51
|
Wang LT, Yen BL, Wang HH, Chao YY, Lee W, Huang LY, Chiu SK, Siu LK, Liu KJ, Sytwu HK, Yen ML. Placental mesenchymal stem cells boost M2 alveolar over M1 bone marrow macrophages via IL-1β in Klebsiella-mediated acute respiratory distress syndrome. Thorax 2022; 78:504-514. [PMID: 35450943 PMCID: PMC10176360 DOI: 10.1136/thoraxjnl-2021-217928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/30/2022] [Indexed: 11/03/2022]
Abstract
RATIONALE Acute respiratory distress syndrome (ARDS) is a lethal complication of severe bacterial pneumonia due to the inability to dampen overexuberant immune responses without compromising pathogen clearance. Both of these processes involve tissue-resident and bone marrow (BM)-recruited macrophage (MΦ) populations which can be polarised to have divergent functions. Surprisingly, despite the known immunomodulatory properties of mesenchymal stem cells (MSCs), simultaneous interactions with tissue-resident and recruited BMMΦ populations are largely unexplored. OBJECTIVES We assessed the therapeutic use of human placental MSCs (PMSCs) in severe bacterial pneumonia with elucidation of the roles of resident alveolar MΦs (AMΦs) and BMMΦs. METHODS We developed a lethal, murine pneumonia model using intratracheal infection of a clinically relevant Klebsiella pneumoniae (KP) strain with subsequent intravenous human PMSC treatment. Pulmonary AMΦ and recruited BMMΦ analyses, histological evaluation, bacterial clearance and mice survival were assessed. To elucidate the role of resident AMΦs in improving outcome, we performed AMΦ depletion in the KP-pneumonia model with intratracheal clodronate pretreatment. MEASUREMENTS AND MAIN RESULTS Human PMSC treatment decreased tissue injury and improved survival of severe KP-pneumonia mice by decreasing the presence and function of recruited M1 BMMΦ while preserving M2 AMΦs and enhancing their antibacterial functions. Interestingly, PMSC therapy failed to rescue AMΦ-depleted mice with KP pneumonia, and PMSC-secreted IL-1β was identified as critical in increasing AMΦ antibacterial activities to significantly improve pathogen clearance-especially bacteraemia-and survival. CONCLUSIONS Human PMSC treatment preferentially rescued resident M2 AMΦs over recruited M1 BMMΦs with overall M2 polarisation to improve KP-related ARDS survival.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes, Zhunan, Taiwan .,Department of Obstetrics & Gynecology, Cathay General Hospital Shiji, New Taipei, Taiwan
| | - Hsiu-Huan Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ying-Yin Chao
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wei Lee
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes, Zhunan, Taiwan.,Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Li-Yueh Huang
- National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Kang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Infection, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - L Kristopher Siu
- National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, Zhunan, Taiwan.,Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan.,Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan, Taiwan.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, National Health Research Institutes, Zhunan, Taiwan.,Graduate Institute of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| |
Collapse
|
52
|
Li J, Wang Q, An Y, Chen X, Xing Y, Deng Q, Li Z, Wang S, Dai X, Liang N, Hou Y, Yang H, Shang Z. Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Mesenchymal Stem/Stromal Cells Derived from Human Placenta. Front Cell Dev Biol 2022; 10:836887. [PMID: 35450295 PMCID: PMC9017713 DOI: 10.3389/fcell.2022.836887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem/stromal cells derived from placenta (PMSCs) are an attractive source for regenerative medicine because of their multidifferentiation potential and immunomodulatory capabilities. However, the cellular and molecular heterogeneity of PMSCs has not been fully characterized. Here, we applied single-cell RNA sequencing (scRNA-seq) and assay for transposase-accessible chromatin sequencing (scATAC-seq) techniques to cultured PMSCs from human full-term placenta. Based on the inferred characteristics of cell clusters, we identify several distinct subsets of PMSCs with specific characteristics, including immunomodulatory-potential and highly proliferative cell states. Furthermore, integrative analysis of gene expression and chromatin accessibility showed a clearer chromatin accessibility signature than those at the transcriptional level on immunomodulatory-related genes. Cell cycle gene-related heterogeneity can be more easily distinguished at the transcriptional than the chromatin accessibility level in PMSCs. We further reveal putative subset-specific cis-regulatory elements regulating the expression of immunomodulatory- and proliferation-related genes in the immunomodulatory-potential and proliferative subpopulations, respectively. Moreover, we infer a novel transcription factor PRDM1, which might play a crucial role in maintaining immunomodulatory capability by activating PRDM1-regulon loop. Collectively, our study first provides a comprehensive and integrative view of the transcriptomic and epigenomic features of PMSCs, which paves the way for a deeper understanding of cellular heterogeneity and offers fundamental biological insight of PMSC subset-based cell therapy.
Collapse
Affiliation(s)
- Jinlu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Quanlei Wang
- BGI-Shenzhen, Shenzhen, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China
| | | | | | - Yanan Xing
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Zelong Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Shengpeng Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Xi Dai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Zhouchun Shang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- BGI College, Northwest University, Xi’an, China
- *Correspondence: Zhouchun Shang,
| |
Collapse
|
53
|
Human Amnion-Derived MSCs Alleviate Acute Lung Injury and Hinder Pulmonary Fibrosis Caused by Paraquat in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3932070. [PMID: 35345827 PMCID: PMC8957415 DOI: 10.1155/2022/3932070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
Abstract
Methods First, the purity of hAD-MSCs was determined by morphological observation and FCM, and the effects on the survival of paraquat-poisoned Sprague-Dawley rats were observed. All rats were randomly divided into three groups, defined as the sham control group (n = 8), model group (n = 15), and hAD-MSC-transplanted group (n = 17). Pneumonocyte damage and inflammatory cell infiltration were investigated in the three groups of rats, untreated control, paraquat only, and paraquat+hAD-MSC transplanted, using H&E staining. Fibrosis was investigated in three groups of rats using Masson's trichrome staining and Sirius red staining. The profibrotic factor TGF-β1, the composition of fibrotic collagen HYP, and the hAD-MSC-secreted immunosuppressive factor HLA-G5 in serum were investigated in the three groups of rats using ELISA. Furthermore, the distribution of hAD-MSCs was investigated in the three groups of rats using immunohistochemistry and hematoxylin staining. Results The hAD-MSCs exhibited typical hallmarks of MSCs, improved the state of being and survival of paraquat-poisoned rats, reduced both lung injury and inflammation, and inhibited the progression of pulmonary fibrosis by decreasing the deposition of collagen and the secretion of both TGF-β1 and HYP. The hAD-MSCs could survive in damaged lungs and secreted appropriate amounts of HLA-G5 into the serum. Conclusion The obtained results indicate that hAD-MSCs used to treat paraquat-induced lung injury may work through anti-inflammatory and immunosuppressive pathways and the downregulation of profibrotic elements. This study suggests that the transplantation of hAD-MSCs is a promising therapeutic approach for the treatment of paraquat-intoxicated patients.
Collapse
|
54
|
Cellular therapies for the treatment and prevention of SARS-CoV-2 infection. Blood 2022; 140:208-221. [PMID: 35240679 PMCID: PMC8896869 DOI: 10.1182/blood.2021012249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Patients with blood disorders who are immune suppressed are at increased risk for infection with severe acute respiratory syndrome coronavirus 2. Sequelae of infection can include severe respiratory disease and/or prolonged duration of viral shedding. Cellular therapies may protect these vulnerable patients by providing antiviral cellular immunity and/or immune modulation. In this recent review of the field, phase 1/2 trials evaluating adoptive cellular therapies with virus-specific T cells or natural killer cells are described along with trials evaluating the safety, feasibility, and preliminary efficacy of immune modulating cellular therapies including regulatory T cells and mesenchymal stromal cells. In addition, the immunologic basis for these therapies is discussed.
Collapse
|
55
|
Razi S, Molavi Z, Mirmotalebisohi SA, Niknam Z, Sameni M, Niazi V, Adibi A, Yazdani M, Ranjbar MM, Zali H. Mesenchymal Stem Cells in the Treatment of New Coronavirus Pandemic: A Novel Promising Therapeutic Approach. Adv Pharm Bull 2022; 12:206-216. [PMID: 35620342 PMCID: PMC9106958 DOI: 10.34172/apb.2022.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
After severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) outbreaks, coronavirus disease 2019 (COVID-19) is the third coronavirus epidemic that soon turned into a pandemic. This virus causes acute respiratory syndrome in infected people. The mortality rate of SARS-CoV-2 infection will probably rise unless efficient treatments or vaccines are developed. The global funding and medical communities have started performing more than five hundred clinical examinations on a broad spectrum of repurposed drugs to acquire effective treatments. Besides, other novel treatment approaches have also recently emerged, including cellular host-directed therapies. They counteract the unwanted responses of the host immune system that led to the severe pathogenesis of SARS-CoV-2. This brief review focuses on mesenchymal stem cell (MSC) principles in treating the COVID-19. The US clinical trials database and the world health organization database for clinical trials have reported 82 clinical trials (altogether) exploring the effects of MSCs in COVID-19 treatment. MSCs also had better be tried for treating other pathogens worldwide. MSC treatment may have the potential to end the high mortality rate of COVID-19. Besides, it also limits the long-term inability of survivors.
Collapse
Affiliation(s)
- Sara Razi
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirjafar Adibi
- Departments of Orthopedics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdani
- Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
56
|
Li J, Peng Q, Yang R, Li K, Zhu P, Zhu Y, Zhou P, Szabó G, Zheng S. Application of Mesenchymal Stem Cells During Machine Perfusion: An Emerging Novel Strategy for Organ Preservation. Front Immunol 2022; 12:713920. [PMID: 35024039 PMCID: PMC8744145 DOI: 10.3389/fimmu.2021.713920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Although solid organ transplantation remains the definitive management for patients with end-stage organ failure, this ultimate treatment has been limited by the number of acceptable donor organs. Therefore, efforts have been made to expand the donor pool by utilizing marginal organs from donation after circulatory death or extended criteria donors. However, marginal organs are susceptible to ischemia-reperfusion injury (IRI) and entail higher requirements for organ preservation. Recently, machine perfusion has emerged as a novel preservation strategy for marginal grafts. This technique continually perfuses the organs to mimic the physiologic condition, allows the evaluation of pretransplant graft function, and more excitingly facilitates organ reconditioning during perfusion with pharmacological, gene, and stem cell therapy. As mesenchymal stem cells (MSCs) have anti-oxidative, immunomodulatory, and regenerative properties, mounting studies have demonstrated the therapeutic effects of MSCs on organ IRI and solid organ transplantation. Therefore, MSCs are promising candidates for organ reconditioning during machine perfusion. This review provides an overview of the application of MSCs combined with machine perfusion for lung, kidney, liver, and heart preservation and reconditioning. Promising preclinical results highlight the potential clinical translation of this innovative strategy to improve the quality of marginal grafts.
