51
|
Luo L, Su J, Zheng Y, Huang F, Huang R, Luo H. SLC2A5 Correlated with Immune Infiltration: A Candidate Diagnostic and Prognostic Biomarker for Lung Adenocarcinoma. J Immunol Res 2021; 2021:9938397. [PMID: 34604392 PMCID: PMC8483904 DOI: 10.1155/2021/9938397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a major subtype of lung cancer with a relatively poor prognosis, requiring novel therapeutic approaches. Great advances in new immunotherapy strategies have shown encouraging results in lung cancer patients. This study is aimed at elucidating the function of SLC2A5 in the prognosis and pathogenesis of LUAD by analyzing public databases. The differential expression of SLC2A5 in various tissues from Oncomine, GEPIA, and other databases was obtained, and SLC2A5 expression at the protein level in normal and tumor tissues was detected with the use of the HPA database. Then, we used the UALCAN database to analyze the expression of SLC2A5 in different clinical feature subgroups. Notably, in both PrognoScan and Kaplan-Meier plotter databases, we found a certain association between SLC2A5 and poor OS outcomes in LUAD patients. Studies based on the TIMER database show a strong correlation between SLC2A5 expression and various immune cell infiltrates and markers. The data analysis in the UALCAN database showed that the decreased promoter methylation level of SLC2A5 in LUAD may lead to the high expression of SLC2A5. Finally, we used the LinkedOmics database to evaluate the SLC2A5-related coexpression and functional networks in LUAD and to investigate their role in tumor immunity. These findings suggest that SLC2A5 correlated with immune infiltration can be used as a candidate diagnostic and prognostic biomarker in LUAD patients.
Collapse
Affiliation(s)
- Lianxiang Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yushi Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Fangfang Huang
- Graduate School, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| |
Collapse
|
52
|
Jin X, Liu L, Wu J, Jin X, Yu G, Jia L, Wang F, Shi M, Lu H, Liu J, Liu D, Yang J, Li H, Ni Y, Luo Q, Jia W, Wang W, Chen W. A multi-omics study delineates new molecular features and therapeutic targets for esophageal squamous cell carcinoma. Clin Transl Med 2021; 11:e538. [PMID: 34586744 PMCID: PMC8473482 DOI: 10.1002/ctm2.538] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major histological subtype of esophageal cancer with inferior prognosis. Here, we conducted comprehensive transcriptomic, proteomic, phosphoproteomic, and metabolomic characterization of human, treatment-naive ESCC and paired normal adjacent tissues (cohort 1, n = 24) in an effort to identify new molecular vulnerabilities for ESCC and potential therapeutic targets. Integrative analysis revealed a small group of genes that were related to the active posttranscriptional and posttranslational regulation of ESCC. By using proteomic, phosphoproteomic, and metabolomic data, networks of ESCC-related signaling and metabolic pathways that were closely linked to cancer etiology were unraveled. Notably, integrative analysis of proteomic and phosphoproteomic data pinpointed that certain pathways involved in RNA transcription, processing, and metabolism were stimulated in ESCC. Importantly, proteins with close linkage to ESCC prognosis were identified. By enrolling an ESCC patient cohort 2 (n = 41), three top-ranked prognostic proteins X-prolyl aminopeptidase 3 (XPNPEP3), bromodomain PHD finger transcription factor (BPTF), and fibrillarin (FBL) were verified to have increased expression in ESCC. Among these prognostic proteins, only FBL, a well-known nucleolar methyltransferase, was essential for ESCC cell growth in vitro and in vivo. Furthermore, a validation study using an ESCC patient cohort 3 (n = 100) demonstrated that high FBL expression predicted unfavorable patient survival. Finally, common cancer/testis antigens and established cancer drivers and kinases, all of which could direct therapeutic decisions, were characterized. Collectively, our multi-omics analyses delineated new molecular features associated with ESCC pathobiology involving epigenetic, posttranscriptional, posttranslational, and metabolic characteristics, and unveiled new molecular vulnerabilities with therapeutic potential for ESCC.
