51
|
Tiemann I, Fijn LB, Bagaria M, Langen EMA, van der Staay FJ, Arndt SS, Leenaars C, Goerlich VC. Glucocorticoids in relation to behavior, morphology, and physiology as proxy indicators for the assessment of animal welfare. A systematic mapping review. Front Vet Sci 2023; 9:954607. [PMID: 36686168 PMCID: PMC9853183 DOI: 10.3389/fvets.2022.954607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Translating theoretical concepts of animal welfare into quantitative assessment protocols is an ongoing challenge. Glucocorticoids (GCs) are frequently used as physiological measure in welfare assessment. The interpretation of levels of GCs and especially their relation to welfare, however, is not as straightforward, questioning the informative power of GCs. The aim of this systematic mapping review was therefore to provide an overview of the relevant literature to identify global patterns in studies using GCs as proxy for the assessment of welfare of vertebrate species. Following a systematic protocol and a-priory inclusion criteria, 509 studies with 517 experiments were selected for data extraction. The outcome of the experiments was categorized based on whether the intervention significantly affected levels of GCs, and whether these effects were accompanied by changes in behavior, morphology and physiology. Additional information, such as animal species, type of intervention, experimental set up and sample type used for GC determination was extracted, as well. Given the broad scope and large variation in included experiments, meta-analyses were not performed, but outcomes are presented to encourage further, in-depth analyses of the data set. The interventions did not consistently lead to changes in GCs with respect to the original authors hypothesis. Changes in GCs were not consistently paralleled by changes in additional assessment parameter on behavior, morphology and physiology. The minority of experiment quantified GCs in less invasive sample matrices compared to blood. Interventions showed a large variability, and species such as fish were underrepresented, especially in the assessment of behavior. The inconclusive effects on GCs and additional assessment parameter urges for further validation of techniques and welfare proxies. Several conceptual and technical challenges need to be met to create standardized and robust welfare assessment protocols and to determine the role of GCs herein.
Collapse
Affiliation(s)
- Inga Tiemann
- Faculty of Agriculture, Institute of Agricultural Engineering, University of Bonn, Bonn, Germany,*Correspondence: Inga Tiemann ✉
| | - Lisa B. Fijn
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Marc Bagaria
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther M. A. Langen
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - F. Josef van der Staay
- Division of Farm Animal Health, Behaviour and Welfare Group, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Saskia S. Arndt
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Vivian C. Goerlich
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
52
|
Ernst L, Kümmecke AM, Zieglowski L, Liu W, Schulz M, Czigany Z, Tolba RH. Implementation of the Surgical Apgar Score in Laboratory Animal Science: A Showcase Pilot Study in a Porcine Model and a Review of the Literature. Eur Surg Res 2023; 64:54-64. [PMID: 34903685 PMCID: PMC9808704 DOI: 10.1159/000520423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/21/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In an attempt to further improve surgical outcomes, a variety of outcome prediction and risk-assessment tools have been developed for the clinical setting. Risk scores such as the surgical Apgar score (SAS) hold promise to facilitate the objective assessment of perioperative risk related to comorbidities of the patients or the individual characteristics of the surgical procedure itself. Despite the large number of scoring models in clinical surgery, only very few of these models have ever been utilized in the setting of laboratory animal science. The SAS has been validated in various clinical surgical procedures and shown to be strongly associated with postoperative morbidity. In the present study, we aimed to review the clinical evidence supporting the use of the SAS system and performed a showcase pilot trial in a large animal model as the first implementation of a porcine-adapted SAS (pSAS) in an in vivo laboratory animal science setting. METHODS A literature review was performed in the PubMed and Embase databases. Study characteristics and results using the SAS were reported. For the in vivo study, 21 female German landrace pigs have been used either to study bleeding analogy (n = 9) or to apply pSAS after abdominal surgery in a kidney transplant model (n = 12). The SAS was calculated using 3 criteria: (1) estimated blood loss during surgery; (2) lowest mean arterial blood pressure; and (3) lowest heart rate. RESULTS The SAS has been verified to be an effective tool in numerous clinical studies of abdominal surgery, regardless of specialization confirming independence on the type of surgical field or the choice of surgery. Thresholds for blood loss assessment were species specifically adjusted to >700 mL = score 0; 700-400 mL = score 1; 400-55 mL score 2; and <55 mL = score 3 resulting in a species-specific pSAS for a more precise classification. CONCLUSION Our literature review demonstrates the feasibility and excellent performance of the SAS in various clinical settings. Within this pilot study, we could demonstrate the usefulness of the modified SAS (pSAS) in a porcine kidney transplantation model. The SAS has a potential to facilitate early veterinary intervention and drive the perioperative care in large animal models exemplified in a case study using pigs. Further larger studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Lisa Ernst
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
- *Lisa Ernst,
| | - Anna Maria Kümmecke
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Leonie Zieglowski
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Wenjia Liu
- Department of Surgery and Transplantation, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Mareike Schulz
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoltan Czigany
- Department of Surgery and Transplantation, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
- **René H. Tolba,
| |
Collapse
|
53
|
Kongratanapasert T, Kongsomros S, Arya N, Sutummaporn K, Wiriyarat W, Akkhawattanangkul Y, Boonyarattanasoonthorn T, Asavapanumas N, Kanjanasirirat P, Suksatu A, Sa-ngiamsuntorn K, Borwornpinyo S, Vivithanaporn P, Chutipongtanate S, Hongeng S, Ongphiphadhanakul B, Thitithanyanont A, Khemawoot P, Sritara P. Pharmacological Activities of Fingerroot Extract and Its Phytoconstituents Against SARS-CoV-2 Infection in Golden Syrian Hamsters. J Exp Pharmacol 2023; 15:13-26. [PMID: 36699694 PMCID: PMC9869698 DOI: 10.2147/jep.s382895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023] Open
Abstract
Background The outbreak of COVID-19 has led to the suffering of people around the world, with an inaccessibility of specific and effective medication. Fingerroot extract, which showed in vitro anti-SARS-CoV-2 activity, could alleviate the deficiency of antivirals and reduce the burden of health systems. Aim of Study In this study, we conducted an experiment in SARS-CoV-2-infected hamsters to determine the efficacy of fingerroot extract in vivo. Materials and Methods The infected hamsters were orally administered with vehicle control, fingerroot extract 300 or 1000 mg/kg, or favipiravir 1000 mg/kg at 48 h post-infection for 7 consecutive days. The hamsters (n = 12 each group) were sacrificed at day 2, 4 and 8 post-infection to collect the plasma and lung tissues for analyses of viral output, lung histology and lung concentration of panduratin A. Results All animals in treatment groups reported no death, while one hamster in the control group died on day 3 post-infection. All treatments significantly reduced lung pathophysiology and inflammatory mediators, PGE2 and IL-6, compared to the control group. High levels of panduratin A were found in both the plasma and lung of infected animals. Conclusion Fingerroot extract was shown to be a potential of reducing lung inflammation and cytokines in hamsters. Further studies of the full pharmacokinetics and toxicity are required before entering into clinical development.
