51
|
Bushinsky DA, Parker WR, Asplin JR. Calcium phosphate supersaturation regulates stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 2000; 57:550-60. [PMID: 10652032 DOI: 10.1046/j.1523-1755.2000.00875.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hypercalciuria is the most common metabolic abnormality observed in patients with nephrolithiasis. Hypercalciuria raises urine supersaturation with respect to the solid phases of calcium oxalate and calcium phosphate, leading to an enhanced probability for nucleation and growth of crystals into clinically significant stones. However, there is little direct proof that supersaturation itself regulates stone formation. Through successive inbreeding of the most hypercalciuric progeny of hypercalciuric Sprague-Dawley rats, we have established a strain of rats, each of which excrete abnormally large amounts of urinary calcium and each of which forms calcium phosphate kidney stones. We used these hypercalciuric (GHS) rats to test the hypothesis that an isolated reduction in urine supersaturation, achieved by decreasing urine phosphorus excretion, would decrease stone formation in these rats. METHODS Thirty 44th-generation female GHS rats were randomly divided into three groups. Ten rats received a high-phosphorus diet (0.565% phosphorus), 10 a medium-phosphorus diet (0.395% phosphorus), and 10 a low-phosphorus diet (0.225% phosphorus) for a total of 18 weeks. The lowered dietary phosphorus would be expected to result in a decrease in urine phosphorus excretion and a decrease in urinary supersaturation with respect to the calcium phosphate solid phase. Every two weeks, 24-hour urine collections were obtained. All relevant ions were measured, and supersaturation with respect to calcium oxalate and calcium hydrogen phosphate were determined. At the conclusion of the experiment, each rat was killed, and the kidneys, ureters, and bladder were dissected en block and x-rayed to determine whether any stones formed. A decrease in stone formation with a reduction in urinary supersaturation would support the hypothesis that supersaturation alone can regulate stone formation. RESULTS Decreasing the dietary phosphorus intake led to a progressive decrease in urine phosphorus excretion and an increase in urine calcium excretion, the latter presumably caused by decreased intestinal calcium phosphate binding and increased calcium absorption. With decreasing dietary phosphorus intake, there was a progressive decrease in saturation with respect to the calcium phosphate solid phase. Fifteen of the 20 kidneys from the 10 rats fed the high-phosphorus diet had radiographic evidence of kidney stone formation, whereas no kidneys from the rats fed either the medium- or low-phosphorus diet developed kidney stones. CONCLUSIONS A decrease in urine phosphorus excretion not only led to a decrease in urine supersaturation with respect to the calcium phosphate solid phase but to an elimination of renal stone formation. The results of this study support the hypothesis that variation in supersaturation alone can regulate renal stone formation. Whether a reduction of dietary phosphorus will alter stone formation in humans with calcium phosphate nephrolithiasis remains to be determined.
Collapse
Affiliation(s)
- D A Bushinsky
- Nephrology Unit, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
52
|
Scheinman SJ, Cox JP, Lloyd SE, Pearce SH, Salenger PV, Hoopes RR, Bushinsky DA, Wrong O, Asplin JR, Langman CB, Norden AG, Thakker RV. Isolated hypercalciuria with mutation in CLCN5: relevance to idiopathic hypercalciuria. Kidney Int 2000; 57:232-9. [PMID: 10620204 DOI: 10.1046/j.1523-1755.2000.00774.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Isolated hypercalciuria with mutation in CLCN5: Relevance to idiopathic hypercalciuria. BACKGROUND Idiopathic hypercalciuria (IH) is the most common risk factor for kidney stones and often has a genetic component. Dent's disease (X-linked nephrolithiasis) is associated with mutations in the CLCN5 chloride channel gene, and low molecular weight (LMW) proteinuria was universally observed in affected males. We sought to identify mutations in CLCN5 or abnormalities in LMW protein excretion in a large group of patients with IH and in a rat model of genetic hypercalciuria. METHODS One hundred and seven patients with IH (82 adults and 25 children) and one asymptomatic hypercalciuric man with a known inactivating mutation in CLCN5 were studied. Secondary causes of hypercalciuria were excluded in all. The excretion of retinol-binding protein and beta2-microglobulin was measured by immunoassay in 101 patients with IH. Mutation analysis of the CLCN5 gene was performed in 32 patients with IH and in the genetic hypercalciuric stone-forming (GHS) rat strain. RESULTS LMW protein excretion was normal in 92 patients with IH, and only slight abnormalities were found in the other nine, none of whom had a mutation in CLCN5. One 27-year-old man who had a CLCN5 mutation was found to have isolated hypercalciuria without LMW proteinuria, renal failure, or other evidence of renal disease. Mutation analysis was normal in 32 patients with IH. The CLCN5 sequence was normal in the GHS rat. CONCLUSIONS Inactivation of CLCN5 can be found in the setting of hypercalciuria without other features of X-linked nephrolithiasis. However, mutations in CLCN5 do not represent a common cause of IH.
