51
|
Mailhot G, Denis MH, Beauchamp-Parent C, Jomphe V. Nutritional management of people living with cystic fibrosis throughout life and disease continuum: Changing times, new challenges. J Hum Nutr Diet 2023; 36:1675-1691. [PMID: 37515397 DOI: 10.1111/jhn.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding for the ion channel cystic fibrosis transmembrane conductance regulator (CFTR). The management of CF disease has evolved in recent decades from treating downstream disease manifestations affecting the airways, the lungs and the gastrointestinal system to addressing the CFTR gene defect. The advent of CFTR modulators, which correct the functionality of the defective CFTR, contributes to reshaping the landscape of CF demographics, prognosis and therapies, including nutritional management. A spectrum of clinical manifestations is emerging within the same patient population where undernutrition and nutritional deficiencies coexist with excessive weight gain and metabolic derangements. Such contrasting presentations challenge current practices, require adjustments to traditional approaches, and involve more individualised interventions. This narrative review examines the current state of knowledge on the nutritional management of people living with cystic fibrosis from early life to adulthood in the era of CFTR modulation.
Collapse
Affiliation(s)
- Geneviève Mailhot
- Department of Nutrition, Faculty of Medicine, Montreal, QC, Canada
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | | | | | - Valérie Jomphe
- Lung Transplant Program, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
52
|
Graeber SY, Mall MA. The future of cystic fibrosis treatment: from disease mechanisms to novel therapeutic approaches. Lancet 2023; 402:1185-1198. [PMID: 37699417 DOI: 10.1016/s0140-6736(23)01608-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
With the 2019 breakthrough in the development of highly effective modulator therapy providing unprecedented clinical benefits for over 90% of patients with cystic fibrosis who are genetically eligible for treatment, this rare disease has become a front runner of transformative molecular therapy. This success is based on fundamental research, which led to the identification of the disease-causing CFTR gene and our subsequent understanding of the disease mechanisms underlying the pathogenesis of cystic fibrosis, working together with a continuously evolving clinical research and drug development pipeline. In this Series paper, we focus on advances since 2018, and remaining knowledge gaps in our understanding of the molecular mechanisms of CFTR dysfunction in the airway epithelium and their links to mucus dysfunction, impaired host defences, airway infection, and chronic inflammation of the lungs of people with cystic fibrosis. We review progress in (and the remaining obstacles to) pharmacological approaches to rescue CFTR function, and novel strategies for improved symptomatic therapies for cystic fibrosis, including how these might be applicable to common lung diseases, such as bronchiectasis and chronic obstructive pulmonary disease. Finally, we discuss the promise of genetic therapies and gene editing approaches to restore CFTR function in the lungs of all patients with cystic fibrosis independent of their CFTR genotype, and the unprecedented opportunities to transform cystic fibrosis from a fatal disease to a treatable and potentially curable one.
Collapse
Affiliation(s)
- Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research, associated partner site, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research, associated partner site, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
53
|
Martin C, Guzior DV, Gonzalez CT, Okros M, Mielke J, Padillo L, Querido G, Gil M, Thomas R, McClelland M, Conrad D, Widder S, Quinn RA. Longitudinal Microbial and Molecular Dynamics in the Cystic Fibrosis Lung after Elexacaftor-Tezacaftor-Ivacaftor therapy. RESEARCH SQUARE 2023:rs.3.rs-3356170. [PMID: 37841851 PMCID: PMC10571617 DOI: 10.21203/rs.3.rs-3356170/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Background Cystic fibrosis (CF) is a genetic disorder causing poor mucociliary clearance in the airways and subsequent respiratory infection. The recently approved triple therapy Elexacaftor-Tezacaftor-Ivacaftor (ETI) has significantly improved the lung function and decreased airway infection of persons with CF (pwCF). This improvement has been shown to occur rapidly, within the first few weeks of treatment. The effects of longer term ETI therapy on lung infection dynamics, however, remains mostly unknown. Results Here, we applied 16S rRNA gene amplicon sequencing, untargeted metabolomics, and neutral models to high-resolution, longitudinally collected sputum samples from pwCF on ETI therapy (162 samples, 7 patients) and compared to similarly collected data set of CF subjects not taking ETI (630 samples, 9 patients). Because ETI reduces sputum production, samples were collected in freezers provided in the subject's homes at least 3 months after first taking ETI, with those on ETI collecting a sample approximately weekly. The lung function (%ppFEV1) of those in our longitudinal cohort significantly improved after ETI (6.91, SD = 7.74), indicating our study cohort was responsive to ETI. The daily variation of alpha- and beta-diversity of both the microbiome and metabolome was higher for those on ETI, reflecting a more dynamic microbial community and chemical environment during treatment. Four of the seven subjects on ETI were persistently infected with Pseudomonas or Burkholderia in their sputum throughout the sampling period. The microbiome and metabolome dynamics on ETI were personalized, where some subjects had a progressive change with time on therapy, whereas others had no association with time on treatment. To further classify the augmented variance of the CF microbiome under therapy, we fit the microbiome data to a Hubbell neutral dynamics model in a patient-stratified manner and found that the subjects on ETI had better fit to a neutral model. Conclusion This study shows that the longitudinal microbiology and chemistry in airway secretions from subjects on ETI has become more dynamic and neutral, and that after the initial improvement in lung function, many are still persistently infected with CF pathogens.
Collapse
|
54
|
Dettmer S, Weinheimer O, Sauer-Heilborn A, Lammers O, Wielpütz MO, Fuge J, Welte T, Wacker F, Ringshausen FC. Qualitative and quantitative evaluation of computed tomography changes in adults with cystic fibrosis treated with elexacaftor-tezacaftor-ivacaftor: a retrospective observational study. Front Pharmacol 2023; 14:1245885. [PMID: 37808186 PMCID: PMC10552920 DOI: 10.3389/fphar.2023.1245885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: The availability of highly effective triple cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination therapy with elexacaftor-tezacaftor-ivacaftor (ETI) has improved pulmonary outcomes and quality of life of people with cystic fibrosis (pwCF). The aim of this study was to assess computed tomography (CT) changes under ETI visually with the Brody score and quantitatively with dedicated software, and to correlate CT measures with parameters of clinical response. Methods: Twenty two adult pwCF with two consecutive CT scans before and after ETI treatment initiation were retrospectively included. CT was assessed visually employing the Brody score and quantitatively by YACTA, a well-evaluated scientific software computing airway dimensions and lung parenchyma with wall percentage (WP), wall thickness (WT), lumen area (LA), bronchiectasis index (BI), lung volume and mean lung density (MLD) as parameters. Changes in CT metrics were evaluated and the visual and quantitative parameters were correlated with each other and with clinical changes in sweat chloride concentration, spirometry [percent predicted of forced expiratory volume in one second (ppFEV1)] and body mass index (BMI). Results: The mean (SD) Brody score improved with ETI [55 (12) vs. 38 (15); p < 0.001], incl. sub-scores for mucus plugging, peribronchial thickening, and parenchymal changes (all p < 0.001), but not for bronchiectasis (p = 0.281). Quantitatve WP (p < 0.001) and WT (p = 0.004) were reduced, conversely LA increased (p = 0.003), and BI improved (p = 0.012). Lung volume increased (p < 0.001), and MLD decreased (p < 0.001) through a reduction of ground glass opacity areas (p < 0.001). Changes of the Brody score correlated with those of quantitative parameters, exemplarily WT with the sub-score for mucus plugging (r = 0.730, p < 0.001) and peribronchial thickening (r = 0.552, p = 0.008). Changes of CT parameters correlated with those of clinical response parameters, in particular ppFEV1 with the Brody score (r = -0.606, p = 0.003) and with WT (r = -0.538, p = 0.010). Discussion: Morphological treatment response to ETI can be assessed using the Brody score as well as quantitative CT parameters. Changes in CT correlated with clinical improvements. The quantitative analysis with YACTA proved to be an objective, reproducible and simple method for monitoring lung disease, particularly with regard to future interventional clinical trials.
Collapse
Affiliation(s)
- Sabine Dettmer
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Annette Sauer-Heilborn
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Oliver Lammers
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Jan Fuge
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
55
|
Baharara H, Kesharwani P, Johnston TP, Sahebkar A. Therapeutic potential of phytochemicals for cystic fibrosis. Biofactors 2023; 49:984-1009. [PMID: 37191383 DOI: 10.1002/biof.1960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
The aim of this review was to review and discuss various phytochemicals that exhibit beneficial effects on mutated membrane channels, and hence, improve transmembrane conductance. These therapeutic phytochemicals may have the potential to decrease mortality and morbidity of CF patients. Four databases were searched using keywords. Relevant studies were identified, and related articles were separated. Google Scholar, as well as gray literature (i.e., information that is not produced by commercial publishers), were also checked for related articles to locate/identify additional studies. The relevant databases were searched a second time to ensure that recent studies were included. In conclusion, while curcumin, genistein, and resveratrol have demonstrated effectiveness in this regard, it should be emphasized that coumarins, quercetin, and other herbal medicines also have beneficial effects on transporter function, transmembrane conductivity, and overall channel activity. Additional in vitro and in vivo studies should be conducted on mutant CFTR to unequivocally define the mechanism by which phytochemicals alter transmembrane channel function/activity, since the results of the studies evaluated in this review have a high degree of heterogenicity and discrepancy. Finally, continued research be undertaken to clearly define the mechanism(s) of action and the therapeutic effects that therapeutic phytochemicals have on the symptoms observed in CF patients in an effort to reduce mortality and morbidity.
Collapse
Affiliation(s)
- Hamed Baharara
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - AmirHossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
56
|
Marsh R, Dos Santos C, Hanson L, Ng C, Major G, Smyth AR, Rivett D, van der Gast C. Tezacaftor/Ivacaftor therapy has negligible effects on the cystic fibrosis gut microbiome. Microbiol Spectr 2023; 11:e0117523. [PMID: 37607068 PMCID: PMC10581179 DOI: 10.1128/spectrum.01175-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/24/2023] Open
Abstract
People with cystic fibrosis (pwCF) experience a range of persistent gastrointestinal symptoms throughout life. There is evidence indicating interaction between the microbiota and gut pathophysiology in CF. However, there is a paucity of knowledge on the potential effects of CF transmembrane conductance regulator (CFTR) modulator therapies on the gut microbiome. In a pilot study, we investigated the impact of Tezacaftor/Ivacaftor dual combination CFTR modulator therapy on the gut microbiota and metabolomic functioning in pwCF. Fecal samples from 12 pwCF taken at baseline and following placebo or Tezacaftor/Ivacaftor administration were subjected to microbiota sequencing and to targeted metabolomics to assess the short-chain fatty acid (SCFA) composition. Ten healthy matched controls were included as a comparison. Inflammatory calprotectin levels and patient symptoms were also investigated. No significant differences were observed in overall gut microbiota characteristics between any of the study stages, extended also across intestinal inflammation, gut symptoms, and SCFA-targeted metabolomics. However, microbiota and SCFA metabolomic compositions, in pwCF, were significantly different from controls in all study treatment stages. CFTR modulator therapy with Tezacaftor/Ivacaftor had negligible effects on both the gut microbiota and SCFA composition across the course of the study and did not alter toward compositions observed in healthy controls. Future longitudinal CFTR modulator studies will investigate more effective CFTR modulators and should use prolonged sampling periods, to determine whether longer-term changes occur in the CF gut microbiome. IMPORTANCE People with cystic fibrosis (pwCF) experience persistent gastrointestinal (GI) symptoms throughout life. The research question "how can we relieve gastrointestinal symptoms, such as stomach pain, bloating, and nausea?" remains a top priority for clinical research in CF. While CF transmembrane conductance regulator (CFTR) modulator therapies are understood to correct underlying issues of CF disease and increasing the numbers of pwCF are now receiving some form of CFTR modulator treatment. It is not known how these therapies affect the gut microbiome or GI system. In this pilot study, we investigated, for the first time, effects of the dual combination CFTR modulator medicine, Tezacaftor/Ivacaftor. We found it had negligible effects on patient GI symptoms, intestinal inflammation, or gut microbiome composition and functioning. Our findings are important as they fill important knowledge gaps on the relative effectiveness of these widely used treatments. We are now investigating triple combination CFTR modulators with prolonged sampling periods.