Collapse
Affiliation(s)
- Jiale Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinbao Peng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ronghua Yang
- Department of Burn Surgery and Skin Regeneration, The First People's Hospital of Foshan, Foshan, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yufeng Zhu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
57
|
Keshtkar S, Kaviani M, Soleimanian S, Azarpira N, Asvar Z, Pakbaz S. Stem Cell-Derived Exosome as Potential Therapeutics for Microbial Diseases. Front Microbiol 2022; 12:786111. [PMID: 35237239 PMCID: PMC8882917 DOI: 10.3389/fmicb.2021.786111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes, as the smallest extracellular vesicles that carry a cargo of nucleic acids, lipids, and proteins and mediate intercellular communication, have attracted much attention in diagnosis and treatment in the field of medicine. The contents of exosomes vary depending on the cell type and physiological conditions. Among exosomes derived from several cell types, stem cell-derived exosomes (stem cell-Exo) are increasingly being explored due to their immunomodulatory properties, regenerative capacity, anti-inflammatory and anti-microbial functions. Administration of stem cell-Exo, as a cell-free therapy for various diseases, has gained great promise. Indeed, the advantages of exosomes secreted from stem cells outweigh those of their parent cells owing to their small size, high stability, less immunogenicity, no risk of tumorigenesis, and easier condition for storage. Recently, the use of stem cell-Exo has been proposed in the field of microbial diseases. Pathogens including bacteria, viruses, fungi, and parasites can cause various diseases in humans with acute and chronic complications, sometimes resulting in mortality. On the other hand, treatments based on antibiotics and other chemical compounds have many side effects and the strains become resistant to drugs in some cases. Hence, this review aimed to highlight the effect of stem cell-derived extracellular vesicles including stem cell-Exo on microbial diseases. Although most published studies are preclinical, the avenue of clinical application of stem cell-Exo is under way to reach clinical applications. The challenges ahead of this cell-free treatment that might be applied as a therapeutic alternative to stem cells for translation from bench to bed were emphasized, as well.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
58
|
Protease Activated Receptors: A Pathway to Boosting Mesenchymal Stromal Cell Therapeutic Efficacy in Acute Respiratory Distress Syndrome? Int J Mol Sci 2022; 23:ijms23031277. [PMID: 35163205 PMCID: PMC8836081 DOI: 10.3390/ijms23031277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Acute Respiratory Distress Syndrome is the most common cause of respiratory failure among critically ill patients, and its importance has been heightened during the COVID-19 pandemic. Even with the best supportive care, the mortality rate in the most severe cases is 40–50%, and the only pharmacological agent shown to be of possible benefit has been steroids. Mesenchymal stromal cells (MSCs) have been tested in several pre-clinical models of lung injury and been found to have significant therapeutic benefit related to: (a) potent immunomodulation; (b) secretion of epithelial and endothelial growth factors; and (c) augmentation of host defense to infection. Initial translational efforts have shown signs of promise, but the results have not yielded the anticipated outcomes. One potential reason is the relatively low survival of MSCs in inflammatory conditions as shown in several studies. Therefore, strategies to boost the survival of MSCs are needed to enhance their therapeutic effect. Protease-activated receptors (PARs) may represent one such possibility as they are G-protein coupled receptors expressed by MSCs and control several facets of cell behavior. This review summarizes some of the existing literature about PARs and MSCs and presents possible future areas of investigation in order to develop potential, PAR-modified MSCs with enhanced therapeutic efficiency.
Collapse
|
59
|
Wu X, Jin S, Ding C, Wang Y, He D, Liu Y. Mesenchymal Stem Cell-Derived Exosome Therapy of Microbial Diseases: From Bench to Bed. Front Microbiol 2022; 12:804813. [PMID: 35046923 PMCID: PMC8761948 DOI: 10.3389/fmicb.2021.804813] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial diseases are a global health threat, leading to tremendous casualties and economic losses. The strategy to treat microbial diseases falls into two broad categories: pathogen-directed therapy (PDT) and host-directed therapy (HDT). As the typical PDT, antibiotics or antiviral drugs directly attack bacteria or viruses through discerning specific molecules. However, drug abuse could result in antimicrobial resistance and increase infectious disease morbidity. Recently, the exosome therapy, as a HDT, has attracted extensive attentions for its potential in limiting infectious complications and targeted drug delivery. Mesenchymal stem cell-derived exosomes (MSC-Exos) are the most broadly investigated. In this review, we mainly focus on the development and recent advances of the application of MSC-Exos on microbial diseases. The review starts with the difficulties and current strategies in antimicrobial treatments, followed by a comprehensive overview of exosomes in aspect of isolation, identification, contents, and applications. Then, the underlying mechanisms of the MSC-Exo therapy in microbial diseases are discussed in depth, mainly including immunomodulation, repression of excessive inflammation, and promotion of tissue regeneration. In addition, we highlight the latest progress in the clinical translation of the MSC-Exo therapy, by summarizing related clinical trials, routes of administration, and exosome modifications. This review will provide fundamental insights and future perspectives on MSC-Exo therapy in microbial diseases from bench to bedside.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
60
|
Advances in Targeting ACE2 for Developing COVID-19 Therapeutics. Ann Biomed Eng 2022; 50:1734-1749. [PMID: 36261668 PMCID: PMC9581451 DOI: 10.1007/s10439-022-03094-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 01/01/2023]
Abstract
Since the onset of the coronavirus pandemic in December 2019, the SARS-CoV-2 virus has accounted for over 6.3 million lives resulting in the demand to develop novel therapeutic approaches to target and treat SARS-CoV-2. Improved understanding of viral entry and infection mechanisms has led to identifying different target receptors to mitigate infection in the host. Researchers have been working on identifying and targeting potential therapeutic target receptors utilizing different candidate drugs. Angiotensin-converting enzyme-2 (ACE2) has been known to perform critical functions in maintaining healthy cardiorespiratory function. However, ACE2 also functions as the binding site for the spike protein of SARS-CoV-2, allowing the virus to enter the cells and ensue infection. Therefore, drugs targeting ACE2 receptors can be considered as therapeutic candidates. Strategies targeting the level of ACE2 expression have been investigated and compared to other potential therapeutic targets, such as TMPRSS2, RdRp, and DPP4. This mini review discusses the key therapeutic approaches that target the ACE2 receptor, which is critical to the cellular entry and propagation of the novel SARS-CoV-2. In addition, we summarize the main advantages of ACE2 targeting against alternative approaches for the treatment of COVID-19.
Collapse
|
61
|
Dos Santos CC, Amatullah H, Vaswani CM, Maron-Gutierrez T, Kim M, Mei SHJ, Szaszi K, Monteiro APT, Varkouhi AK, Herreroz R, Lorente JA, Tsoporis JN, Gupta S, Ektesabi A, Kavantzas N, Salpeas V, Marshall JC, Rocco PRM, Marsden PA, Weiss DJ, Stewart DJ, Hu P, Liles WC. Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. Eur Respir J 2022; 59:2004216. [PMID: 34112731 DOI: 10.1183/13993003.04216-2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/24/2021] [Indexed: 11/05/2022]
Abstract
Although mesenchymal stromal (stem) cell (MSC) administration attenuates sepsis-induced lung injury in pre-clinical models, the mechanism(s) of action and host immune system contributions to its therapeutic effects remain elusive. We show that treatment with MSCs decreased expression of host-derived microRNA (miR)-193b-5p and increased expression of its target gene, the tight junctional protein occludin (Ocln), in lungs from septic mice. Mutating the Ocln 3' untranslated region miR-193b-5p binding sequence impaired binding to Ocln mRNA. Inhibition of miR-193b-5p in human primary pulmonary microvascular endothelial cells prevents tumour necrosis factor (TNF)-induced decrease in Ocln gene and protein expression and loss of barrier function. MSC-conditioned media mitigated TNF-induced miR-193b-5p upregulation and Ocln downregulation in vitro When administered in vivo, MSC-conditioned media recapitulated the effects of MSC administration on pulmonary miR-193b-5p and Ocln expression. MiR-193b-deficient mice were resistant to pulmonary inflammation and injury induced by lipopolysaccharide (LPS) instillation. Silencing of Ocln in miR-193b-deficient mice partially recovered the susceptibility to LPS-induced lung injury. In vivo inhibition of miR-193b-5p protected mice from endotoxin-induced lung injury. Finally, the clinical significance of these results was supported by the finding of increased miR-193b-5p expression levels in lung autopsy samples from acute respiratory distress syndrome patients who died with diffuse alveolar damage.
Collapse
Affiliation(s)
- Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Dept of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hajera Amatullah
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Chirag M Vaswani
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Dept of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Michael Kim
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Katalin Szaszi
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Dept of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ana Paula T Monteiro
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Amir K Varkouhi
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Raquel Herreroz
- University Hospital of Getafe, Critical Care Dept, Madrid, Spain
| | - Jose Angel Lorente
- University Hospital of Getafe, Critical Care Dept, Madrid, Spain
- Centros de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - James N Tsoporis
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Sahil Gupta
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amin Ektesabi
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nikolaos Kavantzas
- 1st Dept of Pathology, School of Medicine, National and Kapodistrian, University of Athens, Greece
| | - Vasileios Salpeas
- 1st Dept of Pathology, School of Medicine, National and Kapodistrian, University of Athens, Greece
| | - John C Marshall
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Sciences and Interdepartmental Division of Critical Care, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Dept of Surgery, University of Toronto, Toronto, ON, Canada
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Philip A Marsden
- The Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Daniel J Weiss
- Dept of Medicine, University of Vermont, Burlington, VT, USA
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pingzhao Hu
- Dept of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - W Conrad Liles
- Dept of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
62
|
Masterson CH, Ceccato A, Artigas A, Dos Santos C, Rocco PR, Rolandsson Enes S, Weiss DJ, McAuley D, Matthay MA, English K, Curley GF, Laffey JG. Mesenchymal stem/stromal cell-based therapies for severe viral pneumonia: therapeutic potential and challenges. Intensive Care Med Exp 2021; 9:61. [PMID: 34970706 PMCID: PMC8718182 DOI: 10.1186/s40635-021-00424-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Severe viral pneumonia is a significant cause of morbidity and mortality globally, whether due to outbreaks of endemic viruses, periodic viral epidemics, or the rarer but devastating global viral pandemics. While limited anti-viral therapies exist, there is a paucity of direct therapies to directly attenuate viral pneumonia-induced lung injury, and management therefore remains largely supportive. Mesenchymal stromal/stem cells (MSCs) are receiving considerable attention as a cytotherapeutic for viral pneumonia. Several properties of MSCs position them as a promising therapeutic strategy for viral pneumonia-induced lung injury as demonstrated in pre-clinical studies in relevant models. More recently, early phase clinical studies have demonstrated a reassuring safety profile of these cells. These investigations have taken on an added importance and urgency during the COVID-19 pandemic, with multiple trials in progress across the globe. In parallel with clinical translation, strategies are being investigated to enhance the therapeutic potential of these cells in vivo, with different MSC tissue sources, specific cellular products including cell-free options, and strategies to ‘licence’ or ‘pre-activate’ these cells, all being explored. This review will assess the therapeutic potential of MSC-based therapies for severe viral pneumonia. It will describe the aetiology and epidemiology of severe viral pneumonia, describe current therapeutic approaches, and examine the data suggesting therapeutic potential of MSCs for severe viral pneumonia in pre-clinical and clinical studies. The challenges and opportunities for MSC-based therapies will then be considered.
Collapse
Affiliation(s)
- C H Masterson
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - A Ceccato
- Intensive Care Unit, Hospital Universitari Sagrat Cor, Barcelona, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Sabbadell, Spain
| | - A Artigas
- CIBER de Enfermedades Respiratorias (CIBERES), Sabbadell, Spain.,Critical Center, Corporacion Sanitaria Universitaria Parc Tauli, Autonomous University of Barcelona, Sabadell, Spain
| | - C Dos Santos
- Keenan Center for Biomedical Research, St. Michael's Hospital, Bond St, Toronto, Canada.,Interdepartmental Division of Critical Care Medicine and Institutes of Medical Sciences, University of Toronto, Toronto, Canada
| | - P R Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - S Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - D J Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - D McAuley
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - M A Matthay
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - K English
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - G F Curley
- Anaesthesia, School of Medicine, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - J G Laffey
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland. .,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland. .,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospital Group, Galway, Ireland.
| |
Collapse
|
63
|
Current Status and Future Perspectives on Machine Perfusion: A Treatment Platform to Restore and Regenerate Injured Lungs Using Cell and Cytokine Adsorption Therapy. Cells 2021; 11:cells11010091. [PMID: 35011653 PMCID: PMC8750486 DOI: 10.3390/cells11010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 02/06/2023] Open
Abstract
Since its advent in the 1990′s, ex vivo lung perfusion (EVLP) has been studied and implemented as a tool to evaluate the quality of a donor organ prior to transplantation. It provides an invaluable window of opportunity for therapeutic intervention to render marginal lungs viable for transplantation. This ultimately aligns with the need of the lung transplant field to increase the number of available donor organs given critical shortages. As transplantation is the only option for patients with end-stage lung disease, advancements in technology are needed to decrease wait-list time and mortality. This review summarizes the results from the application of EVLP as a therapeutic intervention and focuses on the use of the platform with regard to cell therapies, cell product therapies, and cytokine filtration among other technologies. This review will summarize both the clinical and translational science being conducted in these aspects and will highlight the opportunities for EVLP to be developed as a powerful tool to increase the donor lung supply.