Collapse
Affiliation(s)
- S J Scheinman
- Department of Medicine, SUNY Health Science Center, Syracuse, New York 13210, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
In humans, idiopathic hypercalciuria is associated with stone formation. In order to study the mechanisms that are responsible for excess urine calcium excretion, in ways that are difficult or impossible in humans, we have developed a rat model of hypercalciuria. Spontaneously hypercalciuric rats have been successively inbred for over 50 generations to produce a strain in which urine calcium excretion is over 10 times greater than that of controls, and all rats form kidney stones. Analysis of the model has revealed that the rats not only exhibit increased intestinal calcium reabsorption but an independent defect in renal tubular calcium resorption and an increased tendency for bone resorption. These findings closely parallel those in patients with idiopathic hypercalciuria. In the intestine, bone and kidney there is an increased number of vitamin D receptors which are hyperresponsive to 1,25-dihydroxyvitamin D3. Whether the increased number of vitamin D receptors is directly responsible for the hypercalciuria and whether the same abnormality is present in humans with idiopathic hypercalciuria is under investigation. Hypercalciuric rats appear to be an excellent model to provide insights into the mechanisms causing hypercalciuria, and to delineate treatments for stone disease.
Collapse
Affiliation(s)
- D A Bushinsky
- University of Rochester School of Medicine and Dentistry, Strong Memorial Hospital, Rochester, NY 14642, USA.
| |
Collapse
|
54
|
Bushinsky DA, Bashir MA, Riordon DR, Nakagawa Y, Coe FL, Grynpas MD. Increased dietary oxalate does not increase urinary calcium oxalate saturation in hypercalciuric rats. Kidney Int 1999; 55:602-12. [PMID: 9987084 DOI: 10.1046/j.1523-1755.1999.00281.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Human calcium oxalate (CaOx) nephrolithiasis may occur if urine is supersaturated with respect to the solid-phase CaOx. In these patients, dietary oxalate is often restricted to reduce its absorption and subsequent excretion in an effort to lower supersaturation and to decrease stone formation. However, dietary oxalate also binds intestinal calcium which lowers calcium absorption and excretion. The effect of increasing dietary oxalate on urinary CaOx supersaturation is difficult to predict. METHODS To determine the effect of dietary oxalate intake on urinary supersaturation with respect to CaOx and brushite (CaHPO4), we fed 36th and 37th generation genetic hypercalciuric rats a normal Ca diet (1.2% Ca) alone or with sodium oxalate added at 0.5%, 1.0%, or 2.0% for a total of 18 weeks. We measured urinary ion excretion and calculated supersaturation with respect to the CaOx and CaHPO4 solid phases and determined the type of stones formed. RESULTS Increasing dietary oxalate from 0% to 2.0% significantly increased urinary oxalate and decreased urinary calcium excretion, the latter presumably due to increased dietary oxalate-binding intestinal calcium. Increasing dietary oxalate from 0% to 2.0% decreased CaOx supersaturation due to the decrease in urinary calcium offsetting the increase in urinary oxalate and the decreased CaHPO4 supersaturation. Each rat in each group formed stones. Scanning electron microscopy revealed discrete stones and not nephrocalcinosis. X-ray and electron diffraction and x-ray microanalysis revealed that the stones were composed of calcium and phosphate; there were no CaOx stones. CONCLUSION Thus, increasing dietary oxalate led to a decrease in CaOx and CaHPO4 supersaturation and did not alter the universal stone formation found in these rats, nor the type of stones formed. These results suggest the necessity for human studies aimed at determining the role, if any, of limiting oxalate intake to prevent recurrence of CaOx nephrolithiasis.
