51
|
Franx BAA, van Tilborg GAF, van der Toorn A, van Heijningen CL, Dippel DWJ, van der Schaaf IC, Dijkhuizen RM. Propofol anesthesia improves stroke outcomes over isoflurane anesthesia-a longitudinal multiparametric MRI study in a rodent model of transient middle cerebral artery occlusion. Front Neurol 2024; 15:1332791. [PMID: 38414549 PMCID: PMC10897009 DOI: 10.3389/fneur.2024.1332791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
General anesthesia is routinely used in endovascular thrombectomy procedures, for which volatile gas and/or intravenous propofol are recommended. Emerging evidence suggests propofol may have superior effects on disability and/or mortality rates, but a mode-of-action underlying these class-specific effects remains unknown. Here, a moderate isoflurane or propofol dosage on experimental stroke outcomes was retrospectively compared using serial multiparametric MRI and behavioral testing. Adult male rats (N = 26) were subjected to 90-min filament-induced transient middle cerebral artery occlusion. Diffusion-, T2- and perfusion-weighted MRI was performed during occlusion, 0.5 h after recanalization, and four days into the subacute phase. Sequels of ischemic damage-blood-brain barrier integrity, cerebrovascular reactivity and sensorimotor functioning-were assessed after four days. While size and severity of ischemia was comparable between groups during occlusion, isoflurane anesthesia was associated with larger lesion sizes and worsened sensorimotor functioning at follow-up. MRI markers indicated that cytotoxic edema persisted locally in the isoflurane group early after recanalization, coinciding with burgeoning vasogenic edema. At follow-up, sequels of ischemia were further aggravated in the post-ischemic lesion, manifesting as increased blood-brain barrier leakage, cerebrovascular paralysis and cerebral hyperperfusion. These findings shed new light on how isoflurane, and possibly similar volatile agents, associate with persisting injurious processes after recanalization that contribute to suboptimal treatment outcome.
Collapse
Affiliation(s)
- Bart A. A. Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Annette van der Toorn
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Caroline L. van Heijningen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | | | | - Rick M. Dijkhuizen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
52
|
Choi J, Chae Y, Kang BT, Lee S. An evaluation of the physiological uptake range of 18F-fluoro-2-deoxy-D-glucose in normal ovaries of seven dogs using positron emission tomography/computed tomography. Front Vet Sci 2024; 11:1343695. [PMID: 38371597 PMCID: PMC10869473 DOI: 10.3389/fvets.2024.1343695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction This study evaluated the physiological uptake range of 18F-fluoro-2-deoxy-D-glucose (18F-FDG) in the normal ovaries of seven dogs using positron emission tomography/computed tomography (PET/CT). Materials and methods The dogs were subjected to general anesthesia and were positioned in ventral recumbency for PET/CT scans. The dosage of 18F-FDG ranged from 0.14 to 0.17 mCi/kg and was administered intravenously followed by 0.9% NaCl flushing; PET/CT images of each dog were obtained precisely 60 min after the injection of 18F-FDG. The regions of interest were drawn manually, and standardized uptake values (SUV) were calculated to evaluate the 18F-FDG uptake in each ovary. The maximum and mean SUVs (SUV max and SUV mean) for all the ovaries of the dogs were then computed. Results The range of SUV max and SUV mean of the normal ovaries of the dogs were 1.28-1.62 and 1.07-1.31 (mean ± standard deviation), respectively. Conclusion This is the first study to investigate the normal 18F-FDG uptake baseline data of normal canine ovaries using PET/CT scans. These data will help clinicians in identifying malignant tumors before anatomical changes in the ovary through PET/CT scans.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Veterinary Surgery, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Byeong-Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Sungin Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
53
|
Groene P, Schaller T, Zeuzem-Lampert C, Rudy M, Ockert B, Siebenbürger G, Saller T, Conzen P, Hofmann-Kiefer K. Postoperative cognitive dysfunction after beach chair positioning compared to supine position in orthopaedic surgery in the elderly. Arch Orthop Trauma Surg 2024; 144:575-581. [PMID: 37889318 DOI: 10.1007/s00402-023-05109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Postoperative cognitive dysfunction (POCD) occurs in up to 26% of patients older than 60 years 1 week after non-cardiac surgery. Intraoperative beach chair positioning (BCP) is advantageous for some types of shoulder surgery. However, this kind of positioning leads to a downward bound redistribution of blood volume, with possible hypoperfusion of the brain. We hypothesized that patients > 60 years undergoing orthopaedic shoulder surgery in a BCP might experience more POCD than patients operated in the supine position (SP). MATERIAL AND METHODS A single-centre, prospective observational trial of 114 orthopaedic patients was performed. Study groups were established according to the type of intraoperative positioning. Anaesthesiological management was carried out similarly in both groups, including types of anaesthetics and blood pressure levels. POCD was evaluated using the Trail Making Test, the Letter-Number Span and the Regensburger Word Fluency Test. The frequency of POCD 1 week after surgery was considered primary outcome. RESULTS Baseline characteristics, including duration of surgery, were comparable in both groups. POCD after 1 week occurred in 10.5% of SP patients and in 21.1% of BCP patients (p = 0.123; hazard ratio 2.0 (CI 95% 0.794-5.038)). After 4 weeks, the incidence of POCD decreased (SP: 8.8% vs. BCP: 5.3%; p = 0.463). 12/18 patients with POCD showed changes in their Word Fluency Tests. Near-infrared spectroscopy (NIRS) values were not lower in patients with POCD compared to those without POCD (54% (50/61) vs. 57% (51/61); p = 0.671). CONCLUSION POCD at 1 week after surgery tended to occur more often in patients operated in beach chair position compared to patients in supine position without being statistically significant.
Collapse
Affiliation(s)
- Philipp Groene
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Tanja Schaller
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Catharina Zeuzem-Lampert
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Margret Rudy
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Ben Ockert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Georg Siebenbürger
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany
| | - Thomas Saller
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Peter Conzen
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Klaus Hofmann-Kiefer
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
54
|
van der Knaap N, Franx BAA, Majoie CBLM, van der Lugt A, Dijkhuizen RM. Implications of Post-recanalization Perfusion Deficit After Acute Ischemic Stroke: a Scoping Review of Clinical and Preclinical Imaging Studies. Transl Stroke Res 2024; 15:179-194. [PMID: 36653525 PMCID: PMC10796479 DOI: 10.1007/s12975-022-01120-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
The goal of reperfusion therapy for acute ischemic stroke (AIS) is to restore cerebral blood flow through recanalization of the occluded vessel. Unfortunately, successful recanalization does not always result in favorable clinical outcome. Post-recanalization perfusion deficits (PRPDs), constituted by cerebral hypo- or hyperperfusion, may contribute to lagging patient recovery rates, but its clinical significance remains unclear. This scoping review provides an overview of clinical and preclinical findings on post-ischemic reperfusion, aiming to elucidate the pattern and consequences of PRPD from a translational perspective. The MEDLINE database was searched for quantitative clinical and preclinical studies of AIS reporting PRPD based on cerebral circulation parameters acquired by translational tomographic imaging methods. PRPD and stroke outcome were mapped on a charting table, creating an overview of PRPD after AIS. Twenty-two clinical and twenty-two preclinical studies were included. Post-recanalization hypoperfusion is rarely reported in clinical studies (4/22) but unequivocally associated with detrimental outcome. Post-recanalization hyperperfusion is more commonly reported (18/22 clinical studies) and may be associated with positive or negative outcome. PRPD has been replicated in animal studies, offering mechanistic insights into causes and consequences of PRPD and allowing delineation of possible courses of PRPD. Complex relationships exist between PRPD and stroke outcome. Diversity in methods and lack of standardized definitions in reperfusion studies complicate the characterization of reperfusion patterns. Recommendations are made to advance the understanding of PRPD mechanisms and to further disentangle the relation between PRPD and disease outcome.
Collapse
Affiliation(s)
- Noa van der Knaap
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
55
|
Ramachandran RV, Subramaniam B. Pro: Individualized Optimal Perfusion Pressure-Maximizing Patient Care During Cardiopulmonary Bypass. J Cardiothorac Vasc Anesth 2024; 38:563-565. [PMID: 38065696 DOI: 10.1053/j.jvca.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 01/27/2024]
Abstract
Cardiopulmonary bypass (CPB) has revolutionized cardiac surgery but poses challenges such as hemodynamic instability and adverse clinical outcomes. Achieving optimal perfusion during CPB ensures adequate oxygen delivery to vital organs. Although mean arterial pressure is a key determinant of perfusion pressure, clear guidelines for optimal perfusion have yet to be established. Autoregulation, the organ's ability to maintain consistent blood flow, plays a vital role in perfusion. Individual variability in autoregulation responses and intraoperative factors necessitate an individualized approach to determining the autoregulation range. Continuous assessment of autoregulation during surgery allows for personalized perfusion targets, optimizing organ perfusion. Exploring techniques like multimodal intravenous anesthesia guided by electroencephalogram can enhance perfusion maintenance within the auto-regulatory range. By adopting an individualized approach to perfusion targets on CPB, we can improve outcomes and enhance patient care.
Collapse
|
56
|
Fioccola A, Pozzi T, Fratti I, Nicolardi RV, Romitti F, Busana M, Collino F, Camporota L, Meissner K, Moerer O, Gattinoni L. Impact of mechanical power and positive end expiratory pressure on central vs. mixed oxygen and carbon dioxide related variables in a population of female piglets. Physiol Rep 2024; 12:e15954. [PMID: 38366303 PMCID: PMC10873162 DOI: 10.14814/phy2.15954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
INTRODUCTION The use of the pulmonary artery catheter has decreased overtime; central venous blood gases are generally used in place of mixed venous samples. We want to evaluate the accuracy of oxygen and carbon dioxide related parameters from a central versus a mixed venous sample, and whether this difference is influenced by mechanical ventilation. MATERIALS AND METHODS We analyzed 78 healthy female piglets ventilated with different mechanical power. RESULTS There was a significant difference in oxygen-derived parameters between samples taken from the central venous and mixed venous blood (Sv ¯ $$ \overline{v} $$ O2 = 74.6%, ScvO2 = 83%, p < 0.0001). Conversely, CO2-related parameters were similar, with strong correlation. Ventilation with higher mechanical power and PEEP increased the difference between oxygen saturations, (Δ[ScvO2-Sv ¯ $$ \overline{v} $$ O2 ] = 7.22% vs. 10.0% respectively in the low and high MP groups, p = 0.020); carbon dioxide-related parameters remained unchanged (p = 0.344). CONCLUSIONS The venous oxygen saturation (central or mixed) may be influenced by the effects of mechanical ventilation. Therefore, central venous data should be interpreted with more caution when using higher mechanical power. On the contrary, carbon dioxide-derived parameters are more stable and similar between the two sampling sites, independently of mechanical power or positive end expiratory pressures.
