51
|
Izquierdo-Garcia JL, Arias T, Rojas Y, Garcia-Ruiz V, Santos A, Martin-Puig S, Ruiz-Cabello J. Metabolic Reprogramming in the Heart and Lung in a Murine Model of Pulmonary Arterial Hypertension. Front Cardiovasc Med 2018; 5:110. [PMID: 30159317 PMCID: PMC6104186 DOI: 10.3389/fcvm.2018.00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/27/2018] [Indexed: 01/01/2023] Open
Abstract
A significant glycolytic shift in the cells of the pulmonary vasculature and right ventricle during pulmonary arterial hypertension (PAH) has been recently described. Due to the late complications and devastating course of any variant of this disease, there is a great need for animal models that reproduce potential metabolic reprograming of PAH. Our objective is to study, in situ, the metabolic reprogramming in the lung and the right ventricle of a mouse model of PAH by metabolomic profiling and molecular imaging. PAH was induced by chronic hypoxia exposure plus treatment with SU5416, a vascular endothelial growth factor receptor inhibitor. Lung and right ventricle samples were analyzed by magnetic resonance spectroscopy. In vivo energy metabolism was studied by positron emission tomography. Our results show that metabolomic profiling of lung samples clearly identifies significant alterations in glycolytic pathways. We also confirmed an upregulation of glutamine metabolism and alterations in lipid metabolism. Furthermore, we identified alterations in glycine and choline metabolism in lung tissues. Metabolic reprograming was also confirmed in right ventricle samples. Lactate and alanine, endpoints of glycolytic oxidation, were found to have increased concentrations in mice with PAH. Glutamine and taurine concentrations were correlated to specific ventricle hypertrophy features. We demonstrated that most of the metabolic features that characterize human PAH were detected in a hypoxia plus SU5416 mouse model and it may become a valuable tool to test new targeting treatments of this severe disease.
Collapse
Affiliation(s)
- Jose L Izquierdo-Garcia
- CIC biomaGUNE, San Sebastian-Donostia, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Teresa Arias
- CIBER de Enfermedades Respiratorias, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Yeny Rojas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Victoria Garcia-Ruiz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Unidad de Gestion Clinica del Corazon, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | | | | - Jesus Ruiz-Cabello
- CIC biomaGUNE, San Sebastian-Donostia, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Universidad Complutense Madrid, Facultad de Farmacia, Departamento de Quimica en Ciencias Farmaceuticas, Madrid, Spain
| |
Collapse
|
52
|
Myeloid-Derived Suppressor Cells and Pulmonary Hypertension. Int J Mol Sci 2018; 19:ijms19082277. [PMID: 30081463 PMCID: PMC6121540 DOI: 10.3390/ijms19082277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 01/04/2023] Open
Abstract
Myeloid–derived suppressor cells (MDSCs) comprised a heterogeneous subset of bone marrow–derived myeloid cells, best studied in cancer research, that are increasingly implicated in the pathogenesis of pulmonary vascular remodeling and the development of pulmonary hypertension. Stem cell transplantation represents one extreme interventional strategy for ablating the myeloid compartment but poses a number of translational challenges. There remains an outstanding need for additional therapeutic targets to impact MDSC function, including the potential to alter interactions with innate and adaptive immune subsets, or alternatively, alter trafficking receptors, metabolic pathways, and transcription factor signaling with readily available and safe drugs. In this review, we summarize the current literature on the role of myeloid cells in the development of pulmonary hypertension, first in pulmonary circulation changes associated with myelodysplastic syndromes, and then by examining intrinsic myeloid cell changes that contribute to disease progression in pulmonary hypertension. We then outline several tractable targets and pathways relevant to pulmonary hypertension via MDSC regulation. Identifying these MDSC-regulated effectors is part of an ongoing effort to impact the field of pulmonary hypertension research through identification of myeloid compartment-specific therapeutic applications in the treatment of pulmonary vasculopathies.
Collapse
|
53
|
Ramos SR, Pieles G, Sun M, Slorach C, Hui W, Friedberg MK. Early versus late cardiac remodeling during right ventricular pressure load and impact of preventive versus rescue therapy with endothelin-1 receptor blockers. J Appl Physiol (1985) 2018; 124:1349-1362. [DOI: 10.1152/japplphysiol.00975.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary artery banding (PAB) causes right ventricular (RV) dysfunction, biventricular fibrosis, and apoptosis, which are attenuated by endothelin-1 receptor blockade (ERB). Little is known about the time course of remodeling and whether early versus late ERB confers improved outcome. PAB was performed in five groups of rabbits: Shams, 3-wk PAB (3W), 6-wk PAB (6W), 6-wk PAB + ERB administered from day 1 (6WERB1), and 6-wk PAB + ERB administered from day 21 (6WERB21). Biventricular development of profibrotic molecular signaling, fibrosis, apoptosis, and conductance catheter and echocardiography function were studied. Thirty-three rabbits [ n = 6–7 per group; 3.00 (0.23) kg, mean (SD)] developed half to full systemic RV pressures. Biventricular profibrotic signaling and collagen deposition [RV collagen: Shams 3.8 (0.58) vs. 3W 8.69 (2.52) vs. 6W 8.83 (4.02)%, P < 0.005] and apoptosis [RV: Shams 8.32 (3.2) vs. 3W 55.95 (47.55) vs. 6W 38.85 (17.26) apoptotic cells per microfield, P < 0.0005] increased with PAB. Early and late ERB attenuated fibrosis [RV: 6WERB1 5.55 (1.18), 6WERB21 5.63 (0.72)%] and apoptosis [RV: 6WERB1 11.1 (5.25), 6WERB21 20.24 (7.16) apoptotic cells per microfield, P < 0.0001 vs. 6W]. RV dimensions progressively increased at 3W and 6W and decreased with early ERB [end-diastolic dimensions: Shams 0.4 (0.13) vs. 3W 0.55 (0.78) vs. 6W 0.78 (0.25) vs. 6WERB1 0.71 (0.26) vs. 6WERB21 0.49 (0.23) cm, P < 0.05]. Despite increased RV contractility with PAB [RV end-systolic pressure-volume relationship: Shams 3.76 (1.76) vs. 3W 12.21 (3.44) vs. 6W 19.4 (6.88) mmHg/ml], biventricular function and cardiac output [Shams 196.1 (39.73) vs. 3W 149.9 (34.82) vs. 6W 151 (31.69) ml/min] worsened in PAB groups and improved with early and late ERB [6WERB1 202.8 (26.8), 6WERB21 194.8 (36.93) ml/min, P < 0.05 vs. PAB]. In conclusion, RV pressure overload induces early biventricular fibrosis, apoptosis, remodeling, and dysfunction that worsens with persistent RV hypertension. This remodeling is attenuated by early and late ERB. NEW & NOTEWORTHY Our results in a rabbit model of progressive right ventricular (RV) pressure loading indicate that biventricular fibrosis, apoptosis, and dysfunction are already present when RV hypertension is reached at 3 wk of progressive pulmonary artery banding. These findings worsen with persistent RV hypertension to 6 wk and are attenuated with both early and late endothelin-1 receptor blockade, with some advantages to early therapy. These findings highlight the role of endothelin-1 in driving biventricular remodeling secondary to RV hypertension and suggest that early therapy with an endothelin-1 receptor blocker may be beneficial in attenuating biventricular remodeling but that late therapy is also effective.
Collapse
Affiliation(s)
- Sara Roldan Ramos
- The Labatt Family Heart Centre, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
- Department of Congenital Cardiovascular Surgery, Hospital Sant Joan de Déu, Barcelona, Spain
- Departments of Congenital Cardiac Surgery and Pediatric Cardiology, Bristol Heart Institute and Hospital for Sick Children, Bristol, United Kingdom
| | - Guido Pieles
- The Labatt Family Heart Centre, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
- Departments of Congenital Cardiac Surgery and Pediatric Cardiology, Bristol Heart Institute and Hospital for Sick Children, Bristol, United Kingdom
| | - Mei Sun
- The Labatt Family Heart Centre, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Cameron Slorach
- The Labatt Family Heart Centre, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Wei Hui
- The Labatt Family Heart Centre, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Mark K. Friedberg
- The Labatt Family Heart Centre, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
54
|
Suresh K, Servinsky L, Jiang H, Bigham Z, Yun X, Kliment C, Huetsch J, Damarla M, Shimoda LA. Reactive oxygen species induced Ca 2+ influx via TRPV4 and microvascular endothelial dysfunction in the SU5416/hypoxia model of pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2018; 314:L893-L907. [PMID: 29388466 PMCID: PMC6008124 DOI: 10.1152/ajplung.00430.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/05/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by elevations in pulmonary arterial pressure, in part due to formation of occlusive lesions in the distal arterioles of the lung. These complex lesions may comprise multiple cell types, including endothelial cells (ECs). To better understand the molecular mechanisms underlying EC dysfunction in PAH, lung microvascular endothelial cells (MVECs) were isolated from normoxic rats (N-MVECs) and rats subjected to SU5416 plus hypoxia (SuHx), an experimental model of PAH. Compared with N-MVECs, MVECs isolated from SuHx rats (SuHx-MVECs) appeared larger and more spindle shaped morphologically and expressed canonical smooth muscle cell markers smooth muscle-specific α-actin and myosin heavy chain in addition to endothelial markers such as Griffonia simplicifolia and von Willebrand factor. SuHx-MVEC mitochondria were dysfunctional, as evidenced by increased fragmentation/fission, decreased oxidative phosphorylation, and increased reactive oxygen species (ROS) production. Functionally, SuHx-MVECs exhibited increased basal levels of intracellular calcium concentration ([Ca2+]i) and enhanced migratory and proliferative capacity. Treatment with global (TEMPOL) or mitochondria-specific (MitoQ) antioxidants decreased ROS levels and basal [Ca2]i in SuHx-MVECs. TEMPOL and MitoQ also decreased migration and proliferation in SuHx-MVECs. Additionally, inhibition of ROS-induced Ca2+ entry via pharmacologic blockade of transient receptor potential vanilloid-4 (TRPV4) attenuated [Ca2]i, migration, and proliferation. These findings suggest a role for mitochondrial ROS-induced Ca2+ influx via TRPV4 in promoting abnormal migration and proliferation in MVECs in this PAH model.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Laura Servinsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Zahna Bigham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Corrine Kliment
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - John Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
55
|
Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:241-260. [PMID: 29047090 DOI: 10.1007/978-3-319-63245-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension is a complex disease of the pulmonary vasculature, which in severe cases terminates in right heart failure. Complex remodeling of pulmonary arteries comprises the central issue of its pathology. This includes extensive proliferation, apoptotic resistance and inflammation. As such, the molecular and cellular features of pulmonary hypertension resemble hallmark characteristics of cancer cell behavior. The vascular remodeling derives from significant metabolic changes in resident cells, which we describe in detail. It affects not only cells of pulmonary artery wall, but also its immediate microenvironment involving cells of immune system (i.e., macrophages). Thus aberrant metabolism constitutes principle component of the cancer-like theory of pulmonary hypertension. The metabolic changes in pulmonary artery cells resemble the cancer associated Warburg effect, involving incomplete glucose oxidation through aerobic glycolysis with depressed mitochondrial catabolism enabling the fueling of anabolic reactions with amino acids, nucleotides and lipids to sustain proliferation. Macrophages also undergo overlapping but distinct metabolic reprogramming inducing specific activation or polarization states that enable their participation in the vascular remodeling process. Such metabolic synergy drives chronic inflammation further contributing to remodeling. Enhanced glycolytic flux together with suppressed mitochondrial bioenergetics promotes the accumulation of reducing equivalents, NAD(P)H. We discuss the enzymes and reactions involved. The reducing equivalents modulate the regulation of proteins using NAD(P)H as the transcriptional co-repressor C-terminal binding protein 1 cofactor and significantly impact redox status (through GSH, NAD(P)H oxidases, etc.), which together act to control the phenotype of the cells of pulmonary arteries. The altered mitochondrial metabolism changes its redox poise, which together with enhanced NAD(P)H oxidase activity and reduced enzymatic antioxidant activity promotes a pro-oxidative cellular status. Herein we discuss all described metabolic changes along with resultant alterations in redox status, which result in excessive proliferation, apoptotic resistance, and inflammation, further leading to pulmonary arterial wall remodeling and thus establishing pulmonary artery hypertension pathology.