Collapse
Affiliation(s)
- D A Bushinsky
- Nephrology Unit, University of Rochester, New York, USA.
| | | | | | | | | | | |
Collapse
|
55
|
Bushinsky DA, Neumann KJ, Asplin J, Krieger NS. Alendronate decreases urine calcium and supersaturation in genetic hypercalciuric rats. Kidney Int 1999; 55:234-43. [PMID: 9893132 DOI: 10.1046/j.1523-1755.1999.00247.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The mechanism of excess urine calcium excretion in human idiopathic hypercalciuria (IH) has not been determined but may be secondary to enhanced intestinal calcium absorption, decreased renal calcium reabsorption, and/or enhanced bone demineralization. We have developed a strain of genetic hypercalciuric stone-forming (GHS) rats as an animal model of human IH. When these GHS rats are placed on a low-calcium diet (LCD), urinary calcium (UCa) excretion exceeds dietary calcium intake, suggesting that bone may contribute to the excess UCa excretion. We used the GHS rats to test the hypothesis that bone contributes to the persistent IH when they are fed an LCD by determining if alendronate (Aln), which inhibits bone resorption, would decrease UCa excretion. METHODS GHS rats (N = 16) and the parent strain (Ctl, N = 16) were fed 13 g/day of a normal (1.2%) calcium diet (NCD) for seven days and were then switched to a LCD (0. 02%) for seven days. Ctl and GHS rats in each group were then continued on LCD for an additional seven days, with or without injection of Aln (50 micrograms/kg/24 hrs). UCa excretion was measured daily during the last five days of each seven-day period. To determine the effects of Aln on urine supersaturation, the experiment was repeated. All relevant ions were measured, and supersaturation with respect to calcium oxalate and calcium hydrogen phosphate was determined at the end of each period. RESULTS UCa was greater in GHS than in Ctl on NCD (7.4 +/- 0.5 mg/24 hrs vs. 1.2 +/- 0.1, GHS vs. Ctl, P < 0.01) and on LCD (3.9 +/- 0.2 mg/24 hrs vs. 0. 7 +/- 0.1, GHS vs. Ctl, P < 0.01). LCD provides 2.6 mg of calcium/24 hrs, indicating that GHS rats are excreting more calcium than they are consuming. On LCD, Aln caused a significant decrease in UCa in GHS rats and brought GHS UCa well below calcium intake. Aln caused a marked decrease in calcium oxalate and calcium hydrogen phosphate supersaturation. CONCLUSION Thus, on a LCD, there is a significant contribution of bone calcium to the increased UCa in this model of IH. Aln is effective in decreasing both UCa and supersaturation. The Aln-induced decrease in urine supersaturation should be beneficial in preventing stone formation in humans, if these results, observed in a short-term study using the hypercalciuric stone-forming rat can be confirmed in longer term human studies.