Collapse
Affiliation(s)
- Antonio Fioccola
- Department of AnesthesiologyUniversity Medical Center GöttingenGöttingenGermany
- Department of Health Sciences, Section of Anaesthesiology, Intensive Care and Pain MedicineUniversity of FlorenceFlorenceItaly
| | - Tommaso Pozzi
- Department of AnesthesiologyUniversity Medical Center GöttingenGöttingenGermany
- Department of Health SciencesUniversity of MilanMilanItaly
| | - Isabella Fratti
- Department of AnesthesiologyUniversity Medical Center GöttingenGöttingenGermany
- Department of Health SciencesUniversity of MilanMilanItaly
| | - Rosmery Valentina Nicolardi
- Department of AnesthesiologyUniversity Medical Center GöttingenGöttingenGermany
- IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Federica Romitti
- Department of AnesthesiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Mattia Busana
- Department of AnesthesiologyUniversity Medical Center GöttingenGöttingenGermany
| | | | - Luigi Camporota
- Department of Adult Critical Care Guy's & St Thomas' NHS foundation TrustLondonUK
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical BiosciencesKing's College LondonLondonUK
| | - Konrad Meissner
- Department of AnesthesiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Onnen Moerer
- Department of AnesthesiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Luciano Gattinoni
- Department of AnesthesiologyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
57
|
Karlsson J, Svedmyr A, Wallin M, Hallbäck M, Lönnqvist PA. Validation of an alternative technique for RQ estimation in anesthetized pigs. Intensive Care Med Exp 2024; 12:11. [PMID: 38270695 PMCID: PMC10811304 DOI: 10.1186/s40635-024-00598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Respiratory quotient (RQ) is an important variable when assessing metabolic status in intensive care patients. However, analysis of RQ requires cumbersome technical equipment. The aim of the current study was to examine a simplified blood gas-based method of RQ assessment, using Douglas bag measurement of RQ (Douglas-RQ) as reference in a laboratory porcine model under metabolic steady state. In addition, we aimed at establishing reference values for RQ in the same population, thereby generating data to facilitate further research. METHODS RQ was measured in 11 mechanically ventilated pigs under metabolic steady state using Douglas-RQ and CO-oximetry blood gas analysis of pulmonary artery and systemic carbon dioxide and oxygen content. The CO-oximetry data were used to calculate RQ (blood gas RQ). Paired recordings with both methods were made once in the morning and once in the afternoon and values obtained were analyzed for potential significant differences. RESULTS The average Douglas-RQ, for all data points over the whole day, was 0.97 (95%CI 0.95-0.99). The corresponding blood gas RQ was 0.95 (95%CI 0.87-1.02). There was no statistically significant difference in RQ values obtained using Douglas-RQ or blood gas RQ for all data over the whole day (P = 0.43). Bias was - 0.02 (95% limits of agreement ± 0.3). Douglas-RQ decreased during the day 1.00 (95%CI 0.97-1.03) vs 0.95 (95%CI 0.92-0.98) P < 0.001, whereas the decrease was not significant for blood gas RQ 1.02 (95%CI 0.89-1.16 vs 0.87 (0.80-0.94) P = 0.11. CONCLUSION RQ values obtained with blood gas analysis did not differ statistically, compared to gold standard Douglas bag RQ measurement, showing low bias but relatively large limits of agreement, when analyzed for the whole day. This indicates that a simplified blood gas-based method for RQ estimations may be used as an alternative to gold standard expired gas analysis on a group level, even if individual values may differ. In addition, RQ estimated with Douglas bag analysis of exhaled air, was 0.97 in anesthetized non-fasted pigs and decreased during prolonged anesthesia.
Collapse
Affiliation(s)
- Jacob Karlsson
- Department of Physiology and Pharmacology (FYFA), C3, PA Lönnqvist Group, Section of Anesthesiology and Intensive Care, Anestesi- och Intensivvårdsavdelningen, Karolinska Institute, 171 76, Stockholm, Sweden.
- Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Eugenivägen 23, 171 64, Stockholm, Sweden.
| | - Anders Svedmyr
- Department of Physiology and Pharmacology (FYFA), C3, PA Lönnqvist Group, Section of Anesthesiology and Intensive Care, Anestesi- och Intensivvårdsavdelningen, Karolinska Institute, 171 76, Stockholm, Sweden
- Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Eugenivägen 23, 171 64, Stockholm, Sweden
| | - Mats Wallin
- Department of Physiology and Pharmacology (FYFA), C3, PA Lönnqvist Group, Section of Anesthesiology and Intensive Care, Anestesi- och Intensivvårdsavdelningen, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Magnus Hallbäck
- Maquet Critical Care AB, Röntgenvägen 2, 171 06, Solna, Sweden
| | - Per-Arne Lönnqvist
- Department of Physiology and Pharmacology (FYFA), C3, PA Lönnqvist Group, Section of Anesthesiology and Intensive Care, Anestesi- och Intensivvårdsavdelningen, Karolinska Institute, 171 76, Stockholm, Sweden
- Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Eugenivägen 23, 171 64, Stockholm, Sweden
| |
Collapse
|
58
|
Salvagno M, Geraldini F, Coppalini G, Robba C, Gouvea Bogossian E, Annoni F, Vitali E, Sterchele ED, Balestra C, Taccone FS. The Impact of Inotropes and Vasopressors on Cerebral Oxygenation in Patients with Traumatic Brain Injury and Subarachnoid Hemorrhage: A Narrative Review. Brain Sci 2024; 14:117. [PMID: 38391692 PMCID: PMC10886736 DOI: 10.3390/brainsci14020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are critical neurological conditions that necessitate specialized care in the Intensive Care Unit (ICU). Managing cerebral perfusion pressure (CPP) and mean arterial pressure (MAP) is of primary importance in these patients. To maintain targeted MAP and CPP, vasopressors and/or inotropes are commonly used. However, their effects on cerebral oxygenation are not fully understood. The aim of this review is to provide an up-to date review regarding the current uses and pathophysiological issues related to the use of vasopressors and inotropes in TBI and SAH patients. According to our findings, despite achieving similar hemodynamic parameters and CPP, the effects of various vasopressors and inotropes on cerebral oxygenation, local CBF and metabolism are heterogeneous. Therefore, a more accurate understanding of the cerebral activity of these medications is crucial for optimizing patient management in the ICU setting.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Federico Geraldini
- Department of Anesthesia and Intensive Care, Ospedale Università di Padova, 35128 Padova, Italy
| | - Giacomo Coppalini
- Department of Anesthesia and Intensive Care, Humanitas Clinical and Research Center, 20089 Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milano, Italy
| | - Chiara Robba
- Anaesthesia and Intensive Care, IRCCS Policlinico San Martino, 16132 Genova, Italy
- Dipartimento di Scienze Chirurgiche Diagnostiche e Integrate, Università di Genova, 16132 Genova, Italy
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Eva Vitali
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Costantino Balestra
- Department Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| |
Collapse
|
59
|
Fanning JP, Campbell BCV, Bulbulia R, Gottesman RF, Ko SB, Floyd TF, Messé SR. Perioperative stroke. Nat Rev Dis Primers 2024; 10:3. [PMID: 38238382 DOI: 10.1038/s41572-023-00487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
Ischaemic or haemorrhagic perioperative stroke (that is, stroke occurring during or within 30 days following surgery) can be a devastating complication following surgery. Incidence is reported in the 0.1-0.7% range in adults undergoing non-cardiac and non-neurological surgery, in the 1-5% range in patients undergoing cardiac surgery and in the 1-10% range following neurological surgery. However, higher rates have been reported when patients are actively assessed and in high-risk populations. Prognosis is significantly worse than stroke occurring in the community, with double the 30-day mortality, greater disability and diminished quality of life among survivors. Considering the annual volume of surgeries performed worldwide, perioperative stroke represents a substantial burden. Despite notable differences in aetiology, patient populations and clinical settings, existing clinical recommendations for perioperative stroke are extrapolated mainly from stroke in the community. Perioperative in-hospital stroke is unique with respect to the stroke occurring in other settings, and it is essential to apply evidence from other settings with caution and to identify existing knowledge gaps in order to effectively guide patient care and future research.
Collapse
Affiliation(s)
- Jonathon P Fanning
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.
- Anaesthesia & Perfusion Services, The Prince Charles Hospital, Brisbane, Queensland, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
- The George Institute for Global Health, Sydney, New South Wales, Australia.
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Bruce C V Campbell
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Richard Bulbulia
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Vascular Surgery, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | | | - Sang-Bae Ko
- Department of Neurology and Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Korea
| | - Thomas F Floyd
- Department of Anaesthesiology & Pain Management, Department of Cardiovascular and Thoracic Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven R Messé
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
60
|
Mandino F, Vujic S, Grandjean J, Lake EMR. Where do we stand on fMRI in awake mice? Cereb Cortex 2024; 34:bhad478. [PMID: 38100331 PMCID: PMC10793583 DOI: 10.1093/cercor/bhad478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Stella Vujic
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
61
|
Meng L, Sun Y, Zhao X, Meng DM, Liu Z, Adams DC, McDonagh DL, Rasmussen M. Effects of phenylephrine on systemic and cerebral circulations in humans: a systematic review with mechanistic explanations. Anaesthesia 2024; 79:71-85. [PMID: 37948131 DOI: 10.1111/anae.16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/12/2023]
Abstract
We conducted a systematic review of the literature reporting phenylephrine-induced changes in blood pressure, cardiac output, cerebral blood flow and cerebral tissue oxygen saturation as measured by near-infrared spectroscopy in humans. We used the proportion change of the group mean values reported by the original studies in our analysis. Phenylephrine elevates blood pressure whilst concurrently inducing a reduction in cardiac output. Furthermore, despite increasing cerebral blood flow, it decreases cerebral tissue oxygen saturation. The extent of phenylephrine's influence on cardiac output (r = -0.54 and p = 0.09 in awake humans; r = -0.55 and p = 0.007 in anaesthetised humans), cerebral blood flow (r = 0.65 and p = 0.002 in awake humans; r = 0.80 and p = 0.003 in anaesthetised humans) and cerebral tissue oxygen saturation (r = -0.72 and p = 0.03 in awake humans; r = -0.24 and p = 0.48 in anaesthetised humans) appears closely linked to the magnitude of phenylephrine-induced blood pressure changes. When comparing the effects of phenylephrine in awake and anaesthetised humans, we found no evidence of a significant difference in cardiac output, cerebral blood flow or cerebral tissue oxygen saturation. There was also no evidence of a significant difference in effect on systemic and cerebral circulations whether phenylephrine was given by bolus or infusion. We explore the underlying mechanisms driving the phenylephrine-induced cardiac output reduction, cerebral blood flow increase and cerebral tissue oxygen saturation decrease. Individualised treatment approaches, close monitoring and consideration of potential risks and benefits remain vital to the safe and effective use of phenylephrine in acute care.
Collapse
Affiliation(s)
- L Meng
- Department of Anesthesia, Indiana University School of Medicine, IA, Indianapolis, USA
| | - Y Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - X Zhao
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - D M Meng
- Choate Rosemary Hall School, CT, Wallingford, USA
| | - Z Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, IA, Indianapolis, USA
| | - D C Adams
- Department of Anesthesia, Indiana University School of Medicine, IA, Indianapolis, USA
| | - D L McDonagh
- Departments of Anesthesiology and Pain Management, Neurological Surgery, Neurology and Neurotherapeutics, UT Southwestern Medical Center, TX, Dallas, USA
| | - M Rasmussen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
62
|
Stendall C, Bowes L, Carver E. Anaesthesia for paediatric neurosurgery. Part 1: general considerations. BJA Educ 2024; 24:1-6. [PMID: 38495747 PMCID: PMC10941094 DOI: 10.1016/j.bjae.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 03/19/2024] Open
Affiliation(s)
- C. Stendall
- Birmingham Children's Hospital, Birmingham, UK
| | - L. Bowes
- Birmingham Children's Hospital, Birmingham, UK
| | - E. Carver
- Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
63
|
Mishra LD, Agarwal A, Singh AK, Sriganesh K. Paving the way to environment-friendly greener anesthesia. J Anaesthesiol Clin Pharmacol 2024; 40:9-14. [PMID: 38666164 PMCID: PMC11042111 DOI: 10.4103/joacp.joacp_283_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 04/28/2024] Open
Abstract
Health-care settings have an important responsibility toward environmental health and safety. The operating room is a major source of environmental pollution within a hospital. Inhalational agents and nitrous oxide are the commonly used gases during general anesthesia for surgeries, especially in the developing world. These greenhouse gases contribute adversely to the environmental health both inside the operating room and in the outside atmosphere. Impact of these anesthetic agents depends on the total consumption, characteristics of individual agents, and gas flows, with higher levels increasing the environmental adverse effects. The inimical impact of nitrous oxide is higher due to its longer atmospheric half-life and potential for destruction of the ozone layer. Anesthesiologist of today has a choice in the selection of anesthetic agents. Prudent decisions will help in mitigating environmental pollution and contributing positively to a greener planet. Therefore, a shift from inhalational to intravenous-based technique will reduce the carbon footprint of anesthetic agents and their impact on global climate. Propofol forms the mainstay of intravenous anesthesia technique and is a proven drug for anesthetic induction and maintenance. Anesthesiologists should appreciate growing concerns about the role of inhalational anesthetics on the environment and join the cause of environmental responsibility. In this narrative review, we revisit the pharmacological and pharmacokinetic considerations, clinical uses, and discuss the merits of propofol-based intravenous anesthesia over inhalational anesthesia in terms of environmental effects. Increased awareness about the environmental impact and adoption of newer, versatile, and user-friendly modalities of intravenous anesthesia administration will pave the way for greener anesthesia practice.