Collapse
Affiliation(s)
- Teetat Kongratanapasert
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Supasek Kongsomros
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Nlin Arya
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Kripitch Sutummaporn
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Witthawat Wiriyarat
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Yada Akkhawattanangkul
- Department of Clinical Medicine and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhonpathom, 73170, Thailand
| | - Tussapon Boonyarattanasoonthorn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Phongthon Kanjanasirirat
- Excellence Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ampa Suksatu
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Khanit Sa-ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Suparerk Borwornpinyo
- Excellence Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
| | - Somchai Chutipongtanate
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Excellence Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Boonsong Ongphiphadhanakul
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | | | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, 10540, Thailand
- Correspondence: Phisit Khemawoot, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand, Tel/Fax +66 28395161, Email
| | - Piyamitr Sritara
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
54
|
Ayass MA, Tripathi T, Griko N, Pashkov V, Dai J, Zhang J, Herbert FC, Ramankutty Nair R, Okyay T, Zhu K, Gassensmith JJ, Abi-Mosleh L. Highly efficacious and safe neutralizing DNA aptamer of SARS-CoV-2 as an emerging therapy for COVID-19 disease. Virol J 2022; 19:227. [PMID: 36581924 PMCID: PMC9800238 DOI: 10.1186/s12985-022-01943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/02/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The paucity of SARS-CoV-2-specific virulence factors has greatly hampered the therapeutic management of patients with COVID-19 disease. Although available vaccines and approved therapies have shown tremendous benefits, the continuous emergence of new variants of SARS-CoV-2 and side effects of existing treatments continue to challenge therapy, necessitating the development of a novel effective therapy. We have previously shown that our developed novel single-stranded DNA aptamers not only target the trimer S protein of SARS-CoV-2, but also block the interaction between ACE2 receptors and trimer S protein of Wuhan origin, Delta, Delta plus, Alpha, Lambda, Mu, and Omicron variants of SARS-CoV-2. We herein performed in vivo experiments that administer the aptamer to the lungs by intubation as well as in vitro studies utilizing PBMCs to prove the efficacy and safety of our most effective aptamer, AYA2012004_L. METHODS In vivo studies were conducted in transgenic mice expressing human ACE2 (K18hACE2), C57BL/6J, and Balb/cJ. Flow cytometry was used to check S-protein expressing pseudo-virus-like particles (VLP) uptake by the lung cells and test the immuogenicity of AYA2012004_L. Ames test was used to assess mutagenicity of AYA2012004_L. RT-PCR and histopathology were used to determine the biodistribution and toxicity of AYA2012004_L in vital organs of mice. RESULTS We measured the in vivo uptake of VLPs by lung cells by detecting GFP signal using flow cytometry. AYA2012004_L specifically neutralized VLP uptake and also showed no inflammatory response in mice lungs. In addition, AYA2012004_L did not induce inflammatory response in the lungs of Th1 and Th2 mouse models as well as human PBMCs. AYA2012004_L was detectable in mice lungs and noticeable in insignificant amounts in other vital organs. Accumulation of AYA2012004_L in organs decreased over time. AYA2012004_L did not induce degenerative signs in tissues as seen by histopathology and did not cause changes in the body weight of mice. Ames test also certified that AYA2012004_L is non-mutagenic and proved it to be safe for in vivo studies. CONCLUSIONS Our aptamer is safe, effective, and can neutralize the uptake of VLPs by lung cells when administered locally suggesting that it can be used as a potential therapeutic agent for COVID-19 management.
Collapse
Affiliation(s)
| | | | - Natalya Griko
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | - Victor Pashkov
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | - Jun Dai
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | - Jin Zhang
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | - Fabian C Herbert
- University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | | | - Tutku Okyay
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | - Kevin Zhu
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA
| | | | - Lina Abi-Mosleh
- Ayass Bioscience, LLC, 8501 Wade Blvd, Bldg 9, Frisco, TX, 75034, USA.
| |
Collapse
|
55
|
Kang KD, Bernstock JD, Totsch SK, Gary SE, Rocco A, Nan L, Li R, Etminan T, Han X, Beierle EA, Eisemann T, Wechsler-Reya RJ, Bae S, Whitley R, Yancey Gillespie G, Markert JM, Friedman GK. Safety and Efficacy of Intraventricular Immunovirotherapy with Oncolytic HSV-1 for CNS Cancers. Clin Cancer Res 2022; 28:5419-5430. [PMID: 36239623 PMCID: PMC9771977 DOI: 10.1158/1078-0432.ccr-22-1382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Oncolytic virotherapy with herpes simplex virus-1 (HSV) has shown promise for the treatment of pediatric and adult brain tumors; however, completed and ongoing clinical trials have utilized intratumoral/peritumoral oncolytic HSV (oHSV) inoculation due to intraventricular/intrathecal toxicity concerns. Intratumoral delivery requires an invasive neurosurgical procedure, limits repeat injections, and precludes direct targeting of metastatic and leptomeningeal disease. To address these limitations, we determined causes of toxicity from intraventricular oHSV and established methods for mitigating toxicity to treat disseminated brain tumors in mice. EXPERIMENTAL DESIGN HSV-sensitive CBA/J mice received intraventricular vehicle, inactivated oHSV, or treatment doses (1×107 plaque-forming units) of oHSV, and toxicity was assessed by weight loss and IHC. Protective strategies to reduce oHSV toxicity, including intraventricular low-dose oHSV or interferon inducer polyinosinic-polycytidylic acid (poly I:C) prior to oHSV treatment dose, were evaluated and then utilized to assess intraventricular oHSV treatment of multiple models of disseminated CNS disease. RESULTS A standard treatment dose of intraventricular oHSV damaged ependymal cells via virus replication and induction of CD8+ T cells, whereas vehicle or inactivated virus resulted in no toxicity. Subsequent doses of intraventricular oHSV caused little additional toxicity. Interferon induction with phosphorylation of eukaryotic initiation factor-2α (eIF2α) via intraventricular pretreatment with low-dose oHSV or poly I:C mitigated ependyma toxicity. This approach enabled the safe delivery of multiple treatment doses of clinically relevant oHSV G207 and prolonged survival in disseminated brain tumor models. CONCLUSIONS Toxicity from intraventricular oHSV can be mitigated, resulting in therapeutic benefit. These data support the clinical translation of intraventricular G207.
Collapse
Affiliation(s)
- Kyung-Don Kang
- Department of Pediatrics, Division of Pediatric Hematology
and Oncology, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Joshua D. Bernstock
- Department of Pediatrics, Division of Pediatric Hematology
and Oncology, University of Alabama at Birmingham; Birmingham, AL, USA,Department of Neurosurgery, Brigham and Women’s
Hospital, Harvard University; Boston, MA, USA,Corresponding authors: Joshua D.
Bernstock MD, PhD, MPH, Department of Neurosurgery
- Harvard Medical School,
Brigham and Women’s Hospital
- Boston Children’s Hospital, Hale
Building
- 60 Fenwood Road
- Boston, MA 02115, USA, P: 914.419.7749
- F:
617.713.3050
- ; Gregory K. Friedman,
MD, Department of Pediatrics, University of Alabama at Birmingham, 1600 7th Ave
S, Lowder 512, Birmingham, AL 35233, USA, P: 205.638.9285
- F: 205.975.1941
| | - Stacie K. Totsch
- Department of Pediatrics, Division of Pediatric Hematology
and Oncology, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Sam E. Gary
- Department of Pediatrics, Division of Pediatric Hematology
and Oncology, University of Alabama at Birmingham; Birmingham, AL, USA,Medical Scientist Training Program, University of Alabama
at Birmingham, Birmingham, AL, USA
| | - Abbey Rocco
- Department of Pediatrics, Division of Pediatric Hematology
and Oncology, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Li Nan
- Department of Pediatrics, Division of Pediatric Hematology
and Oncology, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Rong Li
- Department of Pathology, Children’s of Alabama;
Birmingham, AL, USA
| | - Tina Etminan
- Department of Pediatrics, Division of Pediatric Hematology
and Oncology, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Xiaosi Han
- Department of Neurology, Division of Neuro-Oncology,
University of Alabama at Birmingham; Birmingham, AL, USA
| | | | - Tanja Eisemann
- Sanford Burnham Prebys Medical Discovery Institute; La
Jolla, CA, USA
| | | | - Sejong Bae
- Department of Medicine, Division of Preventative Medicine,
University of Alabama at Birmingham; Birmingham, AL, USA
| | - Richard Whitley
- Department of Pediatrics, Division of Infectious Diseases,
University of Alabama at Birmingham; Birmingham, AL, USA
| | - G. Yancey Gillespie
- Department of Neurosurgery, University of Alabama at
Birmingham; Birmingham, AL, USA
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at
Birmingham; Birmingham, AL, USA
| | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology
and Oncology, University of Alabama at Birmingham; Birmingham, AL, USA,Department of Neurosurgery, University of Alabama at
Birmingham; Birmingham, AL, USA,Corresponding authors: Joshua D.