Collapse
|
64
|
Shaw TD, Krasnodembskaya AD, Schroeder GN, Zumla A, Maeurer M, O’Kane CM. Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 PMCID: PMC8510528 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
Affiliation(s)
- Timothy D. Shaw
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Anna D. Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Gunnar N. Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Alimuddin Zumla
- Center for Clinical Microbiology, Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- Immunosurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Cecilia M. O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| |
Collapse
|
65
|
Nykänen AI, Mariscal A, Duong A, Estrada C, Ali A, Hough O, Sage A, Chao BT, Chen M, Gokhale H, Shan H, Bai X, Zehong G, Yeung J, Waddell T, Martinu T, Juvet S, Cypel M, Liu M, Davies JE, Keshavjee S. Engineered mesenchymal stromal cell therapy during human lung ex vivo lung perfusion is compromised by acidic lung microenvironment. Mol Ther Methods Clin Dev 2021; 23:184-197. [PMID: 34703841 PMCID: PMC8516994 DOI: 10.1016/j.omtm.2021.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Ex vivo lung perfusion (EVLP) is an excellent platform to apply novel therapeutics, such as gene and cell therapies, before lung transplantation. We investigated the concept of human donor lung engineering during EVLP by combining gene and cell therapies. Premodified cryopreserved mesenchymal stromal cells with augmented anti-inflammatory interleukin-10 production (MSCIL-10) were administered during EVLP to human lungs that had various degrees of underlying lung injury. Cryopreserved MSCIL-10 had excellent viability, and they immediately and efficiently elevated perfusate and lung tissue IL-10 levels during EVLP. However, MSCIL-10 function was compromised by the poor metabolic conditions present in the most damaged lungs. Similarly, exposing cultured MSCIL-10 to poor metabolic, and especially acidic, conditions decreased their IL-10 production. In conclusion, we found that "off-the-shelf" MSCIL-10 therapy of human lungs during EVLP is safe and feasible, and results in rapid IL-10 elevation, and that the acidic target-tissue microenvironment may compromise the efficacy of cell-based therapies.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Andrea Mariscal
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Allen Duong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Catalina Estrada
- Tissue Regeneration Therapeutics, 790 Bay Street, Toronto, ON M5G 1N8, Canada
| | - Aadil Ali
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Olivia Hough
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Andrew Sage
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Bonnie T Chao
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Manyin Chen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Hemant Gokhale
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Hongchao Shan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Guan Zehong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Jonathan Yeung
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tom Waddell
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tereza Martinu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stephen Juvet
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - John E Davies
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
66
|
Immunotherapy of multisystem inflammatory syndrome in children (MIS-C) following COVID-19 through mesenchymal stem cells. Int Immunopharmacol 2021. [DOI: oi.org/10.1016/j.intimp.2021.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
67
|
Suksatan W, Chupradit S, Yumashev AV, Ravali S, Shalaby MN, Mustafa YF, Kurochkin A, Siahmansouri H. Immunotherapy of multisystem inflammatory syndrome in children (MIS-C) following COVID-19 through mesenchymal stem cells. Int Immunopharmacol 2021; 101:108217. [PMID: 34627083 PMCID: PMC8487784 DOI: 10.1016/j.intimp.2021.108217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new type of coronavirus causing coronavirus 2019 (COVID-19) that was first observed in Wuhan, China, in Dec. 2019. An inflammatory immune response targeting children appeared during the pandemic, which was associated with COVID-19 named multisystem inflammatory syndrome in children (MIS-C). Characteristics of MIS-C include the classic inflammation findings, multi-organ dysfunction, and fever as the cardinal feature. Up to now, no specific therapy has been identified for MIS-C. Currently, considerable progress has been obtained in the MIS-C treatment by cell therapy, specially Mesenchymal stem cells (MSCs). Unique properties have been reported for MSCs, such as various resources for purification of cell, high proliferation, self-renewal, non-invasive procedure, tissue regenerator, multidirectional differentiation, and immunosuppression. As indicated by a recent clinical research, MSCs have the ability of reducing disease inflammation and severity in children with MIS-C. In the present review study, the benefits and characteristics of MSCs and exosomes are discussed for treating patients with MIS-C.
Collapse
Affiliation(s)
- Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sahithya Ravali
- Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Chennai, India
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | | | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
68
|
Suksatan W, Chupradit S, Yumashev AV, Ravali S, Shalaby MN, Mustafa YF, Kurochkin A, Siahmansouri H. Immunotherapy of multisystem inflammatory syndrome in children (MIS-C) following COVID-19 through mesenchymal stem cells. Int Immunopharmacol 2021. [DOI: https://doi.org/10.1016/j.intimp.2021.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
69
|
Horie S, Gonzalez H, Brady J, Devaney J, Scully M, O’Toole D, Laffey JG. Fresh and Cryopreserved Human Umbilical-Cord-Derived Mesenchymal Stromal Cells Attenuate Injury and Enhance Resolution and Repair following Ventilation-Induced Lung Injury. Int J Mol Sci 2021; 22:ijms222312842. [PMID: 34884645 PMCID: PMC8657992 DOI: 10.3390/ijms222312842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Ventilator-induced lung injury (VILI) frequently worsens acute respiratory distress syndrome (ARDS) severity. Human mesenchymal stem/stromal cells (MSCs) offer considerable therapeutic promise, but the key impediments of clinical translation stem from limitations due to cell source and availability, and concerns regarding the loss of efficacy following cryopreservation. These experiments compared the efficacy of umbilical-cord-derived MSCs (UC-MSCs), a readily available and homogenous tissue source, to the previously more widely utilised bone-marrow-derived MSCs (BM-MSCs). We assessed their capacity to limit inflammation, resolve injury and enhance repair in relevant lung mechanical stretch models, and the impact of cryopreservation on therapeutic efficacy. Methods: In series 1, confluent alveolar epithelial layers were subjected to cyclic mechanical stretch (22% equibiaxial strain) and wound injury, and the potential of the secretome from BM- and UC-derived MSCs to attenuate epithelial inflammation and cell death, and enhance wound repair was determined. In series 2, anesthetized rats underwent VILI, and later received, in a randomised manner, 1 × 107 MSCs/kg intravenously, that were: (i) fresh BM-MSCs, (ii) fresh UC-MSCs or (iii) cryopreserved UC-MSCs. Control animals received a vehicle (PBS). The extent of the resolution of inflammation and injury, and repair was measured at 24 h. Results: Conditioned medium from BM-MSCs and UC-MSCs comparably decreased stretch-induced pulmonary epithelial inflammation and cell death. BM-MSCs and UC-MSCs comparably enhanced wound resolution. In animals subjected to VILI, both fresh BM-MSCs and UC-MSCs enhanced injury resolution and repair, while cryopreserved UC-MSCs comparably retained their efficacy. Conclusions: Cryopreserved UC-MSCs can reduce stretch-induced inflammation and cell death, enhance wound resolution, and enhance injury resolution and repair following VILI. Cryopreserved UC-MSCs represent a more abundant, cost-efficient, less variable and equally efficacious source of therapeutic MSC product.
Collapse
Affiliation(s)
- Shahd Horie
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - Hector Gonzalez
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - Jack Brady
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - James Devaney
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
| | - Michael Scully
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Medicine, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland
| | - Daniel O’Toole
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
- Correspondence: (D.O.); (J.G.L.)
| | - John G. Laffey
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland; (S.H.); (H.G.); (J.B.); (J.D.); (M.S.)
- Regenerative Medicine Institute (REMEDI), CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Biomedical Sciences Building, H91 TK33 Galway, Ireland
- Medicine, School of Medicine, Clinical Sciences Institute, National University of Ireland, H91 TK33 Galway, Ireland
- Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group, H91 YR71 Galway, Ireland
- Correspondence: (D.O.); (J.G.L.)
| |
Collapse
|
70
|
Gorman E, Shankar-Hari M, Hopkins P, Tunnicliffe WS, Perkins GD, Silversides J, McGuigan P, Krasnodembskaya A, Jackson C, Boyle R, McFerran J, McDowell C, Campbell C, McFarland M, Smythe J, Thompson J, Williams B, Curley G, Laffey JG, Clarke M, McAuley DF, O'Kane CM. Repair of acute respiratory distress syndrome by stromal cell administration (REALIST) trial: A phase 1 trial. EClinicalMedicine 2021; 41:101167. [PMID: 34746723 PMCID: PMC8551601 DOI: 10.1016/j.eclinm.2021.101167] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) may be of benefit in acute respiratory distress syndrome (ARDS) due to immunomodulatory, reparative, and antimicrobial actions. ORBCEL-C is a population of CD362 enriched umbilical cord-derived MSCs. The REALIST phase 1 trial investigated the safety and feasibility of ORBCEL-C in patients with moderate to severe ARDS. METHODS REALIST phase 1 was an open label, dose escalation trial in which cohorts of mechanically ventilated patients with moderate to severe ARDS received increasing doses (100, 200 or 400 × 106 cells) of a single intravenous infusion of ORBCEL-C in a 3 + 3 design. The primary safety outcome was the incidence of serious adverse events. Dose limiting toxicity was defined as a serious adverse reaction within seven days. Trial registration clinicaltrials.gov NCT03042143. FINDINGS Nine patients were recruited between the 7th January 2019 and 14th January 2020. Study drug administration was well tolerated and no dose limiting toxicity was reported in any of the three cohorts. Eight adverse events were reported for four patients. Pyrexia within 24 h of study drug administration was reported in two patients as pre-specified adverse events. A further two adverse events (non-sustained ventricular tachycardia and deranged liver enzymes), were reported as adverse reactions. Four serious adverse events were reported (colonic perforation, gastric perforation, bradycardia and myocarditis) but none were deemed related to administration of ORBCEL-C. At day 28 no patients had died in cohort one (100 × 106), three patients had died in cohort two (200 × 106) and one patient had died in cohort three (400 × 106). Overall day 28 mortality was 44% (n = 4/9). INTERPRETATION A single intravenous infusion of ORBCEL-C was well tolerated in patients with moderate to severe ARDS. No dose limiting toxicity was reported up to 400 × 106 cells.