Collapse
Affiliation(s)
- Lal Dhar Mishra
- Department of Anaesthesiology, IMS, BHU, Varanasi, Uttar Pradesh, India
| | - Ankit Agarwal
- Department of Anaesthesiology, AIIMS, Rishikesh, Uttarakhand, India
| | - Atul K. Singh
- Department of Anaesthesiology, IMS, BHU, Varanasi, Uttar Pradesh, India
| | - Kamath Sriganesh
- Department of Neuroanaesthesia and Neurocritical Care, NIMHANS, Bengaluru, Karnataka, India
| |
Collapse
|
64
|
Muehlschlegel G, Kubicki R, Jacobs-LeVan J, Kroll J, Klemm R, Humburger F, Stiller B, Fleck T. Neurological Impact of Slower Rewarming during Bypass Surgery in Infants. Thorac Cardiovasc Surg 2024; 72:e7-e15. [PMID: 38909608 DOI: 10.1055/s-0044-1787650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
BACKGROUND Hypothermia is a neuroprotective strategy during cardiopulmonary bypass. Rewarming entailing a rapid rise in cerebral metabolism might lead to secondary neurological sequelae. In this pilot study, we aimed to validate the hypothesis that a slower rewarming rate would lower the risk of cerebral hypoxia and seizures in infants. METHODS This is a prospective, clinical, single-center study. Infants undergoing cardiac surgery in hypothermia were rewarmed either according to the standard (+1°C in < 5 minutes) or a slow (+1°C in > 5-8 minutes) rewarming strategy. We monitored electrocortical activity via amplitude-integrated electroencephalography (aEEG) and cerebral oxygenation by near-infrared spectroscopy during and after surgery. RESULTS Fifteen children in the standard rewarming group (age: 13 days [5-251]) were cooled down to 26.6°C (17.2-29.8) and compared with 17 children in the slow-rewarming group (age: 9 days [4-365]) with a minimal temperature of 25.7°C (20.1-31.4). All neonates in both groups (n = 19) exhibited suppressed patterns compared with 28% of the infants > 28 days (p < 0.05). During rewarming, only 26% of the children in the slow-rewarming group revealed suppressed aEEG traces (vs. 41%; p = 0.28). Cerebral oxygenation increased by a median of 3.5% in the slow-rewarming group versus 1.5% in the standard group (p = 0.9). Our slow-rewarming group revealed no aEEG evidence of any postoperative seizures (0 vs. 20%). CONCLUSION These results might indicate that a slower rewarming rate after hypothermia causes less suppression of electrocortical activity and higher cerebral oxygenation during rewarming, which may imply a reduced risk of postoperative seizures.
Collapse
Affiliation(s)
- Geeske Muehlschlegel
- Department of Congenital Heart Disease and Pediatric Cardiology, University Heart Center Freiburg Bad Krozingen, Bad Krozingen, Baden-Württemberg, Germany
| | - Rouven Kubicki
- Department of Congenital Heart Disease and Pediatric Cardiology, University Heart Center Freiburg Bad Krozingen Freiburg Branch, Freiburg, Freiburg, Germany
| | - Julia Jacobs-LeVan
- Departments of Pediatrics and Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Johannes Kroll
- Department of Cardiovascular Surgery, University Heart Center Freiburg Bad Krozingen Freiburg Branch, Freiburg, Baden-Württemberg, Germany
| | - Rolf Klemm
- Department of Cardiovascular Surgery, University Heart Center Freiburg Bad Krozingen, Freiburg, Baden-Württemberg, Germany
| | - Frank Humburger
- Department of Anesthesiology, University of Freiburg Medical Center Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Brigitte Stiller
- Department of Congenital Heart Disease and Pediatric Cardiology, University Heart Center Freiburg Bad Krozingen Freiburg Branch, Freiburg, Freiburg, Germany
| | - Thilo Fleck
- Department of Congenital Heart Disease and Pediatric Cardiology, University Heart Center Freiburg Bad Krozingen Freiburg Branch, Freiburg, Freiburg, Germany
| |
Collapse
|
65
|
Pottkämper JCM, Verdijk JPAJ, Aalbregt E, Stuiver S, van de Mortel L, Norris DG, van Putten MJAM, Hofmeijer J, van Wingen GA, van Waarde JA. Changes in postictal cerebral perfusion are related to the duration of electroconvulsive therapy-induced seizures. Epilepsia 2024; 65:177-189. [PMID: 37973611 DOI: 10.1111/epi.17831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Postictal symptoms may result from cerebral hypoperfusion, which is possibly a consequence of seizure-induced vasoconstriction. Longer seizures have previously been shown to cause more severe postictal hypoperfusion in rats and epilepsy patients. We studied cerebral perfusion after generalized seizures elicited by electroconvulsive therapy (ECT) and its relation to seizure duration. METHODS Patients with a major depressive episode who underwent ECT were included. During treatment, 21-channel continuous electroencephalogram (EEG) was recorded. Arterial spin labeling magnetic resonance imaging scans were acquired before the ECT course (baseline) and approximately 1 h after an ECT-induced seizure (postictal) to quantify global and regional gray matter cerebral blood flow (CBF). Seizure duration was assessed from the period of epileptiform discharges on the EEG. Healthy controls were scanned twice to assess test-retest variability. We performed hypothesis-driven Bayesian analyses to study the relation between global and regional perfusion changes and seizure duration. RESULTS Twenty-four patients and 27 healthy controls were included. Changes in postictal global and regional CBF were correlated with seizure duration. In patients with longer seizure durations, global decrease in CBF reached values up to 28 mL/100 g/min. Regional reductions in CBF were most prominent in the inferior frontal gyrus, cingulate gyrus, and insula (up to 35 mL/100 g/min). In patients with shorter seizures, global and regional perfusion increased (up to 20 mL/100 g/min). These perfusion changes were larger than changes observed in healthy controls, with a maximum median global CBF increase of 12 mL/100 g/min and a maximum median global CBF decrease of 20 mL/100 g/min. SIGNIFICANCE Seizure duration is a key factor determining postictal perfusion changes. In future studies, seizure duration needs to be considered as a confounding factor due to its opposite effect on postictal perfusion.
Collapse
Affiliation(s)
- Julia C M Pottkämper
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands
| | - Joey P A J Verdijk
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands
| | - Eva Aalbregt
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center Location Academic Medical Center, Amsterdam, the Netherlands
| | - Sven Stuiver
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands
| | - Laurens van de Mortel
- Department of Psychiatry, Amsterdam University Medical Center Location Academic Medical Center, Amsterdam, the Netherlands
| | - David G Norris
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Michel J A M van Putten
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology Group, University of Twente, Enschede, the Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Guido A van Wingen
- Department of Psychiatry, Amsterdam University Medical Center Location Academic Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
66
|
Maheshwari S, Akram H, Bulstrode H, Kalia SK, Morizane A, Takahashi J, Natalwala A. Dopaminergic Cell Replacement for Parkinson's Disease: Addressing the Intracranial Delivery Hurdle. JOURNAL OF PARKINSON'S DISEASE 2024; 14:415-435. [PMID: 38457149 PMCID: PMC11091588 DOI: 10.3233/jpd-230328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/09/2024]
Abstract
Parkinson's disease (PD) is an increasingly prevalent neurological disorder, affecting more than 8.5 million individuals worldwide. α-Synucleinopathy in PD is considered to cause dopaminergic neuronal loss in the substantia nigra, resulting in characteristic motor dysfunction that is the target for current medical and surgical therapies. Standard treatment for PD has remained unchanged for several decades and does not alter disease progression. Furthermore, symptomatic therapies for PD are limited by issues surrounding long-term efficacy and side effects. Cell replacement therapy (CRT) presents an alternative approach that has the potential to restore striatal dopaminergic input and ameliorate debilitating motor symptoms in PD. Despite promising pre-clinical data, CRT has demonstrated mixed success clinically. Recent advances in graft biology have renewed interest in the field, resulting in several worldwide ongoing clinical trials. However, factors surrounding the effective neurosurgical delivery of cell grafts have remained under-studied, despite their significant potential to influence therapeutic outcomes. Here, we focus on the key neurosurgical factors to consider for the clinical translation of CRT. We review the instruments that have been used for cell graft delivery, highlighting current features and limitations, while discussing how future devices could address these challenges. Finally, we review other novel developments that may enhance graft accessibility, delivery, and efficacy. Challenges surrounding neurosurgical delivery may critically contribute to the success of CRT, so it is crucial that we address these issues to ensure that CRT does not falter at the final hurdle.
Collapse
Affiliation(s)
- Saumya Maheshwari
- The Medical School, University of Edinburgh, Edinburgh BioQuarter, UK
| | - Harith Akram
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Division of Academic Neurosurgery, University of Cambridge, Cambridge, UK
| | - Suneil K. Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Regenerative Medicine, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Hyogo, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ammar Natalwala
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
- Department for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| |
Collapse
|
67
|
Truglia B, Carbone N, Ghadre I, Vallero S, Zito M, Zizzi EA, Deriu MA, Tuszynski JA. An In Silico Investigation of the Molecular Interactions between Volatile Anesthetics and Actin. Pharmaceuticals (Basel) 2023; 17:37. [PMID: 38256871 PMCID: PMC10819646 DOI: 10.3390/ph17010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Volatile anesthetics (VAs) are medicinal chemistry compounds commonly used to enable surgical procedures for patients who undergo painful treatments and can be partially or fully sedated, remaining in an unconscious state during the operation. The specific molecular mechanism of anesthesia is still an open issue, but scientific evidence supports the hypothesis of the involvement of both putative hydrophobic cavities in membrane receptors as binding pockets and interactions between anesthetics and cytoplasmic proteins. Previous studies demonstrated the binding of VAs to tubulin. Since actin is the other major component of the cytoskeleton, this study involves an investigation of its interactions with four major anesthetics: halothane, isoflurane, sevoflurane, and desflurane. Molecular docking was implemented using the Molecular Operating Environment (MOE) software (version 2022.02) and applied to a G-actin monomer, extrapolating the relative binding affinities and root-mean-square deviation (RMSD) values. A comparison with the F-actin was also made to assess if the generally accepted idea about the enhanced F-to-G-actin transformation during anesthesia is warranted. Overall, our results confirm the solvent-like behavior of anesthetics, as evidenced by Van der Waals interactions as well as the relevant hydrogen bonds formed in the case of isoflurane and sevoflurane. Also, a comparison of the interactions of anesthetics with tubulin was made. Finally, the short- and long-term effects of anesthetics are discussed for their possible impact on the occurrence of mental disorders.
Collapse
Affiliation(s)
| | | | | | - Sara Vallero
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | | | | | | | - J. A. Tuszynski
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
68
|
Oh C, Baek S, Lee S, Shim MS, Han SJ, Kim YH, Lee JY, Ku Y, Hong B. Noninvasive tracking of mixed venous oxygen saturation via near-infrared spectroscopy cerebral oximetry: a retrospective observational study. Sci Rep 2023; 13:21704. [PMID: 38066206 PMCID: PMC10709586 DOI: 10.1038/s41598-023-49078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Although previous studies have shown correlation between regional cerebral oxygen saturation (rScO2) and mixed venous oxygen saturation (SvO2), there is a lack of pragmatic information on the clinical applicability of these findings, such as tracking ability. We retrospectively analyzed continuous intraoperative recordings of rScO2 and SvO2 obtained from a pulmonary artery catheter and either of two near-infrared spectroscopy (NIRS) devices (INVOS 5100C, Medtronic; O3, Masimo) during off-pump cardiopulmonary bypass (OPCAB) surgery in adult patients. The ability of rScO2 to track SvO2 was quantitatively evaluated with 5 min interval changes transformed into relative values. The analysis included 176 h of data acquired from 48 subjects (26 and 22 subjects for INVOS and O3 dataset, respectively). The area under ROC of the left-rScO2 for detecting change of SvO2 ≥ 10% in INVOS and O3 datasets were 0.919 (95% CI 0.903-0.936) and 0.852 (95% CI 0.818-0.885). The concordance rates between the interval changes of left-rScO2 and SvO2 in INVOS and O3 datasets were 90.6% and 91.9% with 10% exclusion zone. rScO2 can serve as a noninvasive tool for detecting changes in SvO2 levels, a critical hemodynamic measurement.
Collapse
Affiliation(s)
- Chahyun Oh
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sujin Baek
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Soomin Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Man-Shik Shim
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital, Daejeon, Korea
| | - Sung Joon Han
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital, Daejeon, Korea
| | - Yoon-Hee Kim
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jeong Yeon Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
| | - Yunseo Ku
- Department of Biomedical Engineering, Chungnam National University College of Medicine, Daejeon, Korea.
| | - Boohwi Hong
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea.