Collapse
Affiliation(s)
- D A Bushinsky
- Nephrology Unit, University of Rochester, Rochester, New York, and the University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
56
|
Yao J, Kathpalia P, Bushinsky DA, Favus MJ. Hyperresponsiveness of vitamin D receptor gene expression to 1,25-dihydroxyvitamin D3. A new characteristic of genetic hypercalciuric stone-forming rats. J Clin Invest 1998; 101:2223-32. [PMID: 9593778 PMCID: PMC508810 DOI: 10.1172/jci1164] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hypercalciuria in genetic hypercalciuric stone-forming (GHS) rats is accompanied by intestinal Ca hyperabsorption with normal serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] levels, elevation of intestinal, kidney, and bone vitamin D receptor (VDR) content, and greater 1,25(OH)2D3-induced bone resorption in vitro. To test the hypothesis that hyperresponsiveness of VDR gene expression to 1,25(OH)2D3 may mediate these observations, male GHS and wild-type Sprague- Dawley normocalciuric control rats were fed a normal Ca diet (0.6% Ca) and received a single intraperitoneal injection of either 1,25(OH)2D3 (10-200 ng/100 g body wt) or vehicle. Total RNAs were isolated from both duodenum and kidney cortex, and the VDR and calbindin mRNA levels were determined by Northern blot hybridization using specific cDNA probes. Under basal conditions, VDR mRNA levels in GHS rats were lower in duodenum and higher in kidney compared with wild-type controls. Administration of 1,25(OH)2D3 increased VDR gene expression significantly in GHS but not normocalciuric animals, in a time- and dose-dependent manner. In vivo half-life of VDR mRNA was similar in GHS and control rats in both duodenum and kidney, and was prolonged significantly (from 4-5 to > 8 h) by 1,25(OH)2D3 administration. Neither inhibition of gene transcription by actinomycin D nor inhibition of de novo protein synthesis with cycloheximide blocked the upregulation of VDR gene expression stimulated by 1,25(OH)2D3 administration. No alteration or mutation was detected in the sequence of duodenal VDR mRNA from GHS rats compared with wild-type animals. Furthermore, 1,25(OH)2D3 administration also led to an increase in duodenal and renal calbindin mRNA levels in GHS rats, whereas they were either suppressed or unchanged in wild-type animals. The results suggest that GHS rats hyperrespond to minimal doses of 1,25(OH)2D3 by an upregulation of VDR gene expression. This hyperresponsiveness of GHS rats to 1,25(OH)2D3 (a) occurs through an increase in VDR mRNA stability without involving alteration in gene transcription, de novo protein synthesis, or mRNA sequence; and (b) is likely of functional significance, and affects VDR-responsive genes in 1, 25(OH)2D3 target tissues. This unique characteristic suggests that GHS rats may be susceptible to minimal fluctuations in serum 1, 25(OH)2D3, resulting in increased VDR and VDR-responsive events, which in turn may pathologically amplify the actions of 1,25(OH)2D3 on Ca metabolism that thus contribute to the hypercalciuria and stone formation.
Collapse
Affiliation(s)
- J Yao
- Department of Medicine, The University of Chicago, Pritzker School of Medicine, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
57
|
Tsuruoka S, Bushinsky DA, Schwartz GJ. Defective renal calcium reabsorption in genetic hypercalciuric rats. Kidney Int 1997; 51:1540-7. [PMID: 9150471 DOI: 10.1038/ki.1997.212] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Idiopathic hypercalciuria is a frequent cause of calcium (Ca) containing kidney stones. We have previously shown that there is increased intestinal Ca absorption in selectively inbred genetic hypercalciuric stone forming (GHS) rats; however, excess Ca excretion persists when the rats are fed a low Ca diet indicating a defect in renal Ca reabsorption and/or increased bone resorption. To determine if GHS rats have a defect in renal Ca reabsorption we performed 14C-inulin clearance studies on parathyroidectomized female GHS and control (Ctl) rats. After three baseline collections, chlorothiazide (CTZ) or furosemide (FUR) was infused and three more collections were obtained. Both GFR and filtered load of Ca did not differ among the groups; however, fractional and absolute excretion (UcaV) of Ca was three times higher in GHS rats. The increased Ca excretion was not diminished by a low Ca diet. Urine flow rate nearly tripled in all rats after either FUR or CTZ. After CTZ, UcaV was decreased to a greater extent in GHS compared to Ctl rats. After FUR, UcaV was increased to a greater extent in Ctl rats compared to GHS rats. These data indicate that GHS rats have a defect in renal Ca reabsorption, in addition to increased intestinal Ca absorption. The effect of CTZ was greater, and that of FUR was smaller, in GHS compared with Ctl rats, suggesting that the defect in renal Ca handling might be at the level of the thick ascending limb.
