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
64
|
Frey DL, Boutin S, Dittrich SA, Graeber SY, Stahl M, Wege S, Herth FJF, Sommerburg O, Schultz C, Mall MA, Dalpke AH. Relationship between airway dysbiosis, inflammation and lung function in adults with cystic fibrosis. J Cyst Fibros 2021; 20:754-760. [PMID: 33431308 DOI: 10.1016/j.jcf.2020.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/27/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023]
Abstract
Airway dysbiosis has been associated with lung disease severity in patients with cystic fibrosis (CF). However, the relationship between dysbiosis, airway inflammation and lung function impairement remains poorly understood. The aim of this study was therefore to determine how the structure of the sputum microbiota, airway inflammation markers and spirometry are related in patients with CF. Sputum samples were collected from 106 CF patients between 12 and 72 years. These were analyzed by 16S rRNA gene amplicon sequencing. Moreover, levels of pro-inflammatory cytokines (IL-1β, IL-8, IL-6 and TNF-α) and Neutrophil elastase (NE) were determined. The relationship between the microbiota, inflammation markers and forced expiratory volume in one second percent predicted (FEV1% predicted) was evaluated by multi-parameter analysis. The microbiota α-diversity correlated inverse with inflammation markers IL-1β, IL-8, TNF-α, NE and positively with FEV1% predicted. Patients could be divided into 7 clusters based on their microbiota structure. The most diverse cluster was defined by oropharyngeal-like flora (OF) while the others were characterized by the dominance of a single pathogen. Patients with the diverse OF microbiota cluster had lower sputum inflammatory markers and higher FEV1% predicted compared to patients with a pathogen-dominated microbiota including Pseudomonas aeruginosa. Our results suggest that the diversity of the airway microbiota is an important biomarker of the severity of airway inflammation linking dysbiosis to lung function decline in patients with CF.
Collapse
Affiliation(s)
- Dario L Frey
- Translational Lung Research Center (TLRC), Heidelberg, Germany; Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany
| | - Sébastien Boutin
- Translational Lung Research Center (TLRC), Heidelberg, Germany; Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany.
| | - Susanne A Dittrich
- Translational Lung Research Center (TLRC), Heidelberg, Germany; Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany; Department of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Y Graeber
- Translational Lung Research Center (TLRC), Heidelberg, Germany; Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany; Division of Pediatric Pulmonology & Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany; Department of Pediatric Pulmonology, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Mirjam Stahl
- Translational Lung Research Center (TLRC), Heidelberg, Germany; Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany; Division of Pediatric Pulmonology & Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany; Department of Pediatric Pulmonology, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Sabine Wege
- Department of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
| | - Felix J F Herth
- Translational Lung Research Center (TLRC), Heidelberg, Germany; Department of Pneumology and Critical Care Medicine, Thoraxklinik at the University Hospital Heidelberg, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center (TLRC), Heidelberg, Germany; Division of Pediatric Pulmonology & Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - Carsten Schultz
- Translational Lung Research Center (TLRC), Heidelberg, Germany; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Marcus A Mall
- Translational Lung Research Center (TLRC), Heidelberg, Germany; Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany; Division of Pediatric Pulmonology & Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany; Department of Pediatric Pulmonology, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Alexander H Dalpke
- Translational Lung Research Center (TLRC), Heidelberg, Germany; Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany; Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
65
|
Frost F, Young GR, Wright L, Miah N, Smith DL, Winstanley C, Walshaw MJ, Fothergill JL, Nazareth D. The clinical and microbiological utility of inhaled aztreonam lysine for the treatment of acute pulmonary exacerbations of cystic fibrosis: An open-label randomised crossover study (AZTEC-CF). J Cyst Fibros 2020; 20:994-1002. [PMID: 33358119 DOI: 10.1016/j.jcf.2020.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND The objective of this study was to explore the clinical and microbiological outcomes associated with substituting inhaled aztreonam lysine for an intravenous antibiotic in the treatment of acute pulmonary exacerbations of CF. METHODS An open-label randomised crossover pilot trial was conducted at a UK CF centre among 16 adults with CF and P. aeruginosa infection. Median [IQR] age was 29.5 [24.5-32.5], mean ± SD forced expiratory volume in 1 second (FEV1) was 52.4 ± 14.7 % predicted. Over the course of two exacerbations, participants were randomised to sequentially receive 14 days of inhaled aztreonam lysine plus IV colistimethate (AZLI+IV), or dual IV antibiotics (IV+IV). Primary outcome was absolute change in % predicted FEV1. Other outcomes evaluated changes in quality of life, bacterial load and the lung microbiota. RESULTS The difference between mean change in lung function at day 14 between AZLI+IV and IV+IV was +4.6% (95% CI 2.1-7.2, p=0.002). The minimum clinically important difference of the Cystic Fibrosis Revised Questionnaire (CFQ-R) was achieved more frequently with AZLI+IV (10/12, 83.3%) than IV+IV (7/16, 43.8%), p=0.05. No differences were observed for modulation of serum white cell count, C-reactive protein or sputum bacterial load. Microbiome compositional changes were observed with IV+IV (Bray-Curtis r2=0.14, p=0.02), but not AZLI+IV (r2=0.03, p=0.64). CONCLUSION In adults with CF and P. aeruginosa infection experiencing an acute pulmonary exacerbation, AZLI+IV improved lung function and quality of life compared to the current standard treatment. These findings support the need for larger definitive trials of inhaled antibiotics in the acute setting. CLINICAL TRIAL REGISTRATION EudraCT 2016-002832-34 ClinicalTrials.org NCT02894684.
Collapse
Affiliation(s)
- Freddy Frost
- Adult CF Centre, Liverpool Heart & Chest Hospital, UK; Institute of Infection & Global Health, University of Liverpool, UK.
| | - Gregory R Young
- Faculty of Health and Life Sciences, University of Northumbria, UK
| | - Laura Wright
- Institute of Infection & Global Health, University of Liverpool, UK
| | - Nahida Miah
- Institute of Infection & Global Health, University of Liverpool, UK
| | - Darren L Smith
- Faculty of Health and Life Sciences, University of Northumbria, UK
| | - Craig Winstanley
- Institute of Infection & Global Health, University of Liverpool, UK
| | - Martin J Walshaw
- Adult CF Centre, Liverpool Heart & Chest Hospital, UK; Institute of Infection & Global Health, University of Liverpool, UK
| | | | - Dilip Nazareth
- Adult CF Centre, Liverpool Heart & Chest Hospital, UK; Institute of Infection & Global Health, University of Liverpool, UK
| |
Collapse
|
66
|
Abstract
Antimicrobial therapies against cystic fibrosis (CF) lung infections are largely aimed at the traditional, well-studied CF pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex, despite the fact that the CF lung harbors a complex and dynamic polymicrobial community. A clinical focus on the dominant pathogens ignores potentially important community-level interactions in disease pathology, perhaps explaining why these treatments are often less effective than predicted based on in vitro testing. Antimicrobial therapies against cystic fibrosis (CF) lung infections are largely aimed at the traditional, well-studied CF pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex, despite the fact that the CF lung harbors a complex and dynamic polymicrobial community. A clinical focus on the dominant pathogens ignores potentially important community-level interactions in disease pathology, perhaps explaining why these treatments are often less effective than predicted based on in vitro testing. A better understanding of the ecological dynamics of this ecosystem may enable clinicians to harness these interactions and thereby improve treatment outcomes. Like all ecosystems, the CF lung microbial community develops through a series of stages, each of which may present with distinct microbial communities that generate unique host-microbe and microbe-microbe interactions, metabolic profiles, and clinical phenotypes. While insightful models have been developed to explain some of these stages and interactions, there is no unifying model to describe how these infections develop and persist. Here, we review current perspectives on the ecology of the CF airway and present the CF Ecological Succession (CFES) model that aims to capture the spatial and temporal complexity of CF lung infection, address current challenges in disease management, and inform the development of ecologically driven therapeutic strategies.
