51
|
Brennick MJ, Delikatny J, Pack AI, Pickup S, Shinde S, Zhu JX, Roscoe I, Kim DY, Buxbaum LU, Cater JR, Schwab RJ. Tongue fat infiltration in obese versus lean Zucker rats. Sleep 2014; 37:1095-102, 1102A-1102C. [PMID: 24882904 PMCID: PMC4015383 DOI: 10.5665/sleep.3768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
STUDY OBJECTIVES Obesity is the most important risk factor for obstructive sleep apnea (OSA), and the effects of obesity may be mediated by tongue fat. Our objective was to examine the effects of obesity on upper airway structures in obese (OBZ) and non-obese (NBZ) Zucker rats. DESIGN Animal study. SETTING Academic Medical Center. PARTICIPANTS OBZ (638.2 ± 39 g; 14.9 ± 1.1 w) and age-matched NBZ Zucker (442.6 ± 37 g, 15.1 ± 1.5 w) rats. INTERVENTIONS TONGUE FAT AND VOLUME AND WERE ASSESSED USING: in vivo magnetic resonance spectroscopy (MRS), magnetic resonance imaging including Dixon imaging for tongue fat volume, ex vivo biochemistry (fat quantification; triglyceride (mg)/tissue (g), and histology (Oil Red O stain). MEASUREMENTS AND RESULTS MRS: overall OBZ tongue fat/water ratio was 2.9 times greater than NBZ (P < 0.002) with the anterior OBZ tongue up to 3.3 times greater than NBZ (P < 0.002). Biochemistry: Triglyceride (TG) in the tongue was 4.4 times greater in OBZ versus NBZ (P < 0.0006). TG was greater in OBZ tongue (3.57 ± 1.7 mg/g) than OBZ masseter muscle (0.28 ± 0.1; P < 0.0001) but tongue and masseter TG were not different in NBZ rats (0.82 ± 0.3 versus 0.28 ± 0.1 mg/g, P = 0.67). Dixon fat volume was significantly increased in OBZ (56 ± 15 mm3) versus NBZ (34 ± 5 mm3, P < 0.004). Histology demonstrated a greater degree of intracellular muscle fat and extramuscular fat infiltration in OBZ versus NBZ rats. CONCLUSIONS Genetically obese rats had a large degree of fat infiltration in the tongue compared to both skeletal muscle and tongue tissues of the non-obese age-matched littermates. The significant fat increase and sequestration in the obese tongue may play a role in altered tongue neuromuscular function, tongue stiffness or metabolic function.
Collapse
Affiliation(s)
| | | | - Allan I. Pack
- Center for Sleep and Circadian Neurobiology
- Division of Sleep Medicine
| | | | | | | | | | | | - Laurence U. Buxbaum
- Philadephia Research and Education Foundation, Philadelphia, PA
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Richard J. Schwab
- Center for Sleep and Circadian Neurobiology
- Division of Sleep Medicine
| |
Collapse
|
52
|
Sutherland K, Schwab RJ, Maislin G, Lee RWW, Benedikstdsottir B, Pack AI, Gislason T, Juliusson S, Cistulli PA. Facial phenotyping by quantitative photography reflects craniofacial morphology measured on magnetic resonance imaging in Icelandic sleep apnea patients. Sleep 2014; 37:959-68. [PMID: 24790275 DOI: 10.5665/sleep.3670] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
STUDY OBJECTIVES (1) To determine whether facial phenotype, measured by quantitative photography, relates to underlying craniofacial obstructive sleep apnea (OSA) risk factors, measured with magnetic resonance imaging (MRI); (2) To assess whether these associations are independent of body size and obesity. DESIGN Cross-sectional cohort. SETTING Landspitali, The National University Hospital, Iceland. PARTICIPANTS One hundred forty patients (87.1% male) from the Icelandic Sleep Apnea Cohort who had both calibrated frontal and profile craniofacial photographs and upper airway MRI. Mean ± standard deviation age 56.1 ± 10.4 y, body mass index 33.5 ± 5.05 kg/m(2), with on-average severe OSA (apnea-hypopnea index 45.4 ± 19.7 h(-1)). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Relationships between surface facial dimensions (photos) and facial bony dimensions and upper airway soft-tissue volumes (MRI) was assessed using canonical correlation analysis. Photo and MRI craniofacial datasets related in four significant canonical correlations, primarily driven by measurements of (1) maxillary-mandibular relationship (r = 0.8, P < 0.0001), (2) lower face height (r = 0.76, P < 0.0001), (3) mandibular length (r = 0.67, P < 0.0001), and (4) tongue volume (r = 0.52, P = 0.01). Correlations 1, 2, and 3 were unchanged when controlled for weight and neck and waist circumference. However, tongue volume was no longer significant, suggesting facial dimensions relate to tongue volume as a result of obesity. CONCLUSIONS Significant associations were found between craniofacial variable sets from facial photography and MRI. This study confirms that facial photographic phenotype reflects underlying aspects of craniofacial skeletal abnormalities associated with OSA. Therefore, facial photographic phenotyping may be a useful tool to assess intermediate phenotypes for OSA, particularly in large-scale studies.