Collapse
Affiliation(s)
- S Tsuruoka
- Department of Pediatrics, University of Rochester, New York, USA
| | | | | |
Collapse
|
58
|
Asplin JR, Bushinsky DA, Singharetnam W, Riordon D, Parks JH, Coe FL. Relationship between supersaturation and crystal inhibition in hypercalciuric rats. Kidney Int 1997; 51:640-5. [PMID: 9067894 DOI: 10.1038/ki.1997.93] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Calcium oxalate (CaOx) and calcium phosphate (CaP) crystals do not precipitate in large amounts in normal urine despite considerable supersaturation (SS), partly because urine inhibits crystal nucleation, aggregation, and growth. In normal rats and rats bred for hypercalciuria (GHS), we varied SS by varying calcium intake to test the hypothesis that increased SS might deplete inhibitors and reduce inhibition of crystal formation. In normal rats when compared to a low calcium diet (0.02% Ca), a high calcium diet (1.2% Ca) raised the SS of CaOx from 0.8 to 8.2. The high calcium diet also raised the upper limit of metastability (ULM) of CaOx (the SS at which crystals form in urine) from 11.8 to 36. In GHS rats, diet change altered CaOx SS from 1.5 to 12, and ULM from 17 to 50 (all differences, P < 0.001). Because ULM rose with SS, the increased SS had little potential to increase CaOx stone risk. For CaP, however, SS rose from 0.6 to 2.4 and 1.1 to 8 in normal and GHS rats (P < 0.001 for both), respectively, whereas ULM for CaP did not increase significantly (8 vs. 7 and 7 vs. 11; P = NS, both changes). Therefore, CaP SS rose close to the ULM, posing a high stone risk. The stones formed by these rats are composed of CaP. Increasing CaOx SS by diet raises ULM for CaOx thereby offsetting the risk of CaOx stones in rats.
Collapse
Affiliation(s)
- J R Asplin
- Nephrology Program, University of Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
59
|
Krieger NS, Stathopoulos VM, Bushinsky DA. Increased sensitivity to 1,25(OH)2D3 in bone from genetic hypercalciuric rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C130-5. [PMID: 8760038 DOI: 10.1152/ajpcell.1996.271.1.c130] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As a model of human hypercalciuria, we have selectively inbred genetic hypercalciuric stone-forming (GHS) Sprague-Dawley rats whose mean urine calcium excretion is eight to nine times greater than that of controls. A large component of this excess urine calcium excretion is secondary to increased intestinal calcium absorption, which is not due to an elevation in serum 1,25(OH)2D3, but appears to result from an increased number of intestinal 1,25(OH)2D3 receptors (VDR). When GHS rats are fed a low-calcium diet, the hypercalciuria is only partially decreased and urine calcium excretion exceeds intake, suggesting that an additional mechanism contributing to the hypercalciuria is enhanced bone demineralization. To determine if GHS rat bones are more sensitive to exogenous 1,25(OH)2D3, we cultured calvariae from neonatal (2- to 3-day-old) GHS and control rats with or without 1,25(OH)2D3 or parathyroid hormone (PTH) for 48 h at 37 degrees C. There was significant stimulation of calcium efflux from GHS calvariae at 1 and 10 nM 1,25(OH)2D3, whereas control calvariae showed no significant response to 1,25(OH)2D3 at any concentration tested. In contrast, PTH induced similar bone resorption in control and GHS calvariae. Immunoblot analysis demonstrated a fourfold increase in the level of VDR in GHS calvariae compared with control calvariae, similar to the increased intestinal receptors described previously. There was no comparable change in VDR RNA levels as measured by slot blot analysis, suggesting the altered regulation of the VDR occurs posttranscriptionally. That both bone and intestine display an increased amount of VDR suggests that this may be a systemic disorder in the GHS rat and that enhanced bone resorption may be responsible, in part, for the hypercalciuria in the GHS rat.