Collapse
|
67
|
Mostafa HH, Fissel JA, Fanelli B, Bergman Y, Gniazdowski V, Dadlani M, Carroll KC, Colwell RR, Simner PJ. Metagenomic Next-Generation Sequencing of Nasopharyngeal Specimens Collected from Confirmed and Suspect COVID-19 Patients. mBio 2020; 11:e01969-20. [PMID: 33219095 PMCID: PMC7686804 DOI: 10.1128/mbio.01969-20] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) offers an agnostic approach for emerging pathogen detection directly from clinical specimens. In contrast to targeted methods, mNGS also provides valuable information on the composition of the microbiome and might uncover coinfections that may associate with disease progression and impact prognosis. To evaluate the use of mNGS for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and/or other infecting pathogens, we applied direct Oxford Nanopore long-read third-generation metatranscriptomic and metagenomic sequencing. Nasopharyngeal (NP) swab specimens from 50 patients under investigation for CoV disease 2019 (COVID-19) were sequenced, and the data were analyzed by the CosmosID bioinformatics platform. Further, we characterized coinfections and the microbiome associated with a four-point severity index. SARS-CoV-2 was identified in 77.5% (31/40) of samples positive by RT-PCR, correlating with lower cycle threshold (Ct) values and fewer days from symptom onset. At the time of sampling, possible bacterial or viral coinfections were detected in 12.5% of SARS-CoV-2-positive specimens. A decrease in microbial diversity was observed among COVID-19-confirmed patients (Shannon diversity index, P = 0.0082; Chao richness estimate, P = 0.0097; Simpson diversity index, P = 0.018), and differences in microbial communities were linked to disease severity (P = 0.022). Furthermore, statistically significant shifts in the microbiome were identified among SARS-CoV-2-positive and -negative patients, in the latter of whom a higher abundance of Propionibacteriaceae (P = 0.028) and a reduction in the abundance of Corynebacterium accolens (P = 0.025) were observed. Our study corroborates the growing evidence that increased SARS-CoV-2 RNA detection from NP swabs is associated with the early stages rather than the severity of COVID-19. Further, we demonstrate that SARS-CoV-2 causes a significant change in the respiratory microbiome. This work illustrates the utility of mNGS for the detection of SARS-CoV-2, for diagnosing coinfections without viral target enrichment or amplification, and for the analysis of the respiratory microbiome.IMPORTANCE SARS-CoV-2 has presented a rapidly accelerating global public health crisis. The ability to detect and analyze viral RNA from minimally invasive patient specimens is critical to the public health response. Metagenomic next-generation sequencing (mNGS) offers an opportunity to detect SARS-CoV-2 from nasopharyngeal (NP) swabs. This approach also provides information on the composition of the respiratory microbiome and its relationship to coinfections or the presence of other organisms that may impact SARS-CoV-2 disease progression and prognosis. Here, using direct Oxford Nanopore long-read third-generation metatranscriptomic and metagenomic sequencing of NP swab specimens from 50 patients under investigation for COVID-19, we detected SARS-CoV-2 sequences by applying the CosmosID bioinformatics platform. Further, we characterized coinfections and detected a decrease in the diversity of the microbiomes in these patients. Statistically significant shifts in the microbiome were identified among COVID-19-positive and -negative patients, in the latter of whom a higher abundance of Propionibacteriaceae and a reduction in the abundance of Corynebacterium accolens were observed. Our study also corroborates the growing evidence that increased SARS-CoV-2 RNA detection from NP swabs is associated with the early stages of disease rather than with severity of disease. This work illustrates the utility of mNGS for the detection and analysis of SARS-CoV-2 from NP swabs without viral target enrichment or amplification and for the analysis of the respiratory microbiome.
Collapse
Affiliation(s)
- Heba H Mostafa
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John A Fissel
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Yehudit Bergman
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Victoria Gniazdowski
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Karen C Carroll
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rita R Colwell
- CosmosID, Inc., Rockville, Maryland, USA
- University of Maryland College Park, Institute for Advanced Computer Studies, College Park, Maryland, USA
| | - Patricia J Simner
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
68
|
Tiew PY, Jaggi TK, Chan LLY, Chotirmall SH. The airway microbiome in COPD, bronchiectasis and bronchiectasis-COPD overlap. CLINICAL RESPIRATORY JOURNAL 2020; 15:123-133. [PMID: 33063421 DOI: 10.1111/crj.13294] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To review the airway microbiome in chronic obstructive pulmonary disease (COPD), bronchiectasis and bronchiectasis-COPD overlap (BCO). DATA SOURCE AND STUDY SELECTION Relevant studies were selected from PubMed, Google scholar, EMBASE and Web of Science. All studies involving human microbiomes, published in the English language, and using the search terms "COPD", "Chronic Obstructive Pulmonary Disease", "Bronchiectasis", "BCO" or "Bronchiectasis and COPD overlap", AND "microbiome", "mycobiome" or "metagenomics" were included. RESULTS Despite variability in sampling methods and specimen types used, microbiome composition remains relatively comparable in COPD and bronchiectasis with prominence of Proteobacteria, Firmicutes and Bacteroidetes. Alterations to airway microbiomes occur in association to disease severity and/or exacerbations in COPD and bronchiectasis. Decreased alpha diversity and Haemophilus-predominant microbiomes are associated with poorer survival in COPD, while, in bronchiectasis, Pseudomonas-predominant microbiomes demonstrate high exacerbation frequency and greater symptom burden while Aspergillus-dominant mycobiome profiles associate with exacerbations. The role of the microbiome in BCO remains understudied. CONCLUSION Use of next-generation sequencing has revolutionised our detection and understanding of the airway microbiome in chronic respiratory diseases such as COPD and bronchiectasis. Targeted amplicon sequencing reveals important associations between the respiratory microbiome and disease outcome while metagenomics may elucidate functional pathways. How best to apply this information into patient care, monitoring and treatment, however, remains challenging and necessitates further study.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Tavleen K Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Louisa L Y Chan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
69
|
Heirali A, Thornton C, Acosta N, Somayaji R, Laforest Lapointe I, Storey D, Rabin H, Waddell B, Rossi L, Arrieta MC, Surette M, Parkins MD. Sputum microbiota in adults with CF associates with response to inhaled tobramycin. Thorax 2020; 75:1058-1064. [PMID: 33139451 DOI: 10.1136/thoraxjnl-2019-214191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 11/03/2022]
Abstract
BACKGROUND Inhaled tobramycin powder/solution (TIP/S) use has resulted in improved clinical outcomes in patients with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa. However, TIP/S effect on the CF sputum microbiome has not been explored. We hypothesised that TIP/S has additional 'off-target' effects beyond merely P. aeruginosa and that baseline microbiome prior to initiation of therapy is associated with subsequent patient response. METHODS We drew sputum samples from a prospectively collected biobank. Patients were included if they had one sputum sample in the 18 months before and after TIP/S. Bacterial 16S rRNA gene profiling was used to characterise the sputum microbiome. RESULTS Forty-one patients met our inclusion criteria and 151 sputum samples were assessed. At baseline, median age was 30.4 years (IQR 24.2-35.2) and forced expiratory volume in 1 (FEV1) second was 57% predicted (IQR 44-74). Nineteen patients were defined a priori as responders having no net decrease in FEV1 in the year following TIP/S. No significant changes were observed in key microbiome metrics of alpha (within-sample) or beta (between-sample) diversity for samples collected before and after TIP/S. However, significant beta-diversity (Bray-Curtis) differences were noted at baseline between patients based on response status. Notably, responders were observed to have a higher abundance of Staphylococcus in pretherapy baseline samples. CONCLUSIONS Our longitudinal study demonstrates that the sputum microbiome of patients with CF is relatively stable following inhaled tobramycin over many months. Intriguingly, our findings suggest that baseline microbiome may associate with patient response to TIP/S-suggesting the sputum microbiome could be used to personalise therapy.