Collapse
Affiliation(s)
- Ryan Marsh
- Department of Applied Sciences, Northumbria University, Newcastle, United Kingdom
| | - Claudio Dos Santos
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Liam Hanson
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Christabella Ng
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Giles Major
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Nestlé Institute of Health Sciences, Société des Produits Nestlé, Lausanne, Switzerland
| | - Alan R. Smyth
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Damian Rivett
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Christopher van der Gast
- Department of Applied Sciences, Northumbria University, Newcastle, United Kingdom
- Department of Respiratory Medicine, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| |
Collapse
|
57
|
Graeber SY, Balázs A, Ziegahn N, Rubil T, Vitzthum C, Piehler L, Drescher M, Seidel K, Rohrbach A, Röhmel J, Thee S, Duerr J, Mall MA, Stahl M. Personalized CFTR Modulator Therapy for G85E and N1303K Homozygous Patients with Cystic Fibrosis. Int J Mol Sci 2023; 24:12365. [PMID: 37569738 PMCID: PMC10418744 DOI: 10.3390/ijms241512365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
CFTR modulator therapy with elexacaftor/tezacaftor/ivacaftor (ETI) has been approved for people with CF and at least one F508del allele in Europe. In the US, the ETI label has been expanded to 177 rare CFTR mutations responsive in Fischer rat thyroid cells, including G85E, but not N1303K. However, knowledge on the effect of ETI on G85E or N1303K CFTR function remains limited. In vitro effects of ETI were measured in primary human nasal epithelial cultures (pHNECs) of a G85E homozygous patient and an N1303K homozygous patient. Effects of ETI therapy in vivo in these patients were assessed using clinical outcomes, including multiple breath washout and lung MRI, and the CFTR biomarkers sweat chloride concentration (SCC), nasal potential difference (NPD) and intestinal current measurement (ICM), before and after initiation of ETI. ETI increased CFTR-mediated chloride transport in G85E/G85E and N1303K/N1303K pHNECs. In the G85E/G85E and the N1303K/N1303K patient, we observed an improvement in lung function, SCC, and CFTR function in the respiratory and rectal epithelium after initiation of ETI. The approach of combining preclinical in vitro testing with subsequent in vivo verification can facilitate access to CFTR modulator therapy and enhance precision medicine for patients carrying rare CFTR mutations.
Collapse
Affiliation(s)
- Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Niklas Ziegahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Tihomir Rubil
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Constanze Vitzthum
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Linus Piehler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Marika Drescher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Kathrin Seidel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Alexander Rohrbach
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
58
|
Schaupp L, Addante A, Völler M, Fentker K, Kuppe A, Bardua M, Duerr J, Piehler L, Röhmel J, Thee S, Kirchner M, Ziehm M, Lauster D, Haag R, Gradzielski M, Stahl M, Mertins P, Boutin S, Graeber SY, Mall MA. Longitudinal effects of elexacaftor/tezacaftor/ivacaftor on sputum viscoelastic properties, airway infection and inflammation in patients with cystic fibrosis. Eur Respir J 2023; 62:2202153. [PMID: 37414422 DOI: 10.1183/13993003.02153-2022] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/21/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Recent studies demonstrated that the triple combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI) improves lung function and reduces pulmonary exacerbations in cystic fibrosis (CF) patients with at least one F508del allele. However, effects of ETI on downstream consequences of CFTR dysfunction, i.e. abnormal viscoelastic properties of airway mucus, chronic airway infection and inflammation have not been studied. The aim of this study was to determine the longitudinal effects of ETI on airway mucus rheology, microbiome and inflammation in CF patients with one or two F508del alleles aged ≥12 years throughout the first 12 months of therapy. METHODS In this prospective observational study, we assessed sputum rheology, the microbiome, inflammation markers and proteome before and 1, 3 and 12 months after initiation of ETI. RESULTS In total, 79 patients with CF and at least one F508del allele and 10 healthy controls were enrolled in this study. ETI improved the elastic modulus and viscous modulus of CF sputum at 3 and 12 months after initiation (all p<0.01). Furthermore, ETI decreased the relative abundance of Pseudomonas aeruginosa in CF sputum at 3 months and increased the microbiome α-diversity at all time points. In addition, ETI reduced interleukin-8 at 3 months (p<0.05) and free neutrophil elastase activity at all time points (all p<0.001), and shifted the CF sputum proteome towards healthy. CONCLUSIONS Our data demonstrate that restoration of CFTR function by ETI improves sputum viscoelastic properties, chronic airway infection and inflammation in CF patients with at least one F508del allele over the first 12 months of therapy; however, levels close to healthy were not reached.
Collapse
Affiliation(s)
- Laura Schaupp
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Kerstin Fentker
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Markus Bardua
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Linus Piehler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Ziehm
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Lauster
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Michael Gradzielski
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Sébastien Boutin
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Berlin, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein/Campus, Lübeck, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| |
Collapse
|
59
|
Stahl M, Roehmel J, Eichinger M, Doellinger F, Naehrlich L, Kopp MV, Dittrich AM, Lee C, Sommerburg O, Tian S, Xu T, Wu P, Joshi A, Ray P, Duncan ME, Wielpütz MO, Mall MA. Effects of Lumacaftor/Ivacaftor on Cystic Fibrosis Disease Progression in Children 2 through 5 Years of Age Homozygous for F508del-CFTR: A Phase 2 Placebo-controlled Clinical Trial. Ann Am Thorac Soc 2023; 20:1144-1155. [PMID: 36943405 PMCID: PMC10405608 DOI: 10.1513/annalsats.202208-684oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/21/2023] [Indexed: 03/23/2023] Open
Abstract
Rationale: Lumacaftor/ivacaftor (LUM/IVA) was shown to be safe and well tolerated in children 2 through 5 years of age with cystic fibrosis (CF) homozygous for F508del-CFTR in a Phase 3 open-label study. Improvements in sweat chloride concentration, markers of pancreatic function, and lung clearance index2.5 (LCI2.5), along with increases in growth parameters, suggested the potential for early disease modification with LUM/IVA treatment. Objective: To further assess the effects of LUM/IVA on CF disease progression in children 2 through 5 years of age using chest magnetic resonance imaging (MRI). Methods: This Phase 2 study had two parts: a 48-week, randomized, double-blind, placebo-controlled treatment period in which children 2 through 5 years of age with CF homozygous for F508del-CFTR received either LUM/IVA or placebo (Part 1) followed by an open-label period in which all children received LUM/IVA for an additional 48 weeks (Part 2). The results from Part 1 are reported. The primary endpoint was absolute change from baseline in chest MRI global score at Week 48. Secondary endpoints included absolute change in LCI2.5 through Week 48 and absolute changes in weight-for-age, stature-for-age, and body mass index-for-age z-scores at Week 48. Additional endpoints included absolute changes in sweat chloride concentration, fecal elastase-1 levels, serum immunoreactive trypsinogen, and fecal calprotectin through Week 48. The primary endpoint was analyzed using Bayesian methods, where the actual Bayesian posterior probability of LUM/IVA being superior to placebo in the chest MRI global score at Week 48 was calculated using a vague normal prior distribution; secondary and additional endpoints were analyzed using descriptive summary statistics. Results: Fifty-one children were enrolled and received LUM/IVA (n = 35) or placebo (n = 16). For the change in chest MRI global score at Week 48, the Bayesian posterior probability of LUM/IVA being better than placebo (treatment difference, <0; higher score indicates greater abnormality) was 76%; the mean treatment difference was -1.5 (95% credible interval, -5.5 to 2.6). Treatment with LUM/IVA also led to within-group numerical improvements in LCI2.5, growth parameters, and biomarkers of pancreatic function as well as greater decreases in sweat chloride concentration compared with placebo from baseline through Week 48. Safety data were consistent with the established safety profile of LUM/IVA. Conclusions: This placebo-controlled study suggests the potential for early disease modification with LUM/IVA treatment, including that assessed by chest MRI, in children as young as 2 years of age. Clinical trial registered with www.clinicaltrials.gov (NCT03625466).
Collapse
Affiliation(s)
- Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Roehmel
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
| | - Monika Eichinger
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, and
| | - Felix Doellinger
- Department of Radiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Matthias V. Kopp
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
- Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - Anna-Maria Dittrich
- Department for Pediatric Pulmonology, Allergology, and Neonatology and
- BREATH, German Center for Lung Research, Hannover Medical School, Hannover, Germany; and
| | | | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, Heidelberg University Hospital, Heidelberg, Germany
| | - Simon Tian
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Tu Xu
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Pan Wu
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Aniket Joshi
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Partha Ray
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | | | - Mark O. Wielpütz
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, and
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
60
|
Aridgides DS, Mellinger DL, Gwilt LL, Hampton TH, Mould DL, Hogan DA, Ashare A. Comparative effects of CFTR modulators on phagocytic, metabolic and inflammatory profiles of CF and nonCF macrophages. Sci Rep 2023; 13:11995. [PMID: 37491532 PMCID: PMC10368712 DOI: 10.1038/s41598-023-38300-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
Macrophage dysfunction has been well-described in Cystic Fibrosis (CF) and may contribute to bacterial persistence in the lung. Whether CF macrophage dysfunction is related directly to Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in macrophages or an indirect consequence of chronic inflammation and mucostasis is a subject of ongoing debate. CFTR modulators that restore CFTR function in epithelial cells improve global CF monocyte inflammatory responses but their direct effects on macrophages are less well understood. To address this knowledge gap, we measured phagocytosis, metabolism, and cytokine expression in response to a classical CF pathogen, Pseudomonas aeruginosa in monocyte-derived macrophages (MDM) isolated from CF F508del homozygous subjects and nonCF controls. Unexpectedly, we found that CFTR modulators enhanced phagocytosis in both CF and nonCF cohorts. CFTR triple modulators also inhibited MDM mitochondrial function, consistent with MDM activation. In contrast to studies in humans where CFTR modulators decreased serum inflammatory cytokine levels, modulators did not alter cytokine secretion in our system. Our studies therefore suggest modulator induced metabolic effects may promote bacterial clearance in both CF and nonCF monocyte-derived macrophages.
Collapse
Affiliation(s)
- Daniel S Aridgides
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Diane L Mellinger
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Lorraine L Gwilt
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Dallas L Mould
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| | - Alix Ashare
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Dartmouth College, Geisel School of Medicine, Hanover, NH, USA
| |
Collapse
|
61
|
Schütz K, Pallenberg ST, Kontsendorn J, DeLuca D, Sukdolak C, Minso R, Büttner T, Wetzke M, Dopfer C, Sauer-Heilborn A, Ringshausen FC, Junge S, Tümmler B, Hansen G, Dittrich AM. Spirometric and anthropometric improvements in response to elexacaftor/tezacaftor/ivacaftor depending on age and lung disease severity. Front Pharmacol 2023; 14:1171544. [PMID: 37469865 PMCID: PMC10352657 DOI: 10.3389/fphar.2023.1171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction: Triple-combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy with elexacaftor/tezacaftor/ivacaftor (ETI) was introduced in August 2020 in Germany for people with CF (pwCF) ≥12 years (yrs.) of age and in June 2021 for pwCF ≥6 yrs of age. In this single-center study, we analyzed longitudinal data on the percent-predicted forced expiratory volume (ppFEV1) and body-mass-index (BMI) for 12 months (mo.) after initiation of ETI by linear mixed models and regression analyses to identify age- and severity-dependent determinants of response to ETI. Methods: We obtained data on 42 children ≥6-11 yrs, 41 adolescents ≥12-17 yrs, and 143 adults by spirometry and anthropometry prior to ETI, and 3 and 12 mo. after ETI initiation. Data were stratified by the age group and further sub-divided into age-specific ppFEV1 impairment. To achieve this, the age strata were divided into three groups, each according to their baseline ppFEV1: lowest 25%, middle 50%, and top 25% of ppFEV1. Results: Adolescents and children with more severe lung disease prior to ETI (within the lowest 25% of age-specific ppFEV1) showed higher improvements in lung function than adults in this severity group (+18.5 vs. +7.5; p = 0.002 after 3 mo. and +13.8 vs. +7.2; p = 0.012 after 12 mo. of ETI therapy for ≥12-17 years and +19.8 vs. +7.5; p = 0.007 after 3 mo. for children ≥6-11 yrs). In all age groups, participants with more severe lung disease showed higher BMI gains than those with medium or good lung function (within the middle 50% or top 25% of age-specific ppFEV1). Regression analyses identified age as a predictive factor for FEV1 increase at 3 mo. after ETI initiation, and age and ppFEV1 at ETI initiation as predictive factors for FEV1 increase 12 mo. after ETI initiation. Discussion: We report initial data, which suggest that clinical response toward ETI depends on age and lung disease severity prior to ETI initiation, which argue for early initiation of ETI.
Collapse
Affiliation(s)
- Katharina Schütz
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Sophia Theres Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Julia Kontsendorn
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - David DeLuca
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Cinja Sukdolak
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Rebecca Minso
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Tina Büttner
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Martin Wetzke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Sibylle Junge
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
62
|
Rademacher J, Martin L, Theloe A, Stahl M, Mall MA, Joean O, Fuge J, Hansen G, Welte T, Schütz K, Ringshausen FC, Dittrich AM. Optimal treatment of the underlying aetiology is the most effective antimicrobial stewardship for chronic respiratory disease: a lesson learned from cystic fibrosis. ERJ Open Res 2023; 9:00356-2023. [PMID: 37650087 PMCID: PMC10463032 DOI: 10.1183/23120541.00356-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/25/2023] [Indexed: 09/01/2023] Open
Abstract
AMS in chronic lung disease can be challenging. Causal treatment of treatable traits may be the most successful AMS strategy for patients with any chronic pulmonary disease and should be brought into focus. https://bit.ly/3ptrmV8.