Collapse
|
56
|
Suresh K, Shimoda LA. Endothelial Cell Reactive Oxygen Species and Ca 2+ Signaling in Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:299-314. [PMID: 29047094 DOI: 10.1007/978-3-319-63245-2_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension (PH) refers to a disorder characterized by elevated pulmonary arterial pressure, leading to right ventricular overload and eventually right ventricular failure, which results in high morbidity and mortality. PH is associated with heterogeneous etiologies and distinct molecular mechanisms, including abnormal migration and proliferation of endothelial and smooth muscle cells. Although the exact details are not fully elucidated, reactive oxygen species (ROS) have been shown to play a key role in promoting abnormal function in pulmonary arterial smooth muscle and endothelial cells in PH. In endothelial cells, ROS can be generated from sources such as NADPH oxidase and mitochondria, which in turn can serve as signaling molecules in a wide variety of processes including posttranslational modification of proteins involved in Ca2+ homeostasis. In this chapter, we discuss the role of ROS in promoting abnormal vasoreactivity and endothelial migration and proliferation in various models of PH. Furthermore, we draw particular attention to the role of ROS-induced increases in intracellular Ca2+ concentration in the pathobiology of PH.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA. .,Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| |
Collapse
|
57
|
Han Y, Forfia PR, Vaidya A, Mazurek JA, Park MH, Ramani G, Chan SY, Waxman AB. Rationale and design of the ranolazine PH-RV study: a multicentred randomised and placebo-controlled study of ranolazine to improve RV function in patients with non-group 2 pulmonary hypertension. Open Heart 2018. [PMID: 29531764 PMCID: PMC5845423 DOI: 10.1136/openhrt-2017-000736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction A major determining factor on outcomes in patients with pulmonary arterial hypertension (PAH) is right ventricular (RV) function. Ranolazine, which is currently approved for chronic stable angina, has been shown to improve RV function in an animal model and has been shown to be safe in small human studies with PAH. We aim to study the effect of ranolazine on RV function using cardiovascular magnetic resonance (CMR) in patients with pulmonary hypertension (non-group 2 patients) and monitor the effect of ranolazine on metabolism using metabolic profiling and changes of microRNA. Methods and analysis This study is a longitudinal, randomised, double-blind, placebo-controlled, multicentre proof-of-concept study in 24 subjects with pulmonary hypertension and RV dysfunction treated with ranolazine over 6 months. Subjects who meet the protocol definition of RV dysfunction (CMR RV ejection fraction (EF) <45%) will be randomised to ranolazine or placebo with a ratio of 2:1. Enrolled subjects will be assessed for functional class, 6 min walk test and health outcome based on SF-36 tool. Peripheral blood will be obtained for N-terminal-pro brain natriuretic peptide, metabolic profiling, and microRNA at baseline and the conclusion of the treatment period. CMR will be performed at baseline and the conclusion of the treatment period. The primary outcome is change in RVEF. The exploratory outcomes include clinical, other CMR parameters, metabolic and microRNA changes. Ethics and dissemination The trial protocol was approved by Institutional Review Boards. The trial findings will be disseminated in scientific journals and meetings. Trial registration numbers NCT01839110 and NCT02829034; Pre-results.
Collapse
Affiliation(s)
- Yuchi Han
- Cardiovascular Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul R Forfia
- Cardiovascular Division, Temple University, Philadelphia, Pennsylvania, USA
| | - Anjali Vaidya
- Cardiovascular Division, Temple University, Philadelphia, Pennsylvania, USA
| | - Jeremy A Mazurek
- Cardiovascular Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Myung H Park
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Gautam Ramani
- Cardiovascular Division, University of Maryland, Baltimore, Maryland, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Aaron B Waxman
- Center for Pulmonary Heart Disease, Heart and Vascular and Lung Centers, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
58
|
Wang Y, Huang X, Leng D, Li J, Wang L, Liang Y, Wang J, Miao R, Jiang T. DNA methylation signatures of pulmonary arterial smooth muscle cells in chronic thromboembolic pulmonary hypertension. Physiol Genomics 2018; 50:313-322. [PMID: 29473816 DOI: 10.1152/physiolgenomics.00069.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a life-threatening disease, which is often underpinned by vascular remodeling. Pulmonary arterial smooth muscle cells (PASMCs) are the main participants in vascular remodeling. However, their biological role in CTEPH is not entirely clear. In the present study, we analyzed the whole epigenome-wide DNA methylation profile of cultured PASMCs from CTEPH and control cell lines with the Illumina Human Methylation 450K BeadChip. A total of 6,829 significantly differentially methylated probes (DMPs) were detected between these two groups. Among these, 4,246 DMPs were hypermethylated, while 2,583 DMPs were hypomethylated. The functional enrichment analysis of 1,743 DMPs in the promoter regions and corresponding genes indicated that DNA hypermethylation and hypomethylation might be involved in the regulation of genes that have multifarious biological roles, including roles in cancer-related diseases, the regulation of the actin cytoskeleton, cell adhesion, and pattern specification processes. The observed methylations were categorized into the most important functions, including those involved in cell proliferation, immunity, and migration. We speculate that these methylations were most likely involved in the possible pathophysiology of CTEPH. Gene interaction analysis pertaining to signal networks confirmed that PIK3CA and PIK3R1 were important mediators in these whole networks. The mRNA levels of PIK3CA, HIC1, and SSH1 were verified by qPCR and corresponded with DNA methylation differences. Understanding epigenetic features associated with CTEPH may provide new insights into the mechanism that underlie this condition.
Collapse
Affiliation(s)
- Ying Wang
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Xiaoxi Huang
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China.,Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Dong Leng
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Jifeng Li
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China.,Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Lei Wang
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital, Capital Medical University , Beijing , People's Republic of China
| | - Yan Liang
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Jun Wang
- Department of Physiology, Capital Medical University , Beijing , People's Republic of China
| | - Ran Miao
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , People's Republic of China.,Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine , Beijing , People's Republic of China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University , Beijing , People's Republic of China.,Beijing Neurosurgical Institute, Capital Medical University , Beijing , People's Republic of China
| |
Collapse
|
59
|
Abstract
Following its initial description over a century ago, pulmonary arterial hypertension (PAH) continues to challenge researchers committed to understanding its pathobiology and finding a cure. The last two decades have seen major developments in our understanding of the genetics and molecular basis of PAH that drive cells within the pulmonary vascular wall to produce obstructive vascular lesions; presently, the field of PAH research has taken numerous approaches to dissect the complex amalgam of genetic, molecular and inflammatory pathways that interact to initiate and drive disease progression. In this review, we discuss the current understanding of PAH pathology and the role that genetic factors and environmental influences share in the development of vascular lesions and abnormal cell function. We also discuss how animal models can assist in elucidating gene function and the study of novel therapeutics, while at the same time addressing the limitations of the most commonly used rodent models. Novel experimental approaches based on application of next generation sequencing, bioinformatics and epigenetics research are also discussed as these are now being actively used to facilitate the discovery of novel gene mutations and mechanisms that regulate gene expression in PAH. Finally, we touch on recent discoveries concerning the role of inflammation and immunity in PAH pathobiology and how they are being targeted with immunomodulatory agents. We conclude that the field of PAH research is actively expanding and the major challenge in the coming years is to develop a unified theory that incorporates genetic and mechanistic data to address viable areas for disease modifying drugs that can target key processes that regulate the evolution of vascular pathology of PAH.
Collapse
|
60
|
D'Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, Ježek P, Li M, Zhang H, Gupte SA, Stenmark KR. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 2018; 28. [PMID: 28637353 PMCID: PMC5737722 DOI: 10.1089/ars.2017.7217] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The molecular events that promote the development of pulmonary hypertension (PH) are complex and incompletely understood. The complex interplay between the pulmonary vasculature and its immediate microenvironment involving cells of immune system (i.e., macrophages) promotes a persistent inflammatory state, pathological angiogenesis, and fibrosis that are driven by metabolic reprogramming of mesenchymal and immune cells. Recent Advancements: Consistent with previous findings in the field of cancer metabolism, increased glycolytic rates, incomplete glucose and glutamine oxidation to support anabolism and anaplerosis, altered lipid synthesis/oxidation ratios, increased one-carbon metabolism, and activation of the pentose phosphate pathway to support nucleoside synthesis are but some of the key metabolic signatures of vascular cells in PH. In addition, metabolic reprogramming of macrophages is observed in PH and is characterized by distinct features, such as the induction of specific activation or polarization states that enable their participation in the vascular remodeling process. CRITICAL ISSUES Accumulation of reducing equivalents, such as NAD(P)H in PH cells, also contributes to their altered phenotype both directly and indirectly by regulating the activity of the transcriptional co-repressor C-terminal-binding protein 1 to control the proliferative/inflammatory gene expression in resident and immune cells. Further, similar to the role of anomalous metabolism in mitochondria in cancer, in PH short-term hypoxia-dependent and long-term hypoxia-independent alterations of mitochondrial activity, in the absence of genetic mutation of key mitochondrial enzymes, have been observed and explored as potential therapeutic targets. FUTURE DIRECTIONS For the foreseeable future, short- and long-term metabolic reprogramming will become a candidate druggable target in the treatment of PH. Antioxid. Redox Signal. 28, 230-250.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- 1 Department of Biochemistry and Molecular Genetics, University of Colorado - Denver , Colorado
| | - Karim C El Kasmi
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado.,3 Department of Pediatric Gastroenterology, University of Colorado - Denver , Colorado
| | - Lydie Plecitá-Hlavatá
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- 4 Department of Mitochondrial Physiology, Institute of Physiology , Czech Academy of Sciences, Prague, Czech Republic
| | - Min Li
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Hui Zhang
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| | - Sachin A Gupte
- 5 Department of Pharmacology, School of Medicine, New York Medical College , Valhalla, New York
| | - Kurt R Stenmark
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, University of Colorado - Denver , Colorado
| |
Collapse
|
61
|
Marshall JD, Bazan I, Zhang Y, Fares WH, Lee PJ. Mitochondrial dysfunction and pulmonary hypertension: cause, effect, or both. Am J Physiol Lung Cell Mol Physiol 2018; 314:L782-L796. [PMID: 29345195 DOI: 10.1152/ajplung.00331.2017] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension describes a heterogeneous disease defined by increased pulmonary artery pressures, and progressive increase in pulmonary vascular resistance due to pathologic remodeling of the pulmonary vasculature involving pulmonary endothelial cells, pericytes, and smooth muscle cells. This process occurs under various conditions, and although these populations vary, the clinical manifestations are the same: progressive dyspnea, increases in right ventricular (RV) afterload and dysfunction, RV-pulmonary artery uncoupling, and right-sided heart failure with systemic circulatory collapse. The overall estimated 5-yr survival rate is 72% in highly functioning patients, and as low as 28% for those presenting with advanced symptoms. Metabolic theories have been suggested as underlying the pathogenesis of pulmonary hypertension with growing evidence of the role of mitochondrial dysfunction involving the major proteins of the electron transport chain, redox-related enzymes, regulators of the proton gradient and calcium homeostasis, regulators of apoptosis, and mitophagy. There remain more studies needed to characterize mitochondrial dysfunction leading to impaired vascular relaxation, increase proliferation, and failure of regulatory mechanisms. The effects on endothelial cells and resulting interactions with their microenvironment remain uncharted territory for future discovery. Additionally, on the basis of observations that the "plexigenic lesions" of pulmonary hypertension resemble the unregulated proliferation of tumor cells, similarities between cancer pathobiology and pulmonary hypertension have been drawn, suggesting interactions between mitochondria and angiogenesis. Recently, mitochondria targeting has become feasible, which may yield new therapeutic strategies. We present a state-of-the-art review of the role of mitochondria in both the pathobiology of pulmonary hypertension and potential therapeutic targets in pulmonary vascular processes.