Collapse
Affiliation(s)
- Kate Sutherland
- Center for Sleep Health and Research, Department of Respiratory Medicine, Royal North Shore Hospital, Sydney, Australia ; NHMRC Centre for Integrated Research and Understanding of Sleep (CIRUS), The University of Sydney, Sydney, Australia
| | - Richard J Schwab
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA ; Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Greg Maislin
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Richard W W Lee
- Center for Sleep Health and Research, Department of Respiratory Medicine, Royal North Shore Hospital, Sydney, Australia ; Department of Respiratory Medicine, Gosford Hospital, Gosford, Australia ; School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Bryndis Benedikstdsottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland ; Department of Respiratory Medicine and Sleep, Landspitali University Hospital Fossvogi, Reykjavik, Iceland
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, PA ; Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Thorarinn Gislason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland ; Department of Respiratory Medicine and Sleep, Landspitali University Hospital Fossvogi, Reykjavik, Iceland
| | - Sigurdur Juliusson
- Department of Otolaryngology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Peter A Cistulli
- Center for Sleep Health and Research, Department of Respiratory Medicine, Royal North Shore Hospital, Sydney, Australia ; NHMRC Centre for Integrated Research and Understanding of Sleep (CIRUS), The University of Sydney, Sydney, Australia
| |
Collapse
|
53
|
Rukhadze I, Kalter J, Stettner GM, Kubin L. Lingual muscle activity across sleep-wake States in rats with surgically altered upper airway. Front Neurol 2014; 5:61. [PMID: 24803913 PMCID: PMC4009435 DOI: 10.3389/fneur.2014.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/13/2014] [Indexed: 11/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) patients have increased upper airway muscle activity, including such lingual muscles as the genioglossus (GG), geniohyoid (GH), and hyoglossus (HG). This adaptation partially protects their upper airway against obstructions. Rodents are used to study the central neural control of sleep and breathing but they do not naturally exhibit OSA. We investigated whether, in chronically instrumented, behaving rats, disconnecting the GH and HG muscles from the hyoid (H) apparatus would result in a compensatory increase of other upper airway muscle activity (electromyogram, EMG) and/or other signs of upper airway instability. We first determined that, in intact rats, lingual (GG and intrinsic) muscles maintained stable activity levels when quantified based on 2 h-long recordings conducted on days 6 through 22 after instrumentation. We then studied five rats in which the tendons connecting the GH and HG muscles to the H apparatus were experimentally severed. When quantified across all recording days, lingual EMG during slow-wave sleep (SWS) was modestly but significantly increased in rats with surgically altered upper airway [8.6 ± 0.7% (SE) vs. 6.1 ± 0.7% of the mean during wakefulness; p = 0.012]. Respiratory modulation of lingual EMG occurred mainly during SWS and was similarly infrequent in both groups, and the incidence of sighs and central apneas also was similar. Thus, a weakened action of selected lingual muscles did not produce sleep-disordered breathing but resulted in a relatively elevated activity in other lingual muscles during SWS. These results encourage more extensive surgical manipulations with the aim to obtain a rodent model with collapsible upper airway.
Collapse
Affiliation(s)
- Irma Rukhadze
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Julie Kalter
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Georg M Stettner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Leszek Kubin
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
54
|
The Relationship between High Risk for Obstructive Sleep Apnea and General and Central Obesity: Findings from a Sample of Chilean College Students. ISRN OBESITY 2014; 2014:871681. [PMID: 24944841 PMCID: PMC4040193 DOI: 10.1155/2014/871681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/17/2014] [Indexed: 01/20/2023]
Abstract
This cross-sectional study evaluates the prevalence and extent to which high risk for obstructive sleep apnea (OSA) is associated with general obesity and central obesity among college students in Punta Arenas, Chile. Risk for OSA was assessed using the Berlin Questionnaire and trained research nurses measured anthropometric indices. Overweight was defined as body mass index (BMI) of 25–29.9 kg/m2 and general obesity was defined as BMI ≥ 30 kg/m2. Central obesity was defined as waist circumference ≥90 centimeters (cm) for males and ≥80 cm for females. Multivariate logistic regression models were fit to obtain adjusted odds ratios (OR) and 95% confidence intervals (CI). Prevalence of high risk for OSA, general obesity, and central obesity were 7.8%, 12.8%, and 42.7%, respectively. Students at high risk for OSA had greater odds of general obesity (OR 9.96; 95% CI: 4.42–22.45) and central obesity (OR 2.78; 95% CI 1.43–5.40). Findings support a strong positive association of high risk for OSA with obesity.
Collapse
|
55
|
Badran M, Ayas N, Laher I. Insights into obstructive sleep apnea research. Sleep Med 2014; 15:485-95. [PMID: 24824769 DOI: 10.1016/j.sleep.2014.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 01/11/2023]
Abstract
Moderate to severe obstructive sleep apnea (OSA) occurs in 10-17% of middle aged men and 3-9% of middle-aged women with a higher prevalence among obese subjects. This condition is an independent risk factor for many cardiovascular diseases. Intermittent hypoxia is a major pathophysiologic character of OSA; it can lead to oxidative stress and inflammation, which in their turn cause endothelial dysfunction, a hallmark of atherosclerosis. Many animal models have been designed to mimic OSA in human patients to allow more in-depth investigation of biological and cellular mechanisms of this condition. This review discusses the cardiovascular outcomes of OSA and some of the animal models that are being used to investigate it.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Najib Ayas
- Divisions of Critical Care and Respiratory Medicine, Department of Medicine, University of British Columbia, Sleep Disorders Program, UBC Hospital, Division of Critical Care Medicine, Providence Health Care, Vancouver, BC, Canada
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
56
|
Horner RL. Neural control of the upper airway: integrative physiological mechanisms and relevance for sleep disordered breathing. Compr Physiol 2013; 2:479-535. [PMID: 23728986 DOI: 10.1002/cphy.c110023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The various neural mechanisms affecting the control of the upper airway muscles are discussed in this review, with particular emphasis on structure-function relationships and integrative physiological motor-control processes. Particular foci of attention include the respiratory function of the upper airway muscles, and the various reflex mechanisms underlying their control, specifically the reflex responses to changes in airway pressure, reflexes from pulmonary receptors, chemoreceptor and baroreceptor reflexes, and postural effects on upper airway motor control. This article also addresses the determinants of upper airway collapsibility and the influence of neural drive to the upper airway muscles, and the influence of common drugs such as ethanol, sedative hypnotics, and opioids on upper airway motor control. In addition to an examination of these basic physiological mechanisms, consideration is given throughout this review as to how these mechanisms relate to integrative function in the intact normal upper airway in wakefulness and sleep, and how they may be involved in the pathogenesis of clinical problems such obstructive sleep apnea hypopnea.