- Department of Anesthesiology and Pain Medicine, Chungnam National University College of Medicine, Daejeon, Korea.
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Korea.
| |
Collapse
|
69
|
Anumba N, Maltbie E, Pan WJ, LaGrow TJ, Xu N, Keilholz S. Spatial and Spectral Components of the BOLD Global Signal in Rat Resting-State Functional MRI. Magn Reson Med 2023; 90:2486-2499. [PMID: 37582301 PMCID: PMC10543609 DOI: 10.1002/mrm.29824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE In resting-state fMRI (rs-fMRI), the global signal average captures widespread fluctuations related to unwanted sources of variance such as motion and respiration, as well as widespread neural activity; however, relative contributions of neural and non-neural sources to the global signal remain poorly understood. This study sought to tackle this problem through the comparison of the BOLD global signal to an adjacent non-brain tissue signal, where neural activity was absent, from the same rs-fMRI scan obtained from anesthetized rats. In this dataset, motion was minimal and ventilation was phase-locked to image acquisition to minimize respiratory fluctuations. Data were acquired using three different anesthetics: isoflurane, dexmedetomidine, and a combination of dexmedetomidine and light isoflurane. METHODS A power spectral density estimate, a voxel-wise spatial correlation via Pearson's correlation, and a co-activation pattern analysis were performed using the global signal and the non-brain tissue signal. Functional connectivity was calculated using Pearson's linear correlation on default mode network (DMN) regions. RESULTS We report differences in the spectral composition of the two signals and show spatial selectivity within DMN structures that show an increased correlation to the global signal and decreased intra-network connectivity after global signal regression. All of the observed differences between the global signal and the non-brain tissue signal were maintained across anesthetics. CONCLUSION These results show that the global signal is distinct from the noise contained in the tissue signal, as support for a neural contribution. This study provides a unique perspective to the contents of the global signal and their origins.
Collapse
Affiliation(s)
- Nmachi Anumba
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Eric Maltbie
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Wen-Ju Pan
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Theodore J. LaGrow
- School of Electrical and Computer Engineering at Georgia Institute of Technology
| | - Nan Xu
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Shella Keilholz
- Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| |
Collapse
|
70
|
Kahl U, Krause L, Amin S, Harler U, Beck S, Dohrmann T, Mewes C, Graefen M, Haese A, Zöllner C, Fischer M. Impact of Intraoperative Fluctuations of Cardiac Output on Cerebrovascular Autoregulation: An Integrative Secondary Analysis of Individual-level Data. J Neurosurg Anesthesiol 2023:00008506-990000000-00087. [PMID: 38011867 PMCID: PMC11377045 DOI: 10.1097/ana.0000000000000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Intraoperative impairment of cerebral autoregulation (CA) has been associated with perioperative neurocognitive disorders. We investigated whether intraoperative fluctuations in cardiac index are associated with changes in CA. METHODS We conducted an integrative explorative secondary analysis of individual-level data from 2 prospective observational studies including patients scheduled for radical prostatectomy. We assessed cardiac index by pulse contour analysis and CA as the cerebral oxygenation index (COx) based on near-infrared spectroscopy. We analyzed (1) the cross-correlation between cardiac index and COx, (2) the correlation between the time-weighted average (TWA) of the cardiac index below 2.5 L min-1 m-2, and the TWA of COx above 0.3, and (3) the difference in areas between the cardiac index curve and the COx curve among various subgroups. RESULTS The final analysis included 155 patients. The median cardiac index was 3.16 [IQR: 2.65, 3.72] L min-1 m-2. Median COx was 0.23 [IQR: 0.12, 0.34]. (1) The median cross-correlation between cardiac index and COx was 0.230 [IQR: 0.186, 0.287]. (2) The correlation (Spearman ρ) between TWA of cardiac index below 2.5 L min-1 m-2 and TWA of COx above 0.3 was 0.095 (P=0.239). (3) Areas between the cardiac index curve and the COx curve did not differ significantly among subgroups (<65 vs. ≥65 y, P=0.903; 0 vs. ≥1 cardiovascular risk factors, P=0.518; arterial hypertension vs. none, P=0.822; open vs. robot-assisted radical prostatectomy, P=0.699). CONCLUSIONS We found no meaningful association between intraoperative fluctuations in cardiac index and CA. However, it is possible that a potential association was masked by the influence of anesthesia on CA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
71
|
Brunner C, Montaldo G, Urban A. Functional ultrasound imaging of stroke in awake rats. eLife 2023; 12:RP88919. [PMID: 37988288 PMCID: PMC10662948 DOI: 10.7554/elife.88919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Anesthesia is a major confounding factor in preclinical stroke research as stroke rarely occurs in sedated patients. Moreover, anesthesia affects both brain functions and the stroke outcome acting as neurotoxic or protective agents. So far, no approaches were well suited to induce stroke while imaging hemodynamics along with simultaneous large-scale recording of brain functions in awake animals. For this reason, the first critical hours following the stroke insult and associated functional alteration remain poorly understood. Here, we present a strategy to investigate both stroke hemodynamics and stroke-induced functional alterations without the confounding effect of anesthesia, i.e., under awake condition. Functional ultrasound (fUS) imaging was used to continuously monitor variations in cerebral blood volume (CBV) in +65 brain regions/hemispheres for up to 3 hr after stroke onset. The focal cortical ischemia was induced using a chemo-thrombotic agent suited for permanent middle cerebral artery occlusion in awake rats and followed by ipsi- and contralesional whiskers stimulation to investigate on the dynamic of the thalamocortical functions. Early (0-3 hr) and delayed (day 5) fUS recording enabled to characterize the features of the ischemia (location, CBV loss), spreading depolarizations (occurrence, amplitude) and functional alteration of the somatosensory thalamocortical circuits. Post-stroke thalamocortical functions were affected at both early and later time points (0-3 hr and 5 days) after stroke. Overall, our procedure facilitates early, continuous, and chronic assessments of hemodynamics and cerebral functions. When integrated with stroke studies or other pathological analyses, this approach seeks to enhance our comprehension of physiopathologies towards the development of pertinent therapeutic interventions.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| | - Gabriel Montaldo
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| | - Alan Urban
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| |
Collapse
|
72
|
Singh N, MacNicol E, DiPasquale O, Randall K, Lythgoe D, Mazibuko N, Simmons C, Selvaggi P, Stephenson S, Turkheimer FE, Cash D, Zelaya F, Colasanti A. The effects of acute Methylene Blue administration on cerebral blood flow and metabolism in humans and rats. J Cereb Blood Flow Metab 2023; 43:95-105. [PMID: 36803299 PMCID: PMC10638993 DOI: 10.1177/0271678x231157958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/09/2022] [Accepted: 12/26/2022] [Indexed: 02/23/2023]
Abstract
Methylene Blue (MB) is a brain-penetrating drug with putative neuroprotective, antioxidant and metabolic enhancing effects. In vitro studies suggest that MB enhances mitochondrial complexes activity. However, no study has directly assessed the metabolic effects of MB in the human brain. We used in vivo neuroimaging to measure the effect of MB on cerebral blood flow (CBF) and brain metabolism in humans and in rats. Two doses of MB (0.5 and 1 mg/kg in humans; 2 and 4 mg/kg in rats; iv) induced reductions in global cerebral blood flow (CBF) in humans (F(1.74, 12.17)5.82, p = 0.02) and rats (F(1,5)26.04, p = 0.0038). Human cerebral metabolic rate of oxygen (CMRO2) was also significantly reduced (F(1.26, 8.84)8.01, p = 0.016), as was the rat cerebral metabolic rate of glucose (CMRglu) (t = 2.6(16) p = 0.018). This was contrary to our hypothesis that MB will increase CBF and energy metrics. Nevertheless, our results were reproducible across species and dose dependent. One possible explanation is that the concentrations used, although clinically relevant, reflect MB's hormetic effects, i.e., higher concentrations produce inhibitory rather than augmentation effects on metabolism. Additionally, here we used healthy volunteers and healthy rats with normal cerebral metabolism where MB's ability to enhance cerebral metabolism might be limited.
Collapse
Affiliation(s)
- Nisha Singh
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eilidh MacNicol
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ottavia DiPasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Karen Randall
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ndabezinhle Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stephanie Stephenson
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Alessandro Colasanti
- Department of Clinical Neuroscience and Neuroimaging, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
73
|
Bordoni L, Thoren AE, Gutiérrez‐Jiménez E, Åbjørsbråten KS, Bjørnstad DM, Tang W, Stern M, Østergaard L, Nagelhus EA, Frische S, Ottersen OP, Enger R. Deletion of aquaporin-4 improves capillary blood flow distribution in brain edema. Glia 2023; 71:2559-2572. [PMID: 37439315 PMCID: PMC10952478 DOI: 10.1002/glia.24439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Brain edema is a feared complication to disorders and insults affecting the brain. It can be fatal if the increase in intracranial pressure is sufficiently large to cause brain herniation. Moreover, accruing evidence suggests that even slight elevations of intracranial pressure have adverse effects, for instance on brain perfusion. The water channel aquaporin-4 (AQP4), densely expressed in perivascular astrocytic endfeet, plays a key role in brain edema formation. Using two-photon microscopy, we have studied AQP4-mediated swelling of astrocytes affects capillary blood flow and intracranial pressure (ICP) in unanesthetized mice using a mild brain edema model. We found improved regulation of capillary blood flow in mice devoid of AQP4, independently of the severity of ICP increase. Furthermore, we found brisk AQP4-dependent astrocytic Ca2+ signals in perivascular endfeet during edema that may play a role in the perturbed capillary blood flow dynamics. The study suggests that astrocytic endfoot swelling and pathological signaling disrupts microvascular flow regulation during brain edema formation.
Collapse
Affiliation(s)
- Luca Bordoni
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Anna E. Thoren
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Eugenio Gutiérrez‐Jiménez
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Knut S. Åbjørsbråten
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Daniel M. Bjørnstad
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Wannan Tang
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology, NeuroclinicSt. Olavs HospitalTrondheimNorway
| | - Mette Stern
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of NeuroradiologyAarhus University HospitalAarhusDenmark
| | - Erlend A. Nagelhus
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | | | - Ole P. Ottersen
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Rune Enger
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| |
Collapse
|
74
|
Prawira Y, Irlisnia, Oswari H, Pudjiadi AH, Parwoto BTAA, Gayatri A. The Comparison of Cerebral Oxygenation among Mechanically Ventilated Children Receiving Protocolized Sedation and Analgesia versus Clinician's Decision in Pediatric Intensive Care Unit. J Emerg Trauma Shock 2023; 16:150-155. [PMID: 38292279 PMCID: PMC10824216 DOI: 10.4103/jets.jets_158_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Adequate sedation and analgesia are two crucial factors affecting recovery of intensive care patients. Improper use of sedation and analgesia in intensive care patients may adversely lead to brain oxygen desaturation. This study aims to determine cerebral oxygenation as measured by near-infrared spectroscopy (NIRS) and inotropic interventions received among mechanically ventilated children in the pediatric intensive care unit (PICU). Methods This study is a nested case - control study in the PICU of Indonesian tertiary hospital. Children aged 1 month to 17 years on mechanical ventilation and were given sedation and analgesia were included in the study. Subjects were divided into two groups according to the protocol of the main study (Clinical Trial ID NCT04788589). Cerebral oxygenation was measured by NIRS at five time points (before sedation, 5-min, 1, 6, and 12 h after sedation). Results Thirty-nine of the 69 subjects were categorized into the protocol group and the rest were in the control group. A decrease of >20% NIRS values was found among subjects in the protocol group at 5-min (6.7%), 1-h (11.1%), 6-h (26.3%), and 12-h (23.8%) time-point. The mean NIRS value was lower and the inotropic intervention was more common in the control group (without protocol), although not statistically significant. Conclusion This study found that mechanically ventilated children who received sedation and analgesia based on the protocol had a greater decrease of >20% NIRS values compared to the other group. The use of sedation and analgesia protocols must be applied in selected patients after careful consideration.