Collapse
Affiliation(s)
- Ellen Gorman
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Manu Shankar-Hari
- Guy's and St Thomas’ NHS Foundation Trust, Westminister Bridge Road, London SE1 7EH, United Kingdom
- School of Immunology and Microbial Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Phil Hopkins
- Kings Trauma Centre, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - William S. Tunnicliffe
- Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, United Kingdom
| | - Gavin D. Perkins
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
- University Hospitals Birmingham, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, United Kingdom
| | - Jonathan Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast BT12 6BA, United Kingdom
| | - Peter McGuigan
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast BT12 6BA, United Kingdom
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Colette Jackson
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Roisin Boyle
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Jamie McFerran
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Cliona McDowell
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Christina Campbell
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Margaret McFarland
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast BT12 6BA, United Kingdom
| | - Jon Smythe
- NHS Blood and Transplant, Headley Way, Oxford OX3 9BU, United Kingdom
| | - Jacqui Thompson
- NHS Blood and Transplant Service, Vincent Drive, Edgbaston, Birmingham B15 2SG, United Kingdom
| | - Barry Williams
- Independent Patient and Public Representative, United Kingdom
| | - Gerard Curley
- Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - John G. Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Mike Clarke
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
- Northern Ireland Methodology Hub, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Cecilia M. O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- Corresponding author.
| |
Collapse
|
71
|
Xu Z, Huang Y, Zhou J, Deng X, He W, Liu X, Li Y, Zhong N, Sang L. Current Status of Cell-Based Therapies for COVID-19: Evidence From Mesenchymal Stromal Cells in Sepsis and ARDS. Front Immunol 2021; 12:738697. [PMID: 34659231 PMCID: PMC8517471 DOI: 10.3389/fimmu.2021.738697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The severe respiratory consequences of the coronavirus disease 2019 (COVID-19) pandemic have prompted the urgent need for novel therapies. Cell-based therapies, primarily using mesenchymal stromal cells (MSCs), have demonstrated safety and potential efficacy in the treatment of critical illness, particularly sepsis and acute respiratory distress syndrome (ARDS). However, there are limited preclinical data for MSCs in COVID-19. Recent studies have shown that MSCs could decrease inflammation, improve lung permeability, enhance microbe and alveolar fluid clearance, and promote lung epithelial and endothelial repair. In addition, MSC-based therapy has shown promising effects in preclinical studies and phase 1 clinical trials in sepsis and ARDS. Here, we review recent advances related to MSC-based therapy in the context of sepsis and ARDS and evaluate the potential value of MSCs as a therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
- Zhiheng Xu
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Jianmeng Zhou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiumei Deng
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Weiqun He
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Yimin Li
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Ling Sang
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
72
|
Maguire G. Stem cells part of the innate and adaptive immune systems as a therapeutic for Covid-19. Commun Integr Biol 2021; 14:186-198. [PMID: 34527167 PMCID: PMC8437473 DOI: 10.1080/19420889.2021.1965356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Some stem cell types not only release molecules that reduce viral replication, but also reduce the hypercytokinemia and inflammation induced by the immune system, and have been found to be part of the innate and adaptive immune systems. An important component of the stem cell's ability to ameliorate viral diseases, especially the complications post-clearance of the pathogen, is the ability of adult stem cells to reset the innate and adaptive immune systems from an inflammatory state to a repair state. Thus, the molecules released from certain stem cell types found to be safe and efficacious, may be an important new means for therapeutic development in Covid-19, especially for late-stage inflammation and tissue damage once the virus has cleared, particularly in the aged population.
Collapse
Affiliation(s)
- Greg Maguire
- Dept. of Preventative and Medicinal Chemistry, NeoGenesis Inc. And BioRegenerative Sciences Inc, San Diego, CA, USA
| |
Collapse
|
73
|
Zhao Y, Yan Z, Liu Y, Zhang Y, Shi J, Li J, Ji F. Effectivity of mesenchymal stem cells for bleomycin-induced pulmonary fibrosis: a systematic review and implication for clinical application. Stem Cell Res Ther 2021; 12:470. [PMID: 34420515 PMCID: PMC8380478 DOI: 10.1186/s13287-021-02551-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, fibrotic interstitial disease of the lung with poor prognosis and without effective treatment currently. Data from previous coronavirus infections, such as the Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome, as well as current clinical evidence from the Coronavirus disease 2019 (COVID-19), support that SARS-CoV-2 infection may lead to PF, seriously impacting patient prognosis and quality of life. Therefore, effective prevention and treatment of PF will improve patient prognosis and reduce the overall social and economic burdens. Stem cells, especially mesenchymal stem cells (MSCs) have many great advantages, including migration to damaged lung tissue and secretion of various paracrine factors, thereby regulating the permeability of endothelial and epithelial cells, reducing inflammatory response, promoting tissue repair and inhibiting bacterial growth. Clinical trials of MSCs for the treatment of acute lung injury, PF and severe and critically ill COVID-19 are ongoing. The purpose of this study is to systematically review preclinical studies, explored the effectiveness of MSCs in the treatment of bleomycin (BLM)-induced pulmonary fibrosis and analyze the potential mechanism, combined with clinical trials of current MSCs for idiopathic pulmonary fibrosis (IPF) and COVID-19, so as to provide support for clinical research and transformation of MSCs. Searching PubMed and Embase (- 2021.4) identified a total of 36 preclinical studies of MSCs as treatment of BLM-induced acute lung injury and PF in rodent models. Most of the studies showed the MSCs treatment to reduce BLM-induced lung tissue inflammatory response, inflammatory cell infiltration, inflammatory cytokine expression, extracellular matrix production and collagen deposition, and to improve Ashcroft score. The results of present studies indicate that MSCs may serve as a potential therapeutic modality for the treatment of PF, including viral-induced PF and IPF.
Collapse
Affiliation(s)
- Yunyu Zhao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Zhipeng Yan
- Department of Liver Diseases, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ying Liu
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yue Zhang
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Shi
- Department of Respiratory, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jingtao Li
- Department of Liver Diseases, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Fanpu Ji
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China.
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Environment and Genes Related To Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
74
|
Brennan LC, O’Sullivan A, MacLoughlin R. Cellular Therapy for the Treatment of Paediatric Respiratory Disease. Int J Mol Sci 2021; 22:ijms22168906. [PMID: 34445609 PMCID: PMC8396271 DOI: 10.3390/ijms22168906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory disease is the leading cause of death in children under the age of 5 years old. Currently available treatments for paediatric respiratory diseases including bronchopulmonary dysplasia, asthma, cystic fibrosis and interstitial lung disease may ameliorate symptoms but do not offer a cure. Cellular therapy may offer a potential cure for these diseases, preventing disease progression into adulthood. Induced pluripotent stem cells, mesenchymal stromal cells and their secretome have shown great potential in preclinical models of lung disease, targeting the major pathological features of the disease. Current research and clinical trials are focused on the adult population. For cellular therapies to progress from preclinical studies to use in the clinic, optimal cell type dosage and delivery methods need to be established and confirmed. Direct delivery of these therapies to the lung as aerosols would allow for lower doses with a higher target efficiency whilst avoiding potential effect of systemic delivery. There is a clear need for research to progress into the clinic for the treatment of paediatric respiratory disease. Whilst research in the adult population forms a basis for the paediatric population, varying disease pathology and anatomical differences in paediatric patients means a paediatric-centric approach must be taken.
Collapse
Affiliation(s)
- Laura C. Brennan
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Andrew O’Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Correspondence:
| |
Collapse
|
75
|
Han J, Shi Y, Willis G, Imani J, Kwon MY, Li G, Ayaub E, Ghanta S, Ng J, Hwang N, Tsoyi K, El-Chemaly S, Kourembanas S, Mitsialis SA, Rosas IO, Liu X, Perrella MA. Mesenchymal stromal cell-derived syndecan-2 regulates the immune response during sepsis to foster bacterial clearance and resolution of inflammation. FEBS J 2021; 289:417-435. [PMID: 34355516 PMCID: PMC8766882 DOI: 10.1111/febs.16154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is a life-threatening process related to a dysregulated host response to an underlying infection, which results in organ dysfunction and poor outcomes. Therapeutic strategies using mesenchymal stromal cells (MSCs) are under investigation for sepsis, with efforts to improve cellular utility. Syndecan (SDC) proteins are transmembrane proteoglycans involved with cellular signaling events including tissue repair and modulating inflammation. Bone marrow-derived human MSCs express syndecan-2 (SDC2) at a level higher than other SDC family members; thus, we explored SDC2 in MSC function. Administration of human MSCs silenced for SDC2 in experimental sepsis resulted in decreased bacterial clearance, and increased tissue injury and mortality compared with wild-type MSCs. These findings were associated with a loss of resolution of inflammation in the peritoneal cavity, and higher levels of proinflammatory mediators in organs. MSCs silenced for SDC2 had a decreased ability to promote phagocytosis of apoptotic neutrophils by macrophages in the peritoneum, and also a diminished capability to convert macrophages from a proinflammatory to a proresolution phenotype via cellular or paracrine actions. Extracellular vesicles are a paracrine effector of MSCs that may contribute to resolution of inflammation, and their production was dramatically reduced in SDC2-silenced human MSCs. Collectively, these data demonstrate the importance of SDC2 for cellular and paracrine function of human MSCs during sepsis.
Collapse
Affiliation(s)
- Junwen Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Gareth Willis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Jewel Imani
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Min-Young Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gu Li
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ehab Ayaub
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sailaja Ghanta
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Narae Hwang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Konstantin Tsoyi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
76
|
Paris GC, Azevedo AA, Ferreira AL, Azevedo YMA, Rainho MA, Oliveira GP, Silva KR, Cortez EAC, Stumbo AC, Carvalho SN, de Carvalho L, Thole AA. Therapeutic potential of mesenchymal stem cells in multiple organs affected by COVID-19. Life Sci 2021; 278:119510. [PMID: 33865879 PMCID: PMC8049196 DOI: 10.1016/j.lfs.2021.119510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023]
Abstract
Currently, the world has been devastated by an unprecedented pandemic in this century. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), has been causing disorders, dysfunction and morphophysiological alterations in multiple organs as the disease evolves. There is a great scientific community effort to obtain a therapy capable of reaching the multiple affected organs in order to contribute for tissue repair and regeneration. In this regard, mesenchymal stem cells (MSCs) have emerged as potential candidates concerning the promotion of beneficial actions at different stages of COVID-19. MSCs are promising due to the observed therapeutic effects in respiratory preclinical models, as well as in cardiac, vascular, renal and nervous system models. Their immunomodulatory properties and secretion of paracrine mediators, such as cytokines, chemokines, growth factors and extracellular vesicles allow for long range tissue modulation and, particularly, blood-brain barrier crossing. This review focuses on SARS-CoV-2 impact to lungs, kidneys, heart, vasculature and central nervous system while discussing promising MSC's therapeutic mechanisms in each tissue. In addition, MSC's therapeutic effects in high-risk groups for COVID-19, such as obese, diabetic and hypertensive patients are also explored.
Collapse
Affiliation(s)
- Gustavo C Paris
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Aline A Azevedo
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana L Ferreira
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yanca M A Azevedo
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mateus A Rainho
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Genilza P Oliveira
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karina R Silva
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Erika A C Cortez
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana C Stumbo
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Simone N Carvalho
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lais de Carvalho
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra A Thole
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
77
|
Shi M, Yang Q, Monsel A, Yan J, Dai C, Zhao J, Shi G, Zhou M, Zhu X, Li S, Li P, Wang J, Li M, Lei J, Xu D, Zhu Y, Qu J. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. J Extracell Vesicles 2021; 10:e12134. [PMID: 34429860 PMCID: PMC8363910 DOI: 10.1002/jev2.12134] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/18/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) turn out to be a promising source of cell-free therapy. Here, we investigated the biodistribution and effect of nebulized human adipose-derived MSC-EVs (haMSC-EVs) in the preclinical lung injury model and explored the safety of nebulized haMSC-EVs in healthy volunteers. DiR-labelled haMSC-EVs were used to explore the distribution of nebulized haMSC-EVs in the murine model. Pseudomonas aeruginosa-induced murine lung injury model was established, and survival rate, as well as WBC counts, histology, IL-6, TNF-α and IL-10 levels in bronchoalveolar lavage fluid (BALF) were measured to explore the optimal therapeutic dose of haMSC-EVs through the nebulized route. Twenty-four healthy volunteers were involved and received the haMSC-EVs once, ranging from 2 × 108 particles to 16 × 108 particles (MEXVT study, NCT04313647). Nebulizing haMSC-EVs improved survival rate to 80% at 96 h in P. aeruginosa-induced murine lung injury model by decreasing lung inflammation and histological severity. All volunteers tolerated the haMSC-EVs nebulization well, and no serious adverse events were observed from starting nebulization to the 7th day after nebulization. These findings suggest that nebulized haMSC-EVs could be a promising therapeutic strategy, offering preliminary evidence to promote the future clinical applications of nebulized haMSC-EVs in lung injury diseases.