Collapse
Affiliation(s)
- Alya Heirali
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | - Nicole Acosta
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Douglas Storey
- Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Harvey Rabin
- Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Barbara Waddell
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Laura Rossi
- Microbiology, McMaster University, Hamilton, Ontario, Canada
| | - Marie Claire Arrieta
- Pediatrics, Calgary, Alberta, Canada.,Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
70
|
Xue Y, Chu J, Li Y, Kong X. The influence of air pollution on respiratory microbiome: A link to respiratory disease. Toxicol Lett 2020; 334:14-20. [DOI: 10.1016/j.toxlet.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023]
|
71
|
Yamashita Y, Nagaoka K, Kimura H, Suzuki M, Fukumoto T, Hayasaka K, Kaku N, Morinaga Y, Yanagihara K, Konno S. Pathogenic Effect of Prevotella intermedia on a Mouse Pneumonia Model Due to Methicillin-Resistant Staphylococcus aureus With Up-Regulated α-Hemolysin Expression. Front Microbiol 2020; 11:587235. [PMID: 33117325 PMCID: PMC7575765 DOI: 10.3389/fmicb.2020.587235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a common causative agent of pneumonia; however, the detailed mechanism underlying severe MRSA pneumonia, including association with oral hygiene or periodontitis, remains poorly characterized. In this study, we examined the pathogenic effect of Prevotella intermedia, a major periodontopathic pathogen, on MRSA pneumonia. Methods: The pathogenic effect of the supernatant of P. intermedia (Pi Sup) was investigated in a murine MRSA pneumonia model, using several clinical strains; whereas the bactericidal activity of polymorphonuclear leukocytes (PMNs) was investigated in vitro. The effect of Pi Sup on messenger RNA (mRNA) expression of the toxin/quorum sensing system (rnaIII) was investigated by quantitative reverse transcription PCR both in vitro and in vivo. Results: Mice infected by hospital-acquired MRSA (HA-MRSA) with Pi Sup exhibited a significantly lower survival rate, higher bacterial loads in the lungs, and higher α-hemolysin (hla) expression in the lungs, than those without Pi Sup. A similar effect of Pi Sup was not observed with MRSA strains producing Panton-Valentine leucocidin (PVL) or toxic shock syndrome toxin (TSST). In vitro, Pi Sup suppressed bactericidal activity of PMNs against the HA-MRSA strain. HA-MRSA was the clinical strain with the highest ability to proliferate in the lungs and was accompanied by time-dependent up-regulation of rnaIII and hla. Conclusions: Our results provide novel evidence that the product of P. intermedia exerts a pathogenic effect on MRSA pneumonia, in particular with a strain exhibiting strong proliferation in the lower airway tract. Moreover, our results indicate that P. intermedia affects MRSA toxin expression via quorum sensing in a strain-dependent fashion, which might be important for understanding the pathogenesis of severe MRSA pneumonia.
Collapse
Affiliation(s)
- Yu Yamashita
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Nagaoka
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Kimura
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Fukumoto
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Kasumi Hayasaka
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
72
|
Bertelsen A, Elborn SJ, Schock BC. Toll like Receptor signalling by Prevotella histicola activates alternative NF-κB signalling in Cystic Fibrosis bronchial epithelial cells compared to P. aeruginosa. PLoS One 2020; 15:e0235803. [PMID: 33031374 PMCID: PMC7544055 DOI: 10.1371/journal.pone.0235803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), caused by mutations affecting the CFTR gene, is characterised by viscid secretions in multiple organ systems. CF airways contain thick mucus, creating a gradient of hypoxia, which promotes the establishment of polymicrobial infection. Such inflammation predisposes to further infection, a self-perpetuating cycle in mediated by NF-κB. Anaerobic Gram-negative Prevotella spp. are found in sputum from healthy volunteers and CF patients and in CF lungs correlate with reduced levels of inflammation. Prevotella histicola (P. histicola) can suppress murine lung inflammation, however, no studies have examined the role of P. histicola in modulating infection and inflammation in the CF airways. We investigated innate immune signalling and NF-kB activation in CF epithelial cells CFBE41o- in response to clinical stains of P. histicola and Pseudomonas aeruginosa (P. aeruginosa). Toll-Like Receptor (TLR) expressing HEK-293 cells and siRNA assays for TLRs and IKKα were used to confirm signalling pathways. We show that P. histicola infection activated the alternative NF-kB signalling pathway in CF bronchial epithelial cells inducing HIF-1α protein. TLR5 signalling was responsible for the induction of the alternative NF-kB pathway through phosphorylation of IKKα. The induction of transcription factor HIF-1α was inversely associated with the induction of the alternative NF-kB pathway and knockdown of IKKα partially restored canonical NF-kB activation in response to P. histicola. This study demonstrates that different bacterial species in the respiratory microbiome can contribute differently to inflammation, either by activating inflammatory cascades (P. aeruginosa) or by muting the inflammatory response by modulating similar or related pathways (P. histicola). Further work is required to assess the complex interactions of the lung microbiome in response to mixed bacterial infections and their effects in people with CF.
Collapse
Affiliation(s)
- Anne Bertelsen
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Stuart J. Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- Imperial College London, London, United Kingdom
| | - Bettina C. Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- * E-mail:
| |
Collapse
|
73
|
Leite CCF, de Freitas FAD, de Cássia Firmida M, Leão RS, Albano RM, Marques EA. Analysis of airway microbiota in adults from a Brazilian cystic fibrosis center. Braz J Microbiol 2020; 51:1747-1755. [PMID: 32944872 DOI: 10.1007/s42770-020-00381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/12/2020] [Indexed: 11/30/2022] Open
Abstract
The application of next-generation sequencing tools revealed that the cystic fibrosis respiratory tract is a polymicrobial environment. We have characterized the airway bacterial microbiota of five adult patients with cystic fibrosis during a 14-month period by 16S rRNA tag sequencing using the Illumina technology. Microbial diversity, estimated by the Shannon index, varied among patient samples collected throughout the follow-up period. The beta diversity analysis revealed that the composition of the airway microbiota was highly specific for each patient, showing little variation among the samples of each patient analyzed over time. The composition of the bacterial microbiota did not reveal any emerging pathogen predictor of pulmonary disease in cystic fibrosis or of its unfavorable clinical progress, except for unveiling the presence of anaerobic microorganisms, even without any established clinical association. Our results could potentialy help us to translate and develop strategies in response to the pathobiology of this disease, particularly because it represents an innovative approach for CF centers in Brazil.
Collapse
Affiliation(s)
- Cassiana Costa Ferreira Leite
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Alvim Dutra de Freitas
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mônica de Cássia Firmida
- Department of Chest Diseases, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Souza Leão
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodolpho Mattos Albano
- Department of Biochemistry, Roberto Alcântara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizabeth Andrade Marques
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
74
|
Lee AJ, Einarsson GG, Gilpin DF, Tunney MM. Multi-Omics Approaches: The Key to Improving Respiratory Health in People With Cystic Fibrosis? Front Pharmacol 2020; 11:569821. [PMID: 33013411 PMCID: PMC7509435 DOI: 10.3389/fphar.2020.569821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The advent of high-throughput multi-omics technologies has underpinned the expansion in lung microbiome research, increasing our understanding of the nature, complexity and significance of the polymicrobial communities harbored by people with CF (PWCF). Having established that structurally complex microbial communities exist within the airways, the focus of recent research has now widened to investigating the function and dynamics of the resident microbiota during disease as well as in health. With further refinement, multi-omics approaches present the opportunity to untangle the complex interplay between microbe-microbe and microbe-host interactions in the lung and the relationship with respiratory disease progression, offering invaluable opportunities to discover new therapeutic approaches for our management of airway infection in CF.