Collapse
Affiliation(s)
- Jessica Rademacher
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Luise Martin
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZL, associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Theloe
- Pharmacy Department, Charité – Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZL, associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZL, associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Oana Joean
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Jan Fuge
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Gesine Hansen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Katharina Schütz
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Felix C. Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
- These authors contributed equally
| | - Anna M. Dittrich
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- These authors contributed equally
| |
Collapse
|
63
|
Streibel C, Willers CC, Pusterla O, Bauman G, Stranzinger E, Brabandt B, Bieri O, Curdy M, Bullo M, Frauchiger BS, Korten I, Krüger L, Casaulta C, Ratjen F, Latzin P, Kieninger E. Effects of elexacaftor/tezacaftor/ivacaftor therapy in children with cystic fibrosis - a comprehensive assessment using lung clearance index, spirometry, and functional and structural lung MRI. J Cyst Fibros 2023; 22:615-622. [PMID: 36635199 DOI: 10.1016/j.jcf.2022.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND With improvement in supportive therapies and the introduction of cystic fibrosis transmembrane conductance regulator (CFTR)-modulator treatment in patients with cystic fibrosis (CF), milder disease courses are expected. Therefore, sensitive parameters are needed to monitor disease course and effects of CFTR-modulators. Functional lung MRI using matrix-pencil decomposition (MP-MRI) is a promising tool for assessing ventilation and perfusion quantitatively. This study aimed to assess the treatment effect of elexacaftor/tezacaftor/ivacaftor combination regimen (ELX/TEZ/IVA) on measures of structural and functional lung abnormalities. METHODS 24 children with CF underwent lung function tests (multiple breath washout, spirometry), functional and structural MRI twice (one year apart) before and once after at least two weeks (mean 4.7 ± 2.6 months) on ELX/TEZ/IVA. Main outcomes were changes (Δ) upon ELX/TEZ/IVA in lung function, defect percentage of ventilation (VDP) and perfusion (QDP), defect distribution index of ventilation and perfusion (DDIV, DDIQ), and Eichinger score. Statistical analyses were performed using paired t-tests and multilevel regression models with bootstrapping. RESULTS We observed a significant improvement in lung function, structural and functional MRI parameters upon ELX/TEZ/IVA treatment (mean; 95%-CI): ΔLCI2.5 (TO) -0.84 (-1.62 to -0.06); ΔFEV1 (z-score) 1.05 (0.56 to 1.55); ΔVDP (% of impairment) -6.00 (-8.44 to -3.55); ΔQDP (% of impairment) -3.90 (-5.90 to -1.90); ΔDDIV -1.38 (-2.22 to -0.53); ΔDDIQ -0.31 (-0.73 to 0.12); ΔEichinger score -3.89 (-5.05 to -2.72). CONCLUSIONS Besides lung function tests, functional and structural MRI is a suitable tool to monitor treatment response of ELX/TEZ/IVA therapy, and seems promising as outcome marker in the future.
Collapse
Affiliation(s)
- Carmen Streibel
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Corin C Willers
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland; Departement of Paediatrics, Kantonsspital Aarau, Aarau, Switzerland
| | - Orso Pusterla
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Grzegorz Bauman
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Enno Stranzinger
- Department of Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ben Brabandt
- Department of Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Marion Curdy
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Marina Bullo
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Bettina Sarah Frauchiger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Insa Korten
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Linn Krüger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Switzerland; Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada.
| |
Collapse
|
64
|
Murabito A, Bhatt J, Ghigo A. It Takes Two to Tango! Protein-Protein Interactions behind cAMP-Mediated CFTR Regulation. Int J Mol Sci 2023; 24:10538. [PMID: 37445715 DOI: 10.3390/ijms241310538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Over the last fifteen years, with the approval of the first molecular treatments, a breakthrough era has begun for patients with cystic fibrosis (CF), the rare genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). These molecules, known as CFTR modulators, have led to unprecedented improvements in the lung function and quality of life of most CF patients. However, the efficacy of these drugs is still suboptimal, and the clinical response is highly variable even among individuals bearing the same mutation. Furthermore, not all patients carrying rare CFTR mutations are eligible for CFTR modulator therapies, indicating the need for alternative and/or add-on therapeutic approaches. Because the second messenger 3',5'-cyclic adenosine monophosphate (cAMP) represents the primary trigger for CFTR activation and a major regulator of different steps of the life cycle of the channel, there is growing interest in devising ways to fine-tune the cAMP signaling pathway for therapeutic purposes. This review article summarizes current knowledge regarding the role of cAMP signalosomes, i.e., multiprotein complexes bringing together key enzymes of the cAMP pathway, in the regulation of CFTR function, and discusses how modulating this signaling cascade could be leveraged for therapeutic intervention in CF.
Collapse
Affiliation(s)
- Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Janki Bhatt
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| |
Collapse
|
65
|
Frantzen T, Barsky S, LaVecchia G, Marowitz M, Wang J. Evolving Nutritional Needs in Cystic Fibrosis. Life (Basel) 2023; 13:1431. [PMID: 37511806 PMCID: PMC10381916 DOI: 10.3390/life13071431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/30/2023] Open
Abstract
The course of cystic fibrosis (CF) as a nutritional illness is diverging since the introduction of highly effective modulator therapy, leading to more heterogeneous phenotypes of the disease despite CF genetic mutations that portend worse prognosis. This may become more evident as we follow the pediatric CF population into adulthood as some highly effective modulator therapies (HEMT) are approved for those as young as 1 year old. This review will outline the current research and knowledge available in the evolving nutritional health of people with CF as it relates to the impact of HEMT on anthropometrics, body composition, and energy expenditure, exocrine and endocrine pancreatic insufficiencies (the latter resulting in CF-related diabetes), vitamin and mineral deficiencies, and nutritional health in CF as it relates to pregnancy and lung transplantation.
Collapse
Affiliation(s)
- Theresa Frantzen
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA
| | - Sara Barsky
- Division of Pediatric Pulmonology, The Steven and Alexandra Cohen Children's Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, NY 11042, USA
| | - Geralyn LaVecchia
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA
| | - Michelle Marowitz
- Division of Pediatric Pulmonology, The Steven and Alexandra Cohen Children's Medical Center, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, NY 11042, USA
| | - Janice Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York, NY 11042, USA
| |
Collapse
|
66
|
Berges J, Graeber SY, Hämmerling S, Yu Y, Krümpelmann A, Stahl M, Hirtz S, Scheuermann H, Mall MA, Sommerburg O. Effects of lumacaftor-ivacaftor therapy on cystic fibrosis transmembrane conductance regulator function in F508del homozygous patients with cystic fibrosis aged 2-11 years. Front Pharmacol 2023; 14:1188051. [PMID: 37324488 PMCID: PMC10266342 DOI: 10.3389/fphar.2023.1188051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Rationale: Lumacaftor/ivacaftor was approved for the treatment of patients with cystic fibrosis who are homozygous for F508del aged 2 years and older following positive results from phase three trials. However, the improvement in CFTR function associated with lumacaftor/ivacaftor has only been studied in patients over 12 years of age, while the rescue potential in younger children is unknown. Methods: In a prospective study, we aimed to evaluate the effect of lumacaftor/ivacaftor on the CFTR biomarkers sweat chloride concentration and intestinal current measurement as well as clinical outcome parameters in F508del homozygous CF patients 2-11 years before and 8-16 weeks after treatment initiation. Results: A total of 13 children with CF homozygous for F508del aged 2-11 years were enrolled and 12 patients were analyzed. Lumacaftor/ivacaftor treatment reduced sweat chloride concentration by 26.8 mmol/L (p = 0.0006) and showed a mean improvement in CFTR activity, as assessed by intestinal current measurement in the rectal epithelium, of 30.5% compared to normal (p = 0.0015), exceeding previous findings of 17.7% of normal in CF patients homozygous for F508del aged 12 years and older. Conclusion: Lumacaftor/ivacaftor partially restores F508del CFTR function in children with CF who are homozygous for F508del, aged 2-11 years, to a level of CFTR activity seen in patients with CFTR variants with residual function. These results are consistent with the partial short-term improvement in clinical parameters.
Collapse
Affiliation(s)
- Julian Berges
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Susanne Hämmerling
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Yin Yu
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Arne Krümpelmann
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Stephanie Hirtz
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Heike Scheuermann
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
67
|
Olivier M, Kavvalou A, Welsner M, Hirtz R, Straßburg S, Sutharsan S, Stehling F, Steindor M. Real-life impact of highly effective CFTR modulator therapy in children with cystic fibrosis. Front Pharmacol 2023; 14:1176815. [PMID: 37229253 PMCID: PMC10203630 DOI: 10.3389/fphar.2023.1176815] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Recently, cystic fibrosis transmembrane regulator modulator therapy with elexacaftor/tezacaftor/ivacaftor has become available for children with cystic fibrosis (CF) carrying at least one F508del mutation. Objective: To assess the intermediate term effects of elexacaftor/tezacaftor/ivacaftor in children with cystic fibrosis in a real-world setting. Methods: We performed a retrospective analysis of records of children with cystic fibrosis, who started elexacaftor/tezacaftor/ivacaftor between 8/2020 and 10/2022. Pulmonary function tests, nutritional status, sweat chloride and laboratory data were assessed before, 3 and 6 months after the start of elexacaftor/tezacaftor/ivacaftor respectively. Results: Elexacaftor/tezacaftor/ivacaftor was started in 22 children 6-11 years and in 24 children 12-17 years. Twenty-seven (59%) patients were homozygous for F508del (F/F) and 23 (50%) patients were transitioned from ivacaftor/lumacaftor (IVA/LUM) or tezacaftor/ivacaftor (TEZ/IVA) to elexacaftor/tezacaftor/ivacaftor. Overall, mean sweat chloride concentration decreased by 59.3 mmol/L (95% confidence interval: -65.0 to -53.7 mmol/L, p < 0.0001) under elexacaftor/tezacaftor/ivacaftor. Sweat chloride concentration also decreased significantly after transition from IVA/LUM or TEZ/IVA to elexacaftor/tezacaftor/ivacaftor (-47.8 mmol/l; 95% confidence interval: -57.6 to -37.8 mmol/l, n = 14, p < 0.0001). Sweat chloride reduction was more marked in children with the F/F than in those with the F/MF genotype (69.4 vs 45.9 mmol/L, p < 0.0001). At 3 months follow-up, body-mass-index-z-score increased by 0.31 (95% CI, 0.2-0.42, p < 0.0001) with no further increase at 6 months. BMI-for-age-z-score was more markedly improved in the older group. Overall pulmonary function (percent predicted FEV1) at 3 months follow-up increased by 11.4% (95% CI: 8.0-14.9, p < 0.0001) with no further significant change after 6 months. No significant differences were noted between the age groups. Children with the F/MF genotype had a greater benefit regarding nutritional status and pulmonary function tests than those with the F/F genotype. Adverse events led to elexacaftor/tezacaftor/ivacaftor dose reduction in three cases and a temporary interruption of therapy in four cases. Conclusion: In a real-world setting, elexacaftor/tezacaftor/ivacaftor therapy had beneficial clinical effects and a good safety profile in eligible children with cystic fibrosis comparable to previously published data from controlled clinical trials. The positive impact on pulmonary function tests and nutritional status seen after 3 months of elexacaftor/tezacaftor/ivacaftor therapy was sustained at 6 months follow-up.