Bernstock MD, PhD, MPH, Department of Neurosurgery
- Harvard Medical School,
Brigham and Women’s Hospital
- Boston Children’s Hospital, Hale
Building
- 60 Fenwood Road
- Boston, MA 02115, USA, P: 914.419.7749
- F:
617.713.3050
- ; Gregory K. Friedman,
MD, Department of Pediatrics, University of Alabama at Birmingham, 1600 7th Ave
S, Lowder 512, Birmingham, AL 35233, USA, P: 205.638.9285
- F: 205.975.1941
| |
Collapse
|
56
|
Talbot SR, Struve B, Wassermann L, Heider M, Weegh N, Knape T, Hofmann MCJ, von Knethen A, Jirkof P, Häger C, Bleich A. RELSA-A multidimensional procedure for the comparative assessment of well-being and the quantitative determination of severity in experimental procedures. Front Vet Sci 2022; 9:937711. [PMID: 36439346 PMCID: PMC9691969 DOI: 10.3389/fvets.2022.937711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Good science in translational research requires good animal welfare according to the principles of 3Rs. In many countries, determining animal welfare is a mandatory legal requirement, implying a categorization of animal suffering, traditionally dominated by subjective scorings. However, how such methods can be objectified and refined to compare impairments between animals, subgroups, and animal models remained unclear. Therefore, we developed the RELative Severity Assessment (RELSA) procedure to establish an evidence-based method based on quantitative outcome measures such as body weight, burrowing behavior, heart rate, heart rate variability, temperature, and activity to obtain a relative metric for severity comparisons. The RELSA procedure provided the necessary framework to get severity gradings in TM-implanted mice, yielding four distinct RELSA thresholds L1<0.27, L2<0.59, L3<0.79, and L4<3.45. We show further that severity patterns in the contributing variables are time and model-specific and use this information to obtain contextualized between animal-model and subgroup comparisons with the severity of sepsis > surgery > restraint stress > colitis. The bootstrapped 95% confidence intervals reliably show that RELSA estimates are conditionally invariant against missing information but precise in ranking the quantitative severity information to the moderate context of the transmitter-implantation model. In conclusion, we propose the RELSA as a validated tool for an objective, computational approach to comparative and quantitative severity assessment and grading. The RELSA procedure will fundamentally improve animal welfare, data quality, and reproducibility. It is also the first step toward translational risk assessment in biomedical research.
Collapse
Affiliation(s)
- Steven R. Talbot
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - Birgitta Struve
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - Laura Wassermann
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - Miriam Heider
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - Nora Weegh
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - Tilo Knape
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Martine C. J. Hofmann
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Andreas von Knethen
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
- Department of Anaesthesiology, Intensive Care Medicine and Pain & Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Christine Häger
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hanover, Germany
| |
Collapse
|
57
|
Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology of pain and facial movements in rodents: Clinical applications and current research. Front Vet Sci 2022; 9:1016720. [PMID: 36246319 PMCID: PMC9556725 DOI: 10.3389/fvets.2022.1016720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most controversial aspects of the use of animals in science is the production of pain. Pain is a central ethical concern. The activation of neural pathways involved in the pain response has physiological, endocrine, and behavioral consequences, that can affect both the health and welfare of the animals, as well as the validity of research. The strategy to prevent these consequences requires understanding of the nociception process, pain itself, and how assessment can be performed using validated, non-invasive methods. The study of facial expressions related to pain has undergone considerable study with the finding that certain movements of the facial muscles (called facial action units) are associated with the presence and intensity of pain. This review, focused on rodents, discusses the neurobiology of facial expressions, clinical applications, and current research designed to better understand pain and the nociceptive pathway as a strategy for implementing refinement in biomedical research.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
- *Correspondence: Daniel Mota-Rojas
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
58
|
A model-specific simplification of the Mouse Grimace Scale based on the pain response of intraperitoneal CCl 4 injections. Sci Rep 2022; 12:10910. [PMID: 35764784 PMCID: PMC9240072 DOI: 10.1038/s41598-022-14852-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Despite its long establishment and applicability in mice pain detection, the Mouse Grimace Scale still seems to be underused in acute pain detection during chronic experiments. However, broadening its applicability can identify possible refinement approaches such as cumulative severity and habituation to painful stimuli. Therefore, this study focuses on two main aspects: First, five composite MGS criteria were evaluated with two independent methods (the MoBPs algorithm and a penalized least squares regression) and ranked for their relative importance. The most important variable was used in a second analysis to specifically evaluate the context of pain after an i.p. injection (intervention) in two treatment groups (CCl4 and oil (control)) at fixed times throughout four weeks in 24 male C57BL/6 N mice. One hour before and after each intervention, video recordings were taken, and the MGS assessment was performed. In this study, the results indicate orbital tightening as the most important criterion. In this experimental setup, a highly significant difference after treatment between week 0 and 1 was found in the CCl4 group, resulting in a medium-sized effect (W = 62.5, p value < 0.0001, rCCl4 = 0.64). The oil group showed no significant difference (week 0 vs 1, W = 291.5, p value = 0.7875, rcontrol = 0.04). Therefore, the study showed that the pain caused by i.p. injections was only dependent on the applied substance, and no significant cumulation or habituation occurred due to the intervention. Further, the results indicated that the MGS system can be simplified.
Collapse
|
59
|
Reiber M, Stirling H, Sprengel R, Gass P, Palme R, Potschka H. Phenotyping Young GluA1 Deficient Mice – A Behavioral Characterization in a Genetic Loss-of-Function Model. Front Behav Neurosci 2022; 16:877094. [PMID: 35722188 PMCID: PMC9204703 DOI: 10.3389/fnbeh.2022.877094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022] Open
Abstract
Alterations of glutamatergic neurotransmission have been implicated in neurodevelopmental and neuropsychiatric disorders. Mice lacking the GluA1 AMPA receptor subunit, encoded by the Gria1 gene, display multiple phenotypical features associated with glutamatergic dysfunction. While the phenotype of adult GluA1 deficient (Gria1–/–) mice has been studied comprehensively, there are relevant gaps in knowledge about the course and the onset of behavioral alterations in the Gria1 knockout mouse model during post-weaning development. Based on former investigations in young wild-type mice, we exposed female and male adolescent Gria1–/– mice to a behavioral home-cage based testing battery designed for the purpose of severity assessment. Data obtained from mice with a constitutive loss of GluA1 were compared with those from wild-type littermates. We identified several genotype-dependent behavioral alterations in young Gria1–/– mice. While the preference for sweetness was not affected by genotype during adolescence, Gria1–/– mice displayed limited burrowing performance, and reached lower nest complexity scores. Analysis of home-cage based voluntary wheel running performance failed to confirm genotype-dependent differences. In contrast, when exposed to the open field test, Gria1–/– mice showed pronounced hyperlocomotion in early and late adolescence, and female Gria1–/– mice exhibited thigmotaxis when prepubescent. We found increased corticosterone metabolite levels in fecal samples of adolescent Gria1–/– mice with females exhibiting increased adrenocortical activity already in prepubescence. Considering the course of behavioral modifications in early and late adolescence, the results do not support a persistent level of distress associated with GluA1 deficiency in the line. In contrast, the laboratory-specific readouts indicate transient, mild impairments of behavioral patterns relevant to animal welfare, and suggest a mild overall burden of the line.
Collapse
Affiliation(s)
- Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
- *Correspondence: Heidrun Potschka,
| |
Collapse
|
60
|
Lv X, Zhao Q, Dong Y, Yang L, Gong J, Zheng Y, Yang T. IMB5036, a novel pyridazinone compound, inhibits hepatocellular carcinoma growth and metastasis. Invest New Drugs 2022; 40:487-496. [PMID: 35020067 DOI: 10.1007/s10637-021-01210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers with a high mortality rate due to metastasis and relapse. Purpose Here, we reported a small-molecule pyridazinone compound, designated as IMB5036. Its antitumor activity against HCC and underlying mechanism were studied. Methods In vitro cytotoxicity, apoptosis, DNA breaks, and cell motility assays were performed. Protein expression was analyzed by Western blot and microarray analysis. A xenograft tumor model in athymic mice was used to evaluate the antitumor activity. Results IMB5036 displayed potent cytotoxicity against various HCC cell lines. It caused double DNA breakages and induced cell death via apoptosis. It also significantly inhibited the motility of HCC cells. Western blot showed that IMB5036 induced the up-regulation of E-cadherin, while down-regulation of N-cadherin. The gene expression profile analysis and Western blot assay revealed that IMB5036 down-regulated the expression of Tau protein. Analysis of the TCGA dataset revealed that high expression of Tau decreased the survival rate of HCC patients. In vivo experiments proved that IMB5036 significantly inhibited the growth of HCC xenografts in athymic mice. Conclusions These results collectively demonstrate IMB5036 can be a promising therapeutic candidate for patients with HCC.