Collapse
Affiliation(s)
- Jeffrey D Marshall
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Isabel Bazan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Yi Zhang
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Wassim H Fares
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Patty J Lee
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
62
|
Current Knowledge and Recent Advances of Right Ventricular Molecular Biology and Metabolism from Congenital Heart Disease to Chronic Pulmonary Hypertension. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1981568. [PMID: 29581963 PMCID: PMC5822779 DOI: 10.1155/2018/1981568] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022]
Abstract
Studies about pulmonary hypertension and congenital heart diseases have introduced the concept of right ventricular remodeling leading these pathologies to a similar outcome: right ventricular failure. However right ventricular remodeling is also a physiological process that enables the normal fetal right ventricle to adapt at birth and gain its adult phenotype. The healthy mature right ventricle is exposed to low pulmonary vascular resistances and is compliant. However, in the setting of chronic pressure overload, as in pulmonary hypertension, or volume overload, as in congenital heart diseases, the right ventricle reverts back to a fetal phenotype to sustain its function. Mechanisms include angiogenic changes and concomitant increased metabolic activity to maintain energy production. Eventually, the remodeled right ventricle cannot resist the increased afterload, leading to right ventricular failure. After comparing the fetal and adult healthy right ventricles, we sought to review the main metabolic and cellular changes occurring in the setting of PH and CHD. Their association with RV function and potential impact on clinical practice will also be discussed.
Collapse
|
63
|
FOXM1 promotes pulmonary artery smooth muscle cell expansion in pulmonary arterial hypertension. J Mol Med (Berl) 2017; 96:223-235. [PMID: 29290032 DOI: 10.1007/s00109-017-1619-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive vascular remodeling disease characterized by a persistent elevation of pulmonary artery pressure, leading to right heart failure and premature death. Exaggerated proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is a key component of vascular remodeling. Despite major advances in the field, current therapies for PAH remain poorly effective in reversing the disease or significantly improving long-term survival. Because the transcription factor FOXM1 is necessary for PASMC proliferation during lung morphogenesis and its overexpression stimulates proliferation and evasion of apoptosis in cancer cells, we thus hypothesized that upregulation of FOXM1 in PAH-PASMCs promotes cell expansion and vascular remodeling. Our results showed that FOXM1 was markedly increased in distal pulmonary arteries and isolated PASMCs from PAH patients compared to controls as well as in two preclinical models. In vitro, we showed that miR-204 expression regulates FOXM1 levels and that inhibition of FOXM1 reduced cell proliferation and resistance to apoptosis through diminished DNA repair mechanisms and decreased expression of the pro-remodeling factor survivin. Accordingly, inhibition of FOXM1 with thiostrepton significantly improved established PAH in two rat models. Thus, we show for the first time that FOXM1 is implicated in PAH development and represents a new promising target. KEY MESSAGES FOXM1 is overexpressed in human PAH-PASMCs and PAH animal models. FOXM1 promotes PAH-PASMC proliferation and resistance to apoptosis. Pharmacological inhibition of FOXM1 improves established PAH in the MCT and Su/Hx rat models. FOXM1 may be a novel therapeutic target in PAH.
Collapse
|
64
|
Chan SY, Rubin LJ. Metabolic dysfunction in pulmonary hypertension: from basic science to clinical practice. Eur Respir Rev 2017; 26:26/146/170094. [PMID: 29263174 PMCID: PMC5842433 DOI: 10.1183/16000617.0094-2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/28/2017] [Indexed: 01/29/2023] Open
Abstract
Pulmonary hypertension (PH) is an often-fatal vascular disease of unclear molecular origins. The pulmonary vascular remodelling which occurs in PH is characterised by elevated vasomotor tone and a pro-proliferative state, ultimately leading to right ventricular dysfunction and heart failure. Guided in many respects by prior evidence from cancer biology, recent investigations have identified metabolic aberrations as crucial components of the disease process in both the pulmonary vessels and the right ventricle. Given the need for improved diagnostic and therapeutic options for PH, the development or repurposing of metabolic tracers and medications could provide an effective avenue for preventing or even reversing disease progression. In this review, we describe the metabolic mechanisms that are known to be dysregulated in PH; we explore the advancing diagnostic testing and imaging modalities that are being developed to improve diagnostic capability for this disease; and we discuss emerging drugs for PH which target these metabolic pathways. Understanding metabolic pathways in PH provides opportunities for improved diagnostic and therapeutic optionshttp://ow.ly/pFQb30guez6
Collapse
Affiliation(s)
- Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Dept of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Lewis J Rubin
- University of California, San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
65
|
|
66
|
Yung LM, Nikolic I, Paskin-Flerlage SD, Pearsall RS, Kumar R, Yu PB. A Selective Transforming Growth Factor-β Ligand Trap Attenuates Pulmonary Hypertension. Am J Respir Crit Care Med 2017; 194:1140-1151. [PMID: 27115515 DOI: 10.1164/rccm.201510-1955oc] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RATIONALE Transforming growth factor-β (TGF-β) ligands signal via type I and type II serine-threonine kinase receptors to regulate broad transcriptional programs. Excessive TGF-β-mediated signaling is implicated in the pathogenesis of pulmonary arterial hypertension, based in part on the ability of broad inhibition of activin-like kinase (ALK) receptors 4/5/7 recognizing TGF-β, activin, growth and differentiation factor, and nodal ligands to attenuate experimental pulmonary hypertension (PH). These broad inhibition strategies do not delineate the specific contribution of TGF-β versus a multitude of other ligands, and their translation is limited by cardiovascular and systemic toxicity. OBJECTIVES We tested the impact of a soluble TGF-β type II receptor extracellular domain expressed as an immunoglobulin-Fc fusion protein (TGFBRII-Fc), serving as a selective TGF-β1/3 ligand trap, in several experimental PH models. METHODS Signaling studies used cultured human pulmonary artery smooth muscle cells. PH was studied in monocrotaline-treated Sprague-Dawley rats, SU5416/hypoxia-treated Sprague-Dawley rats, and SU5416/hypoxia-treated C57BL/6 mice. PH, cardiac function, vascular remodeling, and valve structure were assessed by ultrasound, invasive hemodynamic measurements, and histomorphometry. MEASUREMENTS AND MAIN RESULTS TGFBRII-Fc is an inhibitor of TGF-β1 and TGF-β3, but not TGF-β2, signaling. In vivo treatment with TGFBRII-Fc attenuated Smad2 phosphorylation, normalized expression of plasminogen activator inhibitor-1, and mitigated PH and pulmonary vascular remodeling in monocrotaline-treated rats, SU5416/hypoxia-treated rats, and SU5416/hypoxia-treated mice. Administration of TGFBRII-Fc to monocrotaline-treated or SU5416/hypoxia-treated rats with established PH improved right ventricular systolic pressures, right ventricular function, and survival. No cardiac structural or valvular abnormalities were observed after treatment with TGFBRII-Fc. CONCLUSIONS Our findings are consistent with a pathogenetic role of TGF-β1/3, demonstrating the efficacy and tolerability of selective TGF-β ligand blockade for improving hemodynamics, remodeling, and survival in multiple experimental PH models.
Collapse
Affiliation(s)
- Lai-Ming Yung
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Ivana Nikolic
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Samuel D Paskin-Flerlage
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | | | | | - Paul B Yu
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
67
|
Samson N, Paulin R. Epigenetics, inflammation and metabolism in right heart failure associated with pulmonary hypertension. Pulm Circ 2017; 7:572-587. [PMID: 28628000 PMCID: PMC5841893 DOI: 10.1177/2045893217714463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
Right ventricular failure (RVF) is the most important prognostic factor for both morbidity and mortality in pulmonary arterial hypertension (PAH), but also occurs in numerous other common diseases and conditions, including left ventricle dysfunction. RVF remains understudied compared with left ventricular failure (LVF). However, right and left ventricles have many differences at the morphological level or the embryologic origin, and respond differently to pressure overload. Therefore, knowledge from the left ventricle cannot be extrapolated to the right ventricle. Few studies have focused on the right ventricle and have permitted to increase our knowledge on the right ventricular-specific mechanisms driving decompensation. Here we review basic principles such as mechanisms accounting for right ventricle hypertrophy, dysfunction, and transition toward failure, with a focus on epigenetics, inflammatory, and metabolic processes.