Collapse
Affiliation(s)
- Margarete Olivier
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Kavvalou
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Matthias Welsner
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen—Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Raphael Hirtz
- Pediatric Endocrinology, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Svenja Straßburg
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen—Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen—Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Florian Stehling
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mathis Steindor
- Pediatric Pulmonology and Sleep Medicine, Cystic Fibrosis Center, Children’s Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
68
|
Pallenberg ST, Held I, Dopfer C, Minso R, Nietert MM, Hansen G, Tümmler B, Dittrich AM. Differential effects of ELX/TEZ/IVA on organ-specific CFTR function in two patients with the rare CFTR splice mutations c.273+1G>A and c.165-2A>G. Front Pharmacol 2023; 14:1153656. [PMID: 37050906 PMCID: PMC10083416 DOI: 10.3389/fphar.2023.1153656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction: Evidence for the efficiency of highly-effective triple-CFTR-modulatory therapy with elexacaftor/tezacaftor/ivacaftor (ETI), either demonstrated in clinical trials or by in vitro testing, is lacking for about 10% of people with cystic fibrosis (pwCF) with rare mutations. Comprehensive assessment of CFTR function can provide critical information on the impact of ETI on CFTR function gains for such rare mutations, lending argument of the prescription of ETI. The mutation c.165-2A>G is a rare acceptor splice mutation that has not yet been functionally characterized. We here describe the functional changes induced by ETI in two brothers who are compound heterozygous for the splice mutations c.273+1G>C and c.165-2A>G.Methods: We assessed the effects of ETI on CFTR function by quantitative pilocarpine iontophoresis (QPIT), nasal potential difference measurements (nPD), intestinal current measurements (ICM), β-adrenergic sweat secretion tests (SST) and multiple breath washout (MBW) prior to and 4 months after the initiation of ETI.Results: Functional CFTR analysis prior to ETI showed no CFTR function in the respiratory and intestinal epithelia and in the sweat gland reabsorptive duct in either brother. In contrast, β-adrenergic stimulated, CFTR-mediated sweat secretion was detectable in the CF range. Under ETI, both brothers continued to exhibit high sweat chloride concentration in QPIT, evidence of low residual CFTR function in the respiratory epithelia, but normalized β-adrenergically stimulated production of primary sweat.Discussion: Our results are the first to demonstrate that the c.165-2A>G/c.273+1G>C mutation genotype permits mutant CFTR protein expression. We showed organ-specific differences in the expression of CFTR and consecutive responses to ETI of the c.165-2A>G/c.273+1G>C CFTR mutants that are probably accomplished by non-canonical CFTR mRNA isoforms. This showcase tells us that the individual response of rare CFTR mutations to highly-effective CFTR modulation cannot be predicted from assays in standard cell cultures, but requires the personalized multi-organ assessment by CFTR biomarkers.
Collapse
Affiliation(s)
- Sophia T. Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
- *Correspondence: Sophia T. Pallenberg,
| | - Inka Held
- Kinderärzte Friesenweg—CF-Zentrum Altona (Ambulanz), Hamburg, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Rebecca Minso
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Manuel M. Nietert
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| |
Collapse
|
69
|
Tümmler B. Post-approval studies with the CFTR modulators Elexacaftor-Tezacaftor-Ivacaftor. Front Pharmacol 2023; 14:1158207. [PMID: 37025483 PMCID: PMC10072268 DOI: 10.3389/fphar.2023.1158207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Triple combination therapy with the CFTR modulators elexacaftor (ELX), tezacaftor (TEZ) and ivacaftor (IVA) has been qualified as a game changer in cystic fibrosis (CF). We provide an overview of the body of literature on ELX/TEZ/IVA published between November 2019 and February 2023 after approval by the regulators. Recombinant ELX/TEZ/IVA-bound Phe508del CFTR exhibits a wild type conformation in vitro, but in patient's tissue a CFTR glyoisoform is synthesized that is distinct from the wild type and Phe508del isoforms. ELX/TEZ/IVA therapy improved the quality of life of people with CF in the real-life setting irrespective of their anthropometry and lung function at baseline. ELX/TEZ/IVA improved sinonasal and abdominal disease, lung function and morphology, airway microbiology and the basic defect of impaired epithelial chloride and bicarbonate transport. Pregnancy rates were increasing in women with CF. Side effects of mental status changes deserve particular attention in the future.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
70
|
Efficacy and Safety of Elexacaftor-Tezacaftor-Ivacaftor in the Treatment of Cystic Fibrosis: A Systematic Review. CHILDREN 2023; 10:children10030554. [PMID: 36980112 PMCID: PMC10047761 DOI: 10.3390/children10030554] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Elexacaftor/Tezacaftor/Ivacaftor (ELX/TEZ/IVA) is a new CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) modulator treatment, used over the last few years, which has shown an improvement in different clinical outcomes in patients with cystic fibrosis (CF). The objective of this study was a systematic research of the literature on the efficacy and safety of this CFTR modulator on patients with CF. A search of Pubmed was conducted for randomized clinical trials and observational studies published from 2012 to September 2022. The included full manuscripts comprised nine clinical trials and 16 observational studies, whose participants were aged ≥12 years or were children 6–11 years old with at least one Phe508del mutation and/or advanced lung disease (ALD). These studies reported that ELX/TEZ/IVA has a significant positive effect on the lung function of patients with CF, by ameliorating parameters such as FEV1, LCI, pulmonary exacerbations or sweat chloride concentration, increasing BMI and improving quality of their life. Its role in cystic fibrosis-related diabetes (CFRD) is not yet clear. It was found that this new CFTR modulator has an overall favorable safety profile, with mild to moderate adverse events. Further studies are needed for a deeper understanding of the impact of CFTR modulators on other CF manifestations, or the possibility of treating with ELX/TEZ/IVA CF patients with rare CFTR mutations.
Collapse
|
71
|
Dillenhoefer S, Grogono D, Morales-Tirado A. A year in review (2022): Modulators and COVID19, the story goes on…. J Cyst Fibros 2023; 22:188-192. [PMID: 36906393 PMCID: PMC9986130 DOI: 10.1016/j.jcf.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Affiliation(s)
- Stefanie Dillenhoefer
- Department of Pediatric Pulmonology, Cystic Fibrosis Center, University Children's Hospital of Ruhr University Bochum at St. Josef-Hospital, 44791 Bochum, Germany
| | - Dorothy Grogono
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, CB2 0AY, UK.
| | - Ana Morales-Tirado
- Cystic Fibrosis Unit, Pediatric Pulmonology Department, Ramon y Cajal Hospital, Madrid, Spain. Universidad de Alcalá
| |
Collapse
|
72
|
Recchia D, Stelitano G, Stamilla A, Gutierrez DL, Degiacomi G, Chiarelli LR, Pasca MR. Mycobacterium abscessus Infections in Cystic Fibrosis Individuals: A Review on Therapeutic Options. Int J Mol Sci 2023; 24:ijms24054635. [PMID: 36902066 PMCID: PMC10002592 DOI: 10.3390/ijms24054635] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/02/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Mycobacterium abscessus is an opportunistic pathogen that mainly colonizes and infects cystic fibrosis patients' lungs. M. abscessus is naturally resistant to many antibiotics such as rifamycin, tetracyclines and β-lactams. The current therapeutic regimens are not very effective and are mostly based on repurposed drugs used against Mycobacterium tuberculosis infections. Thus, new approaches and novel strategies are urgently needed. This review aims to provide an overview of the latest ongoing findings to fight M. abscessus infections by analyzing emerging and alternative treatments, novel drug delivery strategies, and innovative molecules.
Collapse
|
73
|
Lopes K, Custódio C, Lopes C, Bolas R, Azevedo P. Elexacaftor/tezacaftor/ivacaftor-real-world clinical effectiveness and safety. A single-center Portuguese study. J Bras Pneumol 2023; 49:e20220312. [PMID: 36820745 PMCID: PMC9970613 DOI: 10.36416/1806-3756/e20220312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To evaluate the effectiveness of treatment with elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) and to characterize its safety profile in cystic fibrosis (CF) patients in a real-world clinical setting. METHODS This was a prospective observational study carried out in a CF referral center in Portugal involving adult CF patients who started treatment with ELX/TEZ/IVA. Clinical characteristics of the patients were collected, and effectiveness and safety data were evaluated. RESULTS Of the 56 patients followed in the center at the time of the study, 28 were eligible for ELX/TEZ/IVA treatment in accordance with the Portuguese National Authority for Medicines and Health Products at the time of the study. Of these, 24 met the follow-up time requirement to be included in the clinical effectiveness analysis. The mean follow-up time was 167.3 ± 96.4 days. Adverse events were generally mild and self-limited. Significant improvements in lung function, BMI, sweat chloride concentration, and number of pulmonary exacerbations were observed. No significant differences in outcomes between F508del homozygous and heterozygous patients were found. The effectiveness of this new CFTR modulator combination also applied to patients with advanced lung disease. CONCLUSIONS Treatment with ELX/TEZ/IVA showed effective improvement in real-world clinical practice, namely in lung function, BMI, sweat chloride concentration, and number of pulmonary exacerbations, with no safety concerns.
Collapse
Affiliation(s)
- Kelly Lopes
- . Centro Hospitalar Barreiro Montijo EPE, Barreiro, Portugal
| | | | - Carlos Lopes
- . Hospital de Santa Maria, Centro Hospitalar Lisboa Norte EPE, Lisboa, Portugal
- . Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Raquel Bolas
- . Hospital de Santa Maria, Centro Hospitalar Lisboa Norte EPE, Lisboa, Portugal
| | - Pilar Azevedo
- . Hospital de Santa Maria, Centro Hospitalar Lisboa Norte EPE, Lisboa, Portugal
- . Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
74
|
Bode SFN, Rapp H, Lienert N, Appel H, Fabricius D. Effects of CFTR-modulator triple therapy on sinunasal symptoms in children and adults with cystic fibrosis. Eur Arch Otorhinolaryngol 2023; 280:3271-3277. [PMID: 36738326 DOI: 10.1007/s00405-023-07859-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE Sinunasal symptoms and chronic rhinusinutitis are common in patients with cystic fibrosis. Cystic fibrosis transmembrane regulator (CFTR) modulators have led to dramatic improvements of respiratory symptoms and quality of life in patients with cystic fibrosis. This study aims to evaluate subjective and objective sinunasal symptoms after start of CFTR-modulator triple therapy. METHODS 43 patients (n = 6 < 18 years), treated with highly effective CFTR-modulator therapy with elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA) were included, as were 20 controls with cystic fibrosis but without CFTR-modulator therapy (n = 6 < 18 years). All assessed their sinunasal symptoms retrospectively and the intervention group at a mean of 9.3 (2-16) months after start of ELX/TEZ/IVA. RESULTS Improvements in SNOT-22 overall score from m = 32.7 to m = 15.7 points (p < 0.0001) as well in the nasal, emotional, otologic, and sleep subdomains could be demonstrated in the intervention group. No changes were found in the control group. Children showed lower SNOT-22 scores than adults and a reduction of SNOT-22 total score from m = 9.4 to m = 2.2 (p = 0.25) was found. 8 patients were evaluated by an otorhinolaryngologist before and after start of ELX/TEZ/IVA and showed pronounced objective clinical improvement. CONCLUSIONS Highly effective CFTR-modulator therapy has a significant positive impact on both subjective and objective sinunasal symptoms in patients with CF and some improvement could be demonstrated in children < 18 years as well.
Collapse
Affiliation(s)
- Sebastian F N Bode
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Eythstr 24, 89075, Ulm, Germany.
| | - Hannes Rapp
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Eythstr 24, 89075, Ulm, Germany
| | - Nadine Lienert
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Eythstr 24, 89075, Ulm, Germany
| | - Heike Appel
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Eythstr 24, 89075, Ulm, Germany
| |
Collapse
|
75
|
Stanke F, Pallenberg ST, Tamm S, Hedtfeld S, Eichhorn EM, Minso R, Hansen G, Welte T, Sauer-Heilborn A, Ringshausen FC, Junge S, Tümmler B, Dittrich AM. Changes in cystic fibrosis transmembrane conductance regulator protein expression prior to and during elexacaftor-tezacaftor-ivacaftor therapy. Front Pharmacol 2023; 14:1114584. [PMID: 36778025 PMCID: PMC9911415 DOI: 10.3389/fphar.2023.1114584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Background: Defects in expression, maturation or function of the epithelial membrane glycoprotein CFTR are causative for the progressive disease cystic fibrosis. Recently, molecular therapeutics that improve CFTR maturation and functional defects have been approved. We aimed to verify whether we could detect an improvement of CFTR protein expression and maturation by triple therapy with elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA). Methods: Rectal suction biopsies of 21 p.Phe508del homozygous or compound heterozygous CF patients obtained pre- and during treatment with ELX/TEZ/IVA were analyzed by CFTR Western blot that was optimized to distinguish CFTR glycoisoforms. Findings: CFTR western immunoblot analysis revealed that-compared to baseline-the levels of CFTR protein increased by at least twofold in eight out of 12 patients upon treatment with ELX/TEZ/IVA compared to baseline (p < 0.02). However, polydispersity of the mutant CFTR protein was lower than that of the fully glycosylated wild type CFTR Golgi isoform, indicating an incompletely glycosylated p.Phe508el CFTR protein isoform C* in patients with CF which persists after ELX/TEZ/IVA treatment. Interpretation: Treatment with ELX/TEZ/IVA increased protein expression by facilitating the posttranslational processing of mutant CFTR but apparently did not succeed in generating the polydisperse spectrum of N-linked oligosaccharides that is characteristic for the wild type CFTR band C glycoisoform. Our results caution that the lower amounts or immature glycosylation of the C* glycoisoform observed in patients' biomaterial might not translate to fully restored function of mutant CFTR necessary for long-term provision of clinical benefit.