Collapse
Affiliation(s)
- Xing Lv
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Qi Zhao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqun Dong
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijun Yang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianhua Gong
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yanbo Zheng
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China.
| |
Collapse
|
61
|
Michmerhuizen NL, Heenan C, Wang J, Leonard E, Bellile E, Loganathan SK, Wong SY, Lei YL, Brenner JC. Combined Pik3ca-H1047R and loss-of-function Notch1 alleles decrease survival time in a 4-nitroquinoline N-oxide-driven head and neck squamous cell carcinoma model. Oral Oncol 2022; 126:105770. [DOI: 10.1016/j.oraloncology.2022.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
|
62
|
Dominguez-Martinez I, Joaquin-Ovalle F, Ferrer-Acosta Y, Griebenow KH. Folate-Decorated Cross-Linked Cytochrome c Nanoparticles for Active Targeting of Non-Small Cell Lung Carcinoma (NSCLC). Pharmaceutics 2022. [DOI: https://doi.org/10.3390/pharmaceutics14030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The folate receptor alpha (FR), which is overexpressed in solid tumors including NSCLC, can be utilized for active tumor targeting to afford more effective cancer therapies. In this context, cytochrome c (Cyt c) has drawn attention to cancer research because it is non-toxic, yet, when delivered to the cytoplasm of cancer cells, can kill them by inducing apoptosis. Cyt c nanoparticles (NPs, 169 ± 9 nm) were obtained by solvent precipitation with acetonitrile, and stabilized by reversible homo-bifunctional crosslinking to accomplish a Cyt-c-based drug delivery system that combines stimulus-responsive release and active targeting. Cyt c was released under intracellular redox conditions, due to an S–S bond in the NPs linker, while NPs remained intact without any release under extracellular conditions. The NP surface was decorated with a hydrophilic folic acid–polyethylene glycol (FA–PEG) polymer for active targeting. The FA-decorated NPs specifically recognized and killed cancer cells (IC50 = 47.46 µg/mL) that overexpressed FR, but showed no toxicity against FR-negative cells. Confocal microscopy confirmed the preferential uptake and apoptosis induction of our NPs by FR-positive cancer cells. In vivo experiments using a Lewis lung carcinoma (LLC) mouse model showed visible NP accumulation within the tumor and inhibited the growth of LLC tumors.
Collapse
|
63
|
Folate-Decorated Cross-Linked Cytochrome c Nanoparticles for Active Targeting of Non-Small Cell Lung Carcinoma (NSCLC). Pharmaceutics 2022; 14:pharmaceutics14030490. [PMID: 35335867 PMCID: PMC8951294 DOI: 10.3390/pharmaceutics14030490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/27/2023] Open
Abstract
The folate receptor alpha (FR), which is overexpressed in solid tumors including NSCLC, can be utilized for active tumor targeting to afford more effective cancer therapies. In this context, cytochrome c (Cyt c) has drawn attention to cancer research because it is non-toxic, yet, when delivered to the cytoplasm of cancer cells, can kill them by inducing apoptosis. Cyt c nanoparticles (NPs, 169 ± 9 nm) were obtained by solvent precipitation with acetonitrile, and stabilized by reversible homo-bifunctional crosslinking to accomplish a Cyt-c-based drug delivery system that combines stimulus-responsive release and active targeting. Cyt c was released under intracellular redox conditions, due to an S–S bond in the NPs linker, while NPs remained intact without any release under extracellular conditions. The NP surface was decorated with a hydrophilic folic acid–polyethylene glycol (FA–PEG) polymer for active targeting. The FA-decorated NPs specifically recognized and killed cancer cells (IC50 = 47.46 µg/mL) that overexpressed FR, but showed no toxicity against FR-negative cells. Confocal microscopy confirmed the preferential uptake and apoptosis induction of our NPs by FR-positive cancer cells. In vivo experiments using a Lewis lung carcinoma (LLC) mouse model showed visible NP accumulation within the tumor and inhibited the growth of LLC tumors.
Collapse
|
64
|
Dominguez-Martinez I, Joaquin-Ovalle F, Ferrer-Acosta Y, Griebenow KH. Folate-Decorated Cross-Linked Cytochrome c Nanoparticles for Active Targeting of Non-Small Cell Lung Carcinoma (NSCLC). Pharmaceutics 2022. [DOI: https:/doi.org/10.3390/pharmaceutics14030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The folate receptor alpha (FR), which is overexpressed in solid tumors including NSCLC, can be utilized for active tumor targeting to afford more effective cancer therapies. In this context, cytochrome c (Cyt c) has drawn attention to cancer research because it is non-toxic, yet, when delivered to the cytoplasm of cancer cells, can kill them by inducing apoptosis. Cyt c nanoparticles (NPs, 169 ± 9 nm) were obtained by solvent precipitation with acetonitrile, and stabilized by reversible homo-bifunctional crosslinking to accomplish a Cyt-c-based drug delivery system that combines stimulus-responsive release and active targeting. Cyt c was released under intracellular redox conditions, due to an S–S bond in the NPs linker, while NPs remained intact without any release under extracellular conditions. The NP surface was decorated with a hydrophilic folic acid–polyethylene glycol (FA–PEG) polymer for active targeting. The FA-decorated NPs specifically recognized and killed cancer cells (IC50 = 47.46 µg/mL) that overexpressed FR, but showed no toxicity against FR-negative cells. Confocal microscopy confirmed the preferential uptake and apoptosis induction of our NPs by FR-positive cancer cells. In vivo experiments using a Lewis lung carcinoma (LLC) mouse model showed visible NP accumulation within the tumor and inhibited the growth of LLC tumors.
Collapse
|
65
|
Development of behavioral patterns in young C57BL/6J mice: a home cage-based study. Sci Rep 2022; 12:2550. [PMID: 35169182 PMCID: PMC8847349 DOI: 10.1038/s41598-022-06395-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Evidence exists that behavioral patterns only stabilize once mice reach adulthood. Detailed information about the course of behavioral patterns is of particular relevance for neuroscientific research and for the assessment of cumulative severity in genetically modified mice. The analysis considered five age groups focusing on behavioral assessments in the animals’ familiar home cage environment during the adolescence phase. We confirmed age- and sex-specific differences for several of the behavioral parameters and fecal corticosterone metabolites. Interestingly, an age-dependent decline in saccharin preference was detected in female mice. Regardless of sex, relevant levels of burrowing activity were only observed during later developmental phases. The development of nest complexity following the offer of new material was affected by age in female mice. In female and male mice, an age-dependency was evident for wheel running reaching a peak at P 50. A progressive increase with age was also observed for Open field activity. The data sets provide guidance for behavioral studies and for development of composite measure schemes for evidence-based severity assessment in young mice. Except for the burrowing test, the different behavioral tests can be applied in different age groups during post-weaning development. However, age- and sex-specific characteristics need to be considered.
Collapse
|
66
|
Qi Z, Xu Z, Zhang L, Zou Y, Li J, Yan W, Li C, Liu N, Wu H. Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-PI3Kα/β/δ treatment. Nat Commun 2022; 13:182. [PMID: 35013322 PMCID: PMC8748754 DOI: 10.1038/s41467-021-27833-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Combining immune checkpoint therapy (ICT) and targeted therapy holds great promises for broad and long-lasting anti-cancer therapies. However, combining ICT with anti-PI3K inhibitors have been challenging because the multifaceted effects of PI3K on both cancer cells and immune cells within the tumor microenvironment. Here we find that intermittent but not daily dosing of a PI3Kα/β/δ inhibitor, BAY1082439, on Pten-null prostate cancer models could overcome ICT resistance and unleash CD8+ T cell-dependent anti-tumor immunity in vivo. Mechanistically, BAY1082439 converts cancer cell-intrinsic immune-suppression to immune-stimulation by promoting IFNα/IFNγ pathway activation, β2-microglubin expression and CXCL10/CCL5 secretion. With its preferential regulatory T cell inhibition activity, BAY1082439 promotes clonal expansion of tumor-associated CD8+ T cells, most likely via tertiary lymphoid structures. Once primed, tumors remain T cell-inflamed, become responsive to anti-PD-1 therapy and have durable therapeutic effect. Our data suggest that intermittent PI3K inhibition can alleviate Pten-null cancer cell-intrinsic immunosuppressive activity and turn "cold" tumors into T cell-inflamed ones, paving the way for successful ICT.