Collapse
Affiliation(s)
- Xing Jin
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lei Liu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Jia Wu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaoxia Jin
- Department of PathologyThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Guanzhen Yu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lijun Jia
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Fengying Wang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Minxin Shi
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Haimin Lu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Jibin Liu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Dan Liu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jing Yang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hua Li
- Bio‐ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yan Ni
- The Children's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhouChina
| | - Qin Luo
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wei Jia
- Hong Kong Traditional Chinese Medicine Phenome Research CenterSchool of Chinese MedicineHong Kong Baptist UniversityKowloon TongHong KongChina
| | - Wei Wang
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Wen‐Lian Chen
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
53
|
Zhao Y, Liu L, Zhao J, Du X, Yu Q, Wu J, Wang B, Ou R. Construction and Verification of a Hypoxia-Related 4-lncRNA Model for Prediction of Breast Cancer. Int J Gen Med 2021; 14:4605-4617. [PMID: 34429643 PMCID: PMC8380141 DOI: 10.2147/ijgm.s322007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Breast cancer is the most common form of cancer worldwide and a serious threat to women. Hypoxia is thought to be associated with poor prognosis of patients with cancer. Long non-coding RNAs are differentially expressed during tumorigenesis and can serve as unambiguous molecular biomarkers for the prognosis of breast cancer. Methods Here, we accessed the data from The Cancer Genome Atlas for model construction and performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses to identify biological functions. Four prognostic hypoxia-related lncRNAs identified by univariate, LASSO, and multivariate Cox regression analyses were used to develop a prognostic risk-related signature. Kaplan–Meier and receiver operating characteristic curve analyses were performed, and independent prognostic factor analysis and correlation analysis with clinical characteristics were utilized to evaluate the specificity and sensitivity of the signature. Survival analysis and receiver operating characteristic curve analyses of the validation cohort were operated to corroborate the robustness of the model. Results Our results demonstrate the development of a reliable prognostic gene signature comprising four long non-coding RNAs (AL031316.1, AC004585.1, LINC01235, and ACTA2-AS1). The signature displayed irreplaceable prognostic power for overall survival in patients with breast cancer in both the training and validation cohorts. Furthermore, immune cell infiltration analysis revealed that B cells, CD4 T cells, CD8 T cells, neutrophils, and dendritic cells were significantly different between the high-risk and low-risk groups. The high-risk and low-risk groups could be precisely distinguished using the risk signature to predict patient outcomes. Discussion In summary, our study proves that hypoxia-related long non-coding RNAs serve as accurate indicators of poor prognosis and short overall survival, and are likely to act as potential targets for future cancer therapy.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jinduo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xuedan Du
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiongjie Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jinting Wu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bin Wang
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
54
|
Lin M, Fang Y, Li Z, Li Y, Feng X, Zhan Y, Xie Y, Liu Y, Liu Z, Li G, Shen Z, Deng H. S100P contributes to promoter demethylation and transcriptional activation of SLC2A5 to promote metastasis in colorectal cancer. Br J Cancer 2021; 125:734-747. [PMID: 34188196 PMCID: PMC8405647 DOI: 10.1038/s41416-021-01306-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND SLC2A5 is a high-affinity fructose transporter, which is frequently upregulated in multiple human malignant tumours. However, the function and molecular mechanism of SLC2A5 in colorectal cancer (CRC) remain unknown. METHODS We detected the expression levels of SLC2A5 in CRC tissues and CRC cell lines by western blotting, qRT-PCR and immunohistochemistry. CRC cell lines with stable overexpression or knockdown of SLC2A5 were constructed to evaluate the functional roles of SLC2A5 in vitro through conventional assays. An intrasplenic inoculation model was established in mice to investigate the effect of SLC2A5 in promoting metastasis in vivo. Methylation mass spectrometry sequencing, methylation specific PCR, bisulphite sequencing PCR, ChIP-qPCR and luciferase reporter assay were performed to investigate the molecular mechanism underlying transcriptional activation of SLC2A5. RESULTS We found that SLC2A5 was upregulated in colorectal tumour tissues. Functionally, a high level of SLC2A5 expression was associated with increased invasion and metastasis capacities of CRC cells both in vitro and in vivo. Mechanistically, we unveiled that S100P could integrate to a specific region of SLC2A5 promoter, thereby reducing its methylation levels and activating SLC2A5 transcription. CONCLUSIONS Our results reveal a novel mechanism that S100P mediates the promoter demethylation and transcription activation of SLC2A5, thereby promoting the metastasis of CRC.
Collapse
Affiliation(s)
- Mingdao Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaochuang Feng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yizhi Zhan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuwen Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zehao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
55
|
Jiang H, Lin Q, Ma L, Luo S, Jiang X, Fang J, Lu Z. Fructose and fructose kinase in cancer and other pathologies. J Genet Genomics 2021; 48:531-539. [PMID: 34326012 DOI: 10.1016/j.jgg.2021.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
Fructose metabolism and fructose kinase KHK-C/A are key factors in the development of lipid oversynthesis-promoted metabolic disorders and cancer. Here, we summarize and discuss the current knowledge about the specific features of fructose metabolism and the distinct roles of KHK-C and KHK-A in metabolic liver diseases and their relevant metabolic disorders and cancer, and we highlight the specific protein kinase activity of KHK-A in tumor development. In addition, different approaches that have been used to inhibit KHK and the exploration of KHK inhibitors in clinical treatment are introduced.