Collapse
Affiliation(s)
- Yogi Prawira
- Department of Child Health, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Irlisnia
- Department of Child Health, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Hanifah Oswari
- Department of Child Health, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Antonius Hocky Pudjiadi
- Department of Child Health, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | | | - Anggi Gayatri
- Department of Pharmacology and Therapeutic, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| |
Collapse
|
75
|
Arumadi A, Hrishi AP, Prathapadas U, Sethuraman M, Venket EH. Evaluation of markers of cerebral oxygenation and metabolism in patients undergoing clipping of cerebral aneurysm under total intravenous anesthesia versus inhalational anesthesia: A prospective randomized trial (COM-IVIN trial). Brain Circ 2023; 9:251-257. [PMID: 38284110 PMCID: PMC10821688 DOI: 10.4103/bc.bc_66_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION Anesthetic goals in patients undergoing clipping of cerebral aneurysm include maintenance of cerebral blood flow, oxygenation, and metabolism to avoid cerebral ischemia and maintenance of hemodynamic stability. We intend to study the influence of anesthetic agents on the outcome of aneurysmal subarachnoid hemorrhage (SAH). MATERIALS AND METHODS This is a prospective, randomized, parallel, single-center pilot trial approved by the Institutional Ethics Committee and is prospectively registered with the Clinical Trial Registry of India. Patients with aneurysmal SAH (aSAH) admitted to our institution for surgical clipping, fulfilling the trial inclusion criteria, will be randomized in a 1:1 allocation ratio utilizing a computerized random allocation sequence to receive either total intravenous anesthesia (n = 25) or inhalational anesthesia (n = 25). Our primary objective is to study the effects of these anesthetic techniques on cerebral oxygenation and metabolism in patients with aSAH. Our secondary objective is to evaluate the impact of these anesthetic techniques on the incidence of delayed cerebral ischemia and long-term patient outcomes in patients with aSAH. The Modified Rankin Score and Glasgow Outcome Scale (GOS) at discharge and 3 months following hospital discharge will be evaluated. An observer blinded to the study intervention will assess the outcome measures. DISCUSSION This study will provide more insight as to which is the ideal anesthetic agent that offers a better neurophysiological profile regarding intraoperative cerebral oxygenation and metabolism, thereby contributing to better postoperative outcomes in aSAH patients.
Collapse
Affiliation(s)
- Ashitha Arumadi
- Department of Neuroanesthesia and Critical Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Ajay Prasad Hrishi
- Department of Neuroanesthesia and Critical Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Unnikrishnan Prathapadas
- Department of Neuroanesthesia and Critical Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Manikandan Sethuraman
- Department of Neuroanesthesia and Critical Care, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Easwer Hari Venket
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
76
|
Ahn SJ, Anfray A, Anrather J, Iadecola C. Calcium transients in nNOS neurons underlie distinct phases of the neurovascular response to barrel cortex activation in awake mice. J Cereb Blood Flow Metab 2023; 43:1633-1647. [PMID: 37149758 PMCID: PMC10581240 DOI: 10.1177/0271678x231173175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 05/08/2023]
Abstract
Neuronal nitric oxide (NO) synthase (nNOS), a Ca2+ dependent enzyme, is expressed by distinct populations of neocortical neurons. Although neuronal NO is well known to contribute to the blood flow increase evoked by neural activity, the relationships between nNOS neurons activity and vascular responses in the awake state remain unclear. We imaged the barrel cortex in awake, head-fixed mice through a chronically implanted cranial window. The Ca2+ indicator GCaMP7f was expressed selectively in nNOS neurons using adenoviral gene transfer in nNOScre mice. Air-puffs directed at the contralateral whiskers or spontaneous motion induced Ca2+ transients in 30.2 ± 2.2% or 51.6 ± 3.3% of nNOS neurons, respectively, and evoked local arteriolar dilation. The greatest dilatation (14.8 ± 1.1%) occurred when whisking and motion occurred simultaneously. Ca2+ transients in individual nNOS neurons and local arteriolar dilation showed various degrees of correlation, which was strongest when the activity of whole nNOS neuron ensemble was examined. We also found that some nNOS neurons became active immediately prior to arteriolar dilation, while others were activated gradually after arteriolar dilatation. Discrete nNOS neuron subsets may contribute either to the initiation or to the maintenance of the vascular response, suggesting a previously unappreciated temporal specificity to the role of NO in neurovascular coupling.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
77
|
Liu M, Jayaraman K, Nelson JW, Mehla J, Diwan D, Vellimana AK, Zipfel GJ, Athiraman U. Propofol Affords No Protection against Delayed Cerebral Ischemia in a Mouse Model of Subarachnoid Hemorrhage. Diseases 2023; 11:130. [PMID: 37873774 PMCID: PMC10594442 DOI: 10.3390/diseases11040130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Delayed cerebral ischemia (DCI) is an important contributor to poor outcomes in aneurysmal subarachnoid hemorrhage (SAH) patients. We previously showed that volatile anesthetics such as isoflurane, sevoflurane and desflurane provided robust protection against SAH-induced DCI, but the impact of a more commonly used intravenous anesthetic agent, propofol, is not known. The goal of our current study is to examine the neurovascular protective effects of propofol on SAH-induced DCI. Twelve-week-old male wild-type mice were utilized for the study. Mice underwent endovascular perforation SAH or sham surgery followed one hour later by propofol infusion through the internal jugular vein (2 mg/kg/min continuous intravenous infusion). Large artery vasospasm was assessed three days after SAH. Neurological outcome assessment was performed at baseline and then daily until animal sacrifice. Statistical analysis was performed via one-way ANOVA and two-way repeated measures ANOVA followed by the Newman-Keuls multiple comparison test with significance set at p < 0.05. Intravenous propofol did not provide any protection against large artery vasospasm or sensory-motor neurological deficits induced by SAH. Our data show that propofol did not afford significant protection against SAH-induced DCI. These results are consistent with recent clinical studies that suggest that the neurovascular protection afforded by anesthetic conditioning is critically dependent on the class of anesthetic agent.
Collapse
Affiliation(s)
- Meizi Liu
- Molecular Cell Biology, Washington University, St. Louis, MO 63110, USA
| | - Keshav Jayaraman
- Department of Neurological Surgery, Washington University, St. Louis, MO 63110, USA
| | - James W. Nelson
- Department of Neurological Surgery, Washington University, St. Louis, MO 63110, USA
| | - Jogender Mehla
- Department of Neurological Surgery, Washington University, St. Louis, MO 63110, USA
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University, St. Louis, MO 63110, USA
| | - Ananth K. Vellimana
- Department of Neurological Surgery, Washington University, St. Louis, MO 63110, USA
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Gregory J. Zipfel
- Department of Neurological Surgery, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology, Washington University, Campus Box 8054, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
78
|
Pinto CR, Duarte JV, Dinis A, Duarte IC, Castelhano J, Pinto J, Oliveira G, Castelo-Branco M. Functional neuroimaging of responses to multiple sensory stimulations in newborns with perinatal asphyxia. Transl Pediatr 2023; 12:1646-1658. [PMID: 37814708 PMCID: PMC10560353 DOI: 10.21037/tp-23-135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 10/11/2023] Open
Abstract
Background Functional neuroimaging can provide pathophysiological information in perinatal asphyxia (PA). However, fundamental unresolved questions remain related to the influence of neurovascular coupling (NVC) maturation on functional responses in early development. We aimed to probe the feasibility and compare the responses to multiple sensory stimulations in newborns with PA using functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). Methods Responses to visual, auditory, and sensorimotor passive stimulation were measured with fMRI and fNIRS and compared in 18 term newborns with PA and six controls. Results Most newborns exhibited a positive fMRI response during visual and sensorimotor stimulation, higher in the sensorimotor. An asymmetric pattern (negative in the left hemisphere) was observed in auditory stimulation. The fNIRS response most resembling the adult pattern (positive) in PA occurred during auditory stimulation, in which oxyhemoglobin (HbO) increased, and deoxyhemoglobin (HbR) decreased. Significative differences were found in the HbO and HbR profiles in newborns with PA compared to the controls, more evident in auditory stimulation. Positive correlations between the fMRI BOLD signal and at least one fNIRS channel (HbO) in all stimuli in newborns with PA were identified: the strongest was in the auditory (r=0.704) and the weakest in the sensorimotor (r=0.544); in more fNIRS channels, in the visual. Conclusions Both techniques are feasible physiological assessment tools, suggesting a distinctive level of maturation in sensory and motor areas. Differences in fNIRS profiles in newborns with PA and controls and the fMRI-fNIRS relationship observed can encourage the fNIRS as a clinically emergent valuable tool.
Collapse
Affiliation(s)
- Carla R. Pinto
- Pediatric Intensive Care Unit, Pediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - João V. Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexandra Dinis
- Pediatric Intensive Care Unit, Pediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Isabel C. Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana Pinto
- Neuroradiology Unit, Medical Imaging Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Guiomar Oliveira
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Child Developmental Center, Research and Clinical Training Center, Pediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT) and Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
79
|
Park CG, Lee D, Jeong WS, Kim DS, Jo YY, Kwak HJ. Impact of Remimazolam versus Sevoflurane Anesthesia on Cerebral Oxygenation and Intracranial Pressure during Gynecological Laparoscopy with Mild Hypercapnia. Med Sci Monit 2023; 29:e941315. [PMID: 37717140 PMCID: PMC10510424 DOI: 10.12659/msm.941315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/01/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Remimazolam has the advantage of better hemodynamic stability compared with other anesthetics. We compared the effects of remimazolam and sevoflurane on cerebral oxygenation, intracranial pressure, and intraoperative hemodynamic parameters during mild hypercapnia in patients undergoing laparoscopy in the Trendelenburg position. MATERIAL AND METHODS Sixty-two patients (20-65 years old) scheduled for gynecological laparoscopy were randomly allocated to either the remimazolam (n=31) or sevoflurane (n=31) group. Respiratory and hemodynamic parameters and regional cerebral oxygen saturation (rSO₂) were recorded. Intracranial pressure was measured using the optic nerve sheath diameter (ONSD). RESULTS The change over time in rSO₂ did not differ between groups (P=0.056). The change in ONSD over time showed a significant intergroup difference (P=0.002). ONSD significantly changed over time (P=0.034) in the sevoflurane group but not in the remimazolam group (P=0.115). The changes in mean arterial pressure and heart rate over time showed significant intergroup differences (P=0.045 and 0.031, respectively). The length of stay and the use of rescue antiemetics and analgesics in the postanesthetic care unit were significantly lower in the remimazolam group than in the sevoflurane group (P=0.023, 0.038, and 0.018, respectively). CONCLUSIONS Remimazolam can provide a favorable hemodynamic profile and attenuate the increase in ONSD during gynecological laparoscopy compared with sevoflurane anesthesia during lung-protective ventilation with mild hypercapnia. Remimazolam can provide faster and better postoperative recovery than sevoflurane anesthesia.
Collapse
|
80
|
Dang DD, Chandrashekhar V, Chandrashekhar V, Ghabdanzanluqui N, Knutsen RH, Nazari MA, Nimmagadda L, Donahue DR, McGavern DB, Kozel BA, Heiss JD, Pacak K, Zhuang Z, Rosenblum JS. A protocol for visualization of murine in situ neurovascular interfaces. STAR Protoc 2023; 4:102367. [PMID: 37339049 PMCID: PMC10511866 DOI: 10.1016/j.xpro.2023.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023] Open
Abstract
Mapping cranial vasculature and adjacent neurovascular interfaces in their entirety will enhance our understanding of central nervous system function in any physiologic state. We present a workflow to visualize in situ murine vasculature and surrounding cranial structures using terminal polymer casting of vessels, iterative sample processing and image acquisition, and automated image registration and processing. While this method does not obtain dynamic imaging due to mouse sacrifice, these studies can be performed before sacrifice and processed with other acquired images. For complete details on the use and execution of this protocol, please refer to Rosenblum et al.1.