Collapse
Affiliation(s)
- Frauke Stanke
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany,*Correspondence: Frauke Stanke,
| | - Sophia T. Pallenberg
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Stephanie Tamm
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Silke Hedtfeld
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Ella M. Eichhorn
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Rebecca Minso
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | | | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Sibylle Junge
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
76
|
Ringshausen FC, Sauer-Heilborn A, Büttner T, Dittrich AM, Schwerk N, Ius F, Nährlich L, Welte T, Greer M. Lung transplantation for end-stage cystic fibrosis before and after the availability of elexacaftor-tezacaftor-ivacaftor, Germany, 2012-2021. Eur Respir J 2023; 61:13993003.01402-2022. [PMID: 36517178 DOI: 10.1183/13993003.01402-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Felix C Ringshausen
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Annette Sauer-Heilborn
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Tina Büttner
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Anna-Maria Dittrich
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Nicolaus Schwerk
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School (MHH), Hannover, Germany
| | - Fabio Ius
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School (MHH), Hannover, Germany
| | - Lutz Nährlich
- Department of Pediatrics, Justus-Liebig-University Giessen, and Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Giessen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Mark Greer
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
77
|
Piehler L, Thalemann R, Lehmann C, Thee S, Röhmel J, Syunyaeva Z, Stahl M, Mall MA, Graeber SY. Effects of elexacaftor/tezacaftor/ivacaftor therapy on mental health of patients with cystic fibrosis. Front Pharmacol 2023; 14:1179208. [PMID: 37153809 PMCID: PMC10160464 DOI: 10.3389/fphar.2023.1179208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: The CFTR modulator drug elexacaftor/tezacaftor/ivacaftor (ETI) was shown to improve CFTR function and clinical symptoms in patients with cystic fibrosis (CF) with at least one F508del allele. Recently, some case reports suggested potential side effects of ETI on mental health with an increase in depressive symptoms and even suicide attempts in patients with CF. However, the general effects of this triple combination therapy on the mental health status of patients with CF remain largely unknown. Methods: We, therefore, performed a prospective, observational study in a real-life setting and investigated the relationship between initiation of ETI therapy and changes in mental health in adult patients with CF. We assessed Cystic Fibrosis Questionnaire-Revised (CFQ-R), Patient Health Questionnaire-9 (PHQ-9), Beck's Depression Inventory - Fast Screen (BDI-FS) and Generalized Anxiety Disorder 7-item Scale (GAD-7) at baseline and 8-16 weeks after initiation of ETI. Results: In total, 70 adult patients with CF with at least one F508del allele and a median age of 27.9 years were recruited. After initiation of ETI, the CFQ-R respiratory domain score improved by 27.9 (IQR 5.6 to 47.2; p < 0.001). The PHQ-9 score of depressive symptoms decreased by 1.0 (IQR -3.0 to 0.3; p < 0.05) with an increase of 16.9% in the group with a minimal score after initiation of ETI and a decrease in the groups of mild (-11.3%) or moderate (-5.7%) scores compared to baseline. The BDI-FS score of depressive symptoms decreased from 1.0 (IQR 0.0-2.0) at baseline to 0.0 (IQR 0.0 to 2.0; p < 0.05) after initiation of ETI. The group with a minimal BDI-FS score increased by 8.0% after initiation of ETI, whereas the groups with mild (-4.9%), moderate (-1.6%) or severe (-1.6%) scores decreased compared to baseline. The GAD-7 score of anxiety symptoms did not change after initiation of ETI compared to baseline (0.0; IQR -2.0. to 0.0; p = 0.112). Conclusion: Initiation of ETI improves symptoms of depression in adult patients with CF with at least one F508del allele. However, symptoms of anxiety do not change after short-term therapy with ETI.
Collapse
Affiliation(s)
- Linus Piehler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralf Thalemann
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christine Lehmann
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Charité—Universitätsmedizin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Charité—Universitätsmedizin, Berlin, Germany
| | - Zulfiya Syunyaeva
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Charité—Universitätsmedizin, Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Charité—Universitätsmedizin, Berlin, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité, Charité—Universitätsmedizin, Berlin, Germany
- *Correspondence: Simon Y. Graeber,
| |
Collapse
|
78
|
Wucherpfennig L, Wuennemann F, Eichinger M, Seitz A, Baumann I, Stahl M, Graeber SY, Zhao S, Chung J, Schenk JP, Alrajab A, Kauczor HU, Mall MA, Sommerburg O, Wielpütz MO. Long-term effects of lumacaftor/ivacaftor on paranasal sinus abnormalities in children with cystic fibrosis detected with magnetic resonance imaging. Front Pharmacol 2023; 14:1161891. [PMID: 37101549 PMCID: PMC10123276 DOI: 10.3389/fphar.2023.1161891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Introduction: Chronic rhinosinusitis (CRS) usually presents with nasal congestion, rhinorrhea and anosmia impacts quality of life in cystic fibrosis (CF). Especially mucopyoceles pathognomonic for CRS in CF may cause complications such as spread of infection. Previous studies using magnetic resonance imaging (MRI) demonstrated early onset and progression of CRS from infancy to school age in patients with CF, and mid-term improvements of CRS in preschool and school-age children with CF treated with lumacaftor/ivacaftor for at least 2 months. However, long-term data on treatment effects on paranasal sinus abnomalities in preschool and school-age children with CF are lacking. Methods: 39 children with CF homozygous for F508del (mean age at baseline MRI 5.9 ± 3.0 years, range 1-12 years) underwent MRI before (MRI1) and about 7 months after starting lumacaftor/ivacaftor and then annually (median 3 follow-up MRI, range 1-4) (MRI2-4). MRI were evaluated using the previously evaluated CRS-MRI score with excellent inter-reader agreement. For intraindividual analysis ANOVA mixed-effects analysis including Geisser-Greenhouse correction and Fisher's exact test, and for interindividual group analysis Mann-Whitney test were used. Results: The CRS-MRI sum score at baseline was similar in children starting lumacaftor/ivacaftor in school age and children starting therapy at preschool age (34.6 ± 5.2 vs.32.9 ± 7.8, p = 0.847). Mucopyoceles were the dominant abnormality in both, especially in maxillary sinus (65% and 55%, respectively). In children starting therapy in school age the CRS-MRI sum score decreased longitudinally from MRI1 to MRI2 (-2.1 ± 3.5, p < 0.05), MRI3 (-3.0 ± 3.7, p < 0.01) and MRI4 (-3.6 ± 4.7, p < 0.01), mainly due to a decrease in the mucopyoceles subscore (-1.0 ± 1.5, p = 0.059; -1.2 ± 2.0, p < 0.05; -1.6 ± 1.8, p < 0.01; and -2.6 ± 2.8, p = 0.417, respectively). In children starting lumacaftor/ivacaftor in preschool age, the CRS-MRI sum score remained stable under therapy over all three follow-up MRI (0.6 ± 3.3, p = 0.520; 2.4 ± 7.6, p = 0.994; 2.1 ± 10.5, p > 0.999 and -0.5 ± 0.5, p = 0.740; respectively). Conclusion: Longitudinal paranasal sinus MRI shows improvements in paranasal sinus abnormalities in children with CF starting lumacaftor/ivacaftor therapy at school age. Further, MRI detects a prevention of an increase in paranasal sinus abnormalities in children with CF starting lumacaftor/ivacaftor therapy at preschool age. Our data support the role of MRI for comprehensive non-invasive therapy and disease monitoring of paranasal sinus abnormalities in children with CF.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Wuennemann
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Helios Dr. Horst-Schmidt-Kliniken Wiesbaden, Wiesbaden, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ingo Baumann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Shengkai Zhao
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jaehi Chung
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Division of Pediatric Pulmonology, Allergy, and Cystic Fibrosis Center, Department of Pediatrics III, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens-Peter Schenk
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Abdulsattar Alrajab
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Division of Pediatric Pulmonology, Allergy, and Cystic Fibrosis Center, Department of Pediatrics III, University Hospital Heidelberg, Heidelberg, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- *Correspondence: Mark O. Wielpütz,
| |
Collapse
|
79
|
Westhölter D, Raspe J, Uebner H, Pipping J, Schmitz M, Straßburg S, Sutharsan S, Welsner M, Taube C, Reuter S. Regulatory T cell enhancement in adults with cystic fibrosis receiving Elexacaftor/Tezacaftor/Ivacaftor therapy. Front Immunol 2023; 14:1107437. [PMID: 36875141 PMCID: PMC9978140 DOI: 10.3389/fimmu.2023.1107437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Cystic fibrosis (CF), especially CF lung disease, is characterized by chronic infection, immune dysfunction including impairment of regulatory T cells (Tregs) and an exaggerated inflammatory response. CF transmembrane conductance regulator (CFTR) modulators have shown to improve clinical outcomes in people with CF (PwCF) with a wide range of CFTR mutations. However, it remains unclear whether CFTR modulator therapy also affects CF-associated inflammation. We aimed to examine the effect of elexacaftor/tezacaftor/ivacaftor therapy on lymphocyte subsets and systemic cytokines in PwCF. Methods Peripheral blood mononuclear cells and plasma were collected before and at three and six months after the initiation of elexacaftor/tezacaftor/ivacaftor therapy; lymphocyte subsets and systemic cytokines were determined using flow cytometry. Results Elexacaftor/tezacaftor/ivacaftor treatment was initiated in 77 PwCF and improved percent predicted FEV1 by 12.5 points (p<0.001) at 3 months. During elexacaftor/tezacaftor/ivacaftor therapy, percentages of Tregs were enhanced (+18.7%, p<0.001), with an increased proportion of Tregs expressing CD39 as a marker of stability (+14.4%, p<0.001). Treg enhancement was more pronounced in PwCF clearing Pseudomonas aeruginosa infection. Only minor, non-significant shifts were observed among Th1-, Th2- and Th17-expressing effector T helper cells. These results were stable at 3- and 6-month follow-up. Cytokine measurements showed a significant decrease in interleukin-6 levels during treatment with elexacaftor/tezacaftor/ivacaftor (-50.2%, p<0.001). Conclusion Treatment with elexacaftor/tezacaftor/ivacaftor was associated with an increased percentage of Tregs, especially in PwCF clearing Pseudomonas aeruginosa infection. Targeting Treg homeostasis is a therapeutic option for PwCF with persistent Treg impairment.
Collapse
Affiliation(s)
- Dirk Westhölter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Hendrik Uebner
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Johannes Pipping
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Mona Schmitz
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Svenja Straßburg
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sivagurunathan Sutharsan
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Matthias Welsner
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| |
Collapse
|
80
|
Mall MA, Brugha R, Gartner S, Legg J, Moeller A, Mondejar-Lopez P, Prais D, Pressler T, Ratjen F, Reix P, Robinson PD, Selvadurai H, Stehling F, Ahluwalia N, Arteaga-Solis E, Bruinsma BG, Jennings M, Moskowitz SM, Noel S, Tian S, Weinstock TG, Wu P, Wainwright CE, Davies JC. Efficacy and Safety of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 Through 11 Years of Age with Cystic Fibrosis Heterozygous for F508del and a Minimal Function Mutation: A Phase 3b, Randomized, Placebo-controlled Study. Am J Respir Crit Care Med 2022; 206:1361-1369. [PMID: 35816621 PMCID: PMC9746869 DOI: 10.1164/rccm.202202-0392oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rationale: The triple-combination regimen elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) was shown to be safe and efficacious in children aged 6 through 11 years with cystic fibrosis and at least one F508del-CFTR allele in a phase 3, open-label, single-arm study. Objectives: To further evaluate the efficacy and safety of ELX/TEZ/IVA in children 6 through 11 years of age with cystic fibrosis heterozygous for F508del and a minimal function CFTR mutation (F/MF genotypes) in a randomized, double-blind, placebo-controlled phase 3b trial. Methods: Children were randomized to receive either ELX/TEZ/IVA (n = 60) or placebo (n = 61) during a 24-week treatment period. The dose of ELX/TEZ/IVA administered was based on weight at screening, with children <30 kg receiving ELX 100 mg once daily, TEZ 50 mg once daily, and IVA 75 mg every 12 hours, and children ⩾30 kg receiving ELX 200 mg once daily, TEZ 100 mg once daily, and IVA 150 mg every 12 hours (adult dose). Measurements and Main Results: The primary endpoint was absolute change in lung clearance index2.5 from baseline through Week 24. Children given ELX/TEZ/IVA had a mean decrease in lung clearance index2.5 of 2.29 units (95% confidence interval [CI], 1.97-2.60) compared with 0.02 units (95% CI, -0.29 to 0.34) in children given placebo (between-group treatment difference, -2.26 units; 95% CI, -2.71 to -1.81; P < 0.0001). ELX/TEZ/IVA treatment also led to improvements in the secondary endpoint of sweat chloride concentration (between-group treatment difference, -51.2 mmol/L; 95% CI, -55.3 to -47.1) and in the other endpoints of percent predicted FEV1 (between-group treatment difference, 11.0 percentage points; 95% CI, 6.9-15.1) and Cystic Fibrosis Questionnaire-Revised Respiratory domain score (between-group treatment difference, 5.5 points; 95% CI, 1.0-10.0) compared with placebo from baseline through Week 24. The most common adverse events in children receiving ELX/TEZ/IVA were headache and cough (30.0% and 23.3%, respectively); most adverse events were mild or moderate in severity. Conclusions: In this first randomized, controlled study of a cystic fibrosis transmembrane conductance regulator modulator conducted in children 6 through 11 years of age with F/MF genotypes, ELX/TEZ/IVA treatment led to significant improvements in lung function, as well as robust improvements in respiratory symptoms and cystic fibrosis transmembrane conductance regulator function. ELX/TEZ/IVA was generally safe and well tolerated in this pediatric population with no new safety findings.