Collapse
Affiliation(s)
- Zhi Qi
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zihan Xu
- School of Life Sciences, Peking University, Beijing, China
| | - Liuzhen Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yongkang Zou
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Jinping Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Wenyu Yan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng Li
- School of Life Sciences, Peking University, Beijing, China
| | - Ningshu Liu
- Bayer AG, Drug Discovery TRG Oncology, Muellerstrasse 178, 13353, Berlin, Germany.,Hehlius Biotech, Inc., 1801 Hongmei Rd, Shanghai, 200233, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China. .,School of Life Sciences, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| |
Collapse
|
67
|
Social housing promotes cognitive function and reduces anxiety and depressive-like behaviours in rats. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the study was to assess the impact of social isolation of rats in the post-weaning period using behavioural tests aimed at assessing cognitive function, anxiety, and depressive-like behaviours. The monitoring was performed in male Wistar rats which were housed after weaning either individually (n = 8) or in pairs (n = 8) for 33 days. In the open field, rats kept in isolation reared less often (P < 0.05) than pair-housed rats. In the elevated plus-maze test, pair-housed rats entered the open arm more frequently (P = 0.002) and stayed in the closed arm less often (P = 0.019) compared to rats housed in isolation. In the forced swim test, climbing was seen more frequently (P = 0.016) in pair-housed rats whereas immobility was more common (P = 0.006) in rats housed individually. In the novel object recognition test, the pair-housed rats preferred (P = 0.014) the novel object whereas there was no difference (P = 0.107) in time spent by exploring familiar and novel objects in rats housed in isolation. Furthermore, juvenile rats housed for 33 days in isolation showed higher (P = 0.003) body weight gain during the monitored period than rats housed for the same period in pairs. Our findings are important not only in terms of assessing the impact of rat housing on their mental and physical development but also in terms of the accurate interpretation of the results of other experiments where the rat is used as a model organism.
Collapse
|
68
|
Ghasemi A, Jeddi S, Kashfi K. The laboratory rat: Age and body weight matter. EXCLI JOURNAL 2021; 20:1431-1445. [PMID: 34737685 PMCID: PMC8564917 DOI: 10.17179/excli2021-4072] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Animal experimentation helps us to understand human biology. Rodents and, in particular, rats are among the most common animals used in animal experiments. Reporting data on animal age, animal body weight, and animal postnatal developmental stages is not consistent, which can cause the failure to translate animal data to humans. This review summarizes age-related postnatal developmental stages in rats by addressing age-related changes in their body weights. The age and body weight of animals can affect drug metabolism, gene expression, metabolic parameters, and other dependent variables measured in animal studies. In addition, considering the age and the body weight of the animals is of particular importance in animal modeling of human diseases. Appropriate reporting of age, body weight, and the developmental stage of animals used in studies can improve animal to human translation.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| |
Collapse
|
69
|
Wolter A, Rapp AE, Durst MS, Hildebrand L, Löhning M, Buttgereit F, Schmidt-Bleek K, Jirkof P, Lang A. Systematic review on the reporting accuracy of experimental details in publications using mouse femoral fracture models. Bone 2021; 152:116088. [PMID: 34175502 DOI: 10.1016/j.bone.2021.116088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
The outcomes of animal experiments can be influenced by a variety of factors. Thus, precise reporting is necessary to provide reliable and reproducible data. Initiatives such as the ARRIVE guidelines have been enrolled during the last decade to provide a road map for sufficient reporting. To understand the sophisticated process of bone regeneration and to develop new therapeutic strategies, small rodents, especially mice, are frequently used in bone healing research. Since many factors might influence the results from those studies, we performed a systematic literature search from 2010 to 2019 to identify studies involving mouse femoral fracture models (stable fixation) and evaluated the reporting of general and model-specific experimental details. 254 pre-selected publications were systematically analyzed, showing a high reporting accuracy for the used mouse strain, the age or developmental stage and sex of mice as well as model-specific information on fixation methods and fracturing procedures. However, reporting was more often insufficient in terms of mouse substrains and genetic backgrounds of genetically modified mice, body weight, hygiene monitoring/immune status of the animal, anesthesia, and analgesia. Consistent and reliable reporting of experimental variables in mouse fracture surgeries will improve scientific quality, enhance animal welfare, and foster translation into the clinic.
Collapse
Affiliation(s)
- Angelique Wolter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, Berlin, Germany.
| | - Anna E Rapp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, Berlin, Germany.
| | - Mattea S Durst
- Division of Surgical Research, University Hospital Zurich, University Zurich, Switzerland.
| | - Laura Hildebrand
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany.
| | - Max Löhning
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, Berlin, Germany.
| | - Frank Buttgereit
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, Berlin, Germany.
| | - Katharina Schmidt-Bleek
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Julius Wolff Institute, Berlin, Germany.
| | - Paulin Jirkof
- Division of Surgical Research, University Hospital Zurich, University Zurich, Switzerland; Office for Animal Welfare and 3Rs, University of Zurich, Switzerland.
| | - Annemarie Lang
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, Pitzer Laboratory of Osteoarthritis Research, Berlin, Germany.
| |
Collapse
|
70
|
Hülskötter K, Jin W, Allnoch L, Hansmann F, Schmidtke D, Rohn K, Flügel A, Lühder F, Baumgärtner W, Herder V. Double-edged effects of tamoxifen-in-oil-gavage on an infectious murine model for multiple sclerosis. Brain Pathol 2021; 31:e12994. [PMID: 34137105 PMCID: PMC8549030 DOI: 10.1111/bpa.12994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Tamoxifen gavage is a commonly used method to induce genetic modifications in cre-loxP systems. As a selective estrogen receptor modulator (SERM), the compound is known to have immunomodulatory and neuroprotective properties in non-infectious central nervous system (CNS) disorders. It can even cause complete prevention of lesion development as seen in experimental autoimmune encephalitis (EAE). The effect on infectious brain disorders is scarcely investigated. In this study, susceptible SJL mice were infected intracerebrally with Theiler's murine encephalomyelitis virus (TMEV) and treated three times with a tamoxifen-in-oil-gavage (TOG), resembling an application scheme for genetically modified mice, starting at 0, 18, or 38 days post infection (dpi). All mice developed 'TMEV-induced demyelinating disease' (TMEV-IDD) resulting in inflammation, axonal loss, and demyelination of the spinal cord. TOG had a positive effect on the numbers of oligodendrocytes and oligodendrocyte progenitor cells, irrespective of the time point of application, whereas late application (starting 38 dpi) was associated with increased demyelination of the spinal cord white matter 85 dpi. Furthermore, TOG had differential effects on the CD4+ and CD8+ T cell infiltration into the CNS, especially a long lasting increase of CD8+ cells was detected in the inflamed spinal cord, depending of the time point of TOG application. Number of TMEV-positive cells, astrogliosis, astrocyte phenotype, apoptosis, clinical score, and motor function were not measurably affected. These data indicate that tamoxifen gavage has a double-edged effect on TMEV-IDD with the promotion of oligodendrocyte differentiation and proliferation, but also increased demyelination, depending on the time point of application. The data of this study suggest that tamoxifen has also partially protective functions in infectious CNS disease. These effects should be considered in experimental studies using the cre-loxP system, especially in models investigating neuropathologies.
Collapse
Affiliation(s)
- Kirsten Hülskötter
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Wen Jin
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Lisa Allnoch
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Florian Hansmann
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
- Institute of Veterinary PathologyLeipzig UniversityLeipzigGermany
| | - Daniel Schmidtke
- Center for Systems NeuroscienceHannoverGermany
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Karl Rohn
- Institute of Biometry, Epidemiology, and Information ProcessingUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Alexander Flügel
- Center for Systems NeuroscienceHannoverGermany
- Institute for Neuroimmunology and Multiple Sclerosis ResearchUniversity Medical Center GöttingenGöttingenGermany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis ResearchUniversity Medical Center GöttingenGöttingenGermany
| | - Wolfgang Baumgärtner
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Vanessa Herder
- Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| |
Collapse
|
71
|
Distress Analysis of Mice with Cervical Arteriovenous Fistulas. Animals (Basel) 2021; 11:ani11113051. [PMID: 34827783 PMCID: PMC8614439 DOI: 10.3390/ani11113051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Functional hemodialysis access is essential for the survival of patients with end-stage renal disease. Although various guidelines recommend autologous arteriovenous fistula as the first choice for hemodialysis, it is still the Achilles heel for patients. Several in vivo models have been used to study and improve the mechanisms of vascular remodeling of arteriovenous fistula. However, some models have the disadvantage of having anatomical features or a hemodynamic profile different from that of the arteriovenous fistula in humans. In the presented cervical arteriovenous fistula model, these disadvantages were eliminated. It resembles the human physiology and is an ideal animal model for arteriovenous fistula research. Moreover, in order to understand the impact of this model on animal welfare, the distress of this new animal model was analyzed. Body weight, faecal corticosterone metabolites, burrowing activity, nesting behaviour and distress scores were analysed after fistula creation and during the following three weeks. The physiological, behavioural, and neuroendocrine assessments all indicated that this model causes only moderate distress to the animals. This not only meets the need for animal ethics but also improves the quality of scientific research. Therefore, this cervical model is suitable for arteriovenous fistula research and should be used more frequently in the future. Abstract The welfare of laboratory animals is a consistent concern for researchers. Its evaluation not only fosters ethical responsibility and addresses legal requirements, but also provides a solid basis for a high quality of research. Recently, a new cervical arteriovenous model was created in mice to understand the pathophysiology of arteriovenous fistula, which is the most commonly used access for hemodialysis. This study evaluates the distress caused by this new animal model. Ten male C57B6/J mice with cervical arteriovenous fistula were observed for 21 days. Non-invasive parameters, such as body weight, faecal corticosterone metabolites, burrowing activity, nesting activity and distress scores were evaluated at each time point. Six out of ten created arteriovenous fistula matured within the observation time as defined by an increased diameter. The body weight of all animals was reduced after surgery but recovered within five days. In addition, the distress score was significantly increased during the early time point but not at the late time point after arteriovenous fistula creation. Neither burrowing activity nor nesting behaviour were significantly reduced after surgical intervention. Moreover, faecal corticosterone metabolite concentrations did not significantly increase. Therefore, the cervical murine arteriovenous fistula model induced moderate distress in mice and revealed an appropriate maturation rate of the fistulas.