Collapse
Affiliation(s)
- Nolwenn Samson
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Roxane Paulin
- Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
68
|
Plecitá-Hlavatá L, Tauber J, Li M, Zhang H, Flockton AR, Pullamsetti SS, Chelladurai P, D'Alessandro A, El Kasmi KC, Ježek P, Stenmark KR. Constitutive Reprogramming of Fibroblast Mitochondrial Metabolism in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2017; 55:47-57. [PMID: 26699943 DOI: 10.1165/rcmb.2015-0142oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Remodeling of the distal pulmonary artery wall is a characteristic feature of pulmonary hypertension (PH). In hypoxic PH, the most substantial pathologic changes occur in the adventitia. Here, there is marked fibroblast proliferation and profound macrophage accumulation. These PH fibroblasts (PH-Fibs) maintain a hyperproliferative, apoptotic-resistant, and proinflammatory phenotype in ex vivo culture. Considering that a similar phenotype is observed in cancer cells, where it has been associated, at least in part, with specific alterations in mitochondrial metabolism, we sought to define the state of mitochondrial metabolism in PH-Fibs. In PH-Fibs, pyruvate dehydrogenase was markedly inhibited, resulting in metabolism of pyruvate to lactate, thus consistent with a Warburg-like phenotype. In addition, mitochondrial bioenergetics were suppressed and mitochondrial fragmentation was increased in PH-Fibs. Most importantly, complex I activity was substantially decreased, which was associated with down-regulation of the accessory subunit nicotinamide adenine dinucleotide reduced dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4). Owing to less-efficient ATP synthesis, mitochondria were hyperpolarized and mitochondrial superoxide production was increased. This pro-oxidative status was further augmented by simultaneous induction of cytosolic nicotinamide adenine dinucleotide phosphate reduced oxidase 4. Although acute and chronic exposure to hypoxia of adventitial fibroblasts from healthy control vessels induced increased glycolysis, it did not induce complex I deficiency as observed in PH-Fibs. This suggests that hypoxia alone is insufficient to induce NDUFS4 down-regulation and constitutive abnormalities in complex I. In conclusion, our study provides evidence that, in the pathogenesis of vascular remodeling in PH, alterations in fibroblast mitochondrial metabolism drive distinct changes in cellular behavior, which potentially occur independently of hypoxia.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- 1 Department of Membrane Transport Biophysics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Tauber
- 1 Department of Membrane Transport Biophysics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Min Li
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado
| | - Hui Zhang
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado.,3 Department of Pediatrics, Shengjing Hospital of China Medical, University, Shenyang, China
| | - Amanda R Flockton
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado
| | - Soni Savai Pullamsetti
- 4 Department of Lung Development and Remodeling, University of Giessen and Marburg Lung Center, Bad Nauheim, Germany; and
| | - Prakash Chelladurai
- 4 Department of Lung Development and Remodeling, University of Giessen and Marburg Lung Center, Bad Nauheim, Germany; and
| | | | - Karim C El Kasmi
- 6 Pediatric Gastroenterology, University of Colorado, Denver, Colorado
| | - Petr Ježek
- 1 Department of Membrane Transport Biophysics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kurt R Stenmark
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado
| |
Collapse
|
69
|
Chen Z, Liu M, Li L, Chen L. Involvement of the Warburg effect in non-tumor diseases processes. J Cell Physiol 2017; 233:2839-2849. [PMID: 28488732 DOI: 10.1002/jcp.25998] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
Warburg effect, as an energy shift from mitochondrial oxidative phosphorylation to aerobic glycolysis, is extensively found in various cancers. Interestingly, increasing researchers show that Warburg effect plays a crucial role in non-tumor diseases. For instance, inhibition of Warburg effect can alleviate pulmonary vascular remodeling in the process of pulmonary hypertension (PH). Interference of Warburg effect improves mitochondrial function and cardiac function in the process of cardiac hypertrophy and heart failure. Additionally, the Warburg effect induces vascular smooth muscle cell proliferation and contributes to atherosclerosis. Warburg effect may also involve in axonal damage and neuronal death, which are related with multiple sclerosis. Furthermore, Warburg effect significantly promotes cell proliferation and cyst expansion in polycystic kidney disease (PKD). Besides, Warburg effect relieves amyloid β-mediated cell death in Alzheimer's disease. And Warburg effect also improves the mycobacterium tuberculosis infection. Finally, we also introduce some glycolytic agonists. This review focuses on the newest researches about the role of Warburg effect in non-tumor diseases, including PH, tuberculosis, idiopathic pulmonary fibrosis (IPF), failing heart, cardiac hypertrophy, atherosclerosis, Alzheimer's diseases, multiple sclerosis, and PKD. Obviously, Warburg effect may be a potential therapeutic target for those non-tumor diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
70
|
Bertero T, Rezzonico R, Pottier N, Mari B. Impact of MicroRNAs in the Cellular Response to Hypoxia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:91-158. [PMID: 28729029 DOI: 10.1016/bs.ircmb.2017.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mammalian cells, hypoxia, or inadequate oxygen availability, regulates the expression of a specific set of MicroRNAs (MiRNAs), termed "hypoxamiRs." Over the past 10 years, the appreciation of the importance of hypoxamiRs in regulating the cellular adaptation to hypoxia has grown dramatically. At the cellular level, each hypoxamiR, including the master hypoxamiR MiR-210, can simultaneously regulate expression of multiple target genes in order to fine-tune the adaptive response of cells to hypoxia. This review addresses the complex molecular regulation of MiRNAs in both physiological and pathological conditions of low oxygen adaptation and the multiple functions of hypoxamiRs in various hypoxia-associated biological processes, including apoptosis, survival, proliferation, angiogenesis, inflammation, and metabolism. From a clinical perspective, we also discuss the potential use of hypoxamiRs as new biomarkers and/or therapeutic targets in cancer and aging-associated diseases including cardiovascular and fibroproliferative disorders.
Collapse
Affiliation(s)
- Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Nice, France
| | - Roger Rezzonico
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Sophia-Antipolis, France
| | | | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Sophia-Antipolis, France.
| |
Collapse
|
71
|
Harvey LD, Chan SY. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. J Clin Med 2017; 6:jcm6040043. [PMID: 28375184 PMCID: PMC5406775 DOI: 10.3390/jcm6040043] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) is an enigmatic vascular disorder characterized by pulmonary vascular remodeling and increased pulmonary vascular resistance, ultimately resulting in pressure overload, dysfunction, and failure of the right ventricle. Current medications for PH do not reverse or prevent disease progression, and current diagnostic strategies are suboptimal for detecting early-stage disease. Thus, there is a substantial need to develop new diagnostics and therapies that target the molecular origins of PH. Emerging investigations have defined metabolic aberrations as fundamental and early components of disease manifestation in both pulmonary vasculature and the right ventricle. As such, the elucidation of metabolic dysregulation in pulmonary hypertension allows for greater therapeutic insight into preventing, halting, or even reversing disease progression. This review will aim to discuss (1) the reprogramming and dysregulation of metabolic pathways in pulmonary hypertension; (2) the emerging therapeutic interventions targeting these metabolic pathways; and (3) further innovation needed to overcome barriers in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Lloyd D Harvey
- Medical Scientist Training Program, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Stephen Y Chan
- Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
72
|
Maarman GJ, Schulz R, Sliwa K, Schermuly RT, Lecour S. Novel putative pharmacological therapies to protect the right ventricle in pulmonary hypertension: a review of current literature. Br J Pharmacol 2017; 174:497-511. [PMID: 28099680 DOI: 10.1111/bph.13721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension (PH) is defined by elevated mean pulmonary artery pressure following the pathological remodelling of small pulmonary arteries. An increase in right ventricular (RV) afterload results in RV hypertrophy and RV failure. The pathophysiology of PH, and RV remodelling in particular, is not well understood, thus explaining, at least in part, why current PH therapies have a limited effect. Existing therapies mostly target the pulmonary circulation. Because the remodelled RV fails to support normal cardiac function, patients eventually succumb from RV failure. Developing novel therapies that directly target the function of the RV may therefore benefit patients with PH. In the past decade, several promising studies have investigated novel cardioprotective strategies in experimental models of PH. This review aims to comprehensively discuss and highlight these novel experimental approaches to confer, in the long-term, greater health benefit in patients with PH.
Collapse
Affiliation(s)
- Gerald J Maarman
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karen Sliwa
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ralph Theo Schermuly
- Universities of Giessen and Marburg Lung Centre, Member of the German Lung Centre (DZL), Justus Liebig University Giessen, Giessen, Germany
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
73
|
Nagy BM, Nagaraj C, Egemnazarov B, Kwapiszewska G, Stauber RE, Avian A, Olschewski H, Olschewski A. Lack of ABCG2 Leads to Biventricular Dysfunction and Remodeling in Response to Hypoxia. Front Physiol 2017; 8:98. [PMID: 28270772 PMCID: PMC5318436 DOI: 10.3389/fphys.2017.00098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
Aims: The ATP-binding cassette (ABC)G2 transporter protects the heart from pressure overload-induced ventricular dysfunction but also protects cancer cells from chemotherapeutic agents. It is upregulated in the myocardium of heart failure patients and clears hypoxia-induced intracellular metabolites. This study employs ABCG2 knockout (KO) mice to elucidate the relevance of ABCG2 for cardiac and pulmonary vascular structure and function in chronic hypoxia, and uses human primary cardiac fibroblasts to investigate the potential role of ABCG2 in cardiac fibrosis. Methods and results: ABCG2 KO and control mice (n = 10) were subjected to 4 weeks normoxia or hypoxia. This allowed for investigation of the interaction between genotype and hypoxia (GxH). In hypoxia, KO mice showed pronounced right (RV) and left (LV) ventricular diastolic dysfunction. Compared to normoxia, end-diastolic pressure (EDP) was increased in control vs. KO mice by +1.1 ± 0.3 mmHg vs. +4.8 ± 0.3 mmHg, p for GxH < 0.001 (RV) and +3.9 ± 0.5 mmHg vs. +11.5 ± 1.6 mmHg, p for GxH = 0.110 (LV). The same applied for myocardial fibrosis with +0.3 ± 0.1% vs. 1.3 ± 0.2%, p for GxH = 0.036 (RV) and +0.06 ± 0.03% vs. +0.36 ± 0.08%, p for GxH = 0.002 (LV), whereas systolic function and capillary density was unaffected. ABCG2 deficiency did not influence hypoxia-induced pulmonary hypertension or vascular remodeling. In line with these observations, human cardiac fibroblasts showed increased collagen production upon ABCG2 silencing in hypoxia (p for GxH = 0.04). Conclusion: Here we provide evidence for the first time that ABCG2 membrane transporter can play a crucial role in ventricular dysfunction and fibrosis in hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Bence M Nagy
- Division of Pulmonology, Department of Internal Medicine, Medical University of GrazGraz, Austria; Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria; Institute of Physiology, Medical University of GrazGraz, Austria
| | | | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria; Institute of Physiology, Medical University of GrazGraz, Austria
| | - Rudolf E Stauber
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz Graz, Austria
| | - Alexander Avian
- Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria; Institute for Medical Informatics, Statistics and Documentation, Medical University of GrazGraz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of GrazGraz, Austria; Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular ResearchGraz, Austria; Institute of Physiology, Medical University of GrazGraz, Austria
| |
Collapse
|
74
|
Badlam JB, Bull TM. Steps forward in the treatment of pulmonary arterial hypertension: latest developments and clinical opportunities. Ther Adv Chronic Dis 2017; 8:47-64. [PMID: 28348727 PMCID: PMC5354132 DOI: 10.1177/2040622317693218] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/18/2017] [Indexed: 12/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease that results in narrowing of the small pre-capillary pulmonary arteries leading to elevation of pulmonary artery pressure and pulmonary vascular resistance, subsequent right ventricular failure, and if unchecked, death. Advances in the treatment of PAH over the last two decades have markedly improved survival. These improvements reflect a combination of changes in treatments, improved patient care strategies, and varying disease phenotypes in the PAH population. Currently approved therapies for PAH are directed at the recognized abnormalities within the pulmonary vasculature and include endothelin receptor antagonists, phosphodiesterase-5 inhibitors, soluble guanylate cyclase stimulators, and prostacyclin pathway agents. Most of these drugs have been approved on the basis of short-term trials that mainly demonstrated improvements in exercise capacity. More recently, long-term, event-driven trials of novel drugs have been performed, demonstrating new efficacy parameters. There have also been exciting advances in the understanding of right heart failure pathophysiology in PAH that have the potential to inspire the development of right ventricular targeted therapy and continued discoveries in the heterogeneity of disease and response to treatment has great potential for developing more 'personalized' therapeutic options. In this article, we review the current available data regarding the management of PAH, with an emphasis on the pharmacologic therapies and discussion of novel therapeutic directions for the treatment of this fatal disease.