Collapse
|
57
|
Stettner GM, Rukhadze I, Mann GL, Lei Y, Kubin L. Respiratory modulation of lingual muscle activity across sleep-wake states in rats. Respir Physiol Neurobiol 2013; 188:308-17. [PMID: 23732510 DOI: 10.1016/j.resp.2013.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/26/2022]
Abstract
In obstructive sleep apnea (OSA) patients, inspiratory activation (IA) of lingual muscles protects the upper airway from collapse. We aimed to determine when rats' lingual muscles exhibit IA. In 5 Sprague-Dawley and 3 Wistar rats, we monitored cortical EEG and lingual, diaphragmatic and nuchal electromyograms (EMGs), and identified segments of records when lingual EMG exhibited IA. Individual segments lasted 2.4-269 s (median: 14.5 s), most (89%) occurred during slow-wave sleep (SWS), and they collectively occupied 0.3-6.1% of the total recording time. IA usually started to increase with a delay after SWS onset and ended with an arousal, or declined prior to rapid eye movement sleep. IA of lingual EMG was not accompanied by increased diaphragmatic activity or respiratory rate changes, but occurred when cortical EEG power was particularly low in a low beta-1 frequency range (12.5-16.4 Hz). A deep SWS-related activation of upper airway muscles may be an endogenous phenomenon designed to protect the upper airway against collapse.
Collapse
Affiliation(s)
- Georg M Stettner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6046, USA
| | | | | | | | | |
Collapse
|
58
|
Davis EM, Locke LW, McDowell AL, Strollo PJ, O'Donnell CP. Obesity accentuates circadian variability in breathing during sleep in mice but does not predispose to apnea. J Appl Physiol (1985) 2013; 115:474-82. [PMID: 23722707 DOI: 10.1152/japplphysiol.00330.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is a primary risk factor for the development of obstructive sleep apnea in humans, but the impact of obesity on central sleep apnea is less clear. Given the comorbidities associated with obesity in humans, we developed techniques for long-term recording of diaphragmatic EMG activity and polysomnography in obese mice to assess breathing patterns during sleep and to determine the effect of obesity on apnea generation. We hypothesized that genetically obese ob/ob mice would exhibit less variability in breathing across the 24-h circadian cycle, be more prone to central apneas, and be more likely to exhibit patterns of increased diaphragm muscle activity consistent with obstructive apneas compared with lean mice. Unexpectedly, we found that obese mice exhibited a greater circadian impact on respiratory rate and diaphragmatic burst amplitude than lean mice, particularly during rapid eye movement (REM) sleep. Central apneas were more common in REM sleep (42 ± 17 h(-1)) than non-REM (NREM) sleep (14 ± 5 h(-1)) in obese mice (P < 0.05), but rates were not different between lean and obese mice in either sleep state. Even after experimentally enhancing central apnea generation by acute withdrawal of hypoxic chemoreceptor activation during sleep, central apnea rates remained comparable between lean and obese mice. Last, we were unable to detect patterns of diaphragmatic burst activity suggestive of obstructive apnea events in obese mice. In summary, obesity does not predispose mice to increased occurrence of central or obstructive apneas during sleep, but does lead to a more pronounced circadian variability in respiration.
Collapse
Affiliation(s)
- Eric M Davis
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
59
|
Davis EM, O'Donnell CP. Rodent models of sleep apnea. Respir Physiol Neurobiol 2013; 188:355-61. [PMID: 23722067 DOI: 10.1016/j.resp.2013.05.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 12/31/2022]
Abstract
Rodent models of sleep apnea have long been used to provide novel insight into the generation and predisposition to apneas as well as to characterize the impact of sleep apnea on cardiovascular, metabolic, and psychological health in humans. Given the significant body of work utilizing rodent models in the field of sleep apnea, the aims of this review are three-fold: first, to review the use of rodents as natural models of sleep apnea; second, to provide an overview of the experimental interventions employed in rodents to simulate sleep apnea; third, to discuss the refinement of rodent models to further our understanding of breathing abnormalities that occur during sleep. Given mounting evidence that sleep apnea impairs cognitive function, reduces quality of life, and exacerbates the course of multiple chronic diseases, rodent models will remain a high priority as a tool to interrogate both the pathophysiology and sequelae of breathing related abnormalities during sleep and to improve approaches to diagnosis and therapy.