Collapse
Affiliation(s)
- N S Krieger
- Department of Medicine, University of Rochester School of Medicine, New York 14642, USA
| | | | | |
Collapse
|
60
|
Weisinger JR. New insights into the pathogenesis of idiopathic hypercalciuria: the role of bone. Kidney Int 1996; 49:1507-18. [PMID: 8731119 DOI: 10.1038/ki.1996.210] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J R Weisinger
- Hospital Universitario de Caracas, Universidad Central de Venezuela, Venezuela
| |
Collapse
|
61
|
Bushinsky DA, Grynpas MD, Nilsson EL, Nakagawa Y, Coe FL. Stone formation in genetic hypercalciuric rats. Kidney Int 1995; 48:1705-13. [PMID: 8587230 DOI: 10.1038/ki.1995.468] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our genetic hypercalciuric (GH) rats have been selected and inbred for 29 generations to maximize urine calcium (UCa) excretion compared to identical gender controls (Ctl). To determine the effect of the increased UCa on urinary supersaturation and stone formation, we pair fed 15 GH and 15 Ctl rats a standard 1.2% calcium diet for 18 weeks, measured urine supersaturation every two weeks, and examined the urinary tract of 1/3 of the rats for the presence of stones every six weeks. Any stones formed were studied by SEM, X-ray and electron diffraction and X-ray microanalysis. Over the entire study UCa was increased in the GH compared to Ctl, resulting in greater supersaturation with respect to calcium hydrogen phosphate (CaHPO4) at all times and calcium oxalate (CaOx) at most times. There was a progressive increase in the incidence of stone formation in GH rats with one of five rats having stones at six weeks, three of five with stones at 12 weeks and five of five with stones at 18 weeks. There were no stones formed in Ctl rats. SEM reveals discrete stones and not nephrocalcinosis. X-ray and electron diffraction and X-ray microanalysis reveal the stones to be poorly crystalline apatite which is a solid phase of calcium and phosphate. Compared to Ctl, in the GH rats the saturation ratio for CaHPO4 increased proportionally more than that for CaOx, perhaps explaining why the rats formed apatite and not oxalate stones. This is the first description of an animal model of spontaneous nephrolithiasis.
Collapse
Affiliation(s)
- D A Bushinsky
- Nephrology Unit, University of Rochester, New York, USA
| | | | | | | | | |
Collapse
|
62
|
Bushinsky DA, Kim M, Sessler NE, Nakagawa Y, Coe FL. Increased urinary saturation and kidney calcium content in genetic hypercalciuric rats. Kidney Int 1994; 45:58-65. [PMID: 8127022 DOI: 10.1038/ki.1994.7] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have established a colony of genetic hypercalciuric (IH) rats as a model of idiopathic hypercalciuria in humans. To test the hypothesis that hypercalciuria can cause crystallization in kidneys through increased supersaturation, in the absence of confounding effects of diet and whatever complex inhibitor disorders underlay stone disease, we fed males and females of the 21st generation of IH rats 13 g per day of a low calcium (LCD, 0.02% Ca), followed by a normal calcium (NCD, 0.6% Ca) and then a high calcium (HCD, 1.2% Ca) diet, each for seven days. During the last 24 hours of each period complete urine collections were obtained and analyzed for all substances known to affect urinary calcium oxalate (CaOx) and brushite (CaHPO4) supersaturation. Relative supersaturation with respect to the solid phases of CaOx and CaHPO4 were then calculated. Compared to same gender controls (Ctl) urine calcium excretion was higher in the female IH rats on all diets and in the male IH rats on NCD and HCD. The female and male IH rats on NCD and HCD were supersaturated with respect to CaOx; however, the male and female Ctl were supersaturated with respect CaOx only on HCD. The female IH rats on NCD and HCD and the male IH rats on NCD were supersaturated with respect to CaHPO4; however, neither the male nor female Ctl rats were supersaturated with respect to CaHPO4 on any diet. On NCD and HCD urine supersaturation with respect to CaHPO4 by females exceeded that of males.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
63
|