Collapse
Affiliation(s)
- Jessica B. Badlam
- University of Colorado at Denver - Anschutz Medical Campus, 12700 East 19th Avenue, Mail stop C272, Aurora, CO 80045-0508, USA
| | - Todd M. Bull
- University of Colorado at Denver - Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
75
|
Rogers NM, Sharifi-Sanjani M, Yao M, Ghimire K, Bienes-Martinez R, Mutchler SM, Knupp HE, Baust J, Novelli EM, Ross M, St Croix C, Kutten JC, Czajka CA, Sembrat JC, Rojas M, Labrousse-Arias D, Bachman TN, Vanderpool RR, Zuckerbraun BS, Champion HC, Mora AL, Straub AC, Bilonick RA, Calzada MJ, Isenberg JS. TSP1-CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary arterial vasculopathy and dysfunction. Cardiovasc Res 2017; 113:15-29. [PMID: 27742621 PMCID: PMC5220673 DOI: 10.1093/cvr/cvw218] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/30/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
AIMS Thrombospondin-1 (TSP1) is a ligand for CD47 and TSP1-/- mice are protected from pulmonary hypertension (PH). We hypothesized the TSP1-CD47 axis is upregulated in human PH and promotes pulmonary arterial vasculopathy. METHODS AND RESULTS We analyzed the molecular signature and functional response of lung tissue and distal pulmonary arteries (PAs) from individuals with (n = 23) and without (n = 16) PH. Compared with controls, lungs and distal PAs from PH patients showed induction of TSP1-CD47 and endothelin-1/endothelin A receptor (ET-1/ETA) protein and mRNA. In control PAs, treatment with exogenous TSP1 inhibited vasodilation and potentiated vasoconstriction to ET-1. Treatment of diseased PAs from PH patients with a CD47 blocking antibody improved sensitivity to vasodilators. Hypoxic wild type (WT) mice developed PH and displayed upregulation of pulmonary TSP1, CD47, and ET-1/ETA concurrent with down regulation of the transcription factor cell homolog of the v-myc oncogene (cMyc). In contrast, PH was attenuated in hypoxic CD47-/- mice while pulmonary TSP1 and ET-1/ETA were unchanged and cMyc was overexpressed. In CD47-/- pulmonary endothelial cells cMyc was increased and ET-1 decreased. In CD47+/+ cells, forced induction of cMyc suppressed ET-1 transcript, whereas suppression of cMyc increased ET-1 signaling. Furthermore, disrupting TSP1-CD47 signaling in pulmonary smooth muscle cells abrogated ET-1-stimulated hypertrophy. Finally, a CD47 antibody given 2 weeks after monocrotaline challenge in rats upregulated pulmonary cMyc and improved aberrations in PH-associated cardiopulmonary parameters. CONCLUSIONS In pre-clinical models of PH CD47 targets cMyc to increase ET-1 signaling. In clinical PH TSP1-CD47 is upregulated, and in both, contributes to pulmonary arterial vasculopathy and dysfunction.
Collapse
Affiliation(s)
- Natasha M Rogers
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Division of Renal and Electrolytes, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Starzl Transplant Institute, University of Pittsburgh, PA, USA
| | - Maryam Sharifi-Sanjani
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mingyi Yao
- Department of Pharmaceutical Science, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ 85308, USA
| | - Kedar Ghimire
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Raquel Bienes-Martinez
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Stephanie M Mutchler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Heather E Knupp
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jeffrey Baust
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Enrico M Novelli
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mark Ross
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudette St Croix
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Johannes C Kutten
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Caitlin A Czajka
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - John C Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David Labrousse-Arias
- Hospital of the Princesa, Department of Medicine, Universidad Autónoma, Diego de León, 62 28006 Madrid, Spain
| | - Timothy N Bachman
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rebecca R Vanderpool
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hunter C Champion
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ana L Mora
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Richard A Bilonick
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria J Calzada
- Hospital of the Princesa, Department of Medicine, Universidad Autónoma, Diego de León, 62 28006 Madrid, Spain
| | - Jeffrey S Isenberg
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
76
|
Drogalis-Kim D, Jefferies J, Wilmot I, Alejos J. Right sided heart failure and pulmonary hypertension: New insights into disease mechanisms and treatment modalities. PROGRESS IN PEDIATRIC CARDIOLOGY 2016. [DOI: 10.1016/j.ppedcard.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
77
|
Boehme J, Sun X, Tormos KV, Gong W, Kellner M, Datar SA, Kameny RJ, Yuan JXJ, Raff GW, Fineman JR, Black SM, Maltepe E. Pulmonary artery smooth muscle cell hyperproliferation and metabolic shift triggered by pulmonary overcirculation. Am J Physiol Heart Circ Physiol 2016; 311:H944-H957. [PMID: 27591215 PMCID: PMC5114466 DOI: 10.1152/ajpheart.00040.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022]
Abstract
Vascular cell hyperproliferation and metabolic reprogramming contribute to the pathophysiology of pulmonary arterial hypertension (PAH). An important cause of PAH in children with congenital heart disease (CHD) is increased pulmonary blood flow (PBF). To better characterize this disease course we studied early changes in pulmonary artery smooth muscle cell (PASMC) proliferation and metabolism using a unique ovine model of pulmonary overcirculation. Consistent with PAH in adults, PASMCs derived from 4-wk-old lambs exposed to increased PBF (shunt) exhibited increased rates of proliferation. While shunt PASMCs also exhibited significant decreases in mitochondrial oxygen consumption, membrane potential, and tricarboxylic acid (TCA) cycle function, suggesting a switch to Warburg metabolism as observed in advanced PAH in adults, they unexpectedly demonstrated decreased glycolytic lactate production, likely due to enhanced flux through the pentose phosphate pathway (PPP). This may be a response to the marked increase in NADPH oxidase (Nox) activity and decreased NADPH/NADP+ ratios observed in shunt PASMCs. Consistent with these findings, pharmacological inhibition of Nox activity preferentially slowed the growth of shunt PASMCs in vitro. Our results therefore indicate that PASMC hyperproliferation is observed early in the setting of pulmonary overcirculation and is accompanied by a unique metabolic profile that is independent of HIF-1α, PDHK1, or increased glycolytic flux. Our results also suggest that Nox inhibition may help prevent pulmonary overcirculation-induced PAH in children born with CHD.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Electron Spin Resonance Spectroscopy
- Flow Cytometry
- Fluorescent Antibody Technique
- Glycolysis
- Hypertension, Pulmonary/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Membrane Potential, Mitochondrial
- Metabolomics
- Mitochondria/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/metabolism
- Oxygen Consumption
- Pentose Phosphate Pathway
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- Pulmonary Circulation
- Reactive Oxygen Species/metabolism
- Sheep
- Sheep, Domestic
- Superoxides/metabolism
Collapse
Affiliation(s)
- Jason Boehme
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Xutong Sun
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Kathryn V Tormos
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Wenhui Gong
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Manuela Kellner
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Sanjeev A Datar
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Rebecca Johnson Kameny
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Gary W Raff
- Department of Surgery, University of California Davis, Davis, California
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, California;
| |
Collapse
|
78
|
Sharma S, Ruffenach G, Umar S, Motayagheni N, Reddy ST, Eghbali M. Role of oxidized lipids in pulmonary arterial hypertension. Pulm Circ 2016; 6:261-73. [PMID: 27683603 DOI: 10.1086/687293] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial disease characterized by interplay of many cellular, molecular, and genetic events that lead to excessive proliferation of pulmonary cells, including smooth muscle and endothelial cells; inflammation; and extracellular matrix remodeling. Abnormal vascular changes and structural remodeling associated with PAH culminate in vasoconstriction and obstruction of pulmonary arteries, contributing to increased pulmonary vascular resistance, pulmonary hypertension, and right ventricular failure. The complex molecular mechanisms involved in the pathobiology of PAH are the limiting factors in the development of potential therapeutic interventions for PAH. Over the years, our group and others have demonstrated the critical implication of lipids in the pathogenesis of PAH. This review specifically focuses on the current understanding of the role of oxidized lipids, lipid metabolism, peroxidation, and oxidative stress in the progression of PAH. This review also discusses the relevance of apolipoprotein A-I mimetic peptides and microRNA-193, which are known to regulate the levels of oxidized lipids, as potential therapeutics in PAH.
Collapse
Affiliation(s)
- Salil Sharma
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Grégoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Negar Motayagheni
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a rare disease with poor prognosis and no therapeutics. PAH is characterized by severe remodeling of precapillary pulmonary arteries, leading to increased vascular resistance, pulmonary hypertension compensatory right ventricular hypertrophy, then heart failure and death. PAH pathogenesis shares similarities with carcinogenesis such as excessive cell proliferation, apoptosis resistance, metabolic shifts, or phenotypic transition. Although PAH is not a cancer, comparison of analogous mechanisms between PAH and cancer led to the concept of a cancer-like disease to emerge. MicroRNAs (miRNAs) are small noncoding RNAs involved in the regulation of posttranscriptional gene expression. miRNA dysregulations have been reported as promoter of the development of various diseases including cancers. RECENT FINDINGS Recent studies revealed that miRNA dysregulations also occur in PAH pathogenesis. In PAH, different miRNAs have been implicated to be the main features of PAH pathophysiology (in pulmonary inflammation, vascular remodeling, angiogenesis, and right heart hypertrophy). SUMMARY The review summarizes the implication of miRNA dysregulation in PAH development and discusses the similarities and differences with those observed in cancers.