Collapse
|
72
|
Melatonin Prevents T Lymphocyte Infiltration to the Kidneys of Hypertensive Rats, Induced by a High-Salt Diet, by Preventing the Expression of CXCR3 Ligand Chemokines. Nutrients 2021; 13:nu13103577. [PMID: 34684578 PMCID: PMC8538338 DOI: 10.3390/nu13103577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 01/22/2023] Open
Abstract
In a previous study, we demonstrated that melatonin prevents kidney damage in a salt-induced hypertension model by decreasing oxidative stress. We hypothesized that this effect involves melatonin’s immunomodulatory properties. In vivo Study-Dahl salt-sensitive (DSS) rats were fed normal chow, a high-salt diet (HSD), or a HSD and melatonin (30 mg/kg/day) in their water for eight weeks. Kidneys were harvested for immediate lymphocyte isolation and characterization by Flow cytometry (CD3+CD4+ and CD3+CD8+) and for lymphocyte chemoattractant (mainly CXCL chemokines) gene expression studies. In vitro study-rat mesangial cells (RMC) were cultured in a high-salt medium without and with melatonin. A HSD was associated with significant renal infiltration of CD4+ and CD8+ T lymphocytes compared to control. Melatonin significantly reduced renal lymphocyte infiltration. A HSD significantly increased mRNA expression of CXCL chemokines. Adding melatonin to the HSD abolished this effect. Treating RMC cells with salt increased the expression of CXCL10 and CXCL11 but not CXCL9. Adding melatonin to the culture media prevented this increase. Treating HSD-fed rats with melatonin decreased renal lymphocyte chemoattractant mRNA expression and is associated with significantly reducing renal T lymphocyte infiltration. Salt may have a direct effect on chemokine-producing renal cells, which is blunted by melatonin treatment.
Collapse
|
73
|
Castillo-Mariqueo L, Giménez-Llort L. Kyphosis and bizarre patterns impair spontaneous gait performance in end-of-life mice with Alzheimer's disease pathology while gait is preserved in normal aging. Neurosci Lett 2021; 767:136280. [PMID: 34601039 DOI: 10.1016/j.neulet.2021.136280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
The shorter life spans of mice provide an exceptional experimental gerontology scenario. We previously described increased bizarre (disruptive) behaviors in the 6-month-old 3xTg-AD mice model for Alzheimer's disease (AD), compared to C57BL/6J wildtype (NTg), when confronting new environments. In the present work, we evaluated spontaneous gait and exploratory activity at old age, using 16-month-old mice. Male sex was chosen since sex-dependent psychomotor effects of aging are stronger in NTg males than females and, at this age, male 3 × Tg-AD mice are close to an end-of-life status due to increased mortality rates. Mice's behavior was evaluated in a transparent test box during the neophobia response. Stretching, jumping, backward movements and bizarre circling were identified during the gait and exploratory activity. The results corroborate that in the face of novelty and recognition of places, old 3xTg-AD mice exhibit increased bizarre behaviors than mice with normal aging. Furthermore, bizarre circling and backward movements delayed the elicitation of locomotion and exploration, in an already frail scenario, as shown by highly prevalent kyphosis in both groups. Thus, the translational study of co-occurrence of psychomotor impairments and anxiety-like behaviors can be helpful for understanding and managing the progressive functional deterioration shown in aging, especially in AD.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
74
|
Diagnostic Ability of Methods Depicting Distress of Tumor-Bearing Mice. Animals (Basel) 2021; 11:ani11082155. [PMID: 34438613 PMCID: PMC8388504 DOI: 10.3390/ani11082155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Experiments on animals can provide important information for improving the life expectancy and life quality of patients. At the same time, the welfare of these animals is a growing public concern. Therefore, many laws and international guidelines were established with the goal of minimizing the harm inflicted on these animals. A prerequisite of improving animal welfare is to correctly measure how much distress the experiments cause to these animals. However, it is often unknown as to which methods are appropriate to assess distress. Mice bearing subcutaneous tumors are the most frequently used animal model to study the therapeutic effects of drugs. We evaluated if body weight, faecal corticosterone metabolites concentration, burrowing activity and a distress score were capable of differentiating between mice before cancer cell injection and mice bearing large tumors. We observed that only adjusted body weight change and faecal corticosterone metabolites concentration were capable of measuring distress caused by large subcutaneous tumors. Therefore, these two methods are appropriate to assess the welfare of mice with subcutaneous tumors. This knowledge provides a solid basis to optimize animal welfare in future studies. For example, both methods can define the ideal time point when an experiment should end by finding a good compromise between minimal distress for the animals and maximal knowledge gain for mankind. Abstract Subcutaneous tumor models in mice are the most commonly used experimental animal models in cancer research. To improve animal welfare and the quality of scientific studies, the distress of experimental animals needs to be minimized. For this purpose, one must assess the diagnostic ability of readout parameters to evaluate distress. In this study, we evaluated different noninvasive readout parameters such as body weight change, adjusted body weight change, faecal corticosterone metabolites concentration, burrowing activity and a distress score by utilising receiver operating characteristic curves. Eighteen immunocompromised NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice were used for this study; half were subcutaneously injected with A-375 cells (human malignant melanoma cells) that resulted in large tumors. The remaining mice were inoculated with SCL-2 cells (cutaneous squamous cell carcinoma cells), which resulted in small tumors. The adjusted body weight and faecal corticosterone metabolites concentration had a high diagnostic ability in distinguishing between mice before cancer cell injection and mice bearing large tumors. All other readout parameters had a low diagnostic ability. These results suggest that adjusted body weight and faecal corticosterone metabolites are useful to depict the distress of mice bearing large subcutaneous tumors.
Collapse
|
75
|
Córdoba-Adaya JC, Oros-Pantoja R, Torres-García E, Morales-Ávila E, Aranda-Lara L, Santillán-Benítez JG, Hernández-Herrera NO, Otero G, Isaac-Olivé K. Evaluation of doxorubicin-induced early multi-organ toxicity in male CD1 mice by biodistribution of 18F-FDG and 67Ga-citrate. Pilot study. Toxicol Mech Methods 2021; 31:546-558. [PMID: 34057017 DOI: 10.1080/15376516.2021.1937420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The search for methods that identify early toxicity, induced by chemotherapy, is urgent. Changes in the biodistribution of radiopharmaceuticals could give information on early toxicity. Ten-week-old CD1 male mice were divided into four groups. Two groups were administered a weekly dose of 5 mg/kg of doxorubicin hydrochloride (DOX) for 5 weeks and the control groups were administered saline solution. One week after the end of treatment, the biodistribution of 18F-FDG and 67Ga-citrate were carried out, as was the quantification of plasma enzymes CK, CK-MB, LDH and AST. All enzymes were higher in the treated animals, but only significant (p < 0.05) in the case of CK-MB. 18F-FDG uptake increased in all organs of treated animals except retroperitoneal fat, being significant in spleen, brain, heart, liver, lung, kidney, and inguinal fat. 67Ga-citrate had a more complex pattern. The uptake in the DOX group was higher in spleen, lung, kidney, testes, and gonadal fat, it did not change in brain, heart, and liver, and it was lower in the rest of the organs. It only showed significant differences in lung and pancreas. A thorough discussion of the possible causes that produced the change in biodistributions of both radiopharmaceuticals is included. The pilot study showed that both radiopharmaceuticals could identify early multi-organ toxicity induced by DOX. Although 18F-FDG seems to be better, 67Ga-citrato should not be ruled out a priori. The detection of early toxicity would serve to adopt treatments that prevent its progression, thus improving patient's quality of life.