Collapse
Affiliation(s)
- Danielle D Dang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Nagela Ghabdanzanluqui
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Russell H Knutsen
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew A Nazari
- Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD 20892, USA
| | - Likitha Nimmagadda
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle R Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beth A Kozel
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John D Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
81
|
Shariff M, Dobariya A, Albaghdadi O, Awkal J, Moussa H, Reyes G, Syed M, Hart R, Longfellow C, Douglass D, El Ahmadieh TY, Good LB, Jakkamsetti V, Kathote G, Angulo G, Ma Q, Brown R, Dunbar M, Shelton JM, Evers BM, Patnaik S, Hoffmann U, Hackmann AE, Mickey B, Peltz M, Jessen ME, Pascual JM. Maintenance of pig brain function under extracorporeal pulsatile circulatory control (EPCC). Sci Rep 2023; 13:13942. [PMID: 37626089 PMCID: PMC10457326 DOI: 10.1038/s41598-023-39344-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Selective vascular access to the brain is desirable in metabolic tracer, pharmacological and other studies aimed to characterize neural properties in isolation from somatic influences from chest, abdomen or limbs. However, current methods for artificial control of cerebral circulation can abolish pulsatility-dependent vascular signaling or neural network phenomena such as the electrocorticogram even while preserving individual neuronal activity. Thus, we set out to mechanically render cerebral hemodynamics fully regulable to replicate or modify native pig brain perfusion. To this end, blood flow to the head was surgically separated from the systemic circulation and full extracorporeal pulsatile circulatory control (EPCC) was delivered via a modified aorta or brachiocephalic artery. This control relied on a computerized algorithm that maintained, for several hours, blood pressure, flow and pulsatility at near-native values individually measured before EPCC. Continuous electrocorticography and brain depth electrode recordings were used to evaluate brain activity relative to the standard offered by awake human electrocorticography. Under EPCC, this activity remained unaltered or minimally perturbed compared to the native circulation state, as did cerebral oxygenation, pressure, temperature and microscopic structure. Thus, our approach enables the study of neural activity and its circulatory manipulation in independence of most of the rest of the organism.
Collapse
Affiliation(s)
- Muhammed Shariff
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Aksharkumar Dobariya
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Obada Albaghdadi
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jacob Awkal
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hadi Moussa
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Gabriel Reyes
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Mansur Syed
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Robert Hart
- The Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Cameron Longfellow
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Debra Douglass
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tarek Y El Ahmadieh
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA
| | - Levi B Good
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Gauri Kathote
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Gus Angulo
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Qian Ma
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA
| | - Ronnie Brown
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Misha Dunbar
- Animal Resource Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sourav Patnaik
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ulrike Hoffmann
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amy E Hackmann
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Heart and Vascular Center Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Bruce Mickey
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthias Peltz
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Michael E Jessen
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Juan M Pascual
- Rare Brain Disorders Program, Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390-8813, USA.
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Eugene McDermott Center for Human Growth and Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
82
|
Jiwaji Z, Márkus NM, McQueen J, Emelianova K, He X, Dando O, Chandran S, Hardingham GE. General anesthesia alters CNS and astrocyte expression of activity-dependent and activity-independent genes. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1216366. [PMID: 37670849 PMCID: PMC10476527 DOI: 10.3389/fnetp.2023.1216366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023]
Abstract
General anesthesia represents a common clinical intervention and yet can result in long-term adverse CNS effects particularly in the elderly or dementia patients. Suppression of cortical activity is a key feature of the anesthetic-induced unconscious state, with activity being a well-described regulator of pathways important for brain health. However, the extent to which the effects of anesthesia go beyond simple suppression of neuronal activity is incompletely understood. We found that general anesthesia lowered cortical expression of genes induced by physiological activity in vivo, and recapitulated additional patterns of gene regulation induced by total blockade of firing activity in vitro, including repression of neuroprotective genes and induction of pro-apoptotic genes. However, the influence of anesthesia extended beyond that which could be accounted for by activity modulation, including the induction of non activity-regulated genes associated with inflammation and cell death. We next focused on astrocytes, important integrators of both neuronal activity and inflammatory signaling. General anesthesia triggered gene expression changes consistent with astrocytes being in a low-activity environment, but additionally caused induction of a reactive profile, with transcriptional changes enriched in those triggered by stroke, neuroinflammation, and Aß/tau pathology. Thus, while the effects of general anesthesia on cortical gene expression are consistent with the strong repression of brain activity, further deleterious effects are apparent including a reactive astrocyte profile.
Collapse
Affiliation(s)
- Zoeb Jiwaji
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Anaesthesia, Critical Care and Pain Medicine, Usher Institute, Edinburgh Royal Infirmary, Edinburgh, United Kingdom
| | - Nóra M. Márkus
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamie McQueen
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Emelianova
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Xin He
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Owen Dando
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles E. Hardingham
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
83
|
Hong WM, Xie YW, Zhao MY, Yu TH, Wang LN, Xu WY, Gao S, Cai HB, Guo Y, Zhang F. Vasoprotective Effects of Hyperoside against Cerebral Ischemia/Reperfusion Injury in Rats: Activation of Large-Conductance Ca 2+-Activated K + Channels. Neural Plast 2023; 2023:5545205. [PMID: 37609123 PMCID: PMC10442186 DOI: 10.1155/2023/5545205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
Hyperoside (Hyp), a kind of Chinese herbal medicine, exerts multiple therapeutic effects on many diseases. However, the role and mechanisms of Hyp in vascular pathophysiology in ischemic stroke need to be further established. The study aimed to investigate the role of (large-conductance Ca2+-activated K+) BK channels on the vasoprotection of Hyp against cerebral ischemia and reperfusion (I/R) injury in rats. The concentration gradient of Hyp was pretreated in both the middle cerebral artery occlusion and reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary vascular smooth muscle cells (VSMCs) in rats. A series of indicators were detected, including neurological deficit score, infarct volume, malondialdehyde (MDA), superoxide dismutase (SOD), cerebral blood flow (CBF), cell viability, membrane potential, and BK channels α- and β1-subunits expression. The results showed that Hyp significantly reduced infarct volume and ameliorated neurological dysfunction in I/R-injured rats. Besides, the effects of I/R-induced reduction of BK channels α- and β1-subunits expression were significantly reversed by Hyp in endothelial-denudated cerebral basilar arteries. Furthermore, the protective effect against I/R-induced increases of MDA and reduction of SOD as well as CBF induced by Hyp was significantly reversed by iberiotoxin (IbTX). In OGD/R-injured VSMCs, downregulated cellular viability and BK channels β1-subunits expression were remarkably reversed by Hyp. However, neither OGD/R nor Hyp affected BK channels α-subunits expression, and Hyp failed to induced hyperpolarization of VSMCs. Moreover, the protective effect against OGD/R-induced reduction of cell viability and SOD level and increases of MDA production induced by Hyp was significantly reversed by IbTX in VSMCs. The study indicates that Hyp has the therapeutic potential to improve vascular outcomes, and the mechanism is associated with suppressing oxidative stress and improving CBF through upregulating BK channels.
Collapse
Affiliation(s)
- Wen-Ming Hong
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- School of Nursing, Anhui Medical University, Hefei 230032, China
- Open Project of Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Yue-Wu Xie
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Meng-Yu Zhao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Tian-Hang Yu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Li-Na Wang
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Wan-Yan Xu
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Shen Gao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hua-Bao Cai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yan Guo
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Fang Zhang
- School of Nursing, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
84
|
Deckers PT, Siero JCW, Mensink MO, Kronenburg A, Braun KPJ, van der Zwan A, Bhogal AA. Anesthesia Depresses Cerebrovascular Reactivity to Acetazolamide in Pediatric Moyamoya Vasculopathy. J Clin Med 2023; 12:4393. [PMID: 37445429 DOI: 10.3390/jcm12134393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Measurements of cerebrovascular reactivity (CVR) are essential for treatment decisions in moyamoya vasculopathy (MMV). Since MMV patients are often young or cognitively impaired, anesthesia is commonly used to limit motion artifacts. Our aim was to investigate the effect of anesthesia on the CVR in pediatric MMV. We compared the CVR with multidelay-ASL and BOLD MRI, using acetazolamide as a vascular stimulus, in all awake and anesthesia pediatric MMV scans at our institution. Since a heterogeneity in disease and treatment influences the CVR, we focused on the (unaffected) cerebellum. Ten awake and nine anesthetized patients were included. The post-acetazolamide CBF and ASL-CVR were significantly lower in anesthesia patients (47.1 ± 15.4 vs. 61.4 ± 12.1, p = 0.04; 12.3 ± 8.4 vs. 23.7 ± 12.2 mL/100 g/min, p = 0.03, respectively). The final BOLD-CVR increase (0.39 ± 0.58 vs. 3.6 ± 1.2% BOLD-change (mean/SD), p < 0.0001), maximum slope of increase (0.0050 ± 0.0040%/s vs. 0.017 ± 0.0059%, p < 0.0001), and time to maximum BOLD-increase (~463 ± 136 and ~697 ± 144 s, p = 0.0028) were all significantly lower in the anesthesia group. We conclude that the response to acetazolamide is distinctively different between awake and anesthetized MMV patients, and we hypothesize that these findings can also apply to other diseases and methods of measuring CVR under anesthesia. Considering that treatment decisions heavily depend on CVR status, caution is warranted when assessing CVR under anesthesia.
Collapse
Affiliation(s)
- Pieter T Deckers
- Department of Neurosurgery, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Radiology and Nuclear Medicine, Meander Medisch Centrum, 3813 TZ Amersfoort, The Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
- Spinoza Center for Neuroimaging, 1105 BK Amsterdam, The Netherlands
| | - Maarten O Mensink
- Pediatric Anesthesiology, Prinses Máxima Centrum, 3584 CS Utrecht, The Netherlands
| | - Annick Kronenburg
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| | - Kees P J Braun
- Department of Pediatric Neurology, Wilhelmina Children's Hospital, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
| | - Albert van der Zwan
- Department of Neurosurgery, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
| | - Alex A Bhogal
- Department of Radiology, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
85
|
Kochar A, Hildebrandt K, Silverstein R, Appavu B. Approaches to neuroprotection in pediatric neurocritical care. World J Crit Care Med 2023; 12:116-129. [PMID: 37397588 PMCID: PMC10308339 DOI: 10.5492/wjccm.v12.i3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Acute neurologic injuries represent a common cause of morbidity and mortality in children presenting to the pediatric intensive care unit. After primary neurologic insults, there may be cerebral brain tissue that remains at risk of secondary insults, which can lead to worsening neurologic injury and unfavorable outcomes. A fundamental goal of pediatric neurocritical care is to mitigate the impact of secondary neurologic injury and improve neurologic outcomes for critically ill children. This review describes the physiologic framework by which strategies in pediatric neurocritical care are designed to reduce the impact of secondary brain injury and improve functional outcomes. Here, we present current and emerging strategies for optimizing neuroprotective strategies in critically ill children.
Collapse
Affiliation(s)
- Angad Kochar
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
| | - Kara Hildebrandt
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
| | - Rebecca Silverstein
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
| | - Brian Appavu
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
- Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85016, United States
| |
Collapse
|
86
|
Siddiqi AZ, Froese L, Gomez A, Sainbhi AS, Stein K, Park K, Vakitbilir N, Zeiler FA. The effect of burst suppression on cerebral blood flow and autoregulation: a scoping review of the human and animal literature. Front Physiol 2023; 14:1204874. [PMID: 37351255 PMCID: PMC10282505 DOI: 10.3389/fphys.2023.1204874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Burst suppression (BS) is an electroencephalography (EEG) pattern in which there are isoelectric periods interspersed with bursts of cortical activity. Targeting BS through anaesthetic administration is used as a tool in the neuro-intensive care unit but its relationship with cerebral blood flow (CBF) and cerebral autoregulation (CA) is unclear. We performed a systematic scoping review investigating the effect of BS on CBF and CA in animals and humans. Methods: We searched MEDLINE, BIOSIS, EMBASE, SCOPUS and Cochrane library from inception to August 2022. The data that were collected included study population, methods to induce and measure BS, and the effect on CBF and CA. Results: Overall, there were 66 studies that were included in the final results, 41 of which examined animals, 24 of which examined humans, and 1 of which examined both. In almost all the studies, BS was induced using an anaesthetic. In most of the animal and human studies, BS was associated with a decrease in CBF and cerebral metabolism, even if the mean arterial pressure remained constant. The effect on CA during periods of stress (hypercapnia, hypothermia, etc.) was variable. Discussion: BS is associated with a reduction in cerebral metabolic demand and CBF, which may explain its usefulness in patients with brain injury. More evidence is needed to elucidate the connection between BS and CA.