Li XQ, Tembe V, Horwitz GM, Bushinsky DA, Favus MJ. Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption. J Clin Invest 1993; 91:661-7. [PMID: 8381825 PMCID: PMC288005 DOI: 10.1172/jci116246] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In humans, familial or idiopathic hypercalciuria (IH) is a common cause of hypercalciuria and predisposes to calcium oxalate nephrolithiasis. Intestinal calcium hyperabsorption is a constant feature of IH and may be due to either a vitamin D-independent process in the intestine, a primary overproduction of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], or a defect in renal tubular calcium reabsorption. Selective breeding of spontaneously hypercalciuric male and female Sprague-Dawley rats resulted in offspring with hypercalciuria, increased intestinal calcium absorption, and normal serum 1,25(OH)2D3 levels. The role of the vitamin D receptor (VDR) in the regulation of intestinal calcium absorption was explored in 10th generation male genetic IH rats and normocalciuric controls. Urine calcium excretion was greater in IH rats than controls (2.9 +/- 0.3 vs. 0.7 +/- 0.2 mg/24 h, P < 0.001). IH rat intestine contained twice the abundance of VDR compared with normocalciuric controls (536 +/- 73 vs. 243 +/- 42 nmol/mg protein, P < 0.001), with no difference in the affinity of the receptor for its ligand. Comparable migration of IH and normal intestinal VDR on Western blots and of intestinal VDR mRNA by Northern analysis suggests that the VDR in IH rat intestine is not due to large deletion or addition mutations of the wild-type VDR. IH rat intestine contained greater concentrations of vitamin D-dependent calbindin 9-kD protein. The present studies strongly suggest that increased intestinal VDR number and normal levels of circulating 1,25(OH)2D3 result in increased functional VDR-1,25(OH)2D3 complexes, which exert biological actions in enterocytes to increase intestinal calcium transport. Intestinal calcium hyperabsorption in the IH rat may be the first example of a genetic disorder resulting from a pathologic increase in VDR.
Collapse
Affiliation(s)
- X Q Li
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Illinois 60637
| | | | | | | | | |
Collapse
|
64
|
Kim M, Sessler NE, Tembe V, Favus MJ, Bushinsky DA. Response of genetic hypercalciuric rats to a low calcium diet. Kidney Int 1993; 43:189-96. [PMID: 8433558 DOI: 10.1038/ki.1993.31] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A fundamental mechanism for hypercalciuria in genetic hypercalciuric rats appears due to a primary increase in intestinal calcium absorption. However previous studies could not exclude additional mechanisms to account for the hypercalciuria. To determine if enhanced bone mineral dissolution either as a primary abnormality or secondary to a defect in renal tubule calcium reabsorption is responsible for a component of the augmented calcium excretion we studied rats continually inbred for hypercalciuria. Nineteenth generation adult female idiopathic hypercalciuric (IH) and non-inbred control (Ctl) rats were fed 13 g/day of a normal calcium diet (0.6% calcium, NCD) for 10 days. Urine calcium excretion over the last seven days was greater in IH (34 +/- 2 mg/7 day) than in Ctl (2.9 +/- 0.3, P < 0.01) rats. Some rats in each group were continued on the same diet while others were fed a low calcium diet (0.02% calcium, LCD) for an additional 10 days; balance measurements were made over the final seven days. With LCD, urine calcium excretion was approximately 8-fold higher in IH compared to Ctl (13 +/- 2 mg/7 day vs. 1.6 +/- 0.1, IH vs. Ctl, respectively, P < 0.01). In IH rats percent calcium absorption was greater (59 +/- 3% vs. 45 +/- 3, IH vs. Ctl, P < 0.01), however calcium retention was negative (-1.9 +/- 2.0 mg/7 day vs. 6.5 +/- 0.5, IH vs. Ctl, P < 0.01) compared to Ctl rats. The fall in urine calcium excretion when IH rats are fed LCD indicates that enhanced intestinal calcium absorption is a primary mechanism of the hypercalciuria.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Kim
- Nephrology Unit, University of Rochester, New York
| | | | | | | | | |
Collapse
|
65
|
Affiliation(s)
- F L Coe
- Section of Nephrology, University of Chicago, Pritzker School of Medicine, IL 60637
| | | | | |
Collapse
|
66
|
Sutton RA. Causes and prevention of calcium-containing renal calculi. West J Med 1991; 155:249-52. [PMID: 1949770 PMCID: PMC1002977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kidney stones are common, and recurrences are the rule. At least 90% of patients with kidney stones probably have some identifiable metabolic risk factor. Effective prophylaxis is often available, but with the relatively low rate of recurrence, compliance with the treatment may be a problem. Studies are required to determine the cost-effectiveness of metabolic investigation and prophylactic therapy versus the possible need for repeated treatment by means of extracorporeal lithotripsy, especially in patients having a first calcium oxalate stone.