Collapse
Affiliation(s)
- Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Qian Lin
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Leina Ma
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China
| | - Shudi Luo
- Zhejiang University Cancer Center, Hangzhou 310029, China
| | - Xiaoming Jiang
- Zhejiang University Cancer Center, Hangzhou 310029, China
| | - Jing Fang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266061, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University Cancer Center, Hangzhou 310029, China.
| |
Collapse
|
56
|
Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci 2021; 278:119649. [PMID: 34043989 DOI: 10.1016/j.lfs.2021.119649] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of death worldwide with high mortality and morbidity. A wide variety of risk factors are considered for LC development such as smoking, air pollution and family history. It appears that genetic and epigenetic factors are also potential players in LC development and progression. AMP-activated protein kinase (AMPK) is a signaling pathway with vital function in inducing energy balance and homeostasis. An increase in AMP:ATP and ADP:ATP ratio leads to activation of AMPK signaling by upstream mediators such as LKB1 and CamKK. Dysregulation of AMPK signaling is a common finding in different cancers, particularly LC. AMPK activation can significantly enhance LC metastasis via EMT induction. Upstream mediators such as PLAG1, IMPAD1, and TUFM can regulate AMPK-mediated metastasis. AMPK activation can promote proliferation and survival of LC cells via glycolysis induction. In suppressing LC progression, anti-tumor compounds including metformin, ginsenosides, casticin and duloxetine dually induce/inhibit AMPK signaling. This is due to double-edged sword role of AMPK signaling in LC cells. Furthermore, AMPK signaling can regulate response of LC cells to chemotherapy and radiotherapy that are discussed in the current review.
Collapse
|
57
|
Liang J, Han R, Zhou B. Metabolic Reprogramming: Strategy for Ischemic Stroke Treatment by Ischemic Preconditioning. BIOLOGY 2021; 10:biology10050424. [PMID: 34064579 PMCID: PMC8151271 DOI: 10.3390/biology10050424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/15/2023]
Abstract
Stroke is one of the leading causes of death and permanent disability worldwide. Ischemic preconditioning (IPC) is an endogenous protective strategy, which has been reported to exhibit a significant neuroprotective effect in reducing the incidence of ischemic stroke. However, the underlying neuroprotective mechanisms of IPC remain elusive. An increased understanding of the pathogenic mechanisms of stroke and IPC serves to highlight the importance of metabolic reprogramming. In this review, we summarize the metabolic disorder and metabolic plasticity in the incidence and progression of ischemic stroke. We also elaborate how IPC fully mobilizes the metabolic reprogramming to maintain brain metabolic homeostasis, especially for energy and redox homeostasis, and finally protects brain function in the event of an ischemic stroke.
Collapse
Affiliation(s)
- Jing Liang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (J.L.); (R.H.)
| | - Rongrong Han
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (J.L.); (R.H.)
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100191, China; (J.L.); (R.H.)
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- Correspondence:
| |
Collapse
|
58
|
Wang Z, Li ZX, Zhao WC, Huang HB, Wang JQ, Zhang H, Lu JY, Wang RN, Li W, Cheng Z, Xu WL, Di Zhu, Zhou LS, Jiang W, Yu L, Liu JY, Luo C, Zhu H, Dan Ye, Pan WJ, Ju JH, Dang YJ. Identification and characterization of isocitrate dehydrogenase 1 (IDH1) as a functional target of marine natural product grincamycin B. Acta Pharmacol Sin 2021; 42:801-813. [PMID: 32796956 DOI: 10.1038/s41401-020-0491-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023]
Abstract
Grincamycins (GCNs) are a class of angucycline glycosides isolated from actinomycete Streptomyces strains that have potent antitumor activities, but their antitumor mechanisms remain unknown. In this study, we tried to identify the cellular target of grincamycin B (GCN B), one of most dominant and active secondary metabolites, using a combined strategy. We showed that GCN B-selective-induced apoptosis of human acute promyelocytic leukemia (APL) cell line NB4 through increase of ER stress and intracellular reactive oxygen species (ROS) accumulation. Using a strategy of combining phenotype, transcriptomics and protein microarray approaches, we identified that isocitrate dehydrogenase 1(IDH1) was the putative target of GCN B, and confirmed that GCNs were a subset of selective inhibitors targeting both wild-type and mutant IDH1 in vitro. It is well-known that IDH1 converts isocitrate to 2-oxoglutarate (2-OG), maintaining intracellular 2-OG homeostasis. IDH1 and its mutant as the target of GCN B were validated in NB4 cells and zebrafish model. Knockdown of IDH1 in NB4 cells caused the similar phenotype as GCN B treatment, and supplementation of N-acetylcysteine partially rescued the apoptosis caused by IDH1 interference in NB4 cells. In zebrafish model, GCN B effectively restored myeloid abnormality caused by overexpression of mutant IDH1(R132C). Taken together, we demonstrate that IDH1 is one of the antitumor targets of GCNs, suggesting wild-type IDH1 may be a potential target for hematological malignancies intervention in the future.