Collapse
Affiliation(s)
- Andrew J. Lee
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Gisli G. Einarsson
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Deirdre F. Gilpin
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Michael M. Tunney
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
75
|
Cho DY, Skinner D, Hunter RC, Weeks C, Lim DJ, Thompson H, Walz CR, Zhang S, Grayson JW, Swords WE, Rowe SM, Woodworth BA. Contribution of Short Chain Fatty Acids to the Growth of Pseudomonas aeruginosa in Rhinosinusitis. Front Cell Infect Microbiol 2020; 10:412. [PMID: 32850504 PMCID: PMC7431473 DOI: 10.3389/fcimb.2020.00412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Chronic rhinosinusitis (CRS) is characterized by complex bacterial infections with persistent inflammation. Based on our rabbit model of sinusitis, blockage of sinus ostia generated a shift in microbiota to a predominance of mucin degrading microbes (MDM) with acute inflammation at 2 weeks. This was followed by conversion to chronic sinus inflammation at 3 months with a robust increase in pathogenic bacteria (e.g., Pseudomonas). MDMs are known to produce acid metabolites [short chain fatty acids (SCFA)] that have the potential to stimulate pathogen growth by offering a carbon source to non-fermenting sinus pathogens (e.g., Pseudomonas). The objective of this study is to evaluate the concentrations of SCFA within the mucus and its contribution to the growth of P. aeruginosa. Methods: Healthy and sinusitis mucus from the rabbit model were collected and co-cultured with the PAO1 strain of P. aeruginosa for 72 h and colony forming units (CFUs) were determined with the targeted quantification of three SCFAs (acetate, propionate, butyrate). Quantification of SCFAs in healthy and sinusitis mucus from patients with P. aeruginosa was also performed via high performance liquid chromatography. Results: To provide evidence of fermentative activity, SCFAs were quantified within the mucus samples from rabbits with and without sinusitis. Acetate concentrations were significantly greater in sinusitis mucus compared to controls (4.13 ± 0.53 vs. 1.94 ± 0.44 mM, p < 0.01). After 72 h of co-culturing mucus samples with PAO1 in the presence of mucin medium, the blue-green pigment characteristic of Pseudomonas was observed throughout tubes containing sinusitis mucus. CFUs were higher in cultures containing mucus samples from sinusitis (8.4 × 109 ± 4.8 × 107) compared to control (1.4 × 109 ± 2.0 × 107) or no mucus (1.5 × 109 ± 2.1 × 107) (p < 0.0001). To provide evidence of fermentative activity in human CRS with P. aeruginosa, the presence of SCFAs in human mucus was analyzed and all SCFAs were significantly higher in CRS with P. aeruginosa compared to controls (p < 0.05). Conclusion: Given that SCFAs are solely derived from bacterial fermentation, our evidence suggests a critical role for mucin-degrading bacteria in generating carbon-source nutrients for pathogens. MDM may contribute to the development of recalcitrant CRS by degrading mucins, thus providing nutrients for potential pathogens like P. aeruginosa.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Division of Otolaryngology, Department of Surgery, Veteran Affairs Medical Center, Birmingham, AL, United States
| | - Daniel Skinner
- Department of Otolaryngology Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ryan C Hunter
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Weeks
- Department of Otolaryngology Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dong Jin Lim
- Department of Otolaryngology Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison Thompson
- Department of Otolaryngology Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher R Walz
- Department of Otolaryngology Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shaoyan Zhang
- Department of Otolaryngology Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessica W Grayson
- Department of Otolaryngology Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William E Swords
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradford A Woodworth
- Department of Otolaryngology Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
76
|
Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem 2020; 199:112326. [DOI: 10.1016/j.ejmech.2020.112326] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
|
77
|
Cross AR, Csatary EE, Raghuram V, Diggle FL, Whiteley M, Wuest WM, Goldberg JB. The histone-like protein AlgP regulon is distinct in mucoid and nonmucoid Pseudomonas aeruginosa and does not include alginate biosynthesis genes. MICROBIOLOGY-SGM 2020; 166:861-866. [PMID: 32634088 DOI: 10.1099/mic.0.000923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The opportunistic bacterial pathogen Pseudomonas aeruginosa causes acute and chronic infections that are notoriously difficult to treat. In people with cystic fibrosis, P. aeruginosa can cause lifelong lung infections, and isolation of mucoid P. aeruginosa, resulting from the overproduction of alginate, is associated with chronic infection. The histone-like protein AlgP has previously been implicated in the control of alginate gene expression in mucoid strains, but this regulation is unclear. To explore AlgP in further detail, we deleted algP in mucoid strains and demonstrated that the deletion of algP did not result in a nonmucoid phenotype or a decrease in alginate production. We showed that the algP promoter is expressed by both the nonmucoid strain PAO1 and the isogenic mucoid strain PDO300, suggesting that there may be genes that are differentially regulated between these strains. In support of this, using RNA sequencing, we identified a small AlgP regulon that has no significant overlap between PAO1 and PDO300 and established that alginate genes were not differentially regulated by the deletion of algP. Of note, we found that deleting algP in PAO1 increased expression of the nitric oxide operon norCBD and the nitrous oxide reductase genes nosRZ and subsequently promoted growth of PAO1 under anaerobic conditions. Altogether, we have defined a narrow regulon of genes controlled by AlgP and provided evidence that alginate production is not greatly affected by AlgP, countering the long-standing premise in the field.
Collapse
Affiliation(s)
- Ashley R Cross
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Erika E Csatary
- Department of Chemistry, Emory University, Atlanta GA, USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Vishnu Raghuram
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Frances L Diggle
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA, USA
| | - Marvin Whiteley
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA, USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta GA, USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Joanna B Goldberg
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
78
|
Jorth P, Ehsan Z, Rezayat A, Caldwell E, Pope C, Brewington JJ, Goss CH, Benscoter D, Clancy JP, Singh PK. Direct Lung Sampling Indicates That Established Pathogens Dominate Early Infections in Children with Cystic Fibrosis. Cell Rep 2020; 27:1190-1204.e3. [PMID: 31018133 DOI: 10.1016/j.celrep.2019.03.086] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/17/2018] [Accepted: 03/22/2019] [Indexed: 01/09/2023] Open
Abstract
Culture and sequencing have produced divergent hypotheses about cystic fibrosis (CF) lung infections. Culturing suggests that CF lungs are uninfected before colonization by a limited group of CF pathogens. Sequencing suggests diverse communities of mostly oral bacteria inhabit lungs early on and diversity decreases as disease progresses. We studied the lung microbiota of CF children using bronchoscopy and sequencing, with measures to reduce contamination. We found no evidence for oral bacterial communities in lung lavages that lacked CF pathogens. Lavage microbial diversity varied widely, but decreases in diversity appeared to be driven by increased CF pathogen abundance, which reduced the signal from contaminants. Streptococcus, Prevotella, and Veillonella DNA was detected in some lavages containing CF pathogens, but DNA from these organisms was vastly exceeded by CF pathogen DNA and was not associated with inflammation. These findings support the hypothesis that established CF pathogens are primarily responsible for CF lung infections.
Collapse
Affiliation(s)
- Peter Jorth
- Departments of Pathology and Laboratory Medicine, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Microbiology and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Zarmina Ehsan
- Pulmonology and Sleep Medicine, Children's Mercy-Kansas City, Kansas City, MO 64108, USA
| | - Amir Rezayat
- Department of Microbiology and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ellen Caldwell
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Christopher Pope
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - John J Brewington
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christopher H Goss
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dan Benscoter
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - John P Clancy
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | - Pradeep K Singh
- Department of Microbiology and Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
79
|
Vandeplassche E, Sass A, Ostyn L, Burmølle M, Kragh KN, Bjarnsholt T, Coenye T, Crabbé A. Antibiotic susceptibility of cystic fibrosis lung microbiome members in a multispecies biofilm. Biofilm 2020; 2:100031. [PMID: 33447816 PMCID: PMC7798459 DOI: 10.1016/j.bioflm.2020.100031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The lungs of cystic fibrosis (CF) patients are often chronically colonized by multiple microbial species that can form biofilms, including the major CF pathogen Pseudomonas aeruginosa. Herewith, lower microbial diversity in CF airways is typically associated with worse health outcomes. In an attempt to treat CF lung infections patients are frequently exposed to antibiotics, which may affect microbial diversity. This study aimed at understanding if common antibiotics that target P. aeruginosa influence microbial diversity. To this end, a microaerophilic multispecies biofilm model of frequently co-isolated members of the CF lung microbiome (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus anginosus, Achromobacter xylosoxidans, Rothia mucilaginosa, and Gemella haemolysans) was exposed to antipseudomonal antibiotics. We found that antibiotics that affected several dominant species (i.e. ceftazidime, tobramycin) resulted in higher species evenness compared to colistin, which is only active against P. aeruginosa. Furthermore, susceptibility of individual species in the multispecies biofilm following antibiotic treatment was compared to that of the respective single-species biofilms, showing no differences. Adding three anaerobic species (Prevotella melaninogenica, Veillonella parvula, and Fusobacterium nucleatum) to the multispecies biofilm did not influence antibiotic susceptibility. In conclusion, our study demonstrates antibiotic-dependent effects on microbial community diversity of multispecies biofilms comprised of CF microbiome members.
Collapse
Affiliation(s)
- Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Mette Burmølle
- Department of Microbiology, University of Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Denmark
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| |
Collapse
|
80
|
Welp AL, Bomberger JM. Bacterial Community Interactions During Chronic Respiratory Disease. Front Cell Infect Microbiol 2020; 10:213. [PMID: 32477966 PMCID: PMC7240048 DOI: 10.3389/fcimb.2020.00213] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic respiratory diseases including chronic rhinosinusitis, otitis media, asthma, cystic fibrosis, non-CF bronchiectasis, and chronic obstructive pulmonary disease are a major public health burden. Patients suffering from chronic respiratory disease are prone to persistent, debilitating respiratory infections due to the decreased ability to clear pathogens from the respiratory tract. Such infections often develop into chronic, life-long complications that are difficult to treat with antibiotics due to the formation of recalcitrant biofilms. The microbial communities present in the upper and lower respiratory tracts change as these respiratory diseases progress, often becoming less diverse and dysbiotic, correlating with worsening patient morbidity. Those with chronic respiratory disease are commonly infected with a shared group of respiratory pathogens including Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Moraxella catarrhalis, among others. In order to understand the microbial landscape of the respiratory tract during chronic disease, we review the known inter-species interactions among these organisms and other common respiratory flora. We consider both the balance between cooperative and competitive interactions in relation to microbial community structure. By reviewing the major causes of chronic respiratory disease, we identify common features across disease states and signals that might contribute to community shifts. As microbiome shifts have been associated with respiratory disease progression, worsening morbidity, and increased mortality, these underlying community interactions likely have an impact on respiratory disease state.