Collapse
Affiliation(s)
- A. Zohaib Siddiqi
- Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Kangyun Park
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
87
|
Forti RM, Hobson LJ, Benson EJ, Ko TS, Ranieri NR, Laurent G, Weeks MK, Widmann NJ, Morton S, Davis AM, Sueishi T, Lin Y, Wulwick KS, Fagan N, Shin SS, Kao SH, Licht DJ, White BR, Kilbaugh TJ, Yodh AG, Baker WB. Non-invasive diffuse optical monitoring of cerebral physiology in an adult swine-model of impact traumatic brain injury. BIOMEDICAL OPTICS EXPRESS 2023; 14:2432-2448. [PMID: 37342705 PMCID: PMC10278631 DOI: 10.1364/boe.486363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 04/12/2023] [Indexed: 06/23/2023]
Abstract
In this study, we used diffuse optics to address the need for non-invasive, continuous monitoring of cerebral physiology following traumatic brain injury (TBI). We combined frequency-domain and broadband diffuse optical spectroscopy with diffuse correlation spectroscopy to monitor cerebral oxygen metabolism, cerebral blood volume, and cerebral water content in an established adult swine-model of impact TBI. Cerebral physiology was monitored before and after TBI (up to 14 days post injury). Overall, our results suggest that non-invasive optical monitoring can assess cerebral physiologic impairments post-TBI, including an initial reduction in oxygen metabolism, development of cerebral hemorrhage/hematoma, and brain swelling.
Collapse
Affiliation(s)
- Rodrigo M. Forti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
| | - Lucas J. Hobson
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emilie J. Benson
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany S. Ko
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicolina R. Ranieri
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
| | - Gerard Laurent
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
| | - M. Katie Weeks
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicholas J. Widmann
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah Morton
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anthony M. Davis
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Takayuki Sueishi
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuxi Lin
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Karli S. Wulwick
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicholas Fagan
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Samuel S. Shin
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shih-Han Kao
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel J. Licht
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian R. White
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Todd J. Kilbaugh
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wesley B. Baker
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, CHOP Research Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
88
|
Sung D, Rejimon A, Allen JW, Fedorov AG, Fleischer CC. Predicting brain temperature in humans using bioheat models: Progress and outlook. J Cereb Blood Flow Metab 2023; 43:833-842. [PMID: 36883416 PMCID: PMC10196749 DOI: 10.1177/0271678x231162173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
Brain temperature, regulated by the balance between blood circulation and metabolic heat generation, is an important parameter related to neural activity, cerebral hemodynamics, and neuroinflammation. A key challenge for integrating brain temperature into clinical practice is the lack of reliable and non-invasive brain thermometry. The recognized importance of brain temperature and thermoregulation in both health and disease, combined with limited availability of experimental methods, has motivated the development of computational thermal models using bioheat equations to predict brain temperature. In this mini-review, we describe progress and the current state-of-the-art in brain thermal modeling in humans and discuss potential avenues for clinical applications.
Collapse
Affiliation(s)
- Dongsuk Sung
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Abinand Rejimon
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason W Allen
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory
University School of Medicine, Atlanta, GA, USA
| | - Andrei G Fedorov
- Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Candace C Fleischer
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
89
|
Niu H, Bu H, Zhao J, Zhu Y. Metal-Organic Frameworks-Based Nanoplatforms for the Theranostic Applications of Neurological Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206575. [PMID: 36908079 DOI: 10.1002/smll.202206575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Indexed: 06/08/2023]
Abstract
Neurological diseases are the foremost cause of disability and the second leading cause of death worldwide. Owing to the special microenvironment of neural tissues and biological characteristics of neural cells, a considerable number of neurological disorders are currently incurable. In the past few years, the development of nanoplatforms based on metal-organic frameworks (MOFs) has broadened opportunities for offering sensitive diagnosis/monitoring and effective therapy of neurology-related diseases. In this article, the obstacles for neurotherapeutics, including delayed diagnosis and misdiagnosis, the existence of blood brain barrier (BBB), off-target treatment, irrepressible inflammatory storm/oxidative stress, and irreversible nerve cell death are summarized. Correspondingly, MOFs-based diagnostic/monitoring strategies such as neuroimaging and biosensors (electrochemistry, fluorometry, colorimetry, electrochemiluminescence, etc.) and MOFs-based therapeutic strategies including higher BBB permeability, targeting specific lesion sites, attenuation of neuroinflammation/oxidative stress as well as regeneration of nerve cells, are extensively highlighted for the management of neurological diseases. Finally, the challenges of the present research from perspective of clinical translation are discussed, hoping to facilitate interdisciplinary studies at the intersections between MOFs-based nanoplatforms and neurotheranostics.
Collapse
Affiliation(s)
- Huicong Niu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Hui Bu
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P. R. China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
90
|
Zhu L, Wang M, Liu Y, Fu P, Zhang W, Zhang H, Roe AW, Xi W. Single-microvessel occlusion produces lamina-specific microvascular flow vasodynamics and signs of neurodegenerative change. Cell Rep 2023; 42:112469. [PMID: 37141094 DOI: 10.1016/j.celrep.2023.112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Recent studies have highlighted the importance of understanding the architecture and function of microvasculature, and dysfunction of these microvessels may underlie neurodegenerative disease. Here, we utilize a high-precision ultrafast laser-induced photothrombosis (PLP) method to occlude single capillaries and then quantitatively study the effects on vasodynamics and surrounding neurons. Analysis of the microvascular architecture and hemodynamics after single-capillary occlusion reveals distinct changes upstream vs. downstream branches, which shows rapid regional flow redistribution and local downstream blood-brain barrier (BBB) leakage. Focal ischemia via capillary occlusions surrounding labeled target neurons induces dramatic and rapid lamina-specific changes in neuronal dendritic architecture. Further, we find that micro-occlusion at two different depths within the same vascular arbor results in distinct effects on flow profiles in layers 2/3 vs layer 4. The current results reveal laminar-scale regulation distinctions in microinfarct response and raise the possibility that relatively greater impacts on microvascular function contribute to cognitive decline in neurodegenerative disease.
Collapse
Affiliation(s)
- Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China; Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mengqi Wang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Yin Liu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Peng Fu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Weijie Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Hequn Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
91
|
Kamiya I, Kim C, Kageyama A, Sakamoto A. Lateral position does not cause an interhemicerebral difference of cerebral hemodynamic in healthy adult volunteers. Physiol Rep 2023; 11:e15685. [PMID: 37144602 PMCID: PMC10161209 DOI: 10.14814/phy2.15685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
Cerebral perfusion is maintained at a consistent value irrespective of changes in systemic blood pressure or disease-induced changes in general physical condition. This regulatory mechanism is effective despite postural changes, working even during changes in posture, such as those from sitting to standing or from the head-down to the head-up position. However, no study has addressed changes in perfusion separately in the left and right cerebral hemispheres, and there has been no specific investigation of the effect of the lateral decubitus position on perfusion in each hemisphere. Surgery, particularly respiratory surgery, is often performed with the patient in the lateral decubitus position, and since intraoperative anesthesia may also have an effect, it is important to ascertain the effect of the lateral decubitus position on perfusion in the left and right cerebral hemispheres in the absence of anesthesia. The effects of the lateral decubitus position on heart rate, blood pressure, and hemodynamic in the left and right cerebral hemispheres assessed by regional saturation of oxygen measured by near-infrared spectroscopy were investigated in healthy adult volunteers. Although the lateral decubitus position causes systemic circulatory changes, it may not cause any difference in hemodynamic between the left and right cerebral hemispheres.
Collapse
Affiliation(s)
- Ichiro Kamiya
- Department of Anesthesiology, Nippon Medical School, Chiba Hokusoh Hospital, Chiba, Japan
| | - Chol Kim
- Department of Anesthesiology, Nippon Medical School, Chiba Hokusoh Hospital, Chiba, Japan
| | - Atsuko Kageyama
- Department of Anesthesiology, Nippon Medical School, Chiba Hokusoh Hospital, Chiba, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
92
|
Annoni F, Su F, Peluso L, Lisi I, Caruso E, Pischiutta F, Gouvea Bogossian E, Garcia B, Njimi H, Vincent JL, Gaspard N, Ferlini L, Creteur J, Zanier ER, Taccone FS. Hypertonic sodium lactate infusion reduces vasopressor requirements and biomarkers of brain and cardiac injury after experimental cardiac arrest. Crit Care 2023; 27:161. [PMID: 37087454 PMCID: PMC10122448 DOI: 10.1186/s13054-023-04454-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023] Open
Abstract
INTRODUCTION Prognosis after resuscitation from cardiac arrest (CA) remains poor, with high morbidity and mortality as a result of extensive cardiac and brain injury and lack of effective treatments. Hypertonic sodium lactate (HSL) may be beneficial after CA by buffering severe metabolic acidosis, increasing brain perfusion and cardiac performance, reducing cerebral swelling, and serving as an alternative energetic cellular substrate. The aim of this study was to test the effects of HSL infusion on brain and cardiac injury in an experimental model of CA. METHODS After a 10-min electrically induced CA followed by 5 min of cardiopulmonary resuscitation maneuvers, adult swine (n = 35) were randomly assigned to receive either balanced crystalloid (controls, n = 11) or HSL infusion started during cardiopulmonary resuscitation (CPR, Intra-arrest, n = 12) or after return of spontaneous circulation (Post-ROSC, n = 11) for the subsequent 12 h. In all animals, extensive multimodal neurological and cardiovascular monitoring was implemented. All animals were treated with targeted temperature management at 34 °C. RESULTS Thirty-four of the 35 (97.1%) animals achieved ROSC; one animal in the Intra-arrest group died before completing the observation period. Arterial pH, lactate and sodium concentrations, and plasma osmolarity were higher in HSL-treated animals than in controls (p < 0.001), whereas potassium concentrations were lower (p = 0.004). Intra-arrest and Post-ROSC HSL infusion improved hemodynamic status compared to controls, as shown by reduced vasopressor requirements to maintain a mean arterial pressure target > 65 mmHg (p = 0.005 for interaction; p = 0.01 for groups). Moreover, plasma troponin I and glial fibrillary acid protein (GFAP) concentrations were lower in HSL-treated groups at several time-points than in controls. CONCLUSIONS In this experimental CA model, HSL infusion was associated with reduced vasopressor requirements and decreased plasma concentrations of measured biomarkers of cardiac and cerebral injury.
Collapse
Affiliation(s)
- Filippo Annoni
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium.
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium.
| | - Fuhong Su
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Anesthesiology and Intensive Care, Humanitas Gavazzeni, Via M Gavazzeni 21, 24125, Bergamo, Italy
| | - Ilaria Lisi
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Enrico Caruso
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Francesca Pischiutta
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | | | - Bruno Garcia
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium
| | - Hassane Njimi
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
- Neurology Department, School of Medicine, Yale University, New Haven, CT, USA
| | - Lorenzo Ferlini
- Department of Neurology, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
| | - Elisa R Zanier
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Lennik Road 808, 1070, Brussels, Belgium
- Experimental Laboratory of Intensive Care, Free University of Brussels, Brussels, Belgium
| |
Collapse
|
93
|
Vitt JR, Loper NE, Mainali S. Multimodal and autoregulation monitoring in the neurointensive care unit. Front Neurol 2023; 14:1155986. [PMID: 37153655 PMCID: PMC10157267 DOI: 10.3389/fneur.2023.1155986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Given the complexity of cerebral pathology in patients with acute brain injury, various neuromonitoring strategies have been developed to better appreciate physiologic relationships and potentially harmful derangements. There is ample evidence that bundling several neuromonitoring devices, termed "multimodal monitoring," is more beneficial compared to monitoring individual parameters as each may capture different and complementary aspects of cerebral physiology to provide a comprehensive picture that can help guide management. Furthermore, each modality has specific strengths and limitations that depend largely on spatiotemporal characteristics and complexity of the signal acquired. In this review we focus on the common clinical neuromonitoring techniques including intracranial pressure, brain tissue oxygenation, transcranial doppler and near-infrared spectroscopy with a focus on how each modality can also provide useful information about cerebral autoregulation capacity. Finally, we discuss the current evidence in using these modalities to support clinical decision making as well as potential insights into the future of advanced cerebral homeostatic assessments including neurovascular coupling.