Collapse
Affiliation(s)
- Julio César Córdoba-Adaya
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Rigoberto Oros-Pantoja
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Eugenio Torres-García
- Laboratorio de Dosimetría y Simulación Monte Carlo, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Enrique Morales-Ávila
- Laboratorio de Farmacia y Toxicología, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Jonnathan G Santillán-Benítez
- Laboratorio de Farmacia y Toxicología, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | - Gloria Otero
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
76
|
Leenaars C, Tsaioun K, Stafleu F, Rooney K, Meijboom F, Ritskes-Hoitinga M, Bleich A. Reviewing the animal literature: how to describe and choose between different types of literature reviews. Lab Anim 2021; 55:129-141. [PMID: 33135562 PMCID: PMC8044607 DOI: 10.1177/0023677220968599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
Before starting any (animal) research project, review of the existing literature is good practice. From both the scientific and the ethical perspective, high-quality literature reviews are essential. Literature reviews have many potential advantages besides synthesising the evidence for a research question. First, they can show if a proposed study has already been performed, preventing redundant research. Second, when planning new experiments, reviews can inform the experimental design, thereby increasing the reliability, relevance and efficiency of the study. Third, reviews may even answer research questions using already available data. Multiple definitions of the term literature review co-exist. In this paper, we describe the different steps in the review process, and the risks and benefits of using various methodologies in each step. We then suggest common terminology for different review types: narrative reviews, mapping reviews, scoping reviews, rapid reviews, systematic reviews and umbrella reviews. We recommend which review to select, depending on the research question and available resources. We believe that improved understanding of review methods and terminology will prevent ambiguity and increase appropriate interpretation of the conclusions of reviews.
Collapse
Affiliation(s)
- Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
- Department of Animals in Science and Society, Utrecht University, the Netherlands
| | - Katya Tsaioun
- Evidence-based Toxicology Collaboration, Johns Hopkins Bloomberg School of Public Health (EBTC), USA
| | - Frans Stafleu
- Department of Animals in Science and Society, Utrecht University, the Netherlands
| | - Kieron Rooney
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Australia
| | - Franck Meijboom
- Department of Animals in Science and Society, Utrecht University, the Netherlands
| | - Merel Ritskes-Hoitinga
- SYRCLE, Department for Health Evidence (section HTA), Radboud Institute for Health Sciences, The Netherlands
- AUGUST, Department for Clinical Medicine, Aarhus University, Denmark
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| |
Collapse
|
77
|
Tan KT, Li S, Panny L, Lin CC, Lin SC. Galangin ameliorates experimental autoimmune encephalomyelitis in mice via modulation of cellular immunity. J Immunotoxicol 2021; 18:50-60. [PMID: 33770444 DOI: 10.1080/1547691x.2021.1890863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Multiple sclerosis (MS) causes neurologic disabilities that effect musculature, sensory systems, and vision. This is largely due to demyelination of nerve fibers caused by chronic inflammation. Corticosteroid treatments ameliorate symptoms of MS, but do not successfully cure the disease itself. In the current study, the application of galangin, a phytochemical flavonoid extracted from the ginger family of Alpinis officinarum, on experimental autoimmune encephalomyelitis (EAE; mouse model for MS) was explored. This study investigated prophylactic and therapeutic activity of the drug and mechanisms by which it acts. The results revealed that galangin at 40 and 80 mg/kg could lower the incidence rate of MS, and alleviate clinical/pathological manifestations. Mice administered galangin presented with less limb paralysis, lower levels of inflammatory cell infiltrates, and decreased demyelination compared to vehicle controls. Levels of CD4+IFNγ+ (TH1) and CD4+IL-17A+ (TH17) cells in the spinal cords of EAE mice administered galangin were reduced and both cell types were not capable of expansion. More surprisingly, galangin inhibited antigen presentation and cytokine production by dendritic cells (DC). Formation of cytokines like IL-6, IL-12, and IL-23 were significantly decreased due to galangin in co-culture models of DC and T-cells. Taken together, the data lead one to conclude that galangin could potentially be used as a potent immunoregulatory agent to alleviate clinical symptoms and reduce the prevalence of MS.
Collapse
Affiliation(s)
- Kok-Tong Tan
- Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shiming Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry & Chemical Engineering, Huangang Normal University, Hubei, China
| | - Lauren Panny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chi-Chien Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Chao Lin
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
78
|
Szepesy J, Humli V, Farkas J, Miklya I, Tímár J, Tábi T, Gáborján A, Polony G, Szirmai Á, Tamás L, Köles L, Vizi ES, Zelles T. Chronic Oral Selegiline Treatment Mitigates Age-Related Hearing Loss in BALB/c Mice. Int J Mol Sci 2021; 22:2853. [PMID: 33799684 PMCID: PMC7999597 DOI: 10.3390/ijms22062853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15-45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.
Collapse
MESH Headings
- Administration, Oral
- Aging/physiology
- Animals
- Antiparkinson Agents/administration & dosage
- Antiparkinson Agents/pharmacology
- Auditory Threshold/drug effects
- Auditory Threshold/physiology
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hearing Loss, Sensorineural/drug therapy
- Hearing Loss, Sensorineural/physiopathology
- Humans
- Male
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Protective Agents/administration & dosage
- Protective Agents/pharmacology
- Selegiline/administration & dosage
- Selegiline/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Mice
Collapse
Affiliation(s)
- Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Viktória Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - János Farkas
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Ildikó Miklya
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Júlia Tímár
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, H-1089 Budapest, Hungary;
| | - Anita Gáborján
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gábor Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Ágnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Tamás
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| | - Elek Sylvester Vizi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| |
Collapse
|
79
|
Ortín-Piqueras V, Freitag TL, Andersson LC, Lehtonen SH, Meri SK, Spillmann T, Frias R. Urinary Excretion of Iohexol as a Permeability Marker in a Mouse Model of Intestinal Inflammation: Time Course, Performance and Welfare Considerations. Animals (Basel) 2021; 11:ani11010079. [PMID: 33406796 PMCID: PMC7824797 DOI: 10.3390/ani11010079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022] Open
Abstract
Simple Summary In mammals, different diseases are associated with intestinal changes that may cause an increase in gut permeability. Intestinal permeability tests allow the evaluation of intestinal damage in humans, veterinary patients and laboratory animal models. When used in mouse models, these tests require that animals are singly housed in metabolic cages with a wire-grid floor to collect urine samples. This raises welfare concerns. Iohexol meets several criteria for an ideal intestinal permeability marker and has recently been used in several species. Here, we examined the performance of an intestinal permeability test using iohexol administered by mouth and following excretion over 24 h in urine. As a model, we chose immunodeficient mice with intestinal inflammation induced by adoptive transfer of effector/memory T cells. We collected urine samples at seven time points to profile the urinary excretion of iohexol, in addition to intestinal tissue samples for histological assessment. We conclude that a 6 h cumulative urine sample may be sufficient to evaluate small intestinal permeability in this mouse model and increased urinary excretion of iohexol is correlated with increased severity of duodenitis. The welfare of mice housed in metabolic cages could be improved by reducing the cage periods from 24 to 6 h. Abstract Intestinal permeability (IP) tests are used to assess intestinal damage in patients and research models. The probe iohexol has shown advantages compared to 51Cr-EDTA or absorbable/nonabsorbable sugars. During IP tests, animals are housed in metabolic cages (MCs) to collect urine. We examined the performance of an iohexol IP test in mice. Rag1-/- (C57BL/6) mice of both sexes were divided into controls or treatment groups, the latter receiving injections of effector/memory T cells to induce intestinal inflammation. After two, four and five weeks (W), a single dose of iohexol was orally administered. Urine was collected seven times over 24 h in MCs. Iohexol concentration was measured by ELISA. Intestinal histological damage was scored in duodenal sections. In control and treated mice of both sexes, urinary excretion of iohexol peaked at 4 h. From W2 to W4/W5, urinary iohexol excretion increased in treated mice of both sexes, consistent with development of duodenitis in this model. Positive correlations were observed between the urinary excretion of iohexol in W4/W5 and the histological severity of duodenitis in treated male mice. We conclude that a 6 h cumulative urine sample appears sufficient to evaluate small IP to iohexol in this mouse model, improving animal welfare by reducing cage periods.