Collapse
Affiliation(s)
- R A Sutton
- Department of Medicine, University of British Columbia Faculty of Medicine, Vancouver, Canada
| |
Collapse
|
67
|
Nunziata V, Di Giovanni G, Giannattasio R, Lettera AM, Mancini M. Recurrent kidney stones: causes and diagnostic criteria in patients from Campania (southern Italy). BRITISH JOURNAL OF UROLOGY 1991; 68:125-31. [PMID: 1653079 DOI: 10.1111/j.1464-410x.1991.tb15279.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A study was carried out on 180 recurrent kidney stone formers from the Campania region of southern Italy. The data showed that this hypercalciuric population was similar to that in previous studies; however, there was no difference in terms of parathyroid activity when compared with normal controls. The slightly depressed serum levels of vitamin D in hypercalciurics indicate that gut calcium absorption is not directly related to vitamin D levels. We found no difference in the prevalence of metabolic abnormalities associated with stone formation between the patients in this series and those in previous studies.
Collapse
Affiliation(s)
- V Nunziata
- Institute of Internal Medicine and Metabolic Disease, II Medical School, University of Naples, Italy
| | | | | | | | | |
Collapse
|
68
|
Abstract
Hypercalciuria, defined as the urinary excretion of more than 0.1 mmol Ca/kg/d (4 mg/kg/24 h), is observed in approximately 50% of patients with calcium oxalate/apatite nephrolithiasis and is one of the risk factors for stone formation. Urinary Ca excretion rates among such patients are higher than normal, despite comparable ranges of glomerular filtration rate (GFR) and serum ultrafiltrable Ca concentrations, and thus glomerular filtration of Ca, suggesting that hypercalciuria is the result of inhibition of net tubular Ca reabsorption. Although increased dietary NaCl or protein intake and reduced K intake increase urinary Ca excretion rates, urinary Ca excretion rates are higher among hypercalciuric stone formers than among normal subjects in relation to comparable ranges of urinary Na, SO4 (as a reflection of protein intake), or K excretion rates, indicating that these dietary factors are not primarily responsible for hypercalciuria. Hypophosphatemia is observed among a subset of hypercalciuric patients and consequent activation of 1,25-(OH)2-D synthesis increases intestinal Ca absorption and urinary calcium excretion. Other hypercalciuric patients exhibit augmented intestinal Ca absorption without elevated plasma 1,25-(OH)-2-D levels, suggesting that either the capacity of 1,25-(OH)2-D to upregulate its own receptor in the intestine or 1,25-(OH)2-D-independent intestinal Ca transport are responsible for increased Ca absorption and hypercalciuria. Hypercalciuric patients also exhibit accelerated radiocalcium turnover, negative Ca balances, reduced bone density, delayed bone mineralization, fasting hypercalciuria, and increased hydroxyproline excretion, all of which reflect participation of the skeleton and presumably a more generalized acceleration of Ca transport. Hypercalciuria may be familial.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Lemann
- Department of Medicine, Medical College of Wisconsin, Milwaukee 53226
| | | | | |
Collapse
|
69
|
Fanestil DD, Chen Z, Tran JM, Vaughn DA, Beaumont K. The Cellular Receptor for Thiazide-Type Diuretics. Nephrology (Carlton) 1991. [DOI: 10.1007/978-3-662-35158-1_110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|