Collapse
|
80
|
Frille A, Steinhoff KG, Hesse S, Grachtrup S, Wald A, Wirtz H, Sabri O, Seyfarth HJ. Thoracic [18F]fluorodeoxyglucose uptake measured by positron emission tomography/computed tomography in pulmonary hypertension. Medicine (Baltimore) 2016; 95:e3976. [PMID: 27336898 PMCID: PMC4998336 DOI: 10.1097/md.0000000000003976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Positron emission tomography (PET) visualizes increased cellular [F]fluorodeoxyglucose ([F]FDG) uptake. Pulmonary hypertension (PH) is conceived of a proliferative disease of the lung vessels. Increased glucose uptake can be quantified as pulmonary [F]FDG uptake via PET imaging. Because the angioproliferative mechanisms in PH are still in need of further description, the aim of the present study was to investigate whether [F]FDG PET/CT imaging can elucidate these pathophysiologic mechanisms in different etiologies of PH.Patients (n = 109) with end-stage pulmonary disease being evaluated for lung transplant were included in this observational study. Mean standardized uptake value (SUVmean) of predefined regions of interest in lung parenchyma (LP), left (LV), and right ventricle (RV) of the heart, and SUVmax in pulmonary artery (PA) were determined and normalized to liver uptake. These SUV ratios (SUVRs) were compared with results from right heart catheterization (mean pulmonary artery pressure [mPAP], pulmonary vascular resistance [PVR]), and serum N-terminal pro-brain natriuretic peptide. Group comparisons were performed and Pearson correlation coefficients (r) were calculated.The [F]FDG uptake ratios in LP, RV, RV/LV, and PA, but not in LV, were found to be significantly higher in both patients with mPAP ≥25 mm Hg (P = 0.013, P = 0.006, P = 0.049, P = 0.002, P = 0.68, respectively) and with PVR ≥480 dyn·s/cm (P < 0.001, P = 0.045, P < 0.001, P < 0.001, P = 0.26, respectively). The [F]FDG uptake in these regions positively correlated also with mPAP, PVR, and N-terminal pro-brain natriuretic peptide. The SUVR of PA positively correlated with the SUVR of LP and RV (r = 0.55, r = 0.42, respectively).Pulmonary and cardiac [F]FDG uptake in PET imaging positively correlated with the presence and severity of PH in patients with end-stage pulmonary disease. Increased glucose metabolism in the central PAs seems to play a certain role in terms of severity of PH. These results suggest that [F]FDG-PET imaging can help understand the pathophysiology of PH as a proliferative pulmonary disease.
Collapse
Affiliation(s)
- Armin Frille
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | | | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Sabine Grachtrup
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | - Alexandra Wald
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | - Hubert Wirtz
- Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
81
|
Menni C, Migaud M, Glastonbury CA, Beaumont M, Nikolaou A, Small KS, Brosnan MJ, Mohney RP, Spector TD, Valdes AM. Metabolomic profiling to dissect the role of visceral fat in cardiometabolic health. Obesity (Silver Spring) 2016; 24:1380-8. [PMID: 27129722 PMCID: PMC4914926 DOI: 10.1002/oby.21488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/13/2016] [Accepted: 01/29/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Abdominal obesity is associated with increased risk of type 2 diabetes (T2D) and cardiovascular disease. The aim of this study was to assess whether metabolomic markers of T2D and blood pressure (BP) act on these traits via visceral fat (VF) mass. METHODS Metabolomic profiling of 280 fasting plasma metabolites was conducted on 2,401 women from TwinsUK. The overlap was assessed between published metabolites associated with T2D, insulin resistance, or BP and those that were identified to be associated with VF (after adjustment for covariates) measured by dual-energy X-ray absorptiometry. RESULTS In addition to glucose, six metabolites were strongly associated with both VF mass and T2D: lactate and branched-chain amino acids, all of them related to metabolism and the tricarboxylic acid cycle; on average, 38.5% of their association with insulin resistance was mediated by their association with VF mass. Five metabolites were associated with BP and VF mass including the inflammation-associated peptide HWESASXX, the steroid hormone androstenedione, lactate, and palmitate. On average, 29% of their effect on BP was mediated by their association with VF mass. CONCLUSIONS Little overlap was found between the metabolites associated with BP and those associated with insulin resistance via VF mass.
Collapse
Affiliation(s)
- Cristina Menni
- Department of Twin Research and Genetic EpidemiologyKings College LondonLondonUK
| | - Marie Migaud
- School of PharmacyQueen's University BelfastBelfastUK
| | - Craig A. Glastonbury
- Department of Twin Research and Genetic EpidemiologyKings College LondonLondonUK
| | - Michelle Beaumont
- Department of Twin Research and Genetic EpidemiologyKings College LondonLondonUK
| | - Aikaterini Nikolaou
- Department of Twin Research and Genetic EpidemiologyKings College LondonLondonUK
| | - Kerrin S. Small
- Department of Twin Research and Genetic EpidemiologyKings College LondonLondonUK
| | - Mary Julia Brosnan
- Pfizer Worldwide Research and Development, Clinical Research StatisticsGroton, ConnecticutUSA
| | | | - Tim D. Spector
- Department of Twin Research and Genetic EpidemiologyKings College LondonLondonUK
| | - Ana M. Valdes
- Department of Twin Research and Genetic EpidemiologyKings College LondonLondonUK
- Academic Rheumatology Clinical Sciences Building, Nottingham City HospitalNottinghamUK
| |
Collapse
|
82
|
Singh N, Manhas A, Kaur G, Jagavelu K, Hanif K. Inhibition of fatty acid synthase is protective in pulmonary hypertension. Br J Pharmacol 2016; 173:2030-45. [PMID: 27061087 PMCID: PMC4882492 DOI: 10.1111/bph.13495] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 03/21/2016] [Accepted: 03/26/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE In pulmonary hypertension (PH), similar to cancer, there is altered energy metabolism, apoptosis resistance and cellular proliferation leading to pulmonary vascular remodelling. Proliferating cells exhibit higher rate of de novo fatty acid synthesis to provide lipids for membrane formation and energy production. As inhibition of de novo fatty acid synthesis proved protective in cancer experimentally, therefore, it was hypothesized that modulation of de novo fatty acid synthesis by inhibition of fatty acid synthase (FAS) may prove beneficial for PH. EXPERIMENTAL APPROACH For in vitro studies, human pulmonary artery smooth muscle cells (HPASMCs) were exposed to hypoxia and to induce PH in vivo, rats were treated with monocrotaline (MCT). FAS was inhibited by siRNA (60 nM) and C75 (2 mg·kg(-1) , i.p. once a week for 5 weeks) in in vitro and in vivo studies respectively. RESULTS Increased expression and activity of FAS were observed in hypoxic HPASMCs and lungs of MCT-treated rats. Inhibition of FAS increased apoptosis and glucose oxidation, but decreased proliferation and markers of autophagy, glycolysis and insulin resistance in hypoxic HPASMCs. It also improved the mitochondrial functions as evident by increased level of ATP and restoration of normal level of ROS and membrane potential of mitochondria. In MCT-treated rats, FAS inhibition decreased right ventricular pressure, hypertrophy, pulmonary vascular remodelling (increased apoptosis and decreased proliferation of cells) and endothelial dysfunction in lungs. CONCLUSIONS Our results demonstrate that FAS activity is modulated in PH, and its inhibition may provide a new therapeutic approach to treat PH.
Collapse
Affiliation(s)
- Neetu Singh
- Division of PharmacologyCSIR‐Central Drug Research InstituteLucknowIndia
- Academy of Scientific and Innovative ResearchNew DelhiIndia
| | - Amit Manhas
- Division of PharmacologyCSIR‐Central Drug Research InstituteLucknowIndia
| | - Gurpreet Kaur
- Division of PharmacologyCSIR‐Central Drug Research InstituteLucknowIndia
| | - Kumaravelu Jagavelu
- Division of PharmacologyCSIR‐Central Drug Research InstituteLucknowIndia
- Academy of Scientific and Innovative ResearchNew DelhiIndia
| | - Kashif Hanif
- Division of PharmacologyCSIR‐Central Drug Research InstituteLucknowIndia
- Academy of Scientific and Innovative ResearchNew DelhiIndia
| |
Collapse
|
83
|
Sung YK, Yuan K, de Jesus Perez VA. Novel approaches to pulmonary arterial hypertension drug discovery. Expert Opin Drug Discov 2016; 11:407-14. [PMID: 26901465 PMCID: PMC4933595 DOI: 10.1517/17460441.2016.1153625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a rare disorder associated with abnormally elevated pulmonary pressures that, if untreated, leads to right heart failure and premature death. The goal of drug development for PAH is to develop effective therapies that halt, or ideally, reverse the obliterative vasculopathy that results in vessel loss and obstruction of blood flow to the lungs. AREAS COVERED This review summarizes the current approach to candidate discovery in PAH and discusses the currently available drug discovery methods that should be implemented to prioritize targets and obtain a comprehensive pharmacological profile of promising compounds with well-defined mechanisms. EXPERT OPINION To improve the successful identification of leading drug candidates, it is necessary that traditional pre-clinical studies are combined with drug screening strategies that maximize the characterization of biological activity and identify relevant off-target effects that could hinder the clinical efficacy of the compound when tested in human subjects. A successful drug discovery strategy in PAH will require collaboration of clinician scientists with medicinal chemists and pharmacologists who can identify compounds with an adequate safety profile and biological activity against relevant disease mechanisms.
Collapse
Affiliation(s)
- Yon K. Sung
- Division of Pulmonary and Critical Care Medicine, The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford Cardiovascular Institute, Stanford, California
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford Cardiovascular Institute, Stanford, California
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford Cardiovascular Institute, Stanford, California
| |
Collapse
|
84
|
(1)H NMR-Based Analysis of Serum Metabolites in Monocrotaline-Induced Pulmonary Arterial Hypertensive Rats. DISEASE MARKERS 2016; 2016:5803031. [PMID: 27057080 PMCID: PMC4745193 DOI: 10.1155/2016/5803031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/07/2015] [Indexed: 01/18/2023]
Abstract
AIMS To study the changes of the metabolic profile during the pathogenesis in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). METHODS Forty male Sprague-Dawley (SD) rats were randomly divided into 5 groups (n = 8, each). PAH rats were induced by a single dose intraperitoneal injection of 60 mg/kg MCT, while 8 rats given intraperitoneal injection of 1 ml normal saline and scarified in the same day (W0) served as control. Mean pulmonary arterial pressure (mPAP) was measured through catherization. The degree of right ventricular hypertrophy and pulmonary hyperplasia were determined at the end of first to fourth weeks; nuclear magnetic resonance (NMR) spectra of sera were then acquired for the analysis of metabolites. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to discriminate different metabolic profiles. RESULTS The prominent changes of metabolic profiles were seen during these four weeks. Twenty specific metabolites were identified, which were mainly involved in lipid metabolism, glycolysis, energy metabolism, ketogenesis, and methionine metabolism. Profiles of correlation between these metabolites in each stage changed markedly, especially in the fourth week. Highly activated methionine and betaine metabolism pathways were selected by the pathway enrichment analysis. CONCLUSIONS Metabolic dysfunction is involved in the development and progression of PAH.
Collapse
|
85
|
Kudryashova TV, Goncharov DA, Pena A, Ihida-Stansbury K, DeLisser H, Kawut SM, Goncharova EA. Profiling the role of mammalian target of rapamycin in the vascular smooth muscle metabolome in pulmonary arterial hypertension. Pulm Circ 2015; 5:667-80. [PMID: 26697174 DOI: 10.1086/683810] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Increased proliferation and resistance to apoptosis of pulmonary arterial vascular smooth muscle cells (PAVSMCs), coupled with metabolic reprogramming, are key components of pulmonary vascular remodeling, a major and currently irreversible pathophysiological feature of pulmonary arterial hypertension (PAH). We recently reported that activation of mammalian target of rapamycin (mTOR) plays a key role in increased energy generation and maintenance of the proliferative, apoptosis-resistant PAVSMC phenotype in human PAH, but the downstream effects of mTOR activation on PAH PAVSMC metabolism are not clear. Using liquid and gas chromatography-based mass spectrometry, we performed pilot metabolomic profiling of human microvascular PAVSMCs from idiopathic-PAH subjects before and after treatment with the selective adenosine triphosphate-competitive mTOR inhibitor PP242 and from nondiseased lungs. We have shown that PAH PAVSMCs have a distinct metabolomic signature of altered metabolites-components of fatty acid synthesis, deficiency of sugars, amino sugars, and nucleotide sugars-intermediates of protein and lipid glycosylation, and downregulation of key biochemicals involved in glutathione and nicotinamide adenine dinucleotide (NAD) metabolism. We also report that mTOR inhibition attenuated or reversed the majority of the PAH-specific abnormalities in lipogenesis, glycosylation, glutathione, and NAD metabolism without affecting altered polyunsaturated fatty acid metabolism. Collectively, our data demonstrate a critical role of mTOR in major PAH PAVSMC metabolic abnormalities and suggest the existence of de novo lipid synthesis in PAVSMCs in human PAH that may represent a new, important component of disease pathogenesis worthy of future investigation.