Collapse
Affiliation(s)
- Allison L. Welp
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
81
|
Esther CR, Muhlebach MS, Ehre C, Hill DB, Wolfgang MC, Kesimer M, Ramsey KA, Markovetz MR, Garbarine IC, Forest MG, Seim I, Zorn B, Morrison CB, Delion MF, Thelin WR, Villalon D, Sabater JR, Turkovic L, Ranganathan S, Stick SM, Boucher RC. Mucus accumulation in the lungs precedes structural changes and infection in children with cystic fibrosis. Sci Transl Med 2020; 11:11/486/eaav3488. [PMID: 30944166 DOI: 10.1126/scitranslmed.aav3488] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/10/2019] [Indexed: 12/12/2022]
Abstract
Although destructive airway disease is evident in young children with cystic fibrosis (CF), little is known about the nature of the early CF lung environment triggering the disease. To elucidate early CF pulmonary pathophysiology, we performed mucus, inflammation, metabolomic, and microbiome analyses on bronchoalveolar lavage fluid (BALF) from 46 preschool children with CF enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) program and 16 non-CF disease controls. Total airway mucins were elevated in CF compared to non-CF BALF irrespective of infection, and higher densities of mucus flakes containing mucin 5B and mucin 5AC were observed in samples from CF patients. Total mucins and mucus flakes correlated with inflammation, hypoxia, and oxidative stress. Many CF BALFs appeared sterile by culture and molecular analyses, whereas other samples exhibiting bacterial taxa associated with the oral cavity. Children without computed tomography-defined structural lung disease exhibited elevated BALF mucus flakes and neutrophils, but little/no bacterial infection. Although CF mucus flakes appeared "permanent" because they did not dissolve in dilute BALF matrix, they could be solubilized by a previously unidentified reducing agent (P2062), but not N-acetylcysteine or deoxyribonuclease. These findings indicate that early CF lung disease is characterized by an increased mucus burden and inflammatory markers without infection or structural lung disease and suggest that mucolytic and anti-inflammatory agents should be explored as preventive therapy.
Collapse
Affiliation(s)
- Charles R Esther
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marianne S Muhlebach
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camille Ehre
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C Wolfgang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathryn A Ramsey
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Telethon Kids Institute, University of Western Australia, Perth 6009, Australia
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian C Garbarine
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Gregory Forest
- Departments of Mathematics, Biomedical Engineering, and Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian Seim
- Departments of Mathematics, Biomedical Engineering, and Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryan Zorn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cameron B Morrison
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martial F Delion
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Juan R Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Lidija Turkovic
- Telethon Kids Institute, University of Western Australia, Perth 6009, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, University of Melbourne, Parkville 3052, Australia
| | - Stephen M Stick
- Telethon Kids Institute, University of Western Australia, Perth 6009, Australia.,Division of Paediatrics and Child Health, University of Western Australia, Perth 6009, Australia.,Princess Margaret Hospital for Children, Perth 6009, Australia
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
82
|
Tao C, Pei Y, Zhang L, Zhang Y. Microbial communities respond to microenvironments in lungs of mice under simulated exposure to cadmium aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136300. [PMID: 31923672 DOI: 10.1016/j.scitotenv.2019.136300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Inhalable pollutants are inducing factors of lung diseases and have been widely studied. Previous studies described imbalances in pulmonary microbial communities and representatively predominant microorganisms in clinical specimens of individuals with lung diseases. However, the direct effect of inhalable pollutants on pulmonary microorganisms has not been determined to date. Cadmium is a common inhalable pollutant from manufacturing activities, and its effect on pulmonary microorganisms was investigated in this study. Such techniques as optical respiratory plethysmography, high-throughput pulmonary histological assessment and differential centrifugation were used to characterize pulmonary microenvironments, and high-throughput sequencing was used to analyze pulmonary microbial diversity. We found variations in pulmonary microenvironmental factors, such as air supply level, nutrition and inflammatory stress. Under inhalable cadmium exposure at different doses, pulmonary microorganisms were differentially subjected and sensitive to various microenvironmental stresses (e.g., inflammation, pH, ventilation, nutrition and related changes of lung tissue structure) and might participate in microenvironmental remodeling, such as pneumonia and pulmonary fibrosis. Inflammatory stress and Lactobacillus were the main microenvironmental factor and susceptible microorganism, respectively. The various pulmonary microenvironments influenced the metabolisms of pulmonary microbial communities, presenting differences in microbial collinearities, gene function levels and metabolic pathway levels among groups.
Collapse
Affiliation(s)
- Chen Tao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaxin Pei
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lan Zhang
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
83
|
Cummings LA, Hoogestraat DR, Rassoulian-Barrett SL, Rosenthal CA, Salipante SJ, Cookson BT, Hoffman NG. Comprehensive evaluation of complex polymicrobial specimens using next generation sequencing and standard microbiological culture. Sci Rep 2020; 10:5446. [PMID: 32214207 PMCID: PMC7096443 DOI: 10.1038/s41598-020-62424-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/11/2020] [Indexed: 01/19/2023] Open
Abstract
Optimal clinical decision-making depends on identification of clinically relevant organisms present in a sample. Standard microbiological culture may fail to identify unusual or fastidious organisms and can misrepresent relative abundance of sample constituents. Culture-independent methods have improved our ability to deconvolute polymicrobial patient samples. We used next-generation 16S rRNA gene sequencing (NGS16S) to determine how often cultivatable organisms in complex polymicrobial samples are not reported by standard culture. Twenty consecutive bronchoalveolar lavage (BAL) samples were plated to standard and additional media; bacteria were identified by NGS16S analysis of DNA extracted directly from samples or from washed culture plates. 96% of organisms identified were cultivable, but only 21% were reported by standard culture, indicating that standard work-up provides an incomplete assessment of microbial constituents. Direct NGS16S correlated well with standard culture, identifying the same predominant organism in 50% of samples. When predominant organisms differed, NGS16S most often detected anaerobes, whose growth is unsupported by standard culture conditions for this specimen. NGS16S identified more organisms per sample and allowed identification of fastidious organisms, while culture was better at capturing organisms when bacterial load was low, and allowed incidental recovery of non-bacterial pathogens. Molecular and culture-based methods together detect more organisms than either method alone.
Collapse
Affiliation(s)
- Lisa A Cummings
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Daniel R Hoogestraat
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | | | | | - Stephen J Salipante
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Brad T Cookson
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA.,Departments of Microbiology, University of Washington, Seattle, Washington, USA
| | - Noah G Hoffman
- Departments of Laboratory Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
84
|
Carney SM, Clemente JC, Cox MJ, Dickson RP, Huang YJ, Kitsios GD, Kloepfer KM, Leung JM, LeVan TD, Molyneaux PL, Moore BB, O'Dwyer DN, Segal LN, Garantziotis S. Methods in Lung Microbiome Research. Am J Respir Cell Mol Biol 2020; 62:283-299. [PMID: 31661299 PMCID: PMC7055701 DOI: 10.1165/rcmb.2019-0273tr] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
The lung microbiome is associated with host immune response and health outcomes in experimental models and patient cohorts. Lung microbiome research is increasing in volume and scope; however, there are no established guidelines for study design, conduct, and reporting of lung microbiome studies. Standardized approaches to yield reliable and reproducible data that can be synthesized across studies will ultimately improve the scientific rigor and impact of published work and greatly benefit microbiome research. In this review, we identify and address several key elements of microbiome research: conceptual modeling and hypothesis framing; study design; experimental methodology and pitfalls; data analysis; and reporting considerations. Finally, we explore possible future directions and research opportunities. Our goal is to aid investigators who are interested in this burgeoning research area and hopefully provide the foundation for formulating consensus approaches in lung microbiome research.
