51
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
52
|
Satoh T, Sugiura S, Shin K, Onuki-Nagasaki R, Ishida S, Kikuchi K, Kakiki M, Kanamori T. A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. LAB ON A CHIP 2017; 18:115-125. [PMID: 29184959 DOI: 10.1039/c7lc00952f] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This paper reports a multi-throughput multi-organ-on-a-chip system formed on a pneumatic pressure-driven medium circulation platform with a microplate-sized format as a novel type of microphysiological system. The pneumatic pressure-driven platform enabled parallelized multi-organ experiments (i.e. simultaneous operation of multiple multi-organ culture units) and pipette-friendly liquid handling for various conventional cell culture experiments, including cell seeding, medium change, live/dead staining, cell growth analysis, gene expression analysis of collected cells, and liquid chromatography-mass spectrometry analysis of chemical compounds in the culture medium. An eight-throughput two-organ system and a four-throughput four-organ system were constructed on a common platform, with different microfluidic plates. The two-organ system, composed of liver and cancer models, was used to demonstrate the effect of an anticancer prodrug, capecitabine (CAP), whose metabolite 5-fluorouracil (5-FU) after metabolism by HepaRG hepatic cells inhibited the proliferation of HCT-116 cancer cells. The four-organ system, composed of intestine, liver, cancer, and connective tissue models, was used to demonstrate evaluation of the effects of 5-FU and two prodrugs of 5-FU (CAP and tegafur) on multiple organ models, including cancer and connective tissue.
Collapse
Affiliation(s)
- T Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Colón A, Guo X, Akanda N, Cai Y, Hickman JJ. Functional analysis of human intrafusal fiber innervation by human γ-motoneurons. Sci Rep 2017; 7:17202. [PMID: 29222416 PMCID: PMC5722897 DOI: 10.1038/s41598-017-17382-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Investigation of neuromuscular deficits and diseases such as SMA, as well as for next generation prosthetics, utilizing in vitro phenotypic models would benefit from the development of a functional neuromuscular reflex arc. The neuromuscular reflex arc is the system that integrates the proprioceptive information for muscle length and activity (sensory afferent), to modify motoneuron output to achieve graded muscle contraction (actuation efferent). The sensory portion of the arc is composed of proprioceptive sensory neurons and the muscle spindle, which is embedded in the muscle tissue and composed of intrafusal fibers. The gamma motoneurons (γ-MNs) that innervate these fibers regulate the intrafusal fiber's stretch so that they retain proper tension and sensitivity during muscle contraction or relaxation. This mechanism is in place to maintain the sensitivity of proprioception during dynamic muscle activity and to prevent muscular damage. In this study, a co-culture system was developed for innervation of intrafusal fibers by human γ-MNs and demonstrated by morphological and immunocytochemical analysis, then validated by functional electrophysiological evaluation. This human-based fusimotor model and its incorporation into the reflex arc allows for a more accurate recapitulation of neuromuscular function for applications in disease investigations, drug discovery, prosthetic design and neuropathic pain investigations.
Collapse
Affiliation(s)
- A Colón
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - X Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - N Akanda
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Y Cai
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - J J Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.
| |
Collapse
|
54
|
Rao RT, Scherholz ML, Hartmanshenn C, Bae SA, Androulakis IP. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology. Comput Chem Eng 2017; 107:100-110. [PMID: 29353945 DOI: 10.1016/j.compchemeng.2017.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.
Collapse
Affiliation(s)
- Rohit T Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Megerle L Scherholz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Clara Hartmanshenn
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Seul-A Bae
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854.,Department of Biomedical Engineering, Rutgers The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854
| |
Collapse
|
55
|
Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab Pharmacokinet 2017; 33:43-48. [PMID: 29175062 DOI: 10.1016/j.dmpk.2017.11.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/23/2022]
Abstract
Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future.
Collapse
|
56
|
Cyr KJ, Avaldi OM, Wikswo JP. Circadian hormone control in a human-on-a-chip: In vitro biology's ignored component? Exp Biol Med (Maywood) 2017; 242:1714-1731. [PMID: 29065796 PMCID: PMC5832251 DOI: 10.1177/1535370217732766] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Organs-on-Chips (OoCs) are poised to reshape dramatically the study of biology by replicating in vivo the function of individual and coupled human organs. Such microphysiological systems (MPS) have already recreated complex physiological responses necessary to simulate human organ function not evident in two-dimensional in vitro biological experiments. OoC researchers hope to streamline pharmaceutical development, accelerate toxicology studies, limit animal testing, and provide new insights beyond the capability of current biological models. However, to develop a physiologically accurate Human-on-a-Chip, i.e., an MPS homunculus that functions as an interconnected, whole-body, model organ system, one must couple individual OoCs with proper fluidic and metabolic scaling. This will enable the study of the effects of organ-organ interactions on the metabolism of drugs and toxins. Critical to these efforts will be the recapitulation of the complex physiological signals that regulate the endocrine, metabolic, and digestive systems. To date, with the exception of research focused on reproductive organs on chips, most OoC research ignores homuncular endocrine regulation, in particular the circadian rhythms that modulate the function of all organ systems. We outline the importance of cyclic endocrine regulation and the role that it may play in the development of MPS homunculi for the pharmacology, toxicology, and systems biology communities. Moreover, we discuss the critical end-organ hormone interactions that are most relevant for a typical coupled-OoC system, and the possible research applications of a missing endocrine system MicroFormulator (MES-µF) that could impose biological rhythms on in vitro models. By linking OoCs together through chemical messenger systems, advanced physiological phenomena relevant to pharmacokinetics and pharmacodynamics studies can be replicated. The concept of a MES-µF could be applied to other standard cell-culture systems such as well plates, thereby extending the concept of circadian hormonal regulation to much of in vitro biology. Impact statement Historically, cyclic endocrine modulation has been largely ignored within in vitro cell culture, in part because cultured cells typically have their media changed every day or two, precluding hourly adjustment of hormone concentrations to simulate circadian rhythms. As the Organ-on-Chip (OoC) community strives for greater physiological realism, the contribution of hormonal oscillations toward regulation of organ systems has been examined only in the context of reproductive organs, and circadian variation of the breadth of other hormones on most organs remains unaddressed. We illustrate the importance of cyclic endocrine modulation and the role that it plays within individual organ systems. The study of cyclic endocrine modulation within OoC systems will help advance OoC research to the point where it can reliably replicate in vitro key regulatory components of human physiology. This will help translate OoC work into pharmaceutical applications and connect the OoC community with the greater pharmacology and physiology communities.