Collapse
Affiliation(s)
- Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin and,Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany;,German Center for Lung Research, Associated Partner, Berlin, Germany
| | - Rossa Brugha
- Great Ormond Street Hospital for Children, London, United Kingdom
| | | | - Julian Legg
- Southampton Children's Hospital, Hampshire, United Kingdom
| | | | | | - Dario Prais
- Schneider Children’s Medical Center of Israel, Petah Tikva, Israel;,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Felix Ratjen
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Philippe Reix
- Hôpital Femme Mère-Enfant, Hospices Civils de Lyon, Bron, France
| | - Paul D. Robinson
- The Children’s Hospital at Westmead, Sydney Children’s Hospital Network, Sydney, Australia
| | - Hiran Selvadurai
- The Children’s Hospital at Westmead, Sydney Children’s Hospital Network, Sydney, Australia
| | - Florian Stehling
- Universitätsklinikum Essen, Klinik für Kinderheilkunde III, Essen, Germany
| | - Neil Ahluwalia
- Vertex Pharmaceuticals Incorporated, Boston, Massachussetts
| | | | | | - Mark Jennings
- Vertex Pharmaceuticals Incorporated, Boston, Massachussetts
| | | | - Sabrina Noel
- Vertex Pharmaceuticals Incorporated, Boston, Massachussetts
| | - Simon Tian
- Vertex Pharmaceuticals Incorporated, Boston, Massachussetts
| | | | - Pan Wu
- Vertex Pharmaceuticals Incorporated, Boston, Massachussetts
| | | | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom;,Royal Brompton and Harefield Hospitals, part of Guy’s and St Thomas’ NHS Trust, London, United Kingdom; and,European Cystic Fibrosis Society Lung Clearance Index Core Facility, London, United Kingdom
| | | |
Collapse
|
81
|
Dohna M, Kühl H, Sutharsan S, Dohna-Schwake C, Vo Chieu VD, Hellms S, Kornemann N, Renz DM, Montag MJ. Bronchial artery diameter in massive hemoptysis in cystic fibrosis. BMC Pulm Med 2022; 22:424. [PMID: 36397043 PMCID: PMC9670530 DOI: 10.1186/s12890-022-02233-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Massive hemoptysis is a rare but potentially life-threatening condition of patients with cystic fibrosis (CF) and advanced pulmonary disease. Hypertrophied bronchial arteries are understood to cause massive hemoptysis when rupturing. Risk factors to predict massive hemoptysis are scarce and bronchial artery diameters are not part of any scoring system in follow-up of patients with CF. Aim of this study was to correlate bronchial artery diameter with massive hemoptysis in CF. Methods Bronchial artery and non-bronchial systemic artery diameters were measured in contrast enhanced computed tomography (CT) scans in patients with massive hemoptysis and compared to patients with end-stage CF and no history of hemoptysis. Demographic and clinical data and side of bronchial artery/non-bronchial systemic artery hypertrophy and coil embolization were documented. Results In this retrospective multicenter study 33 patients with massive hemoptysis were included for bronchial artery/non-bronchial systemic artery diameter measurements, (13 female, 20 male, median age 30 years (18–55)). Bronchial artery diameters were significantly larger in the case group than in the control group with median 4 mm (2.2–8.2 mm), and median 3 mm (1–7 mm), respectively (p = 0.002). Sensitivity of bronchial arteries ≥ 3.5 mm to be associated with hemoptysis was 0.76 and specificity 0.71 with ROC creating an area under the curve of 0.719. If non-bronchial systemic arteries were present, they were considered culprit and embolized in 92% of cases. Conclusion Bronchial arteries ≥ 3.5 mm and presence of hypertrophied non-bronchial systemic arteries correlate with massive hemoptysis in patients with CF and might serve as risk predictor for massive hemoptysis. Therefore, in patients with advanced CF we propose CT scans to be carried out as CT angiography to search for bronchial arteries ≥ 3.5 mm and for hypertrophied non-bronchial systemic arteries as possible risk factors for massive hemoptysis.
Collapse
|
82
|
Longitudinal Study of Therapeutic Adherence in a Cystic Fibrosis Unit: Identifying Potential Factors Associated with Medication Possession Ratio. Antibiotics (Basel) 2022; 11:antibiotics11111637. [DOI: 10.3390/antibiotics11111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic and multisystemic disease that requires a high therapeutic demand for its control. The aim of this study was to assess therapeutic adherence (TA) to different treatments to study possible clinical consequences and clinical factors influencing adherence. This is an ambispective observational study of 57 patients aged over 18 years with a diagnosis of CF. The assessment of TA was calculated using the Medication Possession Ratio (MPR) index. These data were related to exacerbations and the rate of decline in FEV1 percentage. Compliance was good for all CFTR modulators, azithromycin, aztreonam, and tobramycin in solution for inhalation. The patients with the best compliance were older; they had exacerbations and the greatest deterioration in lung function during this period. The three variables with the highest importance for the compliance of the generated Random Forest (RF) models were age, FEV1%, and use of Ivacaftor/Tezacaftor. This is one of the few studies to assess adherence to CFTR modulators and symptomatic treatment longitudinally. CF patient therapy is expensive, and the assessment of variables with the highest importance for a high MPR, helped by new Machine learning tools, can contribute to defining new efficient TA strategies with higher benefits.
Collapse
|
83
|
Sommerburg O, Wielpütz MO. [Update on cystic fibrosis : From neonatal screening to causal treatment]. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:981-994. [PMID: 36278998 DOI: 10.1007/s00117-022-01076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Cystic fibrosis (CF) is a multiorgan disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Approximately 90% of the morbidity and mortality are caused by pulmonary involvement. The mean life expectancy of patients with CF in 2020 was more than 52 years in Germany. The introduction of neonatal screening for CF and the development of a causally acting CFTR modulator treatment have clearly improved the prognosis of these patients. As an introduction, this article describes important aspects of CF in this context in order to go into details of the CF neonatal screening which was introduced in Germany in 2016.
Collapse
Affiliation(s)
- Olaf Sommerburg
- Sektion für Pädiatrische Pneumologie, Allergologie und Mukoviszdose-Zentrum, Zentrum für Kinder- und Jugendmedizin, Klinik III, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland.
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Deutschland.
| | - Mark Oliver Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| |
Collapse
|
84
|
Berg P, Sorensen MV, Rousing AQ, Vebert Olesen H, Jensen-Fangel S, Jeppesen M, Leipziger J. Challenged Urine Bicarbonate Excretion as a Measure of Cystic Fibrosis Transmembrane Conductance Regulator Function in Cystic Fibrosis. Ann Intern Med 2022; 175:1543-1551. [PMID: 36315944 DOI: 10.7326/m22-1741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In cystic fibrosis (CF), renal base excretion is impaired. Accordingly, challenged urine bicarbonate excretion may be an in vivo biomarker of cystic fibrosis transmembrane conductance regulator (CFTR) function. OBJECTIVE To evaluate the association between challenged bicarbonate excretion and clinical characteristics at baseline, quantify the CFTR modulator drug elexacaftor/tezacaftor/ivacaftor-induced changes of challenged bicarbonate excretion after 6 months of treatment, and characterize the intraindividual variation in healthy adults. DESIGN Prospective observational study. SETTING Cystic fibrosis clinic, Aarhus University Hospital, Denmark. PATIENTS Fifty adult patients with CF starting CFTR modulator therapy with elexacaftor/tezacaftor/ivacaftor between May 2020 and June 2021. MEASUREMENTS Quantification of urine bicarbonate excretion after an acute oral sodium bicarbonate challenge before and 6 months after elexacaftor/tezacaftor/ivacaftor treatment. RESULTS At baseline, challenged urine bicarbonate excretion was associated with several CF disease characteristics. Bicarbonate excretion was higher in patients with residual function mutations. A higher bicarbonate excretion was associated with better lung function, pancreatic sufficiency, and lower relative risk for chronic pseudomonas infections. Elexacaftor/tezacaftor/ivacaftor treatment increased bicarbonate excretion by 3.9 mmol/3 h (95% CI, 1.6 to 6.1 mmol/3 h), reaching about 70% of that seen in healthy control participants. In healthy control participants, individual bicarbonate excretion at each visit correlated with the individual mean bicarbonate excretion. The median coefficient of variation was 31%. LIMITATION Single-center study without a placebo-controlled group. CONCLUSION Although further studies are needed to address the performance and sensitivity of this approach, this early-stage evaluation shows that challenged urine bicarbonate excretion may offer a new, simple, and safe quantification of CFTR function and the extent of its pharmacologic improvement. Elexacaftor/tezacaftor/ivacaftor partially restores renal CFTR function in patients with CF, likely resulting in decreased risk for electrolyte disorders and metabolic alkalosis. PRIMARY FUNDING SOURCE Innovation Fund Denmark.
Collapse
Affiliation(s)
- Peder Berg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark (P.B., M.V.S., A.Q.R., J.L.)
| | - Mads V Sorensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark (P.B., M.V.S., A.Q.R., J.L.)
| | - Amalie Quist Rousing
- Department of Biomedicine, Aarhus University, Aarhus, Denmark (P.B., M.V.S., A.Q.R., J.L.)
| | - Hanne Vebert Olesen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark (H.V.O.)
| | - Søren Jensen-Fangel
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark (S.J., M.J.)
| | - Majbritt Jeppesen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark (S.J., M.J.)
| | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark (P.B., M.V.S., A.Q.R., J.L.)
| |
Collapse
|
85
|
Pallenberg ST, Pust MM, Rosenboom I, Hansen G, Wiehlmann L, Dittrich AM, Tümmler B. Impact of Elexacaftor/Tezacaftor/Ivacaftor Therapy on the Cystic Fibrosis Airway Microbial Metagenome. Microbiol Spectr 2022; 10:e0145422. [PMID: 36154176 PMCID: PMC9602284 DOI: 10.1128/spectrum.01454-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/04/2022] [Indexed: 12/31/2022] Open
Abstract
The introduction of mutation-specific combination therapy with the cystic fibrosis transmembrane conductance regulator (CFTR) modulators elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) has substantially improved lung function and quality of life of people with cystic fibrosis (CF). Collecting deep cough swabs and induced sputum, this postapproval study examined the effect of 14- and 50-week treatment with ELX/TEZ/IVA on the airway microbial metagenome of pancreatic- insufficient CF patients aged 12 years and older. Compared to pretreatment, the total bacterial load decreased, the individual species were more evenly distributed in the community, and the individual microbial metagenomes became more similar in their composition. However, the microbial network remained vulnerable to fragmentation. The initial shift of the CF metagenome was attributable to the ELX/TEZ/IVA-mediated gain of CFTR activity followed by a diversification driven by a group of commensals at the 1-year time point that are typical for healthy airways. IMPORTANCE Shotgun metagenome sequencing of respiratory secretions with spike-in controls for normalization demonstrated that 1 year of high-efficient CFTR modulation with elexacaftor/tezacaftor/ivacaftor extensively reduced the bacterial load. Longer observation periods will be necessary to resolve whether the partial reversion of the basic defect that is achieved with ELX/TEZ/IVA is sufficient in the long run to render the CF lungs robust against the recolonization with common opportunistic pathogens.