Collapse
Affiliation(s)
| | | | | | | | - Yvonne J Huang
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kirsten M Kloepfer
- Division of Pulmonary, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Janice M Leung
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Philip L Molyneaux
- Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Foundation National Health Service Trust, London, United Kingdom
| | | | | | - Leopoldo N Segal
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, New York; and
| | - Stavros Garantziotis
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
85
|
Whelan FJ, Waddell B, Syed SA, Shekarriz S, Rabin HR, Parkins MD, Surette MG. Culture-enriched metagenomic sequencing enables in-depth profiling of the cystic fibrosis lung microbiota. Nat Microbiol 2020; 5:379-390. [PMID: 31959969 DOI: 10.1038/s41564-019-0643-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/18/2019] [Indexed: 01/07/2023]
Abstract
Amplicon sequencing (for example, of the 16S rRNA gene) identifies the presence and relative abundance of microbial community members. However, metagenomic sequencing is needed to identify the genetic content and functional potential of a community. Metagenomics is challenging in samples dominated by host DNA, such as those from the skin, tissue and respiratory tract. Here, we combine advances in amplicon and metagenomic sequencing with culture-enriched molecular profiling to study the human microbiota. Using the cystic fibrosis lung as an example, we cultured an average of 82.13% of the operational taxonomic units representing 99.3% of the relative abundance identified in direct sequencing of sputum samples; importantly, culture enrichment identified 63.3% more operational taxonomic units than direct sequencing. We developed the PLate Coverage Algorithm (PLCA) to determine a representative subset of culture plates on which to conduct culture-enriched metagenomics, resulting in the recovery of greater taxonomic diversity-including of low-abundance taxa-with better metagenome-assembled genomes, longer contigs and better functional annotations when compared to culture-independent methods. The PLCA is also applied as a proof of principle to a previously published gut microbiota dataset. Culture-enriched molecular profiling can be used to better understand the role of the human microbiota in health and disease.
Collapse
Affiliation(s)
- Fiona J Whelan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Barbara Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Saad A Syed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shahrokh Shekarriz
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Harvey R Rabin
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael G Surette
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada. .,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada. .,Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
86
|
Abstract
Cystic fibrosis (CF) is a genetic, multisystem disease due to defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an anion channel responsible for chloride and bicarbonate trafficking. Although this channel is expressed in many tissues, its impaired function in airway epithelial cells leads to hyperviscous mucous secretions impeding effective mucociliary clearance. Impaired clearance of inhaled microorganisms results in the establishment of chronic infection, triggering an overexaggerated inflammatory response. The resulting release of inflammatory cytokines and enzymes causes pulmonary damage in the form of bronchiectasis, further impairing mucociliary action, forming a vicious cycle. Subsequent respiratory failure remains the leading cause of death in individuals with CF.
Collapse
Affiliation(s)
- Stephanie Duggins Davis
- The University of North Carolina at Chapel Hill, Department of Pediatrics, UNC Children’s Hospital, Chapel Hill, NC USA
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine, Division of Pulmonary and Sleep Medicine Seattle Children’s Hospital, Seattle, WA USA
| | - James Chmiel
- Department of Pediatrics, Indiana University School of Medicine, Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Riley Hospital for Children at IU Health, Indianapolis, IN USA
| |
Collapse
|
87
|
Abstract
CFTR protein malfunction results in thick, copious mucus, causes poor mucociliary clearance and, ultimately, structural lung damage such as bronchiectasis. All of these manifestations of cystic fibrosis contribute to a rich milieu for lower respiratory pathogens in patients affected by the disease. CF patients are, therefore, highly susceptible to chronic colonization with many pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. They are also uniquely prone to acute infections with respiratory pathogens, which tend to persist longer and cause more impairment in lung function than in patients without CF. Tailored strategies for managing infectious complications of CF patients include chronic prophylactic antibiotics, use of systemic as well as inhaled antibiotics, mechanical assistance with mucus clearance, and scrupulous infection control measures.
Collapse
|
88
|
Abstract
Although survival of individuals with cystic fibrosis (CF) has been continuously improving for the past 40 years, respiratory failure secondary to recurrent pulmonary infections remains the leading cause of mortality in this patient population. Certain pathogens such as Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and species of the Burkholderia cepacia complex continue to be associated with poorer clinical outcomes including accelerated lung function decline and increased mortality. In addition, other organisms such as anaerobes, viruses, and fungi are increasingly recognized as potential contributors to disease progression. Culture-independent molecular methods are also being used for diagnostic purposes and to examine the interaction of microorganisms in the CF airway. Given the importance of CF airway infections, ongoing initiatives to promote understanding of the epidemiology, clinical course, and treatment options for these infections are needed.
Collapse
Affiliation(s)
- Ana C Blanchard
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Valerie J Waters
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
89
|
Deng YD, Peng XB, Zhao RR, Ma CQ, Li JN, Yao LQ. The intestinal microbial community dissimilarity in hepatitis B virus-related liver cirrhosis patients with and without at alcohol consumption. Gut Pathog 2019; 11:58. [PMID: 31788031 PMCID: PMC6878713 DOI: 10.1186/s13099-019-0337-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Background Chronic hepatitis B virus (HBV) infection-reduced liver functions are associated with intestinal microbial community dissimilarity. This study aimed to investigate the microbial community dissimilarity in patients with different grades of HBV-related liver cirrhosis. Results Serum endotoxin was increased with Child–Pugh (CP) class (A, B, and C). Veillonellaceae and Lachnospiraceae families were reduced in patients compared with controls. Megamonas and Veillonella genus was reduced and increased in patients compared with controls, respectively, especially in CPB and CPC groups. Correlation analysis showed that endotoxin content was significantly correlated with alcohol consumption (95% CI 0.100, 0.493), CP class (95% CI 0.289, 0.687) and Lachnospiraceae family level (95% CI − 0.539, − 0.122). Firmicutes/Bacteroidetes ratio was correlated with the level of Lachnospiraceae family (95% CI 0.013, 0.481), Veillonellaceae family (95% CI 0.284, 0.696), Megamonas genus (95% CI 0.101, 0.518) and Veillonella genus (95% CI 0.134, 0.545). All aforementioned bacteria were independent risk or protective factors for hepatitis. Alcohol consumption changed microbial community. Conclusions Our study demonstrated that elevated Firmicutes/Bacteroidetes ratio, reduced Megamonas genus level and increased Veillonella genus level were indicators for HBV-related liver cirrhosis. Alcohol-related pathogenesis was associated with the changed microbial community.
Collapse
Affiliation(s)
- Yong-Dong Deng
- 1Department of Infection, First Hospital of Lanzhou University, #1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Xue-Bin Peng
- 1Department of Infection, First Hospital of Lanzhou University, #1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Rong-Rong Zhao
- 1Department of Infection, First Hospital of Lanzhou University, #1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Chao-Qun Ma
- 2First Clinical Medicine of Lanzhou University, Medical College of Lanzhou University, #199 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Jian-Ning Li
- 1Department of Infection, First Hospital of Lanzhou University, #1 Donggang West Road, Lanzhou, 730000 Gansu China
| | - Li-Qiong Yao
- 3Department of Laboratory, First Hospital of Lanzhou University, #1 Donggang West Road, Lanzhou, 730000 Gansu China
| |
Collapse
|
90
|
Abstract
A spectrum of intrapulmonary airway diseases, for example, cigarette smoke-induced bronchitis, cystic fibrosis, primary ciliary dyskinesia, and non-cystic fibrosis bronchiectasis, can be categorized as "mucoobstructive" airway diseases. A common theme for these diseases appears to be the failure to properly regulate mucus concentration, producing mucus hyperconcentration that slows mucus transport and, importantly, generates plaque/plug adhesion to airway surfaces. These mucus plaques/plugs generate long diffusion distances for oxygen, producing hypoxic niches within adherent airway mucus and subjacent epithelia. Data suggest that concentrated mucus plaques/plugs are proinflammatory, in part mediated by release of IL-1α from hypoxic cells. The infectious component of mucoobstructive diseases may be initiated by anaerobic bacteria that proliferate within the nutrient-rich hypoxic mucus environment. Anaerobes ultimately may condition mucus to provide the environment for a succession to classic airway pathogens, including Staphylococcus aureus, Haemophilus influenzae, and ultimately Pseudomonas aeruginosa. Novel therapies to treat mucoobstructive diseases focus on restoring mucus concentration. Strategies to rehydrate mucus range from the inhalation of osmotically active solutes, designed to draw water into airway surfaces, to strategies designed to manipulate the relative rates of sodium absorption versus chloride secretion to endogenously restore epithelial hydration. Similarly, strategies designed to reduce the mucin burden in the airways, either by reducing mucin production/secretion or by clearing accumulated mucus (e.g., reducing agents), are under development. Thus, the new insights into a unifying process, that is, mucus hyperconcentration, that drives a significant component of the pathogenesis of mucoobstructive diseases promise multiple new therapeutic strategies to aid patients with this syndrome.