Collapse
Affiliation(s)
- Victoria Ortín-Piqueras
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
- Comparative Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden;
- Correspondence:
| | - Tobias L Freitag
- Translational Immunology Research Program, University of Helsinki, FIN-00014 Helsinki, Finland; (T.L.F.); (S.K.M.)
| | - Leif C Andersson
- Department of Pathology, University of Helsinki, FIN-00014 Helsinki, Finland; (L.C.A.); (S.H.L.)
| | - Sanna H Lehtonen
- Department of Pathology, University of Helsinki, FIN-00014 Helsinki, Finland; (L.C.A.); (S.H.L.)
- Research Programme for Clinical and Molecular Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Seppo K Meri
- Translational Immunology Research Program, University of Helsinki, FIN-00014 Helsinki, Finland; (T.L.F.); (S.K.M.)
| | - Thomas Spillmann
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Rafael Frias
- Comparative Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| |
Collapse
|
80
|
Brandenburg JE, Fogarty MJ, Sieck GC. Growth and survival characteristics of spa mice. Animal Model Exp Med 2020; 3:319-324. [PMID: 33532707 PMCID: PMC7824963 DOI: 10.1002/ame2.12137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Characterization of growth and survival of mice displaying early onset hypertonic symptoms is critical as these animals are important for research investigating mechanisms and treatments of pediatric conditions associated with hypertonia, such as cerebral palsy. Currently, most animal models of cerebral palsy reproduce risk factors for developing this condition, with most failing to develop the physical symptoms or failing to survive in the postnatal period. The B6.Cg-Glrbspa /J (Gly receptor mutation) transgenic mouse (spa mouse), displays symptoms of early onset hypertonia, though little has been reported on growth and survival, with no reports of growth and survival since genotyping became available. We found that the majority of spa mice display symptoms by P14-P16. Of mice surviving to weaning, only ~9% were spa mice. By weaning age, spa mice had significantly lower weights than their heterozygote and wild-type littermates. Of mice that died after weaning and prior to use in experiments or being culled, 48% were spa mice. The poor growth and decreased survival of spa mice across multiple developmental and adult ages resembled the varied survival rates observed in humans with mild or severe cerebral palsy. The understanding of the expected survival of these mice is helpful for planning breeding and animal numbers for experiments. Due to the symptoms and timing of symptom onset, spa mice will be valuable in uncovering mechanisms and long-term effects of early onset hypertonia in order to move toward interventions for these conditions.
Collapse
Affiliation(s)
- Joline E. Brandenburg
- Department of Physical Medicine and RehabilitationMayo Clinic College of MedicineRochesterMNUSA
- Department of Pediatric and Adolescent MedicineMayo Clinic College of MedicineRochesterMNUSA
| | - Matthew J. Fogarty
- Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterMNUSA
- School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
| | - Gary C. Sieck
- Department of Physical Medicine and RehabilitationMayo Clinic College of MedicineRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterMNUSA
- Department of AnesthesiologyMayo Clinic College of MedicineRochesterMNUSA
| |
Collapse
|
81
|
Buchecker V, Waldron AM, van Dijk RM, Koska I, Brendel M, von Ungern-Sternberg B, Lindner S, Gildehaus FJ, Ziegler S, Bartenstein P, Potschka H. [ 18F]MPPF and [ 18F]FDG μPET imaging in rats: impact of transport and restraint stress. EJNMMI Res 2020; 10:112. [PMID: 32990819 PMCID: PMC7524912 DOI: 10.1186/s13550-020-00693-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background Stress exposure can significantly affect serotonergic signaling with a particular impact on 5-HT1A receptor expression. Positron emission tomography (PET) provides opportunities for molecular imaging of alterations in 5-HT1A receptor binding following stress exposure. Considering the possible role of 5-HT1A receptors in stress coping mechanisms, respective imaging approaches are of particular interest. Material and methods For twelve consecutive days, Sprague Dawley rats were exposed to daily transport with a 1 h stay in a laboratory or daily transport plus 1 h restraint in a narrow tube. Following, animals were subjected to μPET imaging with 2′-methoxyphenyl-(N-2′-pyridinyl)-p-[18F]fluoro-benzamidoethylpiperazine ([18F]MPPF) and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). Behavioral and biochemical parameters were analyzed to obtain additional information. Results In rats with repeated transport, hippocampal [18F]MPPF binding exceeded that in the naive group, while no difference in [18F]FDG uptake was detected between the groups. A transient decline in body weight was observed in rats with transport or combined transport and restraint. Thereby, body weight development correlated with [18F]MPPF binding. Conclusions Mild-to-moderate stress associated with daily transport and exposure to a laboratory environment can trigger significant alterations in hippocampal binding of the 5-HT1A receptor ligand [18F]MPPF. This finding indicates that utmost care is necessary to control and report transport and associated handling procedures for animals used in μPET studies analyzing the serotonergic system in order to enhance the robustness of conclusions and allow replicability of findings. In view of earlier studies indicating that an increase in hippocampal 5-HT1A receptor expression may be associated with a resilience to stress, it would be of interest to further evaluate 5-HT1A receptor imaging approaches as a candidate biomarker for the vulnerability to stress.
Collapse
Affiliation(s)
- Verena Buchecker
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Königinstr. 16, 80539, Munich, Germany
| | - Ann-Marie Waldron
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Königinstr. 16, 80539, Munich, Germany
| | - R Maarten van Dijk
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Königinstr. 16, 80539, Munich, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Königinstr. 16, 80539, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | | | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Königinstr. 16, 80539, Munich, Germany.
| |
Collapse
|
82
|
Body weight algorithm predicts humane endpoint in an intracranial rat glioma model. Sci Rep 2020; 10:9020. [PMID: 32488031 PMCID: PMC7265476 DOI: 10.1038/s41598-020-65783-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/08/2020] [Indexed: 11/20/2022] Open
Abstract
Humane endpoint determination is fundamental in animal experimentation. Despite commonly accepted endpoint criteria for intracranial tumour models (20% body weight loss and deteriorated clinical score) some animals still die before being euthanized in current research. We here systematically evaluated other measures as surrogates for a more reliable humane endpoint determination. Adult male BDIX rats (n = 119) with intracranial glioma formation after BT4Ca cell-injection were used. Clinical score and body weight were assessed daily. One subgroup (n = 14) was assessed daily for species-specific (nesting, burrowing), motor (distance, coordination) and social behaviour. Another subgroup (n = 8) was implanted with a telemetric device for monitoring heart rate (variability), temperature and activity. Body weight and clinical score of all other rats were used for training (n = 34) and validation (n = 63) of an elaborate body weight course analysis algorithm for endpoint detection. BT4Ca cell-injection reliably induced fast-growing tumours. No behavioural or physiological parameter detected deteriorations of the clinical state earlier or more reliable than clinical scoring by experienced observers. However, the body weight course analysis algorithm predicted endpoints in 97% of animals without confounding observer-dependent factors. Clinical scoring together with the novel algorithm enables highly reliable and observer-independent endpoint determination in a rodent intracranial tumour model.
Collapse
|
83
|
Talbot SR, Bruch S, Kießling F, Marschollek M, Jandric B, Tolba RH, Bleich A. Design of a joint research data platform: A use case for severity assessment. Lab Anim 2019; 54:33-39. [DOI: 10.1177/0023677219872228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Severity assessment in animal models is a data-driven process. We therefore present a use case for building a repository for interlaboratory collaboration with the potential of uploading specific content, making group announcements and internal prepublication discussions. We clearly show that it is possible to offer such a structure with minimal effort and a basic understanding of web-based services, also taking into account the human factor in individual data collection. The FOR2591 Online Repository serves as a blueprint for other groups, so that one day not only will data sharing among consortium members be improved but the transition from the private to the persistent domain will also be easier.
Collapse
Affiliation(s)
- Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Stefan Bruch
- Institute for Laboratory Animal Science and Experimental Surgery and Central Laboratory for Laboratory Animal Science, RWTH Aachen University, Germany
| | - Fabian Kießling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Germany
- Fraunhofer MEVIS: Institute for Digital Medicine, Germany
| | - Michael Marschollek
- Peter L. Reichertz Institute for Medical Informatics, Hannover Medical School, Germany
| | - Branko Jandric
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - René H Tolba
- Institute for Laboratory Animal Science and Experimental Surgery and Central Laboratory for Laboratory Animal Science, RWTH Aachen University, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| |
Collapse
|