Collapse
Affiliation(s)
- Tatiana V Kudryashova
- Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dmitry A Goncharov
- Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andressa Pena
- Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kaori Ihida-Stansbury
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Horace DeLisser
- Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven M Kawut
- Pulmonary Vascular Disease Program and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elena A Goncharova
- Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
86
|
Abstract
Through detailed interrogation of the molecular pathways that contribute to the development of pulmonary arterial hypertension (PAH), the separate but related processes of oxidative stress and cellular metabolic dysfunction have emerged as being critical pathogenic mechanisms that are as yet relatively untargeted therapeutically. In this review, we have attempted to summarize some of the important existing studies, to point out areas of overlap between oxidative stress and metabolic dysfunction, and to do so under the unifying heading of redox biology. We discuss the importance of precision in assessing oxidant signaling versus oxidant injury and why this distinction matters. We endeavor to advance the discussion of carbon-substrate metabolism beyond a focus on glucose and its fate in the cell to encompass other carbon substrates and some of the murkiness surrounding our understanding of how they are handled in different cell types. Finally, we try to bring these ideas together at the level of the mitochondrion and to point out some additional points of possible cognitive dissonance that warrant further experimental probing. The body of beautiful science regarding the molecular and cellular details of redox biology in PAH points to a future that includes clinically useful therapies that target these pathways. To fully realize the potential of these future interventions, we hope that some of the issues raised in this review can be addressed proactively.
Collapse
Affiliation(s)
- Joshua P Fessel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - James D West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
87
|
Bhavanam NP, Failla A, Cho Y, Lockey RF, Kolliputi N. Commentary: The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Front Pharmacol 2015; 6:229. [PMID: 26539114 PMCID: PMC4610201 DOI: 10.3389/fphar.2015.00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/28/2015] [Indexed: 11/15/2022] Open
Affiliation(s)
- Naga P Bhavanam
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Athena Failla
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Young Cho
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Richard F Lockey
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Narasaiah Kolliputi
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| |
Collapse
|
88
|
Colvin KL, Yeager ME. Proteomics of pulmonary hypertension: could personalized profiles lead to personalized medicine? Proteomics Clin Appl 2015; 9:111-20. [PMID: 25408474 DOI: 10.1002/prca.201400157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/13/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a fatal syndrome that arises from a multifactorial and complex background, is characterized by increased pulmonary vascular resistance and right heart afterload, and often leads to cor pulmonale. Over the past decades, remarkable progress has been made in reducing patient symptoms and delaying the progression of the disease. Unfortunately, PH remains a disease with no cure. The substantial heterogeneity of PH continues to be a major limitation to the development of newer and more efficacious therapies. New advances in our understanding of the biological pathways leading to such a complex pathogenesis will require the identification of the important proteins and protein networks that differ between a healthy lung (or right ventricle) and a remodeled lung in an individual with PH. In this article, we present the case for the increased use of proteomics--the study of proteins and protein networks--as a discovery tool for key proteins and protein networks operational in the PH lung. We review recent applications of proteomics in PH, and summarize the biological pathways identified. Finally, we attempt to presage what the future will bring with regard to proteomics in PH and offer our perspectives on the prospects of developing personalized proteomics and custom-tailored therapies.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Pediatrics-Critical Care, University of Colorado Denver, Aurora, CO, USA; Cardiovascular Pulmonary Research, University of Colorado Denver, Aurora, CO, USA; Department of Bioengineering, University of Colorado Denver, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, CO, USA
| | | |
Collapse
|
89
|
Boucherat O, Chabot S, Antigny F, Perros F, Provencher S, Bonnet S. Potassium channels in pulmonary arterial hypertension. Eur Respir J 2015; 46:1167-77. [PMID: 26341985 DOI: 10.1183/13993003.00798-2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder with various origins. All forms of PAH share a common pulmonary arteriopathy characterised by vasoconstriction, remodelling of the pre-capillary pulmonary vessel wall, and in situ thrombosis. Although the pathogenesis of PAH is recognised as a complex and multifactorial process, there is growing evidence that potassium channels dysfunction in pulmonary artery smooth muscle cells is a hallmark of PAH. Besides regulating many physiological functions, reduced potassium channels expression and/or activity have significant effects on PAH establishment and progression. This review describes the molecular mechanisms and physiological consequences of potassium channel modulation. Special emphasis is placed on KCNA5 (Kv1.5) and KCNK3 (TASK1), which are considered to play a central role in determining pulmonary vascular tone and may represent attractive therapeutic targets in the treatment of PAH.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Sophie Chabot
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Fabrice Antigny
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Frédéric Perros
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada UMRS 999, INSERM and Univ. Paris-Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
90
|
Zhao YD, Chu L, Lin K, Granton E, Yin L, Peng J, Hsin M, Wu L, Yu A, Waddell T, Keshavjee S, Granton J, de Perrot M. A Biochemical Approach to Understand the Pathogenesis of Advanced Pulmonary Arterial Hypertension: Metabolomic Profiles of Arginine, Sphingosine-1-Phosphate, and Heme of Human Lung. PLoS One 2015; 10:e0134958. [PMID: 26317340 PMCID: PMC4552732 DOI: 10.1371/journal.pone.0134958] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/16/2015] [Indexed: 11/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disease characterized by persistent precapillary pulmonary hypertension (PH), leading to progressive right heart failure and premature death. The pathological mechanisms underlying this condition remain elusive. Analysis of global metabolomics from lung tissue of patients with PAH (n = 8) and control lung tissue (n = 8) leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted arginine pathways with increased Nitric oxide (NO) and decreased arginine. Our results also showed specific metabolic pathways and genetic profiles with increased Sphingosine-1-phosphate (S1P) metabolites as well as increased Heme metabolites with altered oxidative pathways in the advanced stage of the human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to the vascular remodeling in severe pulmonary hypertension. Profiling metabolomic alterations of the PAH lung has provided a new understanding of the pathogenic mechanisms of PAH, which benefits therapeutic targeting to specific metabolic pathways involved in the progression of PAH.
Collapse
Affiliation(s)
- Yidan D. Zhao
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (YDZ); (MdP)
| | - Lei Chu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen Lin
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Elise Granton
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Li Yin
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jenny Peng
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Michael Hsin
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Amy Yu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Waddell
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - John Granton
- Clinical Studies Resource Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (YDZ); (MdP)
| |
Collapse
|
91
|
Ryan JJ, Archer SL. Emerging concepts in the molecular basis of pulmonary arterial hypertension: part I: metabolic plasticity and mitochondrial dynamics in the pulmonary circulation and right ventricle in pulmonary arterial hypertension. Circulation 2015; 131:1691-702. [PMID: 25964279 DOI: 10.1161/circulationaha.114.006979] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John J Ryan
- From Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City (J.J.R.); and Department of Medicine, Queen's University, Kingston, ON, Canada (S.L.A.)
| | - Stephen L Archer
- From Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City (J.J.R.); and Department of Medicine, Queen's University, Kingston, ON, Canada (S.L.A.).
| |
Collapse
|
92
|
White K, Lu Y, Annis S, Hale AE, Chau BN, Dahlman JE, Hemann C, Opotowsky AR, Vargas SO, Rosas I, Perrella MA, Osorio JC, Haley KJ, Graham BB, Kumar R, Saggar R, Saggar R, Wallace WD, Ross DJ, Khan OF, Bader A, Gochuico BR, Matar M, Polach K, Johannessen NM, Prosser HM, Anderson DG, Langer R, Zweier JL, Bindoff LA, Systrom D, Waxman AB, Jin RC, Chan SY. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol Med 2015; 7:695-713. [PMID: 25825391 PMCID: PMC4459813 DOI: 10.15252/emmm.201404511] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 12/03/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR-210-ISCU1/2 axis cause Fe-S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR-210 and repression of the miR-210 targets ISCU1/2 down-regulated Fe-S levels. In mouse and human vascular and endothelial tissue affected by PH, miR-210 was elevated accompanied by decreased ISCU1/2 and Fe-S integrity. In mice, miR-210 repressed ISCU1/2 and promoted PH. Mice deficient in miR-210, via genetic/pharmacologic means or via an endothelial-specific manner, displayed increased ISCU1/2 and were resistant to Fe-S-dependent pathophenotypes and PH. Similar to hypoxia or miR-210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise-induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR-210-ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe-S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings.
Collapse
Affiliation(s)
- Kevin White
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu Lu
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sofia Annis
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew E Hale
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - James E Dahlman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Craig Hemann
- The Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Alexander R Opotowsky
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivan Rosas
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan C Osorio
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kathleen J Haley
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brian B Graham
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO, USA
| | - Rahul Kumar
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO, USA
| | - Rajan Saggar
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rajeev Saggar
- Department of Cardiothoracic Surgery, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - W Dean Wallace
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David J Ross
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Omar F Khan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Bader
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Daniel G Anderson
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jay L Zweier
- The Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - David Systrom
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aaron B Waxman
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard C Jin
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Y Chan
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
93
|
Goveia J, Stapor P, Carmeliet P. Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO Mol Med 2015; 6:1105-20. [PMID: 25063693 PMCID: PMC4197858 DOI: 10.15252/emmm.201404156] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The endothelium is the orchestral conductor of blood vessel function. Pathological blood vessel formation (a process termed pathological angiogenesis) or the inability of endothelial cells (ECs) to perform their physiological function (a condition known as EC dysfunction) are defining features of various diseases. Therapeutic intervention to inhibit aberrant angiogenesis or ameliorate EC dysfunction could be beneficial in diseases such as cancer and cardiovascular disease, respectively, but current strategies have limited efficacy. Based on recent findings that pathological angiogenesis and EC dysfunction are accompanied by EC-specific metabolic alterations, targeting EC metabolism is emerging as a novel therapeutic strategy. Here, we review recent progress in our understanding of how EC metabolism is altered in disease and discuss potential metabolic targets and strategies to reverse EC dysfunction and inhibit pathological angiogenesis.