Collapse
Affiliation(s)
- Meng‐meng Shi
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Qing‐yuan Yang
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Antoine Monsel
- Multidisciplinary Intensive Care UnitDepartment of Anaesthesiology and Critical CareLa Pitié‐Salpêtrière HospitalAssistance Publique‐Hôpitaux de Paris (APHP)Sorbonne UniversityFrance
- INSERMSorbonne UniversitéUMR S 959, Immunology‐Immunopathology‐ Immunotherapy (I3); F‐75005ParisFrance
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (DHU i2B)Hôpital Pitié‐SalpêtrièreAP‐HP, F‐75651ParisFrance
| | - Jia‐yang Yan
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Cheng‐xiang Dai
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
- Daxing Research InstituteUniversity of Science and Technology BeijingBeijingChina
| | - Jing‐ya Zhao
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Guo‐chao Shi
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Min Zhou
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Xue‐mei Zhu
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Su‐ke Li
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Ping Li
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Jing Wang
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Meng Li
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Ji‐gang Lei
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Dong Xu
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Ying‐gang Zhu
- Department of Pulmonary and Critical Care MedicineHua‐dong HospitalFudan UniversityShanghaiChina
| | - Jie‐ming Qu
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| |
Collapse
|
78
|
Lin S, Chen Q, Zhang L, Ge S, Luo Y, He W, Xu C, Zeng M. Overexpression of HOXB4 Promotes Protection of Bone Marrow Mesenchymal Stem Cells Against Lipopolysaccharide-Induced Acute Lung Injury Partially Through the Activation of Wnt/β-Catenin Signaling. J Inflamm Res 2021; 14:3637-3649. [PMID: 34349541 PMCID: PMC8326777 DOI: 10.2147/jir.s319416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Pulmonary vascular endothelial cell (EC) injury is recognized as one of the pathological factors of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Bone marrow mesenchymal stem cell (BMSC)-based cytotherapy has attracted substantial attention over recent years as a promising therapeutic approach for ALI/ARDS; however, its use remains limited due to inconsistent efficacy. Currently, gene modification techniques are widely applied to MSCs. In the present study, we aimed to investigate the effect of BMSCs overexpressing Homeobox B4 (HOXB4) on lipopolysaccharide (LPS)-induced EC injury. METHODS We used LPS to induce EC injury and established EC-BMSC coculture system using transwell chambers. The effect of BMSCs on ECs was explored by detecting EC proliferation, apoptosis, migration, tube formation, and permeability, and determining whether the Wnt/β-catenin pathway is involved in the regulatory mechanism using XAV-939, inhibitor of Wnt/ β-catenin. RESULTS As compared to BMSCWT, BMSCHOXB4 coculture promoted EC proliferation, migration, and tube formation after LPS stimulation and attenuated LPS-induced EC apoptosis and vascular permeability. Mechanistically, BMSCHOXB4 coculture prevented LPS-induced EC injury by activating the Wnt/β-catenin pathway, which is partially reversible by XAV-939. When cocultured with BMSCHOXB4, pro-inflammatory factors were dramatically decreased and anti-inflammatory factors were greatly increased in the EC medium compared to those in the LPS group (P<0.05). Additionally, when compared to BMSCWT coculture, the BMSCHOXB4 coculture showed an enhanced modulation of IL-6, TNF-α, and IL-10, but there was no statistically significant effect on IL-1β and IL-4. CONCLUSION Coculturing of BMSCHOXB4 prevented LPS-induced EC injury by reversing the inactivation of the Wnt/β-catenin signaling pathway. An in vivo study remains warranted to ascertain whether engraftment of BMSCHOXB4 can be an attractive strategy for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Qingui Chen
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Lishan Zhang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Shanhui Ge
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuling Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
79
|
Chen J, Li C, Liang Z, Li C, Li Y, Zhao Z, Qiu T, Hao H, Niu R, Chen L. Human mesenchymal stromal cells small extracellular vesicles attenuate sepsis-induced acute lung injury in a mouse model: the role of oxidative stress and the mitogen-activated protein kinase/nuclear factor kappa B pathway. Cytotherapy 2021; 23:918-930. [PMID: 34272174 DOI: 10.1016/j.jcyt.2021.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS Acute lung injury (ALI) secondary to sepsis is a complex disease associated with high morbidity and mortality. Mesenchymal stem cells (MSCs) and their conditioned medium have been demonstrated to reduce alveolar inflammation, improve lung endothelial barrier permeability and modulate oxidative stress in vivo and in vitro. Recently, MSCs have been found to release small extracellular vesicles (sEVs) that can deliver functionally active biomolecules into recipient cells. The authors' study was designed to determine whether sEVs released by MSCs would be effective in sepsis-induced ALI mice and to identify the potential mechanisms. METHODS A total of 6 h after cercal ligation and puncture, the mice received saline, sEV-depleted conditioned medium (sEVD-CM) or MSC sEVs via the tail vein. RESULTS The administration of MSC sEVs improved pulmonary microvascular permeability and inhibited both histopathological changes and the infiltration of polymorphonuclear neutrophils into lung tissues. In addition, the activities of antioxidant enzymes were significantly increased in the group treated with sEVs compared with the saline and sEVD-CM groups, whereas lipid peroxidation was significantly decreased. Furthermore, sEVs were found to possibly inhibit phosphorylation of the mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) pathway and degradation of IκB but increase the activities of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1. CONCLUSIONS These findings suggest that one of the effective therapeutic mechanisms of sEVs against sepsis-induced ALI may be associated with upregulation of anti-oxidative enzymes and inhibition of MAPK/NF-κB activation.
Collapse
Affiliation(s)
- Jie Chen
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chonghui Li
- Department of Hepatobiliary Surgery, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China; Institute of Hepatobiliary Surgery, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Zhixin Liang
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Chunsun Li
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Yanqin Li
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Zhigang Zhao
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Tian Qiu
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Haojie Hao
- Institute of Basic Medicine Science, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Ruichao Niu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.
| | - Liangan Chen
- Center of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China.
| |
Collapse
|
80
|
Wang LM, Jung S, Serban M, Chatterjee A, Lee S, Jeyaseelan K, El Naqa I, Seuntjens J, Ybarra N. Comparison of quantitative and qualitative scoring approaches for radiation-induced pulmonary fibrosis as applied to a preliminary investigation into the efficacy of mesenchymal stem cell delivery methods in a rat model. BJR Open 2021; 2:20210006. [PMID: 34381940 PMCID: PMC8320116 DOI: 10.1259/bjro.20210006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 11/05/2022] Open
Abstract
Objectives Compare a quantitative, algorithm-driven, and qualitative, pathologist-driven, scoring of radiation-induced pulmonary fibrosis (RIPF). And using these scoring models to derive preliminary comparisons on the effects of different mesenchymal stem cell (MSC) administration modalities in reducing RIPF. Methods 25 rats were randomized into 5 groups: non-irradiated control (CG), irradiated control (CR), intraperitoneally administered granulocyte-macrophage colony stimulating factor or GM-CSF (Drug), intravascularly administered MSC (IV), and intratracheally administered MSC (IT). All groups, except CG, received an 18 Gy conformal dose to the right lung. Drug, IV and IT groups were treated immediately after irradiation. After 24 weeks of observation, rats were euthanized, their lungs excised, fixed and stained with Masson's Trichrome. Samples were anonymized and RIPF was scored qualitatively by a certified pathologist and quantitatively using ImageScope. An analysis of association was conducted, and two binary classifiers trained to validate the integrity of both qualitative and quantitative scoring. Differences between the treatment groups, as assessed by the pathologist score, were then tested by variance component analysis and mixed models for differences in RIPF outcomes. Results There is agreement between qualitative and quantitative scoring for RIPF grades from 4 to 7. Both classifiers performed similarly on the testing set (AUC = 0.923) indicating accordance between the qualitative and quantitative scoring. For comparisons between MSC infusion modalities, the Drug group had better outcomes (mean pathologist scoring of 3.96), correlating with significantly better RIPF outcomes than IV [lower by 0.97, p = 0.047, 95% CI = (0.013, 1.918)] and resulting in an improvement over CR [lower by 0.93, p = 0.037, 95% CI = (0.062, 1.800]. Conclusion Quantitative image analysis may help in the assessment of therapeutic interventions for RIPF and can serve as a scoring surrogate in differentiating between severe and mild cases of RIPF. Preliminary data demonstrate that the use of GM-CSF was best correlated with lower RIPF severity. Advances in knowledge Quantitative image analysis can be a viable supplemental system of quality control and triaging in situations where pathologist work hours or resources are limited. The use of different MSC administration methods can result in different degrees of MSC efficacy and study outcomes.
Collapse
Affiliation(s)
- Li Ming Wang
- Research Institute of the McGill University Healthcare Centre, Montréal, Canada
| | - Sungmi Jung
- Department of Pathology, McGill University Healthcare Centre, Montréal, Canada
| | - Monica Serban
- Medical Physics Unit, Cedars Cancer Centre, McGill University Healthcare Centre, Montréal, Canada
| | - Avishek Chatterjee
- Medical Physics Unit, Cedars Cancer Centre, McGill University Healthcare Centre, Montréal, Canada
| | - Sangkyu Lee
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Krishinima Jeyaseelan
- Medical Physics Unit, Cedars Cancer Centre, McGill University Healthcare Centre, Montréal, Canada
| | - Issam El Naqa
- Radiation Oncology, University of Michigan - Ann Arbor, Ann Arbor, MI, USA
| | - Jan Seuntjens
- Medical Physics Unit, Cedars Cancer Centre, Montréal University Healthcare Centre, Montreal, Canada
| | - Norma Ybarra
- Research Institute of the McGill University Healthcare Centre & Medical Physics Unit, CedarsCancer Centre, McGill University Healthcare Centre, Montreal, Canada
| |
Collapse
|
81
|
Zhou Z, Hua Y, Ding Y, Hou Y, Yu T, Cui Y, Nie H. Conditioned Medium of Bone Marrow Mesenchymal Stem Cells Involved in Acute Lung Injury by Regulating Epithelial Sodium Channels via miR-34c. Front Bioeng Biotechnol 2021; 9:640116. [PMID: 34368091 PMCID: PMC8336867 DOI: 10.3389/fbioe.2021.640116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
Background One of the characteristics of acute lung injury (ALI) is severe pulmonary edema, which is closely related to alveolar fluid clearance (AFC). Mesenchymal stem cells (MSCs) secrete a wide range of cytokines, growth factors, and microRNA (miRNAs) through paracrine action to participate in the mechanism of pulmonary inflammatory response, which increase the clearance of edema fluid and promote the repair process of ALI. The epithelial sodium channel (ENaC) is the rate-limiting step in the sodium–water transport and edema clearance in the alveolar cavity; the role of bone marrow-derived MSC-conditioned medium (BMSC-CM) in edema clearance and how miRNAs affect ENaC are still seldom known. Methods CCK-8 cell proliferation assay was used to detect the effect of BMSC-CM on the survival of alveolar type 2 epithelial (AT2) cells. Real-time polymerase chain reaction (RT-PCR) and western blot were used to detect the expression of ENaC in AT2 cells. The effects of miR-34c on lung fluid absorption were observed in LPS-treated mice in vivo, and the transepithelial short-circuit currents in the monolayer of H441 cells were examined by the Ussing chamber setup. Dual luciferase reporter gene assay was used to detect the target gene of miR-34c. Results BMSC-CM could increase the viability of mouse AT2 cells. RT-PCR and western blot results showed that BMSC-CM significantly increased the expression of the γ-ENaC subunit in mouse AT2 cells. MiR-34c could restore the AFC and lung wet/dry weight ratio in the ALI animal model, and Ussing chamber assay revealed that miR-34c enhanced the amiloride-sensitive currents associated with ENaC activity in intact H441 cell monolayers. In addition, we observed a higher expression of miR-34c in mouse AT2 cells administrated with BMSC-CM, and the overexpression or inhibition of miR-34c could regulate the expression of ENaC protein and alter the function of ENaC. Finally, we detected that myristoylated alanine-rich C kinase substrate (MARCKS) may be one of the target genes of miR-34c. Conclusion Our results indicate that BMSC-CM may alleviate LPS-induced ALI through miR-34c targeting MARCKS and regulate ENaC indirectly, which further explores the benefit of paracrine effects of bone marrow-derived MSCs on edematous ALI.