Collapse
|
59
|
Echeverría C, Nualart F, Ferrada L, Smith GJ, Godoy AS. Hexose Transporters in Cancer: From Multifunctionality to Diagnosis and Therapy. Trends Endocrinol Metab 2021; 32:198-211. [PMID: 33518451 DOI: 10.1016/j.tem.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Cancer cells increase their metabolic activity by enhancing glucose uptake through overexpression of hexose transporters (Gluts). Gluts also have the capacity to transport other molecules besides glucose, including fructose, mannose, and dehydroascorbic acid (DHA), the oxidized form of vitamin C. The majority of research studies in this field have focused on the role of glucose transport and metabolism in cancer, leaving a substantial gap in our knowledge of the contribution of other hexoses and DHA in cancer biology. Here, we summarize the most recent advances in understanding the role that the multifunctional transport capacity of Gluts plays in biological and clinical aspects of cancer, and how these characteristics can be exploited in the search for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Carolina Echeverría
- Centro de Biología Celular y Biomedicina, Universidad San Sebastián, Santiago, Chile; Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Centro de Microscopía Avanzada, Universidad de Concepción, Concepción, Chile
| | - Luciano Ferrada
- Centro de Microscopía Avanzada, Universidad de Concepción, Concepción, Chile
| | - Gary J Smith
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Alejandro S Godoy
- Centro de Biología Celular y Biomedicina, Universidad San Sebastián, Santiago, Chile; Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
60
|
Liang RJ, Taylor S, Nahiyaan N, Song J, Murphy CJ, Dantas E, Cheng S, Hsu TW, Ramsamooj S, Grover R, Hwang SK, Ngo B, Cantley LC, Rhee KY, Goncalves MD. GLUT5 (SLC2A5) enables fructose-mediated proliferation independent of ketohexokinase. Cancer Metab 2021; 9:12. [PMID: 33762003 PMCID: PMC7992954 DOI: 10.1186/s40170-021-00246-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fructose is an abundant source of carbon and energy for cells to use for metabolism, but only certain cell types use fructose to proliferate. Tumor cells that acquire the ability to metabolize fructose have a fitness advantage over their neighboring cells, but the proteins that mediate fructose metabolism in this context are unknown. Here, we investigated the determinants of fructose-mediated cell proliferation. METHODS Live cell imaging and crystal violet assays were used to characterize the ability of several cell lines (RKO, H508, HepG2, Huh7, HEK293T (293T), A172, U118-MG, U87, MCF-7, MDA-MB-468, PC3, DLD1 HCT116, and 22RV1) to proliferate in fructose (i.e., the fructolytic ability). Fructose metabolism gene expression was determined by RT-qPCR and western blot for each cell line. A positive selection approach was used to "train" non-fructolytic PC3 cells to utilize fructose for proliferation. RNA-seq was performed on parental and trained PC3 cells to find key transcripts associated with fructolytic ability. A CRISPR-cas9 plasmid containing KHK-specific sgRNA was transfected in 293T cells to generate KHK-/- cells. Lentiviral transduction was used to overexpress empty vector, KHK, or GLUT5 in cells. Metabolic profiling was done with seahorse metabolic flux analysis as well as LC/MS metabolomics. Cell Titer Glo was used to determine cell sensitivity to 2-deoxyglucose in media containing either fructose or glucose. RESULTS We found that neither the tissue of origin nor expression level of any single gene related to fructose catabolism determine the fructolytic ability. However, cells cultured chronically in fructose can develop fructolytic ability. SLC2A5, encoding the fructose transporter, GLUT5, was specifically upregulated in these cells. Overexpression of GLUT5 in non-fructolytic cells enabled growth in fructose-containing media across cells of different origins. GLUT5 permitted fructose to flux through glycolysis using hexokinase (HK) and not ketohexokinase (KHK). CONCLUSIONS We show that GLUT5 is a robust and generalizable driver of fructose-dependent cell proliferation. This indicates that fructose uptake is the limiting factor for fructose-mediated cell proliferation. We further demonstrate that cellular proliferation with fructose is independent of KHK.