Collapse
Affiliation(s)
- Sophia T. Pallenberg
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Marie-Madlen Pust
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Ilona Rosenboom
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Anna-Maria Dittrich
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| |
Collapse
|
86
|
Salvatore D, Cimino G, Troiani P, Bignamini E, Esposito I, Leonetti G, Zanda M, Manunza D, Pepe A. Elexacaftor/tezacaftor/ivacaftor in children aged 6-11 years with cystic fibrosis, at least one F508DEL allele, and advanced lung disease: A 24-week observational study. Pediatr Pulmonol 2022; 57:2253-2256. [PMID: 35577767 DOI: 10.1002/ppul.25980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Giuseppe Cimino
- Lazio Reference Centre for Cystic Fibrosis, Policlinico Umberto I University Hospital, Rome, Italy
| | - Patrizia Troiani
- Lazio Reference Centre for Cystic Fibrosis, Policlinico Umberto I University Hospital, Rome, Italy
| | - Elisabetta Bignamini
- Pediatric Pulmonology Unit, Città della Salute e della Scienza, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Irene Esposito
- Pediatric Pulmonology Unit, Città della Salute e della Scienza, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Giuseppina Leonetti
- Pediatric Cystic Fibrosis Centre, Azienda Universitaria Ospedaliera Consorziale Policlinico, Bari, Italy
| | - Maurizio Zanda
- Cystic Fibrosis Center, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Daniela Manunza
- Cystic Fibrosis Center, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Angela Pepe
- Cystic Fibrosis Centre, Hospital San Carlo, Potenza, Italy.,Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Postgraduate School of Pediatrics, University of Salerno, Baronissi, Italy
| |
Collapse
|
87
|
Tan X, Kini A, Römermann D, Seidler U. The NHE3 Inhibitor Tenapanor Prevents Intestinal Obstructions in CFTR-Deleted Mice. Int J Mol Sci 2022; 23:ijms23179993. [PMID: 36077390 PMCID: PMC9456459 DOI: 10.3390/ijms23179993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Mutations in the CFTR chloride channel result in intestinal obstructive episodes in cystic fibrosis (CF) patients and in CF animal models. In this study, we explored the possibility of reducing the frequency of obstructive episodes in cftr−/− mice through the oral application of a gut-selective NHE3 inhibitor tenapanor and searched for the underlying mechanisms involved. Sex- and age-matched cftr+/+ and cftr−/− mice were orally gavaged twice daily with 30 mg kg−1 tenapanor or vehicle for a period of 21 days. Body weight and stool water content was assessed daily and gastrointestinal transit time (GTT) once weekly. The mice were sacrificed when an intestinal obstruction was suspected or after 21 days, and stool and tissues were collected for further analysis. Twenty-one day tenapanor application resulted in a significant increase in stool water content and stool alkalinity and a significant decrease in GTT in cftr+/+ and cftr−/− mice. Tenapanor significantly reduced obstructive episodes to 8% compared to 46% in vehicle-treated cftr−/− mice and prevented mucosal inflammation. A decrease in cryptal hyperproliferation, mucus accumulation, and mucosal mast cell number was also observed in tenapanor- compared to vehicle-treated, unobstructed cftr−/− mice. Overall, oral tenapanor application prevented obstructive episodes in CFTR-deficient mice and was safe in cftr+/+ and cftr−/− mice. These results suggest that tenapanor may be a safe and affordable adjunctive therapy in cystic fibrosis patients to alleviate constipation and prevent recurrent DIOS.
Collapse
Affiliation(s)
| | | | | | - Ursula Seidler
- Correspondence: ; Tel.: +49-5115-329-427; Fax: +49-5115-328-428
| |
Collapse
|
88
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
89
|
Niedermayr K, Gasser V, Rueckes-Nilges C, Appelt D, Eder J, Fuchs T, Naehrlich L, Ellemunter H. Personalized medicine with drugs targeting the underlying protein defect in cystic fibrosis: is monitoring of treatment response necessary? Ther Adv Chronic Dis 2022; 13:20406223221108627. [PMID: 35959505 PMCID: PMC9358561 DOI: 10.1177/20406223221108627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is caused by two mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. In the last years, drugs targeting the underlying protein defect like lumacaftor/ivacaftor (LUM/IVA) or tezacaftor/ivacaftor (TEZ/IVA) and more recently elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) were admitted. Outcome parameters evaluating therapy response like forced expiratory pressure in 1 s (FEV1), body mass index (BMI) or the efficacy of CFTR function in sweat glands showed improvement in several cases. Other, CFTR biomarkers were analysed rarely. This prospective observational study was aimed at evaluating CFTR function in patients treated with different CFTR modulators together with common valid clinical outcome parameters at standardized appointments (day 0, week 2, 4, 16). We followed four patients with the same mutation (F508del-CFTR), sex, age and disease severity. Monitoring focused on lung function, gastrointestinal aspects and CFTR function of sweat glands, nasal and intestinal epithelium. Sweat tests were performed by pilocarpine iontophoresis. Nasal potential difference (NPD) measured transepithelial voltage in vivo and potential increased when CFTR function improved. Rectal biopsies were obtained for intestinal current measurements (ICM) ex vivo. Intestinal CFTR function was assessed by stimulating chloride secretion with different reagents. Response to CFTR modulators regarding clinical outcome parameters was rather variable. A sweat chloride reduction of 35.3 mmol/L, nasal CFTR rescue of 4.4% and fivefold higher CFTR function in the intestine was seen at week 16 post-LUM/IVA. Due to our monitoring, we identified a non-responder to LUM/IVA and TEZ/IVA. In case of ELX/TEZ/IVA, clinical parameters and CFTR bioassays improved and were concordant. Although our cohort is small, results emphasize that non-responders exist and conclusions could not be drawn if patients were not monitored. Data on CFTR function can confirm or disprove ongoing CFTR dysfunction and might be helpful selectively. Non-responders need other alternative therapy options as demonstrated with ELX/TEZ/IVA.
Collapse
Affiliation(s)
- Katharina Niedermayr
- Department for Child and Adolescent Health, University Clinic for Paediatrics III, Cystic Fibrosis Centre, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Tyrol, Austria
| | - Verena Gasser
- Department for Child and Adolescent Health, University Clinic for Paediatrics III, Cystic Fibrosis Centre, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Rueckes-Nilges
- Department of General Pediatrics and Neonatology, University Hospital of Giessen and Marburg, Campus Giessen, Giessen, Germany
| | - Dorothea Appelt
- Department for Child and Adolescent Health, University Clinic for Paediatrics III, Cystic Fibrosis Centre, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Eder
- Department for Child and Adolescent Health, University Clinic for Paediatrics III, Cystic Fibrosis Centre, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Fuchs
- Department for Child and Adolescent Health, University Clinic for Paediatrics III, Cystic Fibrosis Centre, Medical University of Innsbruck, Innsbruck, Austria
| | - Lutz Naehrlich
- Department of General Pediatrics and Neonatology, University Hospital of Giessen and Marburg, Campus Giessen, Giessen, Germany
| | - Helmut Ellemunter
- Department for Child and Adolescent Health, University Clinic for Paediatrics III, Cystic Fibrosis Centre, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
90
|
Ben-Meir E, Grasemann H. How Should the Effects of CFTR Modulator Therapy on Cystic Fibrosis Lung Disease Be Monitored? Am J Respir Crit Care Med 2022; 206:240-242. [PMID: 35579627 PMCID: PMC9890251 DOI: 10.1164/rccm.202204-0730ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Elad Ben-Meir
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children Toronto, Ontario, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children Toronto, Ontario, Canada
| |
Collapse
|
91
|
Early Effects of Elexacaftor-Tezacaftor-Ivacaftor Therapy on Magnetic Resonance Imaging in Patients with Cystic Fibrosis and Advanced Lung Disease. J Clin Med 2022; 11:jcm11154277. [PMID: 35893365 PMCID: PMC9331995 DOI: 10.3390/jcm11154277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
This is a prospective, observational study involving three Cystic Fibrosis (CF) adult patients, evaluating the changes in chest magnetic resonance imaging (MRI) three months after the start of elexacaftor/tezacaftor and ivacaftor therapy. MRI showed a drastic reduction in mucus plugging and bronchial wall thickening, with an improvement in the diffusion-weighted MRI score. Similarly, a marked improvement in spirometric parameters, nutritional status, and sweat chloride was observed. Our preliminary data confirm that chest MRI could be a useful tool to assess disease progression in CF patients on modulatory drug therapy.
Collapse
|
92
|
Savant AP. Cystic fibrosis year in review 2021. Pediatr Pulmonol 2022; 57:1590-1599. [PMID: 35501666 DOI: 10.1002/ppul.25948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 11/06/2022]
Abstract
People with cystic fibrosis (CF) have an amazing outlook with the treatment availability of highly effective modulators. Unfortunately, not all people with CF are eligible for modulators leading to continued pulmonary exacerbations and advanced lung disease. Additionally, optimizing diagnosis and evaluation for CF in the newborn period continues to be an area of focus for research. This review article will work to cover articles published in 2021 with high clinical relevance related to the above topics; however, due to the extensive body of research published, this review will not be comprehensive.
Collapse
Affiliation(s)
- Adrienne P Savant
- Department of Pediatrics, Children's Hospital of New Orleans, New Orleans, Louisiana, USA.,Department of Pediatrics, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
93
|
Martin C, Regard L, Chassagnon G, Burgel PR. Change in Lung Function after Initiation of Elexacaftor-Tezacaftor-Ivacaftor: Do Not Forget Anatomy! Am J Respir Crit Care Med 2022; 205:1365-1366. [PMID: 35358030 PMCID: PMC9873117 DOI: 10.1164/rccm.202112-2852le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Clémence Martin
- Université de ParisParis, France,Cochin HospitalParis, France,European Reference Network on Rare Respiratory DiseasesFrankfurt, Germany
| | - Lucile Regard
- Université de ParisParis, France,Cochin HospitalParis, France,European Reference Network on Rare Respiratory DiseasesFrankfurt, Germany
| | | | - Pierre-Régis Burgel
- Université de ParisParis, France,Cochin HospitalParis, France,European Reference Network on Rare Respiratory DiseasesFrankfurt, Germany,Corresponding author (e-mail: )
| |
Collapse
|
94
|
Galodé F, Ladipo O, Andrieux A, Feghali H, Bui S, Fayon M. Prevalence and Determinants of Wheezing and Bronchodilatation in Children With Cystic Fibrosis: A Retrospective Cohort Study. Front Pediatr 2022; 10:856840. [PMID: 35633979 PMCID: PMC9133441 DOI: 10.3389/fped.2022.856840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Many patients with cystic fibrosis (CF) wheeze, and are dubbed as having CF-asthma. Understanding the determinants of such wheezing may avoid unnecessary treatments and open newer treatment avenues. OBJECTIVES Main: To evaluate the prevalence and characteristics of wheezing and a positive bronchodilatory response (BDR) in children with CF. Secondary: To identify the predictive markers and the impact of current wheezing a positive BDR. METHODS A retrospective single-center study in children with CF. We determined the characteristics of physician-reported wheeze in patients <6 years, and a BDR in patients aged 6-17 years. Anthropometric, lung function, laboratory, genetic and microbiological data were recorded in all groups. Variables were compared using the Chi2 and Student t-tests, and ANOVA. RESULTS 125 preschool and 69 school-aged children and adolescents with CF were included in the study. 71.2% of patients <6 years of age had had at least one episode of wheezing: 26.3% of patients were Transient Early Wheezers, 12.6% Late Onset Wheezers and 37.9% were Persistent Wheezers. The prevalence of a positive BDR was 73.5, 48.5, and 52.9% in the 6-8 years, 10-12 years, and 15-17 years age groups, respectively. Allergic factors were not predictive of wheezing in preschoolers. In the 6-8 years age group, the sum of wheal diameters of allergic skin prick tests (SPT, house dust mite + cat + dog dander) was greater in those with a BDR vs. no BDR (4 [2.0-8.8] vs. 1 [0-7.0] mm, p = 0.01). The presence of Pseudomonas aeruginosa in the bronchial secretions before 3 years of age was not significantly associated with either the presence of wheezing at the age of 6 years or a BDR in school-aged children and adolescents. The proportion of homozygous p.F508del patients was significantly lower in the group of patients who had wheezed by 6 years of age (60% vs. 72.7%, p = 0.009), but higher in the 6-8 years old group with a BDR vs. no BDR (64% vs. 36%, p = 0.04). Current wheezers at 6 years had a lower mean FEV1 vs. the non-current wheezers (91.5 ± 4.4% vs. 100.9 ± 2.4%; p = 0.047). Similarly, forced vital capacity (FVC) was significantly lower in the 6-8 years old group with BDR vs. no BDR (85 ± 19 vs. 101 ± 21%, p = 0.015). CONCLUSION Wheezing and BDR are very frequent findings in children with CF. Current wheeze at the age of 6 years was associated with worse lung function. Labeling wheezing in CF as "CF-Asthma" is misleading since the determinants are different, and may lead to inappropriate prescriptions of inhaled steroids.