Collapse
Affiliation(s)
- Jermaine Goveia
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven, Belgium Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center VIB, Leuven, Belgium
| | - Peter Stapor
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven, Belgium Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven, Belgium Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center VIB, Leuven, Belgium
| |
Collapse
|
94
|
Stenmark KR, Tuder RM, El Kasmi KC. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension. J Appl Physiol (1985) 2015; 119:1164-72. [PMID: 25930027 DOI: 10.1152/japplphysiol.00283.2015] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a complex, multifactorial syndrome that remains poorly understood despite decades of research. PH is characterized by profound pulmonary artery (PA) remodeling that includes significant fibro-proliferative and inflammatory changes of the PA adventitia. In line with the emerging concept that PH shares key features with cancer, recent work centers on the idea that PH results from a multistep process driven by reprogramming of gene-expression patterns that govern changes in cell metabolism, inflammation, and proliferation. Data demonstrate that in addition to PA endothelial cells and smooth muscle cells, adventitial fibroblasts from animals with experimental hypoxic PH and from humans with PH (hereafter, termed PH-Fibs) exhibit proinflammatory activation, increased proliferation, and apoptosis resistance, all in the context of metabolic reprogramming to aerobic glycolysis. PH-Fibs can also recruit, retain, and activate naïve macrophages (Mϕ) toward a proinflammatory/proremodeling phenotype through secretion of chemokines, cytokines, and glycolytic metabolites, among which IL-6 and lactate play key roles. Furthermore, these fibroblast-activated Mϕ (hereafter, termed FAMϕ) exhibit aerobic glycolysis together with high expression of arginase 1, Vegfa, and I1lb, all of which require hypoxia-inducible factor 1α and STAT3 signaling. Strikingly, in situ, the adventitial Mϕ phenotype in the remodeled PA closely resembles the Mϕ phenotype induced by fibroblasts in vitro (FAMϕ), suggesting that FAMϕ crosstalk involving metabolic and inflammatory signals is a critical, pathogenetic component of vascular remodeling. This review discusses metabolic and inflammatory changes in fibroblasts and Mϕ in PH with the goal of raising ideas about new interventions to abrogate remodeling in hypoxic forms of PH.
Collapse
Affiliation(s)
- Kurt R Stenmark
- Division of Critical Care Medicine, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Denver, Colorado; Cardiovascular Pulmonary Research Laboratories, Department of Medicine, University of Colorado, Anschutz Medical Campus, Denver, Colorado; and
| | - Rubin M Tuder
- Program in Translational Lung Research, Department of Medicine, Division of Pulmonary Sciences, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Karim C El Kasmi
- Division of Gastroenterology, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| |
Collapse
|
95
|
Haslip M, Dostanic I, Huang Y, Zhang Y, Russell KS, Jurczak MJ, Mannam P, Giordano F, Erzurum SC, Lee PJ. Endothelial uncoupling protein 2 regulates mitophagy and pulmonary hypertension during intermittent hypoxia. Arterioscler Thromb Vasc Biol 2015; 35:1166-78. [PMID: 25814675 DOI: 10.1161/atvbaha.114.304865] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/10/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Pulmonary hypertension (PH) is a process of lung vascular remodeling, which can lead to right heart dysfunction and significant morbidity. The underlying mechanisms leading to PH are not well understood, and therapies are limited. Using intermittent hypoxia (IH) as a model of oxidant-induced PH, we identified an important role for endothelial cell mitophagy via mitochondrial uncoupling protein 2 (Ucp2) in the development of IH-induced PH. APPROACH AND RESULTS Ucp2 endothelial knockout (VE-KO) and Ucp2 Flox (Flox) mice were subjected to 5 weeks of IH. Ucp2 VE-KO mice exhibited higher right ventricular systolic pressure and worse right heart hypertrophy, as measured by increased right ventricle weight/left ventricle plus septal weight (RV/LV+S) ratio, at baseline and after IH. These changes were accompanied by increased mitophagy. Primary mouse lung endothelial cells transfected with Ucp2 siRNA and subjected to cyclic exposures to CoCl2 (chemical hypoxia) showed increased mitophagy, as measured by PTEN-induced putative kinase 1 and LC3BII/I ratios, decreased mitochondrial biogenesis, and increased apoptosis. Similar results were obtained in primary lung endothelial cells isolated from VE-KO mice. Moreover, silencing PTEN-induced putative kinase 1 in the endothelium of Ucp2 knockout mice, using endothelial-targeted lentiviral silencing RNA in vivo, prevented IH-induced PH. Human pulmonary artery endothelial cells from people with PH demonstrated changes similar to Ucp2-silenced mouse lung endothelial cells. CONCLUSIONS The loss of endothelial Ucp2 leads to excessive PTEN-induced putative kinase 1-induced mitophagy, inadequate mitochondrial biosynthesis, and increased apoptosis in endothelium. An endothelial Ucp2-PTEN-induced putative kinase 1 axis may be effective therapeutic targets in PH.
Collapse
Affiliation(s)
- Maria Haslip
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Iva Dostanic
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Yan Huang
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Yi Zhang
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Kerry S Russell
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Michael J Jurczak
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Praveen Mannam
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Frank Giordano
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Serpil C Erzurum
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.)
| | - Patty J Lee
- From the Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine (M.H., I.D., Y.Z., P.M., P.J.L.), Section of Cardiovascular Disease (Y.H., K.S.R, F.G.), and Section of Endocrinology and Metabolism (M.J.J.), Yale University School of Medicine, New Haven, CT; and Department of Pathobiology, Lerner Research Institute and Respiratory Institute, Cleveland Clinic, OH (S.C.E.).
| |
Collapse
|
96
|
Chettimada S, Gupte R, Rawat D, Gebb SA, McMurtry IF, Gupte SA. Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2015; 308:L287-300. [PMID: 25480333 PMCID: PMC4338932 DOI: 10.1152/ajplung.00229.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/01/2014] [Indexed: 11/22/2022] Open
Abstract
Severe pulmonary hypertension is a debilitating disease with an alarmingly low 5-yr life expectancy. Hypoxia, one of the causes of pulmonary hypertension, elicits constriction and remodeling of the pulmonary arteries. We now know that pulmonary arterial remodeling is a consequence of hyperplasia and hypertrophy of pulmonary artery smooth muscle (PASM), endothelial, myofibroblast, and stem cells. However, our knowledge about the mechanisms that cause these cells to proliferate and hypertrophy in response to hypoxic stimuli is still incomplete, and, hence, the treatment for severe pulmonary arterial hypertension is inadequate. Here we demonstrate that the activity and expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, are increased in hypoxic PASM cells and in lungs of chronic hypoxic rats. G6PD overexpression and -activation is stimulated by H2O2. Increased G6PD activity contributes to PASM cell proliferation by increasing Sp1 and hypoxia-inducible factor 1α (HIF-1α), which directs the cells to synthesize less contractile (myocardin and SM22α) and more proliferative (cyclin A and phospho-histone H3) proteins. G6PD inhibition with dehydroepiandrosterone increased myocardin expression in remodeled pulmonary arteries of moderate and severe pulmonary hypertensive rats. These observations suggest that altered glucose metabolism and G6PD overactivation play a key role in switching the PASM cells from the contractile to synthetic phenotype by increasing Sp1 and HIF-1α, which suppresses myocardin, a key cofactor that maintains smooth muscle cell in contractile state, and increasing hypoxia-induced PASM cell growth, and hence contribute to pulmonary arterial remodeling and pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Sukrutha Chettimada
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Rakhee Gupte
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Dhwajbahadur Rawat
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sarah A Gebb
- Department of Cell Biology and Neurosciences, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ivan F McMurtry
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama; Department of Medicine, College of Medicine, University of South Alabama, Mobile, Alabama; and Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sachin A Gupte
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
97
|
Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 2014; 308:L229-52. [PMID: 25416383 DOI: 10.1152/ajplung.00238.2014] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.
Collapse
Affiliation(s)
- Steven C Pugliese
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado;
| | - Jens M Poth
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mehdi A Fini
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; and
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
98
|
Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat Med 2014; 20:1289-300. [DOI: 10.1038/nm.3695] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/18/2014] [Indexed: 12/15/2022]
|
99
|
Abstract
SIGNIFICANCE Chronic hypoxia can drive maladaptive responses in numerous organ systems, leading to a multitude of chronic mammalian diseases. Oxygen homeostasis is intimately linked with mitochondrial metabolism, and dysfunction in these systems can combine to form the backbone of hypoxic-ischemic injury in multiple tissue beds. Increased appreciation of the crucial roles of hypoxia-associated miRNA (hypoxamirs) in metabolism adds a new dimension to our understanding of the regulation of hypoxia-induced disease. RECENT ADVANCES Myriad factors related to glycolysis (e.g., aldolase A and hexokinase II), tricarboxylic acid cycle function (e.g., glutaminase and iron-sulfur cluster assembly protein 1/2), and apoptosis (e.g., p53) have been recently implicated as targets of hypoxamirs. In addition, several hypoxamirs have been implicated in the regulation of the master transcription factor of hypoxia, hypoxia-inducible factor-1α, clarifying how the cellular program of hypoxia is sustained and resolved. CRITICAL ISSUES Central to the discussion of metabolic change in hypoxia is the Warburg effect, a shift toward anaerobic metabolism that persists after normal oxygen levels have been restored. Many newly discovered targets of hypoxia-driven microRNA converge on pathways known to be involved in this pathological phenomenon and the apoptosis-resistant phenotype associated with it. FUTURE DIRECTIONS The often synergistic functions of miRNA may make them ideal therapeutic targets. The use of antisense inhibitors is currently being considered in diseases in which hypoxia and metabolic dysregulation predominate. In addition, exploration of pleiotripic miRNA functions will likely continue to offer unique insights into the mechanistic relationships of their downstream target pathways and associated hypoxic phenotypes.
Collapse
Affiliation(s)
- Katherine A Cottrill
- Division of Cardiovascular Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital , Boston, Massachusetts
| | | | | |
Collapse
|
100
|
Almodovar S. The complexity of HIV persistence and pathogenesis in the lung under antiretroviral therapy: challenges beyond AIDS. Viral Immunol 2014; 27:186-99. [PMID: 24797368 DOI: 10.1089/vim.2013.0130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antiretroviral therapy (ART) represents a significant milestone in the battle against AIDS. However, we continue learning about HIV and confronting challenges 30 years after its discovery. HIV has cleverly tricked both the host immune system and ART. First, the many HIV subtypes and recombinant forms have different susceptibilities to antiretroviral drugs, which may represent an issue in countries where ART is just being introduced. Second, even under the suppressive pressures of ART, HIV still increases inflammatory mediators, deregulates apoptosis and proliferation, and induces oxidative stress in the host. Third, the preference of HIV for CXCR4 as a co-receptor may also have noxious outcomes, including potential malignancies. Furthermore, HIV still replicates cryptically in anatomical reservoirs, including the lung. HIV impairs bronchoalveolar T-lymphocyte and macrophage immune responses, rendering the lung susceptible to comorbidities. In addition, HIV-infected individuals are significantly more susceptible to long-term HIV-associated complications. This review focuses on chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension, and lung cancer. Almost two decades after the advent of highly active ART, we now know that HIV-infected individuals on ART live as long as the uninfected population. Fortunately, its availability is rapidly increasing in low- and middle-income countries. Nevertheless, ART is not risk-free: the developed world is facing issues with antiretroviral drug toxicity, resistance, and drug-drug interactions, while developing countries are confronting issues with immune reconstitution inflammatory syndrome. Several aspects of the complexity of HIV persistence and challenges with ART are discussed, as well as suggestions for new avenues of research.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|