Collapse
Affiliation(s)
- Eric M Davis
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
60
|
Toth LA, Bhargava P. Animal models of sleep disorders. Comp Med 2013; 63:91-104. [PMID: 23582416 PMCID: PMC3625050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/21/2012] [Accepted: 11/25/2012] [Indexed: 06/02/2023]
Abstract
Problems with sleep affect a large part of the general population, with more than half of all people in the United States reporting difficulties with sleep or insufficient sleep at various times and about 40 million affected chronically. Sleep is a complex physiologic process that is influenced by many internal and environmental factors, and problems with sleep are often related to specific personal circumstances or are based on subjective reports from the affected person. Although human subjects are used widely in the study of sleep and sleep disorders, the study of animals has been invaluable in developing our understanding about the physiology of sleep and the underlying mechanisms of sleep disorders. Historically, the use of animals for the study of sleep disorders has arguably been most fruitful for the condition of narcolepsy, in which studies of dogs and mice revealed previously unsuspected mechanisms for this condition. The current overview considers animal models that have been used to study 4 of the most common human sleep disorders-insomnia, narcolepsy, restless legs syndrome, and sleep apnea-and summarizes considerations relevant to the use of animals for the study of sleep and sleep disorders. Animal-based research has been vital to the elucidation of mechanisms that underlie sleep, its regulation, and its disorders and undoubtedly will remain crucial for discovering and validating sleep mechanisms and testing interventions for sleep disorders.
Collapse
Affiliation(s)
- Linda A Toth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| | | |
Collapse
|
61
|
Brennick MJ. Examination of the pharyngeal muscle extracellular matrix offers new clues to pathogenesis in obstructive sleep apnea syndrome. Sleep 2012; 35:449-50. [PMID: 22467979 DOI: 10.5665/sleep.1716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Michael J Brennick
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
62
|
Kluge R, Scherneck S, Schürmann A, Joost HG. Pathophysiology and genetics of obesity and diabetes in the New Zealand obese mouse: a model of the human metabolic syndrome. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:59-73. [PMID: 22893401 DOI: 10.1007/978-1-62703-068-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The New Zealand Obese (NZO) mouse is one of the most thoroughly investigated polygenic models for the human metabolic syndrome and type 2 diabetes. It presents the main characteristics of the disease complex, including early-onset obesity, insulin resistance, dyslipidemia, and hypertension. As a consequence of this syndrome, a combination of lipotoxicity and glucotoxicity produces beta-cell failure and apoptosis resulting in hypoinsulinemia and diabetic hyperglycemia. With NZO as a breeding partner, several adipogenic and diabetogenic gene variants have been identified by hypothesis-free positional cloning (Tbc1d1, Zfp69) or by combining genetic screens and candidate gene approaches (Pctp, Abcg1, Nmur2, Lepr). This chapter summarizes the present knowledge of the NZO strain and describes its pathophysiology as well as the known underlying genetic defects.
Collapse
Affiliation(s)
- Reinhart Kluge
- Max-Rubner-Laboratory, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany.
| | | | | | | |
Collapse
|
63
|
Hirata RP, Aguiar IC, Nacif SR, Giannasi LC, Leitão Filho FSS, Santos IR, Romano S, Faria NS, Nonaka PN, Sampaio LMM, Oliveira CS, Carvalho PTC, Lorenzi-Filho G, Braghiroli A, Salvaggio A, Insalaco G, Oliveira LVF. Observational study on efficacy of negative expiratory pressure test proposed as screening for obstructive sleep apnea syndrome among commercial interstate bus drivers--protocol study. BMC Pulm Med 2011; 11:57. [PMID: 22151802 PMCID: PMC3280188 DOI: 10.1186/1471-2466-11-57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/07/2011] [Indexed: 11/10/2022] Open
Abstract
Abstract Trial registration Registro Brasileiro de Ensaios Clinicos (local acronym RBEC) [Internet]: Rio de Janeiro (RJ): Instituto de Informaçao Cientifica e Tecnologica em Saude (Brazil); 2010 - Identifier RBR-7dq5xx. Cross-sectional study on efficacy of negative expiratory pressure test proposed as screening for obstructive sleep apnea syndrome among commercial interstate bus drivers; 2011 May 31 [7 pages]. Available from http://www.ensaiosclinicos.gov.br/rg/RBR-7dq5xx/.