Collapse
Affiliation(s)
- Jeffrey R. Vitt
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Department of Neurology, UC Davis Medical Center, Sacramento, CA, United States
| | - Nicholas E. Loper
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
94
|
Vinay B, Manohara N, Lobo FA, Lee-St John T, Lamperti M. Inhalational versus Intravenous General Anesthesia for mechanical thrombectomy for stroke: A single centre retrospective study. Clin Neurol Neurosurg 2023; 229:107719. [PMID: 37084650 DOI: 10.1016/j.clineuro.2023.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND When general anesthesia is used for endovascular thrombectomy (EVT) for acute ischemic stroke (AIS), the choice of anesthetic agents for maintenance remains inconclusive. The different effects of intravenous anesthetic and volatiles agents on cerebral hemodynamics are known and may explain differences in outcomes of patients with cerebral pathologies exposed to the different anesthetic modalities. In this single institutional retrospective study, we assessed the impact of total intravenous (TIVA) and inhalational anesthesia on outcomes after EVT. METHODS We conducted a retrospective analysis of all patients ≥ 18 years who underwent EVT for AIS of the anterior or posterior circulation under general anesthesia. Baseline patient characteristics, anesthetic agents, intra operative hemodynamics, stroke characteristics, time intervals and clinical outcome data were collected and analyzed. RESULTS The study cohort consisted of 191 patients. After excluding 76 patients who were lost to follow up at 90 days, 51 patients received inhalational anesthesia and 64 patients who received TIVA were analyzed. The clinical characteristics between the groups were comparable. Multivariate logistic regression analysis of outcome measures for TIVA versus inhalational anesthesia showed significantly increased odds of good functional outcome (mRS 0-2) at 90 days (adjusted odds ratio, 3.24; 95% CI, 1.25-8.36; p = 0.015) and a non-significant trend towards decreased mortality (adjusted odds ratio, 0.73; CI, 0.15-3.6; p = 0.70). CONCLUSION Patients who had TIVA for mechanical thrombectomy had significantly increased odds of good functional outcome at 90 days and a non-significant trend towards decrease in mortality. These findings warrant further investigation with large randomized, prospective trials.
Collapse
Affiliation(s)
- Byrappa Vinay
- Anesthesiology Institute, Cleveland Clinic Abu Dhabi, UAE.
| | - Nitin Manohara
- Anesthesiology Institute, Cleveland Clinic Abu Dhabi, UAE
| | | | | | | |
Collapse
|
95
|
Wei Z, Li Y, Bibic A, Duan W, Xu J, Lu H. Toward accurate cerebral blood flow estimation in mice after accounting for anesthesia. Front Physiol 2023; 14:1169622. [PMID: 37123257 PMCID: PMC10130671 DOI: 10.3389/fphys.2023.1169622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Purpose: To improve the accuracy of cerebral blood flow (CBF) measurement in mice by accounting for the anesthesia effects. Methods: The dependence of CBF on anesthesia dose and time was investigated by simultaneously measuring respiration rate (RR) and heart rate (HR) under four different anesthetic regimens. Quantitative CBF was measured by a phase-contrast (PC) MRI technique. RR was evaluated with a mouse monitoring system (MouseOX) while HR was determined using an ultrashort-TE MRI sequence. CBF, RR, and HR were recorded dynamically with a temporal resolution of 1 min in a total of 19 mice. Linear regression models were used to investigate the relationships among CBF, anesthesia dose, RR, and HR. Results: CBF, RR, and HR all showed a significant dependence on anesthesia dose (p < 0.0001). However, the dose in itself was insufficient to account for the variations in physiological parameters, in that they showed a time-dependent change even for a constant dose. RR and HR together can explain 52.6% of the variations in CBF measurements, which is greater than the amount of variance explained by anesthesia dose (32.4%). Based on the multi-parametric regression results, a model was proposed to correct the anesthesia effects in mouse CBF measurements, specificallyC B F c o r r e c t e d = C B F + 0.58 R R - 0.41 H R - 32.66 D o s e . We also reported awake-state CBF in mice to be 142.0 ± 8.8 mL/100 g/min, which is consistent with the model-predicted value. Conclusion: The accuracy of CBF measurement in mice can be improved by using a correction model that accounts for respiration rate, heart rate, and anesthesia dose.
Collapse
Affiliation(s)
- Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| | - Yuguo Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| | - Adnan Bibic
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
96
|
Shirbandi K, Rikhtegar R, Khalafi M, Mirza Aghazadeh Attari M, Rahmani F, Javanmardi P, Iraji S, Babaei Aghdam Z, Rezaei Rashnoudi AM. Functional Magnetic Resonance Spectroscopy of Lactate in Alzheimer Disease: A Comprehensive Review of Alzheimer Disease Pathology and the Role of Lactate. Top Magn Reson Imaging 2023; 32:15-26. [PMID: 37093700 PMCID: PMC10121369 DOI: 10.1097/rmr.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 04/13/2023]
Abstract
ABSTRACT Functional 1H magnetic resonance spectroscopy (fMRS) is a derivative of dynamic MRS imaging. This modality links physiologic metabolic responses with available activity and measures absolute or relative concentrations of various metabolites. According to clinical evidence, the mitochondrial glycolysis pathway is disrupted in many nervous system disorders, especially Alzheimer disease, resulting in the activation of anaerobic glycolysis and an increased rate of lactate production. Our study evaluates fMRS with J-editing as a cutting-edge technique to detect lactate in Alzheimer disease. In this modality, functional activation is highlighted by signal subtractions of lipids and macromolecules, which yields a much higher signal-to-noise ratio and enables better detection of trace levels of lactate compared with other modalities. However, until now, clinical evidence is not conclusive regarding the widespread use of this diagnostic method. The complex machinery of cellular and noncellular modulators in lactate metabolism has obscured the potential roles fMRS imaging can have in dementia diagnosis. Recent developments in MRI imaging such as the advent of 7 Tesla machines and new image reconstruction methods, coupled with a renewed interest in the molecular and cellular basis of Alzheimer disease, have reinvigorated the drive to establish new clinical options for the early detection of Alzheimer disease. Based on the latter, lactate has the potential to be investigated as a novel diagnostic and prognostic marker for Alzheimer disease.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rikhtegar
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | - Mohammad Khalafi
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farzaneh Rahmani
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Pouya Javanmardi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajjad Iraji
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Babaei Aghdam
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
97
|
Crouzet C, Phan T, Wilson RH, Shin TJ, Choi B. Intrinsic, widefield optical imaging of hemodynamics in rodent models of Alzheimer's disease and neurological injury. NEUROPHOTONICS 2023; 10:020601. [PMID: 37143901 PMCID: PMC10152182 DOI: 10.1117/1.nph.10.2.020601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The complex cerebrovascular network is critical to controlling local cerebral blood flow (CBF) and maintaining brain homeostasis. Alzheimer's disease (AD) and neurological injury can result in impaired CBF regulation, blood-brain barrier breakdown, neurovascular dysregulation, and ultimately impaired brain homeostasis. Measuring cortical hemodynamic changes in rodents can help elucidate the complex physiological dynamics that occur in AD and neurological injury. Widefield optical imaging approaches can measure hemodynamic information, such as CBF and oxygenation. These measurements can be performed over fields of view that range from millimeters to centimeters and probe up to the first few millimeters of rodent brain tissue. We discuss the principles and applications of three widefield optical imaging approaches that can measure cerebral hemodynamics: (1) optical intrinsic signal imaging, (2) laser speckle imaging, and (3) spatial frequency domain imaging. Future work in advancing widefield optical imaging approaches and employing multimodal instrumentation can enrich hemodynamic information content and help elucidate cerebrovascular mechanisms that lead to the development of therapeutic agents for AD and neurological injury.
Collapse
Affiliation(s)
- Christian Crouzet
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thinh Phan
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Robert H. Wilson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Medicine, Irvine, California, United States
| | - Teo Jeon Shin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Seoul National University, Department of Pediatric Dentistry and Dental Research Institute, Seoul, Republic of Korea
| | - Bernard Choi
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, Department of Surgery, Irvine, California, United States
- University of California, Irvine, Edwards Lifesciences Foundation Cardiovascular Innovation Research Center, California, United States
| |
Collapse
|
98
|
Zhang T, Deng D, Huang S, Fu D, Wang T, Xu F, Ma L, Ding Y, Wang K, Wang Y, Zhao W, Chen X. A retrospect and outlook on the neuroprotective effects of anesthetics in the era of endovascular therapy. Front Neurosci 2023; 17:1140275. [PMID: 37056305 PMCID: PMC10086253 DOI: 10.3389/fnins.2023.1140275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Studies on the neuroprotective effects of anesthetics were carried out more than half a century ago. Subsequently, many cell and animal experiments attempted to verify the findings. However, in clinical trials, the neuroprotective effects of anesthetics were not observed. These contradictory results suggest a mismatch between basic research and clinical trials. The Stroke Therapy Academic Industry Roundtable X (STAIR) proposed that the emergence of endovascular thrombectomy (EVT) would provide a proper platform to verify the neuroprotective effects of anesthetics because the haemodynamics of patients undergoing EVT is very close to the ischaemia–reperfusion model in basic research. With the widespread use of EVT, it is necessary for us to re-examine the neuroprotective effects of anesthetics to guide the use of anesthetics during EVT because the choice of anesthesia is still based on team experience without definite guidelines. In this paper, we describe the research status of anesthesia in EVT and summarize the neuroprotective mechanisms of some anesthetics. Then, we focus on the contradictory results between clinical trials and basic research and discuss the causes. Finally, we provide an outlook on the neuroprotective effects of anesthetics in the era of endovascular therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiangdong Chen
- *Correspondence: Xiangdong Chen, ; orcid.org/0000-0003-3347-2947
| |
Collapse
|
99
|
Keshavarz S, Nemati M, Saied Salehi M, Naseh M. The impact of anesthetic drugs on hemodynamic parameters and neurological outcomes following temporal middle cerebral artery occlusion in rats. Neuroreport 2023; 34:199-204. [PMID: 36789841 PMCID: PMC10516172 DOI: 10.1097/wnr.0000000000001863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 02/16/2023]
Abstract
The induction of ischemic stroke in the experimental model requires general anesthesia. One of the factors that can be effective in the size of ischemic brain lesions and neurological outcomes is the type of anesthesia. So, the current study was designed to compare the impacts of the most important and widely used anesthetics including halothane, isoflurane, and chloral hydrate on the transient middle cerebral artery occlusion (MCAO) outcomes. Adult Male Sprague-Dawley rats were randomly divided into three groups as follows: (1) MCAO + halothane group, (2) MCAO + isoflurane group, and (3) MCAO + chloral hydrate group. After 24 h, the mortality rate, infarct size, tissue swelling, neurological function, hemodynamic, and arterial blood gas parameters were assessed. Our finding showed that 60 min MCAO rats anesthetized with chloral hydrate significantly increased mortality rate, infarct size, tissue swelling, and neurological deficits compared with halothane and isoflurane anesthetics after 24 h of MCAO. Also, chloral hydrate caused a significant decrease in mean arterial pressure and arterial pO2 compared to halothane and isoflurane anesthetics. On the basis of the current data, we concluded that chloral hydrate increased cerebral infarct volume and neurological outcomes and reduced hemodynamic and metabolic parameters compared with halothane and isoflurane-anesthetized rats temporal MCAO.
Collapse
Affiliation(s)
- Somaye Keshavarz
- Histomorphometry and Stereology Research Center
- Department of Physiology
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
100
|
Denchev K, Gomez J, Chen P, Rosenblatt K. Traumatic Brain Injury: Intraoperative Management and Intensive Care Unit Multimodality Monitoring. Anesthesiol Clin 2023; 41:39-78. [PMID: 36872007 DOI: 10.1016/j.anclin.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Traumatic brain injury is a devastating event associated with substantial morbidity. Pathophysiology involves the initial trauma, subsequent inflammatory response, and secondary insults, which worsen brain injury severity. Management entails cardiopulmonary stabilization and diagnostic imaging with targeted interventions, such as decompressive hemicraniectomy, intracranial monitors or drains, and pharmacological agents to reduce intracranial pressure. Anesthesia and intensive care requires control of multiple physiologic variables and evidence-based practices to reduce secondary brain injury. Advances in biomedical engineering have enhanced assessments of cerebral oxygenation, pressure, metabolism, blood flow, and autoregulation. Many centers employ multimodality neuromonitoring for targeted therapies with the hope to improve recovery.
Collapse
Affiliation(s)
- Krassimir Denchev
- Department of Anesthesiology, Wayne State University, 44555 Woodward Avenue, SJMO Medical Office Building, Suite 308, Pontiac, MI 48341, USA
| | - Jonathan Gomez
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA
| | - Pinxia Chen
- Department of Anesthesiology and Critical Care Medicine, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA 18015, USA
| | - Kathryn Rosenblatt
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Phipps 455, Baltimore, MD 21287, USA.
| |
Collapse
|