Collapse
Affiliation(s)
- Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Hua
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
82
|
Sharma A, Chakraborty A, Jaganathan BG. Review of the potential of mesenchymal stem cells for the treatment of infectious diseases. World J Stem Cells 2021; 13:568-593. [PMID: 34249228 PMCID: PMC8246252 DOI: 10.4252/wjsc.v13.i6.568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The therapeutic value of mesenchymal stem cells (MSCs) for the treatment of infectious diseases and the repair of disease-induced tissue damage has been explored extensively. MSCs inhibit inflammation, reduce pathogen load and tissue damage encountered during infectious diseases through the secretion of antimicrobial factors for pathogen clearance and they phagocytose certain bacteria themselves. MSCs dampen tissue damage during infection by downregulating the levels of pro-inflammatory cytokines, and inhibiting the excessive recruitment of neutrophils and proliferation of T cells at the site of injury. MSCs aid in the regeneration of damaged tissue by differentiating into the damaged cell types or by releasing paracrine factors that direct tissue regeneration, differentiation, and wound healing. In this review, we discuss in detail the various mechanisms by which MSCs help combat pathogens, tissue damage associated with infectious diseases, and challenges in utilizing MSCs for therapy.
Collapse
Affiliation(s)
- Amit Sharma
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anuja Chakraborty
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
83
|
Wick KD, Leligdowicz A, Zhuo H, Ware LB, Matthay MA. Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS. JCI Insight 2021; 6:148983. [PMID: 33974564 PMCID: PMC8262503 DOI: 10.1172/jci.insight.148983] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Whether airspace biomarkers add value to plasma biomarkers in studying acute respiratory distress syndrome (ARDS) is not well understood. Mesenchymal stromal cells (MSCs) are an investigational therapy for ARDS, and airspace biomarkers may provide mechanistic evidence for MSCs’ impact in patients with ARDS. METHODS We carried out a nested cohort study within a phase 2a safety trial of treatment with allogeneic MSCs for moderate-to-severe ARDS. Nonbronchoscopic bronchoalveolar lavage and plasma samples were collected 48 hours after study drug infusion. Airspace and plasma biomarker concentrations were compared between the MSC (n = 17) and placebo (n = 10) treatment arms, and correlation between the two compartments was tested. Airspace biomarkers were also tested for associations with clinical and radiographic outcomes. RESULTS Compared with placebo, MSC treatment significantly reduced airspace total protein, angiopoietin-2 (Ang-2), IL-6, and soluble TNF receptor-1 concentrations. Plasma biomarkers did not differ between groups. Each 10-fold increase in airspace Ang-2 was independently associated with 6.7 fewer days alive and free of mechanical ventilation (95% CI, –12.3 to –1.0, P = 0.023), and each 10-fold increase in airspace receptor for advanced glycation end-products (RAGE) was independently associated with a 6.6-point increase in day 3 radiographic assessment of lung edema score (95% CI, 2.4 to 10.8, P = 0.004). CONCLUSION MSCs reduced biological evidence of lung injury in patients with ARDS. Biomarkers from the airspaces provide additional value for studying pathogenesis, treatment effects, and outcomes in ARDS. TRIAL REGISTRATION ClinicalTrials.gov NCT02097641. FUNDING National Heart, Lung, and Blood Institute.
Collapse
Affiliation(s)
- Katherine D Wick
- Departments of Medicine and Anesthesia and.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Aleksandra Leligdowicz
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hanjing Zhuo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia and.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
84
|
Pierce LM, Kurata WE. Priming With Toll-Like Receptor 3 Agonist Poly(I:C) Enhances Content of Innate Immune Defense Proteins but Not MicroRNAs in Human Mesenchymal Stem Cell-Derived Extracellular Vesicles. Front Cell Dev Biol 2021; 9:676356. [PMID: 34109180 PMCID: PMC8180863 DOI: 10.3389/fcell.2021.676356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) help fight infection by promoting direct bacterial killing or indirectly by modulating the acute phase response, thereby decreasing tissue injury. Recent evidence suggests that extracellular vesicles (EVs) released from MSCs retain antimicrobial characteristics that may be enhanced by pretreatment of parent MSCs with the toll-like receptor 3 (TLR3) agonist poly(I:C). Our aim was to determine whether poly(I:C) priming can modify EV content of miRNAs and/or proteins to gain insight into the molecular mechanisms of their enhanced antimicrobial function. Human bone marrow-derived MSCs were cultured with or without 1 μg/ml poly(I:C) for 1 h and then conditioned media was collected after 64 h of culture in EV-depleted media. Mass spectrometry and small RNA next-generation sequencing were performed to compare proteomic and miRNA profiles. Poly(I:C) priming resulted in 49 upregulated EV proteins, with 21 known to be important in host defense and innate immunity. In contrast, EV miRNA content was not significantly altered. Functional annotation clustering analysis revealed enrichment in biological processes and pathways including negative regulation of endopeptidase activity, acute phase, complement and coagulation cascades, innate immunity, immune response, and Staphylococcus aureus infection. Several antimicrobial peptides identified in EVs remained unaltered by poly(I:C) priming, including dermcidin, lactoferrin, lipocalin 1, lysozyme C, neutrophil defensin 1, S100A7 (psoriasin), S100A8/A9 (calprotectin), and histone H4. Although TLR3 activation of MSCs improves the proteomic profile of EVs, further investigation is needed to determine the relative importance of particular functional EV proteins and their activated signaling pathways following EV interaction with immune cells.
Collapse
Affiliation(s)
- Lisa M Pierce
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI, United States
| | - Wendy E Kurata
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI, United States
| |
Collapse
|
85
|
Fundamental and Advanced Therapies, Vaccine Development against SARS-CoV-2. Pathogens 2021; 10:pathogens10060636. [PMID: 34064300 PMCID: PMC8224379 DOI: 10.3390/pathogens10060636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19) caused by the SARS-CoV-2 virus has been affecting the world since the end of 2019. The severity of the disease can range from an asymptomatic or mild course to acute respiratory distress syndrome (ARDS) with respiratory failure, which may lead to death. Since the outbreak of the pandemic, scientists around the world have been studying the genome and molecular mechanisms of SARS-CoV-2 infection to develop effective therapies and prevention. In this review, we summarize the progressive development of various treatments and vaccines as they have emerged, a year after the outbreak of the pandemic. Initially for COVID-19, patients were recommended drugs with presumed antiviral, anti-inflammatory, and antimicrobial effects that were previously used to treat other diseases. Thereafter, therapeutic interventions were supplemented with promising approaches based on antibodies, peptides, and stem cells. However, licensed COVID-19 vaccines remain the most effective weapon in combating the pandemic. While there is an enormous effort to enhance the vaccination rate to increase the entire population immunity, the production and delivery of vaccines is becoming limited in several countries. In this regard, there are new challenges needing to be addressed by combining non-pharmacological intervention with effective therapies until vaccination is accessible to all.
Collapse
|
86
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate Acute Lung Injury Via Transfer of miR-27a-3p. Crit Care Med 2021; 48:e599-e610. [PMID: 32317602 DOI: 10.1097/ccm.0000000000004315] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The goal of this study was to determine the role of microRNA transfer in mediating the effects of mesenchymal stem cell-derived extracellular vesicles in acute lung injury. DESIGN Experimental cell and animal studies. SETTING University-based research laboratory. SUBJECTS THP-1 monocytes, bone marrow-derived macrophages, and C57BL/6 mice. INTERVENTIONS To determine the microRNA transfer in vitro, mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles were cultured with THP-1 cells and bone marrow-derived macrophages and then assayed for microRNA expression in the target cells. To examine the role of microRNA transfer in vivo, mesenchymal stem cell-derived extracellular vesicles were administered to mice with lipopolysaccharide-induced lung injury. MEASUREMENTS AND MAIN RESULTS Mesenchymal stem cell-derived extracellular vesicles were efficiently taken up by macrophages in vitro and in vivo. miR-27a-3p was one of the most highly expressed microRNAs in THP-1 cells in microarray analysis and was transferred from mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles to THP-1/bone marrow-derived macrophages. Mesenchymal stem cell-derived extracellular vesicles promoted M2 polarization in bone marrow-derived macrophages, which was inhibited by lentiviral anti-miR-27a-3p transduction. Mesenchymal stem cell-derived extracellular vesicles administered systemically and intratracheally were as effective as mesenchymal stem cells in alleviating acute lung injury, elevating miR-27a-3p levels in alveolar macrophages, and promoting M2 macrophage polarization. Treatment of mesenchymal stem cell-derived extracellular vesicles concurrently decreased alveolar macrophage expression of nuclear factor kappa B subunit 1, a target of miR-27a-3p. Lentiviral transduction of mesenchymal stem cells with anti-miR-27a-3p or knockdown of miR-27a-3p in vivo abolished the effects of mesenchymal stem cell-derived extracellular vesicles on acute lung injury and M2 macrophage polarization. CONCLUSIONS Mesenchymal stem cell-derived extracellular vesicles mitigate acute lung injury at least partially via transferring miR-27a-3p to alveolar macrophages. miR-27a-3p acts to target NFKB1 and is a crucial regulator of M2 macrophage polarization.
Collapse
|
87
|
Su Y, Guo H, Liu Q. Effects of mesenchymal stromal cell-derived extracellular vesicles in acute respiratory distress syndrome (ARDS): Current understanding and future perspectives. J Leukoc Biol 2021; 110:27-38. [PMID: 33955590 PMCID: PMC8242476 DOI: 10.1002/jlb.3mr0321-545rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating and life‐threatening syndrome that results in high morbidity and mortality. Current pharmacologic treatments and mechanical ventilation have limited value in targeting the underlying pathophysiology of ARDS. Mesenchymal stromal cells (MSCs) have shown potent therapeutic advantages in experimental and clinical trials through direct cell‐to‐cell interaction and paracrine signaling. However, safety concerns and the indeterminate effects of MSCs have resulted in the investigation of MSC‐derived extracellular vesicles (MSC‐EVs) due to their low immunogenicity and tumorigenicity. Over the past decades, soluble proteins, microRNAs, and organelles packaged in EVs have been identified as efficacious molecules to orchestrate nearby immune responses, which attenuate acute lung injury by facilitating pulmonary epithelium repair, reducing acute inflammation, and restoring pulmonary vascular leakage. Even though MSC‐EVs possess similar bio‐functional effects to their parental cells, there remains existing barriers to employing this alternative from bench to bedside. Here, we summarize the current established research in respect of molecular mechanisms of MSC‐EV effects in ARDS and highlight the future challenges of MSC‐EVs for clinical application.