Collapse
Affiliation(s)
- Roger J Liang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Samuel Taylor
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, NY, 10065, USA
| | - Navid Nahiyaan
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Junho Song
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Charles J Murphy
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Shuyuan Cheng
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ting-Wei Hsu
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Shakti Ramsamooj
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Rahul Grover
- Weill Cornell Medical College, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Seo-Kyoung Hwang
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Bryan Ngo
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kyu Y Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
61
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, Qin L, Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (Beijing) 2021; 2:27-59. [PMID: 34766135 PMCID: PMC8491217 DOI: 10.1002/mco2.27] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune-associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Peter J. Nelson
- Medical Clinic and Policlinic IVLudwig‐Maximilian‐University (LMU)MunichGermany
| | - Jiahui Li
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Chao Wu
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Christiane Bruns
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Yue Zhao
- General, Visceral and Cancer SurgeryUniversity Hospital of CologneCologneGermany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
62
|
A Sweet Story of Metabolic Innovation in the Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:271-286. [PMID: 34424520 DOI: 10.1007/978-3-030-65943-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The naked mole-rat's (Heterocephalus glaber) social and subterranean lifestyle imposes several evolutionary pressures which have shaped its physiology. One example is low oxygen availability in a crowded burrow system which the naked mole-rat has adapted to via several mechanisms. Here we describe a metabolic rewiring which enables the naked mole-rat to switch substrates in glycolysis from glucose to fructose thereby circumventing feedback inhibition at phosphofructokinase (PFK1) to allow unrestrained glycolytic flux and ATP supply under hypoxia. Preferential shift to fructose metabolism occurs in other species and biological systems as a means to provide fuel, water or like in the naked mole-rat, protection in a low oxygen environment. We review fructose metabolism through an ecological lens and suggest that the metabolic adaptation to utilize fructose in the naked mole-rat may have evolved to simultaneously combat multiple challenges posed by its hostile environment.
Collapse
|
63
|
Wen D, Wang Y, Zhu Z, Huang Z, Cui L, Wu T, Liu CY. Bromodomain and Extraterminal (BET) protein inhibition suppresses tumor progression and inhibits HGF-MET signaling through targeting cancer-associated fibroblasts in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165923. [PMID: 32800944 DOI: 10.1016/j.bbadis.2020.165923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality. The bromodomain and extra-terminal domain (BET) inhibitors suppresses the gene expressions of various oncogenes and shows a good efficacy in the preclinical CRC models. We investigate the mechanism of action of BET inhibitors in CRC. METHODS The effect of BET inhibitor (JQ1) on the HGF-MET signaling was assessed by qPCR, western blot and immunohistochemical staining in CRC and cancer-associated fibroblasts (CAFs). The effect of JQ1 on the CAFs was investigated using the primary CAFs derived from CRC tissues and induced-CAFs derived from isolating foreskin fibroblasts. The effect of JQ1 on the gene expression profile of CAFs was explored by RNA-sequence, qPCR and bioinformatic analysis. RESULTS JQ1 decreased the mRNA and protein levels of MET in CRC cells and downregulated the mRNA and protein levels of HGF in both CRC cells and CAFs. JQ1 attenuated the pro-migratory activity of CAFs through downregulation of HGF expression in CAFs. Meanwhile, JQ1 also reduced the ability of contracting collagen gels, decreased the cell proliferation, induced G1 arrest and repressed the pro-inflammatory gene expressions in CAFs. MYC expression was suppressed by JQ1 in CAFs. Knockdown of MYC induced G1 arrest in CAFs. CONCLUSION Our results demonstrate the inhibitory effect of BET inhibition on the HGF-MET signaling and the pro-tumor activity of CAFs, revealing a new mechanism by which BET inhibition suppresses CRC progression.
Collapse
Affiliation(s)
- Dongpeng Wen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Gastrointestinal Surgery, Henan Provincial People' s Hospital, People' s Hospital of Zhengzhou University, People' s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Yuhan Wang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Zhehui Zhu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Long Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Tingyu Wu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China.
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China.
| |
Collapse
|
64
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 365] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|