Collapse
Affiliation(s)
- Raquel P Hirata
- Master's and Doctoral Degree Programs in Rehabilitation Sciences, Nove de Julho, University, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Hernandez AB, Kirkness JP, Smith PL, Schneider H, Polotsky M, Richardson RA, Hernandez WC, Schwartz AR. Novel whole body plethysmography system for the continuous characterization of sleep and breathing in a mouse. J Appl Physiol (1985) 2011; 112:671-80. [PMID: 22134700 DOI: 10.1152/japplphysiol.00818.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sleep is associated with marked alterations in ventilatory control that lead to perturbations in respiratory timing, breathing pattern, ventilation, pharyngeal collapsibility, and sleep-related breathing disorders (SRBD). Mouse models offer powerful insight into the pathogenesis of SRBD; however, methods for obtaining the full complement of continuous, high-fidelity respiratory, electroencephalographic (EEG), and electromyographic (EMG) signals in unrestrained mice during sleep and wake have not been developed. We adapted whole body plethysmography to record EEG, EMG, and respiratory signals continuously in unrestrained, unanesthetized mice. Whole body plethysmography tidal volume and airflow signals and a novel noninvasive surrogate for respiratory effort (respiratory movement signal) were validated against simultaneously measured gold standard signals. Compared with the gold standard, we validated 1) tidal volume (correlation, R(2) = 0.87, P < 0.001; and agreement within 1%, P < 0.001); 2) inspiratory airflow (correlation, R(2) = 0.92, P < 0.001; agreement within 4%, P < 0.001); 3) expiratory airflow (correlation, R(2) = 0.83, P < 0.001); and 4) respiratory movement signal (correlation, R(2) = 0.79-0.84, P < 0.001). The expiratory airflow signal, however, demonstrated a decrease in amplitude compared with the gold standard. Integrating respiratory and EEG/EMG signals, we fully characterized sleep and breathing patterns in conscious, unrestrained mice and demonstrated inspiratory flow limitation in a New Zealand Obese mouse. Our approach will facilitate studies of SRBD mechanisms in inbred mouse strains and offer a powerful platform to investigate the effects of environmental and pharmacological exposures on breathing disturbances during sleep and wakefulness.
Collapse
Affiliation(s)
- A B Hernandez
- Sleep Disorders Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Golbidi S, Badran M, Ayas N, Laher I. Cardiovascular consequences of sleep apnea. Lung 2011; 190:113-32. [PMID: 22048845 DOI: 10.1007/s00408-011-9340-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/03/2011] [Indexed: 12/25/2022]
Abstract
Sleep apnea is a common health concern that is characterized by repetitive episodes of asphyxia. This condition has been linked to serious long-term adverse effects such as hypertension, metabolic dysregulation, and cardiovascular disease. Although the mechanism for the initiation and aggravation of cardiovascular disease has not been fully elucidated, oxidative stress and subsequent endothelial dysfunction play major roles. Animal models, which have the advantage of being free of comorbidities and/or behavioral variables (that commonly occur in humans), allow invasive measurements under well-controlled experimental conditions, and as such are useful tools in the study of the pathophysiological mechanisms of sleep apnea. This review summarizes currently available information on the cardiovascular consequences of sleep apnea and briefly describes common experimental approaches useful to sleep apnea in different animal models.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
66
|
Oliveira LVFD, Romano S, Hirata RP, Faria Júnior NSD, Giannasi LC, Nacif SR, Leitão Filho FSS, Insalaco G. Negative expiratory pressure test: a new, simple method to identify patients at risk for obstructive sleep apnea. J Bras Pneumol 2011; 37:659-63. [PMID: 22042399 DOI: 10.1590/s1806-37132011000500014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/04/2011] [Indexed: 11/22/2022] Open
Abstract
The objective of this article was to describe a new method for assessing expiratory flow limitation during spontaneous breathing, using the negative expiratory pressure test to identify patients at risk for obstructive sleep apnea. Upper airway collapsibility is evaluated by measuring decreases in flow and in expired volume in the first 0.2 seconds after negative expiratory pressure application at 10 cmH₂O. The negative expiratory pressure test is easily applied and could be adopted for the evaluation of expiratory flow limitation caused by upper airway obstruction in patients with obstructive sleep apnea.
Collapse
|
67
|
Polotsky M, Elsayed-Ahmed AS, Pichard L, Richardson RA, Smith PL, Schneider H, Kirkness JP, Polotsky V, Schwartz AR. Effect of age and weight on upper airway function in a mouse model. J Appl Physiol (1985) 2011; 111:696-703. [PMID: 21719728 DOI: 10.1152/japplphysiol.00123.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Defects in pharyngeal mechanical and neuromuscular control are required for the development of obstructive sleep apnea. Obesity and age are known sleep apnea risk factors, leading us to hypothesize that specific defects in upper airway neuromechanical control are associated with weight and age in a mouse model. In anesthetized, spontaneously breathing young and old wild-type C57BL/6J mice, genioglossus electromyographic activity (EMG(GG)) was monitored and upper airway pressure-flow dynamics were characterized during ramp decreases in nasal pressure (Pn, cmH₂O). Specific body weights were targeted by controlling caloric intake. The passive critical pressure (Pcrit) was derived from pressure-flow relationships during expiration. The Pn threshold at which inspiratory flow limitation (IFL) developed and tonic and phasic EMG(GG) activity during IFL were quantified to assess the phasic modulation of pharyngeal patency. The passive Pcrit increased progressively with increasing body weight and increased more in the old than young mice. Tonic EMG(GG) decreased and phasic EMG(GG) increased significantly with obesity. During ramp decreases in Pn, IFL developed at a higher (less negative) Pn threshold in the obese than lean mice, although the frequency of IFL decreased with age and weight. The findings suggest that weight imposes mechanical loads on the upper airway that are greater in the old than young mice. The susceptibility to upper airway obstruction increases with age and weight as tonic neuromuscular activity falls. IFL can elicit phasic responses in normal mice that mitigate or eliminate the obstruction altogether.