Collapse
Affiliation(s)
- Francois Galodé
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - O. Ladipo
- Service de Pédiatrie, CHU de la Mère et de l’Enfant Lagune, Cotonou, Benin
| | - A. Andrieux
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - H. Feghali
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - S. Bui
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - Michael Fayon
- Paediatric Cystic Fibrosis Reference Center, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
- INSERM, Centre d’Investigation Clinique (CIC 1401), University of Bordeaux, Bordeaux, France
| |
Collapse
|
95
|
Graeber SY, Renz DM, Stahl M, Pallenberg ST, Sommerburg O, Naehrlich L, Berges J, Dohna M, Ringshausen FC, Doellinger F, Vitzthum C, Röhmel J, Allomba C, Hämmerling S, Barth S, Rückes-Nilges C, Wielpütz MO, Hansen G, Vogel-Claussen J, Tümmler B, Mall MA, Dittrich AM. Effects of Elexacaftor/Tezacaftor/Ivacaftor Therapy on Lung Clearance Index and Magnetic Resonance Imaging in Patients with Cystic Fibrosis and One or Two F508del Alleles. Am J Respir Crit Care Med 2022; 206:311-320. [PMID: 35536314 DOI: 10.1164/rccm.202201-0219oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE We recently demonstrated that triple combination CFTR modulator therapy with elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) improves CFTR function in airway and intestinal epithelia to 40 to 50% of normal in patients with cystic fibrosis (CF) with one or two F508del alleles. In previous studies, this improvement of CFTR function was shown to improve clinical outcomes, however, effects on the lung clearance index (LCI) determined by multiple breath washout and abnormalities in lung morphology and perfusion detected by magnetic resonance imaging (MRI) have not been studied. OBJECTIVES To examine the effect of ELX/TEZ/IVA on LCI and lung MRI scores in patients with CF and one or two F508del alleles aged 12 years and older. METHODS This prospective, observational, multicenter, post-approval study assessed LCI and lung MRI scores before and 8-16 weeks after initiation of ELX/TEZ/IVA. MEASUREMENTS AND MAIN RESULTS A total of 91 patients with CF including 45 heterozygous for F508del and a minimal function mutation (MF) and 46 homozygous for F508del were enrolled in this study. Treatment with ELX/TEZ/IVA improved LCI in F508del/MF (-2.4;IQR, -3.7 - -1.1;P<0.001) and F508del homozygous (-1.4;IQR, -2.4 - -0.4;P<0.001) patients. Further, ELX/TEZ/IVA improved the MRI global score in F508del/MF (-6.0;IQR, -11.0 - -1.3;P<0.001) and F508del homozygous (-6.5;IQR, -11.0 - -1.3;P<0.001) patients. CONCLUSIONS Our data demonstrate that improvement of CFTR function by ELX/TEZ/IVA improves lung ventilation and abnormalities in lung morphology including airway mucus plugging and wall thickening in adolescent and adult patients with CF and one or two F508del alleles in a real-world, post-approval setting.
Collapse
Affiliation(s)
- Simon Y Graeber
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany.,Berlin Institute of Health at Charité, 522475, Berlin, Germany.,German Center for Lung Research, 542891, associated partner site, Berlin, Germany
| | - Diane M Renz
- Hannover Medical School, 9177, Department for Radiology, Hannover, Germany
| | - Mirjam Stahl
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany.,Berlin Institute of Health at Charité, 522475, Berlin, Germany.,German Center for Lung Research, 542891, associated partner site, Berlin, Germany
| | - Sophia T Pallenberg
- Hannover Medical School, 9177, Department of Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,German Center for Lung Research, 542891, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Olaf Sommerburg
- Heidelberg University, 9144, Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, Heidelberg, Germany.,German Center for Lung Research, 542891, Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Lutz Naehrlich
- Justus Liebig Universitat Giessen, 9175, Department of Pediatrics, Giessen, Germany.,German Center for Lung Research, 542891, Universities Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Julian Berges
- Heidelberg University, 9144, Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, Heidelberg, Germany.,German Center for Lung Research, 542891, Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Martha Dohna
- Hannover Medical School, 9177, Department for Radiology, Hannover, Germany
| | - Felix C Ringshausen
- Hannover Medical School, 9177, Department for Pneumology, Hannover, Germany.,German Center for Lung Research, 542891, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Felix Doellinger
- Charité Universitätsmedizin Berlin, 14903, Department of Radiology, Berlin, Germany
| | - Constanze Vitzthum
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany.,German Center for Lung Research, 542891, associated partner site, Berlin, Germany
| | - Jobst Röhmel
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany.,German Center for Lung Research, 542891, associated partner site, Berlin, Germany
| | - Christine Allomba
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany.,German Center for Lung Research, 542891, associated partner site, Giessen, Germany
| | - Susanne Hämmerling
- University of Heidelberg, 9144, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany
| | - Sandra Barth
- Justus Liebig Universitat Giessen, 9175, Department of Pediatrics, Giessen, Germany.,German Center for Lung Research, 542891, Universities Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | | | - Mark O Wielpütz
- Heidelberg University, 9144, Department of Diagnostic and Interventional Radiology, Heidelberg, Germany.,German Center for Lung Research, 542891, Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Gesine Hansen
- Hannover Medical School, 9177, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,German Center for Lung Research, 542891, German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Jens Vogel-Claussen
- Hannover Medical School, 9177, Department for Radiology, Hannover, Germany.,Hannover Medical School, 9177, Department for Pediatric Pneumology, Hannover, Germany
| | - Burkhard Tümmler
- Hannover Medical School, 9177, Department for Pediatric Pneumology, Hannover, Germany.,German Center for Lung Research, 542891, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Marcus A Mall
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Berlin, Germany.,Berlin Institute of Health at Charité, 522475, Berlin, Germany.,German Center for Lung Research, 542891, associated partner site, Berlin, Germany;
| | - Anna-Maria Dittrich
- Hannover Medical School, 9177, Department for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,German Center for Lung Research, 542891, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| |
Collapse
|
96
|
Correlates of Pancreatic Enzyme Replacement Therapy Intake in Adults with Cystic Fibrosis: Results of a Cross-Sectional Study. Nutrients 2022; 14:nu14071330. [PMID: 35405943 PMCID: PMC9003007 DOI: 10.3390/nu14071330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Most people with cystic fibrosis (pwCF) develop pancreatic insufficiency and are treated with pancreatic enzyme replacement therapy (PERT). We aimed to describe the use of PERT and assess the correlates of PERT dose in adult pwCF. In a cross-sectional study at the Copenhagen CF Centre, the participants reported PERT intake, gastrointestinal (GI) symptoms and the use of concomitant treatments. Demographic and clinical characteristics were extracted from the Danish CF Registry. We used linear regression to assess the correlates of PERT dose per kg bodyweight (U-lipase/kg). We included 120 pwCF with a median age of 32.9 years, 46% women and 72% F508delta homozygote. The PERT dose ranged from 0 to 6160 U-lipase/kg per main meal (mean 1828; SD 1115). The PERT dose was associated with participants' sex (men vs. women: 661; 95% CI: 302; 1020 U-lipase/kg), age (-16; 95% CI: -31; -1 U-lipase/kg per year) and weight (-45; 95% CI: -58; -31 U-lipase/kg per kg). Having less frequent constipation and being lung transplanted were also associated with a higher PERT dose. A third of participants did not take PERT for snacks, and this was associated with the frequency of diarrhoea. These findings indicate that PERT intake may be improved to reduce GI symptoms.
Collapse
|
97
|
Ramsey BW, Bell SC. Cystic Fibrosis: A Disease in Transformation, yet More Work to Be Done! Am J Respir Crit Care Med 2022; 205:487-489. [PMID: 35073504 PMCID: PMC8906488 DOI: 10.1164/rccm.202112-2782ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Bonnie W Ramsey
- Department of Pediatrics University of Washington School of Medicine Seattle, Washington
- Seattle Children's Research Institute Seattle, Washington
| | - Scott C Bell
- Adult Cystic Fibrosis Centre The Prince Charles Hospital Brisbane, Australia
- Children's Health Research Centre The University of Queensland Brisbane, Australia
- Translational Research Institute Brisbane, Australia
| |
Collapse
|
98
|
Carnovale V, Iacotucci P, Terlizzi V, Colangelo C, Ferrillo L, Pepe A, Francalanci M, Taccetti G, Buonaurio S, Celardo A, Salvadori L, Marsicovetere G, D’Andria M, Ferrara N, Salvatore D. Elexacaftor/Tezacaftor/Ivacaftor in Patients with Cystic Fibrosis Homozygous for the F508del Mutation and Advanced Lung Disease: A 48-Week Observational Study. J Clin Med 2022; 11:1021. [PMID: 35207295 PMCID: PMC8876133 DOI: 10.3390/jcm11041021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Elexacaftor/tezacaftor/ivacaftor (ETI) is the newest cystic fibrosis transmembrane conductance regulator (CFTR) modulator drug approved for the treatment of patients with cystic fibrosis (pwCF) aged ≥6 years with at least one copy of the F508del mutation (F) in the CFTR gene or another mutation that is responsive to treatment with ETI. This study determined the effectiveness and safety of ETI in a cohort of severely affected pwCF with an F/F genotype. METHODS Retrospective observational study in F/F pwCF treated for 48 weeks, enrolled in an ETI managed access program available to subjects with advanced lung disease (ppFEV1 < 40). Twenty-six patients from three centres were included. The main outcomes included lung function, sweat chloride concentration (SCC), nutrition, frequency of pulmonary exacerbations (PEx), CFQ-R, and safety. RESULTS ppFEV1 improved by 12.06 (95%CI 8.54, 15.57) from baseline after 4 weeks of treatment with ETI, 15.32 (11.3, 19.34) after 24 weeks, and 14.48 (10.64, 18.32) after 48 weeks. The increase in FEV1 was accompanied by a decrease in SCC, improvement of BMI, and noticeable reduction in PEx. An overall good safety profile was observed. CONCLUSIONS In F/F pwCF with advanced lung disease with an F/F genotype, ETI was safe and associated with clinical improvement.
Collapse
Affiliation(s)
- Vincenzo Carnovale
- Cystic Fibrosis Centre, Adult Unit, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (P.I.); (L.F.); (S.B.); (A.C.); (L.S.); (N.F.)
| | - Paola Iacotucci
- Cystic Fibrosis Centre, Adult Unit, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (P.I.); (L.F.); (S.B.); (A.C.); (L.S.); (N.F.)
| | - Vito Terlizzi
- Cystic Fibrosis Centre, Department of Paediatric Medicine, Anna Meyer Children’s University Hospital, 50139 Florence, Italy; (V.T.); (M.F.); (G.T.)
| | - Carmela Colangelo
- Cystic Fibrosis Centre, Hospital San Carlo, 85100 Potenza, Italy; (C.C.); (A.P.); (G.M.); (M.D.); (D.S.)
| | - Lorenza Ferrillo
- Cystic Fibrosis Centre, Adult Unit, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (P.I.); (L.F.); (S.B.); (A.C.); (L.S.); (N.F.)
| | - Angela Pepe
- Cystic Fibrosis Centre, Hospital San Carlo, 85100 Potenza, Italy; (C.C.); (A.P.); (G.M.); (M.D.); (D.S.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Postgraduate School of Pediatrics, University of Salerno, 84081 Baronissi, Italy
| | - Michela Francalanci
- Cystic Fibrosis Centre, Department of Paediatric Medicine, Anna Meyer Children’s University Hospital, 50139 Florence, Italy; (V.T.); (M.F.); (G.T.)
| | - Giovanni Taccetti
- Cystic Fibrosis Centre, Department of Paediatric Medicine, Anna Meyer Children’s University Hospital, 50139 Florence, Italy; (V.T.); (M.F.); (G.T.)
| | - Serena Buonaurio
- Cystic Fibrosis Centre, Adult Unit, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (P.I.); (L.F.); (S.B.); (A.C.); (L.S.); (N.F.)
| | - Assunta Celardo
- Cystic Fibrosis Centre, Adult Unit, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (P.I.); (L.F.); (S.B.); (A.C.); (L.S.); (N.F.)
| | - Laura Salvadori
- Cystic Fibrosis Centre, Adult Unit, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (P.I.); (L.F.); (S.B.); (A.C.); (L.S.); (N.F.)
| | - Giovanni Marsicovetere
- Cystic Fibrosis Centre, Hospital San Carlo, 85100 Potenza, Italy; (C.C.); (A.P.); (G.M.); (M.D.); (D.S.)
| | - Michele D’Andria
- Cystic Fibrosis Centre, Hospital San Carlo, 85100 Potenza, Italy; (C.C.); (A.P.); (G.M.); (M.D.); (D.S.)
| | - Nicola Ferrara
- Cystic Fibrosis Centre, Adult Unit, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy; (P.I.); (L.F.); (S.B.); (A.C.); (L.S.); (N.F.)
| | - Donatello Salvatore
- Cystic Fibrosis Centre, Hospital San Carlo, 85100 Potenza, Italy; (C.C.); (A.P.); (G.M.); (M.D.); (D.S.)
| |
Collapse
|
99
|
Wine JJ. How the sweat gland reveals levels of CFTR activity. J Cyst Fibros 2022; 21:396-406. [DOI: 10.1016/j.jcf.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
|