Collapse
|
91
|
Bertelsen A, Elborn JS, Schock BC. Infection with Prevotella nigrescens induces TLR2 signalling and low levels of p65 mediated inflammation in Cystic Fibrosis bronchial epithelial cells. J Cyst Fibros 2019; 19:211-218. [PMID: 31607634 DOI: 10.1016/j.jcf.2019.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
Prevotella spp. are frequently identified in Cystic Fibrosis sputum. This study examined whether infection with Prevotella nigrescens, a frequently identified member of this species, contributes to inflammation in CF bronchial epithelial cells through activation of TLR- and NF-κB signalling pathways. CFBE41o- cells were infected with either P.nigrescens or Pseudomonas aeruginosa and incubated under anaerobic conditions for 4h. P.nigrescens activated TLR2 signalling but not TLR4 signalling while P.aeruginosa activated TLR4 signalling with a lesser effect on TLR2. P.aeruginosa induced significant IκBα phosphorylation 10min post infection with a return to control levels by 30min post infection. A significant induction in nuclear p65 DNA binding was observed at 2h post infection. In contrast, infection with P.nigrescens induced phosphorylation of IκBα 120min post infection, with significant induction in nuclear p65 DNA binding at 4h post infection only. Cytokine gene and protein responses were lower for P.nigrescens compared to P.aeruginosa. This study demonstrates the ability of a clinical P.nigrescens isolate to provoke a delayed NF-κB(p65) driven response through induction in TLR2 signalling and activation of sustained levels of IKKα.
Collapse
Affiliation(s)
- A Bertelsen
- Department of Veterinary Medicine, The University of Cambridge, Madingley Road, Cambridge, United Kingdom; Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - J S Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - B C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom.
| |
Collapse
|
92
|
Bevivino A, Bacci G, Drevinek P, Nelson MT, Hoffman L, Mengoni A. Deciphering the Ecology of Cystic Fibrosis Bacterial Communities: Towards Systems-Level Integration. Trends Mol Med 2019; 25:1110-1122. [PMID: 31439509 DOI: 10.1016/j.molmed.2019.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Despite over a decade of cystic fibrosis (CF) microbiome research, much remains to be learned about the overall composition, metabolic activities, and pathogenicity of the microbes in CF airways, limiting our understanding of the respiratory microbiome's relation to disease. Systems-level integration and modeling of host-microbiome interactions may allow us to better define the relationships between microbiological characteristics, disease status, and treatment response. In this way, modeling could pave the way for microbiome-based development of predictive models, individualized treatment plans, and novel therapeutic approaches, potentially serving as a paradigm for approaching other chronic infections. In this review, we describe the challenges facing this effort and propose research priorities for a systems biology approach to CF lung disease.
Collapse
Affiliation(s)
- Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| | - Giovanni Bacci
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Pavel Drevinek
- Department of Medical Microbiology, Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Maria T Nelson
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Lucas Hoffman
- Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Microbiology, University of Washington, Seattle, WA, USA; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
93
|
The Gut Microbiome in Inflammatory Bowel Disease: Lessons Learned From Other Immune-Mediated Inflammatory Diseases. Am J Gastroenterol 2019; 114:1051-1070. [PMID: 31232832 DOI: 10.14309/ajg.0000000000000305] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing appreciation for the role of the gut microbiome in human health and disease. Aided by advances in sequencing technologies and analytical methods, recent research has shown the healthy gut microbiome to possess considerable diversity and functional capacity. Dysbiosis of the gut microbiota is believed to be involved in the pathogenesis of not only diseases that primarily affect the gastrointestinal tract but also other less obvious diseases, including neurologic, rheumatologic, metabolic, hepatic, and other illnesses. Chronic immune-mediated inflammatory diseases (IMIDs) represent a group of diseases that share many underlying etiological factors including genetics, aberrant immunological responses, and environmental factors. Gut dysbiosis has been reported to be common to IMIDs as a whole, and much effort is currently being directed toward elucidating microbiome-mediated disease mechanisms and their implications for causality. In this review, we discuss gut microbiome studies in several IMIDs and show how these studies can inform our understanding of the role of the gut microbiome in inflammatory bowel disease.
Collapse
|
94
|
Panmanee W, Su S, Schurr MJ, Lau GW, Zhu X, Ren Z, McDaniel CT, Lu LJ, Ohman DE, Muruve DA, Panos RJ, Yu HD, Thompson TB, Tseng BS, Hassett DJ. The anti-sigma factor MucA of Pseudomonas aeruginosa: Dramatic differences of a mucA22 vs. a ΔmucA mutant in anaerobic acidified nitrite sensitivity of planktonic and biofilm bacteria in vitro and during chronic murine lung infection. PLoS One 2019; 14:e0216401. [PMID: 31158231 PMCID: PMC6546240 DOI: 10.1371/journal.pone.0216401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/20/2019] [Indexed: 11/29/2022] Open
Abstract
Mucoid mucA22 Pseudomonas aeruginosa (PA) is an opportunistic lung pathogen of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients that is highly sensitive to acidified nitrite (A-NO2-). In this study, we first screened PA mutant strains for sensitivity or resistance to 20 mM A-NO2- under anaerobic conditions that represent the chronic stages of the aforementioned diseases. Mutants found to be sensitive to A-NO2- included PA0964 (pmpR, PQS biosynthesis), PA4455 (probable ABC transporter permease), katA (major catalase, KatA) and rhlR (quorum sensing regulator). In contrast, mutants lacking PA0450 (a putative phosphate transporter) and PA1505 (moaA2) were A-NO2- resistant. However, we were puzzled when we discovered that mucA22 mutant bacteria, a frequently isolated mucA allele in CF and to a lesser extent COPD, were more sensitive to A-NO2- than a truncated ΔmucA deletion (Δ157–194) mutant in planktonic and biofilm culture, as well as during a chronic murine lung infection. Subsequent transcriptional profiling of anaerobic, A-NO2--treated bacteria revealed restoration of near wild-type transcript levels of protective NO2- and nitric oxide (NO) reductase (nirS and norCB, respectively) in the ΔmucA mutant in contrast to extremely low levels in the A-NO2--sensitive mucA22 mutant. Proteins that were S-nitrosylated by NO derived from A-NO2- reduction in the sensitive mucA22 strain were those involved in anaerobic respiration (NirQ, NirS), pyruvate fermentation (UspK), global gene regulation (Vfr), the TCA cycle (succinate dehydrogenase, SdhB) and several double mutants were even more sensitive to A-NO2-. Bioinformatic-based data point to future studies designed to elucidate potential cellular binding partners for MucA and MucA22. Given that A-NO2- is a potentially viable treatment strategy to combat PA and other infections, this study offers novel developments as to how clinicians might better treat problematic PA infections in COPD and CF airway diseases.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Shengchang Su
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Michael J. Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO United States of America
| | - Gee W. Lau
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL United States of America
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH United States of America
| | - Zhaowei Ren
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH United States of America
| | - Cameron T. McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Long J. Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH United States of America
| | - Dennis E. Ohman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA United States of America
- McGuire Veterans Affairs Medical Center, Richmond, VA United States of America
| | - Daniel A. Muruve
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ralph J. Panos
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH United States of America
- Pulmonary, Critical Care, and Sleep Division, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Hongwei D. Yu
- Department of Biochemistry and Microbiology, Marshall University, Huntington, WV United States of America
| | - Thomas B. Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
| | - Boo Shan Tseng
- Department of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV United States of America
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH United States of America
- * E-mail:
| |
Collapse
|
95
|
Respiratory Microbiota Predicts Clinical Disease Course of Acute Otorrhea in Children With Tympanostomy Tubes. Pediatr Infect Dis J 2019; 38:e116-e125. [PMID: 30299424 DOI: 10.1097/inf.0000000000002215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Acute otitis media (AOM) is one of the most common childhood infections, generally thought to be caused by ascension of bacteria from the nasopharynx (NP) to the middle ear. Using 16S ribosomal RNA-based sequencing, we evaluated the relationship between the NP and middle ear fluid (MEF) microbiota in children with AOM with tympanostomy tubes (AOMT) as a proxy for AOM and explored whether microbiota profiling predicts natural disease course. METHODS Microbiota profiles of paired NP and MEF samples of 94 children below 5 years of age with uncomplicated AOMT were determined. RESULTS Local diversity (P < 0.001) and overall microbiota composition (P < 0.001) of NP and MEF samples differed significantly, although paired NP and MEF samples were much more similar than unpaired samples (P < 0.001). High qualitative agreement between the presence of individual bacteria in both niches was observed. Abundances of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, Turicella otitidis, Klebsiella pneumoniae and Haemophilus spp. were strongly correlated between the 2 niches. Additionally, P. aeruginosa, S. aureus, T. otitidis and Streptococcus pneumoniae abundance in NP were predictive of the presence of a range of oral types of bacteria in MEF. Interestingly, there was no association between Moraxella catarrhalis in NP and MEF samples, which was highly present in NP but virtually absent in MEF. Finally, the NP microbiota composition could predict duration of AOMT, even better than MEF microbiota. CONCLUSIONS We observed substantial correlations between paired NP and MEF microbiota in children with AOMT. Our data also suggest that NP microbiota profiling deserves further exploration as tool for future treatment decisions.