Collapse
Affiliation(s)
- Mikhael Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Shigeta Y, Ogawa T, Ando E, Clark GT, Enciso R. Influence of tongue/mandible volume ratio on oropharyngeal airway in Japanese male patients with obstructive sleep apnea. ACTA ACUST UNITED AC 2011; 111:239-43. [PMID: 21237441 DOI: 10.1016/j.tripleo.2010.10.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The objective of this study was to investigate the influence on the upper airway of the size ratio of tongue and mandible (T/M ratio) with 3D reconstructed models from computed tomography (CT) data. STUDY DESIGN The subjects were 40 OSA male patients. The age of the patients ranged from 25 to 77 years, with an average age of 52.6 ± 12.5 years. The body mass index (BMI) of the patients ranged from 20.1 to 35.8 kg/m(2), with an average BMI of 25.4 ± 3.4 kg/m(2). All patients underwent a full-night polysomnography. The mean AHI for our subjects was 23.6 ± 18.3 events per hour. CT imaging examinations were carried out in each patient. The mandible and airway volume (between posterior nasal spine [PNS] and the tip of the epiglottis) were segmented based on Hounsfield units, automatically or semi-automatically, and their volume was calculated from the number of voxels. The tongue was carefully outlined, and the inside of the tongue was smeared on each of the axial, frontal, and sagittal planes with a semi-automatic segmentation tool. The tongue/mandible (T/M) ratio was calculated from the volume of the mandible and the tongue. In addition, we investigated simple correlations between our anatomical variables and BMI, age, and AHI. RESULTS In this study, the mean tongue and mandible volume were 79.00 ± 1.06 cm(3) and 87.80 ± 1.21 cm(3), respectively. As BMI increases, tongue volume increases (P = .004) and airway volume decreases (P = .021). However, no significant correlation was found between severity of OSA (AHI) and other variables. On the other hand, there was a negative correlation between airway volume and T/M ratio (P = .046). CONCLUSION As tongue volume increases with BMI, the posterior airway is affected, and thus is likely to be involved in the development of OSA; however, in this study there was no correlation between the severity of sleep apnea (AHI) and other variables in the study.
Collapse
Affiliation(s)
- Yuko Shigeta
- Department of Fixed Prosthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | | | | | | | | |
Collapse
|
69
|
Pack AI. Genetics of Sleep Apnea. Sleep Med Clin 2011. [DOI: 10.1016/j.jsmc.2011.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
70
|
Abstract
The availability of molecular and genetic tools has made the mouse the most common animal model for a variety of human diseases in toxicology studies. However, little is known about the factors that will influence the dose delivery to murine lungs during an inhalation study. Among these factors are the respiratory tract anatomy, lung physiology, and clearance characteristics. Therefore, the objective of this paper is to briefly review the current knowledge on the aforementioned factors in mice and their implications to the dose delivered to mouse models during inhalation studies. Representative scientific publications were chosen from searches using the NCBI PubMed and ISI Web of Knowledge databases. Relevant respiratory physiological differences have been widely reported for different mouse strains and sexes. The limited data on anatomical morphometry that is available for the murine respiratory tract indicates significant differences between mouse strains. These differences have implications to the dose delivered and the biological outcomes of inhalation studies.
Collapse
Affiliation(s)
- Loyda B Méndez
- Department of Microbiology and Molecular Genetics, School of Biological Sciences, University of California, Irvine, CA 92697-4028, USA.
| | | | | |
Collapse
|
71
|
Kanasaki K, Koya D. Biology of obesity: lessons from animal models of obesity. J Biomed Biotechnol 2011; 2011:197636. [PMID: 21274264 PMCID: PMC3022217 DOI: 10.1155/2011/197636] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/13/2010] [Indexed: 12/17/2022] Open
Abstract
Obesity is an epidemic problem in the world and is associated with several health problems, including diabetes, cardiovascular disease, respiratory failure, muscle weakness, and cancer. The precise molecular mechanisms by which obesity induces these health problems are not yet clear. To better understand the pathomechanisms of human disease, good animal models are essential. In this paper, we will analyze animal models of obesity and their use in the research of obesity-associated human health conditions and diseases such as diabetes, cancer, and obstructive sleep apnea syndrome.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Division of Diabetes & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Daisuke Koya
- Division of Diabetes & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
72
|
Brennick MJ, Kuna ST, Pickup S, Cater J, Schwab RJ. Respiratory modulation of the pharyngeal airway in lean and obese mice. Respir Physiol Neurobiol 2010; 175:296-302. [PMID: 21167963 DOI: 10.1016/j.resp.2010.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/23/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022]
Abstract
UNLABELLED Obesity is an important risk factor for pharyngeal airway collapse in obstructive sleep apnea (OSA). To examine the effect of obesity on pharyngeal airway size on inspiration and expiration, respiratory-gated MRI of the pharynx was compared in New Zealand obese (NZO) and New Zealand white (NZW) mice (weights: 50.4g vs. 34.7g, p<0.0001). RESULTS (1) pharyngeal airway cross-sectional area was greater during inspiration than expiration in NZO mice, but in NZW mice airway area was greater in expiration than inspiration; (2) inspiratory-to-expiratory changes in both mouse strains were largest in the caudal pharynx; and (3) during expiration, airway size tended to be larger, though non-significantly, in NZW than NZO mice. The respiratory pattern differences are likely attributable to obesity that is the main difference between NZO and NZW mice. The data support an hypothesis that pharyngeal airway patency in obesity is dependent on inspiratory dilation and may be vulnerable to loss of neuromuscular pharyngeal activation.