Collapse
Affiliation(s)
- Yue Su
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Haiyan Guo
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qinghua Liu
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| |
Collapse
|
88
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2021; 10:643-646. [PMID: 33852778 PMCID: PMC8046101 DOI: 10.1002/sctm.21-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
|
89
|
Heinen N, Klöhn M, Steinmann E, Pfaender S. In Vitro Lung Models and Their Application to Study SARS-CoV-2 Pathogenesis and Disease. Viruses 2021; 13:792. [PMID: 33925255 PMCID: PMC8144959 DOI: 10.3390/v13050792] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 has spread across the globe with an astonishing velocity and lethality that has put scientist and pharmaceutical companies worldwide on the spot to develop novel treatment options and reliable vaccination for billions of people. To combat its associated disease COVID-19 and potentially newly emerging coronaviruses, numerous pre-clinical cell culture techniques have progressively been used, which allow the study of SARS-CoV-2 pathogenesis, basic replication mechanisms, and drug efficiency in the most authentic context. Hence, this review was designed to summarize and discuss currently used in vitro and ex vivo cell culture systems and will illustrate how these systems will help us to face the challenges imposed by the current SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
| | | | | | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany; (N.H.); (M.K.); (E.S.)
| |
Collapse
|
90
|
Ertas YN, Mahmoodi M, Shahabipour F, Jahed V, Diltemiz SE, Tutar R, Ashammakhi N. Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). EMERGENT MATERIALS 2021; 4:35-55. [PMID: 33748672 PMCID: PMC7962632 DOI: 10.1007/s42247-021-00165-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
Recently emerged novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting corona virus disease 2019 (COVID-19) led to urgent search for methods to prevent and treat COVID-19. Among important disciplines that were mobilized is the biomaterials science and engineering. Biomaterials offer a range of possibilities to develop disease models, protective, diagnostic, therapeutic, monitoring measures, and vaccines. Among the most important contributions made so far from this field are tissue engineering, organoids, and organ-on-a-chip systems, which have been the important frontiers in developing tissue models for viral infection studies. Also, due to low bioavailability and limited circulation time of conventional antiviral drugs, controlled and targeted drug delivery could be applied alternatively. Fortunately, at the time of writing this paper, we have two successful vaccines and new at-home detection platforms. In this paper, we aim to review recent advances of biomaterial-based platforms for protection, diagnosis, vaccination, therapeutics, and monitoring of SARS-CoV-2 and discuss challenges and possible future research directions in this field.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mahboobeh Mahmoodi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA USA
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Fahimeh Shahabipour
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
- Skin Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Jahed
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI USA
| |
Collapse
|
91
|
Song N, Wakimoto H, Rossignoli F, Bhere D, Ciccocioppo R, Chen KS, Khalsa JK, Mastrolia I, Samarelli AV, Dominici M, Shah K. Mesenchymal stem cell immunomodulation: In pursuit of controlling COVID-19 related cytokine storm. STEM CELLS (DAYTON, OHIO) 2021; 39:707-722. [PMID: 33586320 PMCID: PMC8014246 DOI: 10.1002/stem.3354] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has grown to be a global public health crisis with no safe and effective treatments available yet. Recent findings suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus pathogen that causes COVID-19, could elicit a cytokine storm that drives edema, dysfunction of the airway exchange, and acute respiratory distress syndrome in the lung, followed by acute cardiac injury and thromboembolic events leading to multiorgan failure and death. Mesenchymal stem cells (MSCs), owing to their powerful immunomodulatory abilities, have the potential to attenuate the cytokine storm and have therefore been proposed as a potential therapeutic approach for which several clinical trials are underway. Given that intravenous infusion of MSCs results in a significant trapping in the lung, MSC therapy could directly mitigate inflammation, protect alveolar epithelial cells, and reverse lung dysfunction by normalizing the pulmonary microenvironment and preventing pulmonary fibrosis. In this review, we present an overview and perspectives of the SARS-CoV-2 induced inflammatory dysfunction and the potential of MSC immunomodulation for the prevention and treatment of COVID-19 related pulmonary disease.
Collapse
Affiliation(s)
- Na Song
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Wakimoto
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Filippo Rossignoli
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Kok-Siong Chen
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jasneet Kaur Khalsa
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
92
|
Lam G, Zhou Y, Wang JX, Tsui YP. Targeting mesenchymal stem cell therapy for severe pneumonia patients. World J Stem Cells 2021; 13:139-154. [PMID: 33708343 PMCID: PMC7933990 DOI: 10.4252/wjsc.v13.i2.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/03/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pneumonia is the inflammation of the lungs and it is the world's leading cause of death for children under 5 years of age. The latest coronavirus disease 2019 (COVID-19) virus is a prominent culprit to severe pneumonia. With the pandemic running rampant for the past year, more than 1590000 deaths has occurred worldwide up to December 2020 and are substantially attributable to severe pneumonia and induced cytokine storm. Effective therapeutic approaches in addition to the vaccines and drugs under development are hence greatly sought after. Therapies harnessing stem cells and their derivatives have been established by basic research for their versatile capacity to specifically inhibit inflammation due to pneumonia and prevent alveolar/pulmonary fibrosis while enhancing antibacterial/antiviral immunity, thus significantly alleviating the severe clinical conditions of pneumonia. In recent clinical trials, mesenchymal stem cells have shown effectiveness in reducing COVID-19-associated pneumonia morbidity and mortality; positioning these cells as worthy candidates for combating one of the greatest challenges of our time and shedding light on their prospects as a next-generation therapy to counter future challenges.
Collapse
Affiliation(s)
- Guy Lam
- School of Biomedical Sciences, University of Hong Kong, Hong Kong 999077, China
| | - Yuan Zhou
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China
| | - Jia-Xian Wang
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China
| | - Yat-Ping Tsui
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China.
| |
Collapse
|
93
|
Verma YK, Verma R, Tyagi N, Behl A, Kumar S, Gangenahalli GU. COVID-19 and its Therapeutics: Special Emphasis on Mesenchymal Stem Cells Based Therapy. Stem Cell Rev Rep 2021; 17:113-131. [PMID: 32920752 PMCID: PMC7486977 DOI: 10.1007/s12015-020-10037-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The novel virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) caused the Corona Virus Disease-2019 (COVID-19) outbreak in Wuhan, Hubei province of China. This virus disseminated rapidly and reached to an unprecedented pandemic proportion in more than 213 nations with a large number of fatalities. The hypersecretion of pro-inflammatory cytokines is the main cause of mortality and morbidity due to COVID-19, therefore strategies that avert the cytokine storm may play a crucial role in abating the severity of COVID-19. This review highlights the minute details of SARS-CoV-2, its genomic organization, genomic variations within structural and non-structural proteins and viral progression mechanism in human beings. The approaches like antiviral strategies are discussed, including drugs that obstruct viral propagation and suppress the pro-inflammatory cytokines. This compilation emphasizes Mesenchymal Stem Cells (MSCs) based therapy alone or in combination with other therapeutics as an attractive curative approach for COVID-19 pandemic. The MSCs and its secretome, including antimicrobial peptides (AMPs) have various capabilities, for instance, immunomodulation, regeneration, antimicrobial properties, potential for attenuating the cytokine storm and bare minimum chances of being infected with SARS-CoV-2 virus. The immunomodulatory property of MSCs affects inflammatory state and regulates immune response during SARS-CoV-2 infection. However, as of now, there is no WHO-approved MSCs based therapy for the treatment of COVID-19 infection. Graphical abstract.
Collapse
Affiliation(s)
- Yogesh Kumar Verma
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S.K. Mazumdar Road, Delhi, 110054, India
| | - Ranjan Verma
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S.K. Mazumdar Road, Delhi, 110054, India
| | - Nishant Tyagi
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S.K. Mazumdar Road, Delhi, 110054, India
| | - Amanpreet Behl
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S.K. Mazumdar Road, Delhi, 110054, India
| | - Subodh Kumar
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S.K. Mazumdar Road, Delhi, 110054, India
| | - Gurudutta U Gangenahalli
- Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S.K. Mazumdar Road, Delhi, 110054, India.
| |
Collapse
|
94
|
Cárdenes N, Sembrat J, Noda K, Lovelace T, Álvarez D, Bittar HET, Philips BJ, Nouraie M, Benos PV, Sánchez PG, Rojas M. Human ex vivo lung perfusion: a novel model to study human lung diseases. Sci Rep 2021; 11:490. [PMID: 33436736 PMCID: PMC7804395 DOI: 10.1038/s41598-020-79434-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Experimental animal models to predict physiological responses to injury and stress in humans have inherent limitations. Therefore, the development of preclinical human models is of paramount importance. Ex vivo lung perfusion (EVLP) has typically been used to recondition donor lungs before transplantation. However, this technique has recently advanced into a model to emulate lung mechanics and physiology during injury. In the present study, we propose that the EVLP of diseased human lungs is a well-suited preclinical model for translational research on chronic lung diseases. Throughout this paper, we demonstrate this technique's feasibility in pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), emphysema, and non-disease donor lungs not suitable for transplantation. In this study, we aimed to perfuse the lungs for 6 h with the EVLP system. This facilitated a robust and continuous assessment of airway mechanics, pulmonary hemodynamics, gas exchange, and biochemical parameters. We then collected at different time points tissue biopsies of lung parenchyma to isolate RNA and DNA to identify each disease's unique gene expression. Thus, demonstrating that EVLP could successfully serve as a clinically relevant experimental model to derive essential insights into pulmonary pathophysiology and various human lung diseases.
Collapse
Affiliation(s)
- Nayra Cárdenes
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tyler Lovelace
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt Ph.D. Program in Computational Biology, Pittsburgh, PA, USA
| | - Diana Álvarez
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Humberto E Trejo Bittar
- Department of Pathology, Thoracic and Autopsy Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Brian J Philips
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Panayiotis V Benos
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt Ph.D. Program in Computational Biology, Pittsburgh, PA, USA
| | - Pablo G Sánchez
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, W1244 BST Tower, 200 Lothrop Street, Pittsburgh, PA, 15261, USA. .,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
95
|
Li LL, Zhu YG, Jia XM, Liu D, Qu JM. Adipose-Derived Mesenchymal Stem Cells Ameliorating Pseudomonas aeruginosa-induced Acute Lung Infection via Inhibition of NLRC4 Inflammasome. Front Cell Infect Microbiol 2021; 10:581535. [PMID: 33489931 PMCID: PMC7820751 DOI: 10.3389/fcimb.2020.581535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
Background Pseudomonas aeruginosa (PA) is one of the most common Gram-negative bacteria causing hospital-acquired pulmonary infection, with high drug resistance and mortality. Therefore, it is urgent to introduce new non-antibiotic treatment strategies. Mesenchymal stem cells (MSCs), as important members of the stem cell family, were demonstrated to alleviate pathological damage in acute lung injury. However, the potential mechanism how MSC alleviate acute lung infection caused by PA remains unclear. Objective The purpose of this study was to investigate the effects of Adipose-derived mesenchymal stem cells (ASCs) on acute pulmonary infections and the possible mechanisms how ASCs reduce pulmonary inflammation induced by PA. Methods The therapeutic and mechanistic effects of ASCs on PA pulmonary infection were evaluated respectively in a murine model as well as in an in vitro model stimulated by PA and co-cultured with ASCs. Results 1. ASCs treatment significantly reduced the bacterial load, inflammation of lung tissue and histopathological damage by PA. 2. PA infection mainly activated Nod-like receptor containing a caspase activating and recruitment domain 4 (NLRC4) inflammasome in the lung of mice. ASCs attenuated acute lung infection in mice by inhibiting NLRC4 inflammasome activation. 3. NLRC4-/- mice showed a significant improvement in survival rate and lung bacterial load after PA infection. 4. ASCs mainly increased expression and secretion of STC-1 in response to PA-stimulated NLRC4 inflammasome activation. Conclusions PA infection attenuated macrophage phagocytosis through activation of NLRC4 inflammasome in macrophages, which eventually led to pulmonary inflammatory damage in mouse; ASCs reduced the activation of NLRC4 inflammasome in macrophages induced by PA infection, thereby increasing the phagocytic ability of macrophages, and ultimately improving lung tissue damage in mouse; ASCs may inhibit NLRC4 inflammasome through the secretion of STC-1.