Collapse
|
96
|
Scott JE, O'Toole GA. The Yin and Yang of Streptococcus Lung Infections in Cystic Fibrosis: a Model for Studying Polymicrobial Interactions. J Bacteriol 2019; 201:e00115-19. [PMID: 30885933 PMCID: PMC6509657 DOI: 10.1128/jb.00115-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The streptococci are increasingly recognized as a core component of the cystic fibrosis (CF) lung microbiome, yet the role that they play in CF lung disease is unclear. The presence of the Streptococcus milleri group (SMG; also known as the anginosus group streptococci [AGS]) correlates with exacerbation when these microbes are the predominant species in the lung. In contrast, microbiome studies have indicated that an increased relative abundance of streptococci in the lung, including members of the oral microflora, correlates with impacts on lung disease less severe than those caused by other CF-associated microflora, indicating a complex role for this genus in the context of CF. Recent findings suggest that streptococci in the CF lung microenvironment may influence the growth and/or virulence of other CF pathogens, as evidenced by increased virulence factor production by Pseudomonas aeruginosa when grown in coculture with oral streptococci. Conversely, the presence of P. aeruginosa can enhance the growth of streptococci, including members of the SMG, a phenomenon that could be exacerbated by the fact that streptococci are not susceptible to some of the frontline antibiotics used to treat P. aeruginosa infections. Collectively, these studies indicate the necessity for further investigation into the role of streptococci in the CF airway to determine how these microbes, alone or via interactions with other CF-associated pathogens, might influence CF lung disease, for better or for worse. We also propose that the interactions of streptococci with other CF pathogens is an ideal model to study clinically relevant microbial interactions.
Collapse
Affiliation(s)
- Jessie E Scott
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
97
|
Brinks V, Lipinska K, de Jager M, Beumer W, Button B, Livraghi-Butrico A, Henig N, Matthee B. The Cystic Fibrosis-Like Airway Surface Layer Is not a Significant Barrier for Delivery of Eluforsen to Airway Epithelial Cells. J Aerosol Med Pulm Drug Deliv 2019; 32:303-316. [PMID: 31120356 DOI: 10.1089/jamp.2018.1502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Eluforsen (previously known as QR-010) is a 33-mer antisense oligonucleotide under development for oral inhalation in cystic fibrosis (CF) patients with the delta F508 mutation. Previous work has shown that eluforsen restores CF transmembrane conductance regulator (CFTR) function in vitro and in vivo. To be effective, eluforsen has first to reach its primary target, the lung epithelial cells. Therefore, it has to diffuse through the CF airway surface layer (ASL), which in CF is characterized by the presence of thick and viscous mucus, impaired mucociliary clearance, and persistent infections. The goal of this study was to assess delivery of eluforsen through CF-like ASL. Methods and Results: First, air-liquid interface studies with cultured primary airway epithelial cells revealed that eluforsen rapidly diffuses through CF-like mucus at clinically relevant doses when nebulized once or repeatedly, over a range of testing doses. Furthermore, eluforsen concentrations remained stable in CF patient sputum for at least 48 hours, and eluforsen remained intact in the presence of various inhaled CF medications for at least 24 hours. When testing biodistribution of eluforsen after orotracheal administration in vivo, no differences in lung, liver, trachea, and kidney eluforsen concentration were observed between mice with a CF-like lung phenotype (ENaC-overexpressing mice) and control wild-type (WT) littermates. Also, eluforsen was visualized in the airway epithelial cell layer of CF-like muco-obstructed mice and WT littermates. Finally, studies of eluforsen uptake and binding to bacteria prevalent in CF lungs, and diffusion through bacterial biofilms showed that eluforsen was stable and not absorbed by, or bound to bacteria. In addition, eluforsen was found to be able to penetrate Pseudomonas aeruginosa biofilms. Conclusions: The thickened and concentrated CF ASL does not constitute a significant barrier for delivery of eluforsen, and feasibility of oral inhalation of eluforsen is supported by these data.
Collapse
Affiliation(s)
| | | | | | | | - Brian Button
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
98
|
Affiliation(s)
- Richard C Boucher
- From the Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill
| |
Collapse
|
99
|
Anaerobiosis influences virulence properties of Pseudomonas aeruginosa cystic fibrosis isolates and the interaction with Staphylococcus aureus. Sci Rep 2019; 9:6748. [PMID: 31043640 PMCID: PMC6494883 DOI: 10.1038/s41598-019-42952-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
The airways of individuals with cystic fibrosis (CF) are abundantly colonised by Staphylococcus aureus and Pseudomonas aeruginosa. Co-infecting hypoxic regions of static mucus within CF airways, together with decreases in pulmonary function, mucus plugging and oxygen consumption by host neutrophils gives rise to regions of anoxia. This study determined the impact of anaerobiosis upon S. aureus-P. aeruginosa interactions in planktonic co-culture and mixed species biofilms in vitro. Whilst anoxia reduced the ability for P. aeruginosa CF isolates to dominate over S. aureus, this occurred in an isolate dependent manner. Investigations into the underlying mechanisms suggest that the anti-staphylococcal compound facilitating P. aeruginosa dominance under normoxia and anoxia is greater than 3 kDa in size and is heat-stable. Not all interspecies interactions studied were antagonistic, as S. aureus exoproducts were shown to restore and enhance P. aeruginosa motility under normoxia and anoxia in an isolate dependent manner. Collectively, this study suggests changes in oxygen availability within regions of the CF lung is likely to influence interspecies interactions and in turn, potentially influence disease progression.
Collapse
|
100
|
Ahmed B, Cox MJ, Cuthbertson L, James P, Cookson WOC, Davies JC, Moffatt MF, Bush A. Longitudinal development of the airway microbiota in infants with cystic fibrosis. Sci Rep 2019; 9:5143. [PMID: 30914718 PMCID: PMC6435666 DOI: 10.1038/s41598-019-41597-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
The pathogenesis of airway infection in cystic fibrosis (CF) is poorly understood. We performed a longitudinal study coupling clinical information with frequent sampling of the microbiota to identify changes in the airway microbiota in infancy that could underpin deterioration and potentially be targeted therapeutically. Thirty infants with CF diagnosed on newborn screening (NBS) were followed for up to two years. Two hundred and forty one throat swabs were collected as a surrogate for lower airway microbiota (median 35 days between study visits) in the largest longitudinal study of the CF oropharyngeal microbiota. Quantitative PCR and Illumina sequencing of the 16S rRNA bacterial gene were performed. Data analyses were conducted in QIIME and Phyloseq in R. Streptococcus spp. and Haemophilus spp. were the most common genera (55% and 12.5% of reads respectively) and were inversely related. Only beta (between sample) diversity changed with age (Bray Curtis r2 = 0.15, P = 0.03). Staphylococcus and Pseudomonas were rarely detected. These results suggest that Streptococcus spp. and Haemophilus spp., may play an important role in early CF. Whether they are protective against infection with more typical CF micro-organisms, or pathogenic and thus meriting treatment needs to be determined.
Collapse
Affiliation(s)
- Bushra Ahmed
- National Heart and Lung Institute, Imperial College London, London, UK.
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK.
| | - Michael J Cox
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Leah Cuthbertson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Phillip James
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, UK
| |
Collapse
|