Collapse
Affiliation(s)
- Michael J Brennick
- Department of Medicine, School of Medicine, University of Pennsylvania, 3624 Market St., Philadelphia, PA, United States.
| | | | | | | | | |
Collapse
|
73
|
Méndez LB, Gookin G, Phalen RF. Inhaled aerosol particle dosimetry in mice: A review. Inhal Toxicol 2010; 22 Suppl 2:15-20. [DOI: 10.3109/08958378.2010.541337] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
74
|
Abstract
Development of the craniofacial and upper airway structures is a complex choreography of mesenchymal and epithelial tissues responding to soluble growth factors and transcription factors in a tightly regulated sequence. Interruption of the development process or mutation of required transcription or growth factors leads to congenital anomalies of the facial and airway structures. Oftentimes, these patients suffer life-long consequences, require multiple medical and surgical interventions, and have significant associated morbidity and mortality. Furthering our understanding of the basic developmental mechanisms of craniofacial and upper airway development will lead to improved diagnostic and treatment strategies to improve the care of these patients.
Collapse
Affiliation(s)
- Leila A Mankarious
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
75
|
Cheng S, Butler JE, Gandevia SC, Bilston LE. Movement of the human upper airway during inspiration with and without inspiratory resistive loading. J Appl Physiol (1985) 2010; 110:69-75. [PMID: 20966195 DOI: 10.1152/japplphysiol.00413.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The electromyographic (EMG) activity of human upper airway muscles, particularly the genioglossus, has been widely measured, but the relationship between EMG activity and physical movement of the airway muscles remains unclear. We aimed to measure the motion of the soft tissues surrounding the airway during normal and loaded inspiration on the basis of the hypothesis that this motion would be affected by the addition of resistance to breathing during inspiration. Tagged MR imaging of seven healthy subjects was performed in a 3-T scanner. Tagged 8.6-mm-spaced grids were used, and complementary spatial modulation of magnetization images were acquired beginning ∼200 ms before inspiratory airflow. Deformation of tag line intersections was measured. The genioglossus moved anteriorly during normal and loaded inspiration, with less movement during loaded inspiration. The motion of tissues at the anterior border of the upper airway was nonuniform, with larger motions inferiorly. At the level of the soft palate, the lateral dimension of the airway decreased significantly during loaded inspiration (-0.15 ± 0.09 and -0.48 ± 0.09 mm during unloaded and loaded inspiration, respectively, P < 0.05). When resistance to inspiratory flow was added, genioglossus motion and lateral dimensions of the airway at the level of the soft palate decreased. Our results suggest that genioglossus motion begins early to dilate the airway prior to airflow and that inspiratory loading reduces the anterior motion of the genioglossus and increases the collapse of the lateral airway walls at the level of the soft palate.
Collapse
Affiliation(s)
- S Cheng
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | | | | | | |
Collapse
|
76
|
Saito T, Yamane A, Kaneko S, Ogawa T, Ikawa T, Saito K, Sugisaki M. Changes in the lingual muscles of obese rats induced by high-fat diet feeding. Arch Oral Biol 2010; 55:803-8. [PMID: 20692644 DOI: 10.1016/j.archoralbio.2010.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To elucidate the influences of obesity on the properties and volume of lingual (genioglossus and geniohyoid) muscles in obese rats. METHODS We analysed the accumulation of triacylglycerol and the diameter of myofibres in the lingual muscles using histochemistry, and the MyHC composition using real-time PCR in rats fed a high-fat diet for 10 weeks. In the genioglossus and geniohyoid muscles, the percentage of oil droplet areas in the obesity group were 3.6 and 2.5 times greater than those in the control group, respectively (p<0.025). The diameters of the slow myofibres in the genioglossus and geniohyoid muscles were approximately 20% greater in the obesity group than in the control group (p<0.0001), while that of the fast myofibres in the geniohyoid muscle was approximately 10% greater in the obesity group than in the control group (p<0.0001). No significant difference in the expressions of any of the MyHC isoforms studied was found in any of the muscles studied between the obesity and control groups. CONCLUSION High-fat diet feeding induced the fat deposition in the myofibre and influenced the structure of the lingual (genioglossus and geniohyoid) muscles.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Dentistry, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
| | | | | | | | | | | | | |
Collapse
|
77
|
Koo BB, Strohl KP, Gillombardo CB, Jacono FJ. Ventilatory patterning in a mouse model of stroke. Respir Physiol Neurobiol 2010; 172:129-35. [PMID: 20472101 DOI: 10.1016/j.resp.2010.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Cheyne-Stokes respiration (CSR) is a breathing pattern characterized by waxing and waning of breath volume and frequency, and is often recognized following stroke, when causal pathways are often obscure. We used an animal model to address the hypothesis that cerebral infarction is a mechanism for producing breathing instability. Fourteen male A/J mice underwent either stroke (n=7) or sham (n=7) procedure. Ventilation was measured using whole body plethysmography. Respiratory rate (RR), tidal volume (V(T)) and minute ventilation (V(e)) mean values and coefficient of variation were computed for ventilation and oscillatory behaviors. In addition, the ventilatory data were computationally fit to models to quantify autocorrelation, mutual information, sample entropy and a nonlinear complexity index. At the same time post-procedure, stroke when compared to sham animal breathing consisted of a lower RR and autocorrelation, higher coefficient of variation for V(T) and higher coefficient of variation for V(e). Mutual information and the nonlinear complexity index were higher in breathing following stroke which also demonstrated a waxing/waning pattern. The absence of stroke in the sham animals was verified anatomically. We conclude that ventilatory pattern following cerebral infarction demonstrated increased variability with increased nonlinear patterning and a waxing/waning pattern, consistent with CSR.