Collapse
Affiliation(s)
- Lu-Lu Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Gang Zhu
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Xin-Ming Jia
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong Liu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Ming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
96
|
Sanders J, Schneider EM. How severe RNA virus infections such as SARS-CoV-2 disrupt tissue and organ barriers—Reconstitution by mesenchymal stem cell-derived exosomes. TISSUE BARRIERS IN DISEASE, INJURY AND REGENERATION 2021. [PMCID: PMC8225928 DOI: 10.1016/b978-0-12-818561-2.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The host tissue barriers arrange numerous lines of resistance to influx and cell-to-cell spread of pathogenic viruses. However, the highly virulent pathogens are equipped with diverse molecular mechanisms that can subvert the host countermeasures and/or exaggerate the host cell responses to toxic levels leading to severe illnesses. In his review, we discuss the immune-mediated pathogenesis of COVID-19 disease induced by the SARS-Cov-2 coronavirus. SARS-Cov-2 primarily infects type II alveolar epithelial cells. These cells are highly abundant with the ACE2 receptor protein, which occurs to be counterpart of the viral Spike protein and thus facilitates internalization of the virus. Following infection onset, the rapid clinical deterioration occurs about in a week suggesting that the respiratory failure in COVID-19 could result from a unique pattern of immune impairment characterized by severe Cytokine Release Syndrome (known as cytokine storm) leading to macrophage activation syndrome. In addition, the SARS-Cov-2 infection can induce a profound depletion of CD4 lymphocytes, CD19 lymphocytes, and natural killer cells, i.e., all major guardians cell components of the host immune barrier. However, while the numbers of that cells decline in the sequelae of the disease, the presence of persistent hyper-inflammation driving progressive tissue injury, suggests that the deteriorating impact of the systemic reactive responses can be more significant than the virus-induced cytopathic effects on the immunocompetent cells. In this respect, the authors discuss the emerging evidence of beneficial effects of administration of exosomes derived from mesenchymal stem cells—another sentinel-type cells—in management of the hyper-inflammatory response to SARS-CoV-2. Moreover, they also discuss the exosomes-originated mechanisms, which sustain regeneration of the damaged pulmonary lining cells and the vascular endothelial cells in various organs, including the brain.
Collapse
|
97
|
Shi M, Zhu Y, Yan J, Rouby J, Summah H, Monsel A, Qu J. Role of miR-466 in mesenchymal stromal cell derived extracellular vesicles treating inoculation pneumonia caused by multidrug-resistant Pseudomonas aeruginosa. Clin Transl Med 2021; 11:e287. [PMID: 33463070 PMCID: PMC7805403 DOI: 10.1002/ctm2.287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
RATIONALE The effects of mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (MSC EVs) on multidrug-resistant pseudomonas aeruginosa (MDR-PA)-induced pneumonia remain unclear. MATERIALS AND METHODS MicroRNA array and RT-PCR were used to select the major microRNA in MSC EVs. Human peripheral blood monocytes were obtained and isolated from qualified patients. The crosstalk between MSCs/MSC EVs and macrophages in vitro was studied. MDR-PA pneumonia models were further established in C57BL/6 mice and MSC EVs or miR-466 overexpressing MSC EVs were intratracheally instilled. RESULTS MiR-466 was highly expressed in MSC EVs. MSCs and miR-466 promoted macrophage polarization toward Type 2 phenotype through TIRAP-MyD88-NFκB axis. Moreover, cocultured macrophages with miR-466 overexpressing MSCs significantly increased the phagocytosis of macrophages. MSC EVs significantly reduced mortality and decreased influx of BALF neutrophils, proinflammatory factor levels, protein, and bacterial load in murine MDR-PA pneumonia. Administration of miR-466 overexpressing MSC EVs further alleviated the inflammatory severity. CONCLUSIONS MSC-derived EVs containing high levels of miR-466 may partly participate in host immune responses to MDR-PA. Both MSCs and MSC EVs have therapeutic effects in treating MDR-PA-induced pneumonia.
Collapse
Affiliation(s)
- Meng‐meng Shi
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Respiratory Diseases, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ying‐gang Zhu
- Department of Pulmonary and Critical Care Medicine, Hua‐dong HospitalFudan UniversityShanghaiChina
| | - Jia‐yang Yan
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Respiratory Diseases, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jean‐Jacques Rouby
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié‐Salpêtrière Hospital, Assistance Publique‐Hôpitaux de Paris (APHP)Sorbonne UniversityParisFrance
| | - Hanssa Summah
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Respiratory Diseases, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié‐Salpêtrière Hospital, Assistance Publique‐Hôpitaux de Paris (APHP)Sorbonne UniversityParisFrance
- INSERM, UMR S 959, Immunology‐Immunopathology‐ Immunotherapy (I3)Sorbonne UniversitéParisF‐75005France
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (DHU i2B)Hôpital Pitié‐SalpêtrièreAP‐HPParisF‐75651France
| | - Jie‐ming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Respiratory Diseases, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
98
|
Liu J, Li P, Zhu J, Lin F, Zhou J, Feng B, Sheng X, Shi X, Pan Q, Yu J, Gao J, Li L, Cao H. Mesenchymal stem cell-mediated immunomodulation of recruited mononuclear phagocytes during acute lung injury: a high-dimensional analysis study. Theranostics 2021; 11:2232-2246. [PMID: 33500722 PMCID: PMC7797670 DOI: 10.7150/thno.52514] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022] Open
Abstract
Rationale: Acute lung injury (ALI)-recruited mononuclear phagocytes play a pivotal role in lung injury and repair. This study investigated the types of recruited mononuclear phagocytes and the immunotherapeutic effects of allograft mesenchymal stem cells (MSCs) in a mouse model of lipopolysaccharide (LPS)-induced ALI. Methods: C57BL/6 mice were orotracheally instilled with LPS (20 mg/kg). Compact bone-derived MSCs were administered orotracheally 4 h after LPS inhalation. Mononuclear phagocytes recruited in the lung tissues were characterized at different timepoints by high-dimensional analysis including flow cytometry, mass cytometry, and single-cell RNA sequencing. Results: Eight mononuclear phagocyte subsets recruited to LPS-challenged lungs were precisely identified. On day 3 after LPS administration, both Ly6ChiCD38+ and Ly6ClowCD38+ monocytes were recruited into acutely injured lungs, which was associated with increased secretion of neutrophil chemokines. Ly6ChiCD38+ monocytes differentiated into M1 macrophages on day 3, and subsequently differentiated into CD38+ monocyte-derived dendritic cells (mo-DCs) on day 7, while Ly6ClowCD38+ monocytes differentiated into CD11b+CD38+ DCs on day 7. When ALI mice were treated with MSCs, the mortality significantly reduced. Notably, MSCs reduced the amount of M1 macrophages and reduced the secretion of neutrophil chemokines on day 3. Furthermore, MSCs reduced the number of CD38+ mo-DCs and CD11b+CD38+ DCs on day 7, suppressing the antigen presentation process. Recruited mononuclear phagocyte subsets with a high level of CD38 exhibited an activated phenotype and could secrete higher levels of cytokines and chemokines. Conclusions: This study characterized the dynamic functions and phenotypes of recruited mononuclear phagocytes in ALI mice and MSC-treated ALI mice.
Collapse
Affiliation(s)
- Jingqi Liu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Pan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Feiyan Lin
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Xinyu Sheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Xiaowei Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou City 310003, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, 79 Qingchun Rd, Hangzhou City 310003, China
| |
Collapse
|
99
|
Barros I, Silva A, de Almeida LP, Miranda CO. Mesenchymal stromal cells to fight SARS-CoV-2: Taking advantage of a pleiotropic therapy. Cytokine Growth Factor Rev 2020; 58:114-133. [PMID: 33397585 PMCID: PMC7836230 DOI: 10.1016/j.cytogfr.2020.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
The devastating global impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has prompted scientists to develop novel strategies to fight Coronavirus Disease of 2019 (COVID-19), including the examination of pre-existing treatments for other viral infections in COVID-19 patients. This review provides a reasoned discussion of the possible use of Mesenchymal Stromal Cells (MSC) or their products as a treatment in SARS-CoV-2-infected patients. The main benefits and concerns of using this cellular therapy, guided by preclinical and clinical data obtained from similar pathologies will be reviewed. MSC represent a highly immunomodulatory cell population and their use may be safe according to clinical studies developed in other pathologies. Notably, four clinical trials and four case reports that have already been performed in COVID-19 patients obtained promising results. The clinical application of MSC in COVID-19 is very preliminary and further investigational studies are required to determine the efficacy of the MSC therapy. Nevertheless, these preliminary studies were important to understand the therapeutic potential of MSC in COVID-19. Based on these encouraging results, the United States Food and Drug Administration (FDA) authorized the compassionate use of MSC, but only in patients with Acute Respiratory Distress Syndrome (ARDS) and a poor prognosis. In fact, patients with severe SARS-CoV-2 can present infection and tissue damage in different organs, such as lung, heart, liver, kidney, gut and brain, affecting their function. MSC may have pleiotropic activities in COVID-19, with the capacity to fight inflammation and repair lesions in several organs.
Collapse
Affiliation(s)
- Inês Barros
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; III - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - António Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Viravector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Catarina Oliveira Miranda
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; III - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
100
|
Ciccocioppo R, Comoli P, Astori G, Del Bufalo F, Prapa M, Dominici M, Locatelli F. Developing cell therapies as drug products. Br J Pharmacol 2020; 178:262-279. [PMID: 33140850 DOI: 10.1111/bph.15305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
In the last 20 years, the global regulatory frameworks for drug assessment have been managing the challenges posed by using cellular products as new therapeutic tools. Currently, they are defined as "Advanced Therapy Medicinal Products", comprising a large group of cellular types that either alone or in combination with gene and tissue engineering technology. They have the potential to change the natural course of still lethal or highly debilitating diseases, including cancers, opportunistic infections and chronic inflammatory conditions. Globally, more than 50 cell-based products have obtained market authorization. This overview describes the advantages and unsolved challenges on developing cells as innovative therapeutic vehicles. The main cell therapy players and the legal framework are discussed, starting from chimeric antigen receptor T-cells for leukaemia and solid tumours, dealing then with lymphocytes as potent anti-microbiological tools and then focusing on mesenchymal stem/stromal cells whose role covers regenerative medicine, immunology and anti-tumour therapy.
Collapse
Affiliation(s)
- Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Patrizia Comoli
- Cell Factory and Paediatric Haematology/Oncology Unit, Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Astori
- Laboratory of Advanced Cellular Therapies, Haematology Unit, San Bortolo Hospital, A.U.L.S.S. 8 "Berica", Vicenza, Italy
| | - Francesca Del Bufalo
- Department of Paediatric Haematology and Oncology and Cell and Gene Therapy, I.R.C.C.S. Bambino Gesù Children's Hospital, Rome, Italy
| | - Malvina Prapa
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology and Cell and Gene Therapy, I.R.C.C.S. Bambino Gesù Children's Hospital, Rome, Italy.,Department of Paediatrics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|