Collapse
Affiliation(s)
- Brian B Koo
- Department of Neurology, Case Western Reserve University School of Medicine, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
78
|
Affiliation(s)
- Babak Mokhlesi
- Department of Medicine, University of Chicago Pritzker School of Medicine, Illinois 60637, USA.
| | | |
Collapse
|
79
|
Abstract
Sleep-induced apnea and disordered breathing refers to intermittent, cyclical cessations or reductions of airflow, with or without obstructions of the upper airway (OSA). In the presence of an anatomically compromised, collapsible airway, the sleep-induced loss of compensatory tonic input to the upper airway dilator muscle motor neurons leads to collapse of the pharyngeal airway. In turn, the ability of the sleeping subject to compensate for this airway obstruction will determine the degree of cycling of these events. Several of the classic neurotransmitters and a growing list of neuromodulators have now been identified that contribute to neurochemical regulation of pharyngeal motor neuron activity and airway patency. Limited progress has been made in developing pharmacotherapies with acceptable specificity for the treatment of sleep-induced airway obstruction. We review three types of major long-term sequelae to severe OSA that have been assessed in humans through use of continuous positive airway pressure (CPAP) treatment and in animal models via long-term intermittent hypoxemia (IH): 1) cardiovascular. The evidence is strongest to support daytime systemic hypertension as a consequence of severe OSA, with less conclusive effects on pulmonary hypertension, stroke, coronary artery disease, and cardiac arrhythmias. The underlying mechanisms mediating hypertension include enhanced chemoreceptor sensitivity causing excessive daytime sympathetic vasoconstrictor activity, combined with overproduction of superoxide ion and inflammatory effects on resistance vessels. 2) Insulin sensitivity and homeostasis of glucose regulation are negatively impacted by both intermittent hypoxemia and sleep disruption, but whether these influences of OSA are sufficient, independent of obesity, to contribute significantly to the "metabolic syndrome" remains unsettled. 3) Neurocognitive effects include daytime sleepiness and impaired memory and concentration. These effects reflect hypoxic-induced "neural injury." We discuss future research into understanding the pathophysiology of sleep apnea as a basis for uncovering newer forms of treatment of both the ventilatory disorder and its multiple sequelae.
Collapse
Affiliation(s)
- Jerome A Dempsey
- The John Rankin Laboratory of Pulmonary Medicine, Departments of Population Health Sciences and of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
80
|
Xu C, Brennick MJ, Dougherty L, Wootton DM. Modeling upper airway collapse by a finite element model with regional tissue properties. Med Eng Phys 2009; 31:1343-8. [PMID: 19747871 DOI: 10.1016/j.medengphy.2009.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 08/14/2009] [Accepted: 08/15/2009] [Indexed: 12/21/2022]
Abstract
This study presents a new computational system for modeling the upper airway in rats that combines tagged magnetic resonance imaging (MRI) with tissue material properties to predict three-dimensional (3D) airway motion. The model is capable of predicting airway wall and tissue deformation under airway pressure loading up to airway collapse. The model demonstrates that oropharynx collapse pressure depends primarily on ventral wall (tongue muscle) elastic modulus and airway architecture. An iterative approach that involves substituting alternative possible tissue elastic moduli was used to improve model precision. The proposed 3D model accounts for stress-strain relationships in the complex upper airway that should present new opportunities for understanding pathogenesis of airway collapse, improving diagnosis and developing treatments.
Collapse
Affiliation(s)
- Chun Xu
- Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
81
|
Lu JW, Kubin L. Electromyographic activity at the base and tip of the tongue across sleep-wake states in rats. Respir Physiol Neurobiol 2009; 167:307-15. [PMID: 19539786 DOI: 10.1016/j.resp.2009.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/19/2009] [Accepted: 06/09/2009] [Indexed: 11/19/2022]
Abstract
Obstructive sleep apnea (OSA) patients have elevated tonic and phasic inspiratory activity in the genioglossus and other upper airway muscles during wakefulness; this protects their upper airway from collapse. In this group, sleep-related decrements of upper airway motor tone result in sleep-related upper airway obstructions. We previously reported that in the rat, a species widely used to study the neural mechanisms of both sleep and breathing, lingual electromyographic activity (EMG) is minimal or absent during slow-wave sleep (SWS) and then gradually increases after the onset of rapid eye movement sleep (REMS) due to the appearance of large phasic bursts. Here, we investigated whether sleep-wake patterns and respiratory modulation of lingual EMG depend on the site of EMG recording within the tongue. In nine chronically instrumented rats, we recorded from 17 sites within the tongue and from the diaphragm across sleep-wake states. We quantified lingual EMG in successive 10s intervals of continuous 2h recordings (1-3 p.m.). We found that sleep-wake patterns of lingual EMG did not differ between the base and tip of the tongue, and that respiratory modulation was extremely rare regardless of the recording site. We also determined that the often rhythmic lingual bursts during REMS do not occur with respiratory rhythmicity. This pattern differs from that in OSA subjects who, unlike rats, have collapsible upper airway, exhibit prominent respiratory modulation of upper airway motor tone during quiet wakefulness, retain considerable tonic and inspiratory phasic activity during SWS, and show nadirs of activity during REMS.
Collapse
Affiliation(s)
- Jackie W Lu
- Department of Animal Biology 209E/VET, School of Veterinary Medicine and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA
| | | |
Collapse
|