Collapse
Affiliation(s)
- Kevin J. Cyr
- Vanderbilt Institute for Integrative Biosystems Research and Education
- Systems Biology and Bioengineering Undergraduate Research Experience
| | - Omero M. Avaldi
- Vanderbilt Institute for Integrative Biosystems Research and Education
- Systems Biology and Bioengineering Undergraduate Research Experience
| | - John P. Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education
- Department of Biomedical Engineering
- Department of Molecular Physiology and Biophysics
- Department of Physics and Astronomy, Vanderbilt University, Nashville TN, 37235, USA
| |
Collapse
|
57
|
Watson DE, Hunziker R, Wikswo JP. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Exp Biol Med (Maywood) 2017; 242:1559-1572. [PMID: 29065799 DOI: 10.1177/1535370217732765] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microphysiological systems (MPS), which include engineered organoids (EOs), single organ/tissue chips (TCs), and multiple organs interconnected to create miniature in vitro models of human physiological systems, are rapidly becoming effective tools for drug development and the mechanistic understanding of tissue physiology and pathophysiology. The second MPS thematic issue of Experimental Biology and Medicine comprises 15 articles by scientists and engineers from the National Institutes of Health, the IQ Consortium, the Food and Drug Administration, and Environmental Protection Agency, an MPS company, and academia. Topics include the progress, challenges, and future of organs-on-chips, dissemination of TCs into Pharma, children's health protection, liver zonation, liver chips and their coupling to interconnected systems, gastrointestinal MPS, maturation of immature cardiomyocytes in a heart-on-a-chip, coculture of multiple cell types in a human skin construct, use of synthetic hydrogels to create EOs that form neural tissue models, the blood-brain barrier-on-a-chip, MPS models of coupled female reproductive organs, coupling MPS devices to create a body-on-a-chip, and the use of a microformulator to recapitulate endocrine circadian rhythms. While MPS hardware has been relatively stable since the last MPS thematic issue, there have been significant advances in cell sourcing, with increased reliance on human-induced pluripotent stem cells, and in characterization of the genetic and functional cell state in MPS bioreactors. There is growing appreciation of the need to minimize perfusate-to-cell-volume ratios and respect physiological scaling of coupled TCs. Questions asked by drug developers are followed by an analysis of the potential value, costs, and needs of Pharma. Of highest value and lowest switching costs may be the development of MPS disease models to aid in the discovery of disease mechanisms; novel compounds including probes, leads, and clinical candidates; and mechanism of action of drug candidates. Impact statement Microphysiological systems (MPS), which include engineered organoids and both individual and coupled organs-on-chips and tissue chips, are a rapidly growing topic of research that addresses the known limitations of conventional cellular monoculture on flat plastic - a well-perfected set of techniques that produces reliable, statistically significant results that may not adequately represent human biology and disease. As reviewed in this article and the others in this thematic issue, MPS research has made notable progress in the past three years in both cell sourcing and characterization. As the field matures, currently identified challenges are being addressed, and new ones are being recognized. Building upon investments by the Defense Advanced Research Projects Agency, National Institutes of Health, Food and Drug Administration, Defense Threat Reduction Agency, and Environmental Protection Agency of more than $200 million since 2012 and sizable corporate spending, academic and commercial players in the MPS community are demonstrating their ability to meet the translational challenges required to apply MPS technologies to accelerate drug development and advance toxicology.
Collapse
Affiliation(s)
| | - Rosemarie Hunziker
- 2 National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P Wikswo
- 3 Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics & Astronomy, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235-1807, USA
| |
Collapse
|
58
|
Ewart L, Dehne EM, Fabre K, Gibbs S, Hickman J, Hornberg E, Ingelman-Sundberg M, Jang KJ, Jones DR, Lauschke VM, Marx U, Mettetal JT, Pointon A, Williams D, Zimmermann WH, Newham P. Application of Microphysiological Systems to Enhance Safety Assessment in Drug Discovery. Annu Rev Pharmacol Toxicol 2017; 58:65-82. [PMID: 29029591 DOI: 10.1146/annurev-pharmtox-010617-052722] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enhancing the early detection of new therapies that are likely to carry a safety liability in the context of the intended patient population would provide a major advance in drug discovery. Microphysiological systems (MPS) technology offers an opportunity to support enhanced preclinical to clinical translation through the generation of higher-quality preclinical physiological data. In this review, we highlight this technological opportunity by focusing on key target organs associated with drug safety and metabolism. By focusing on MPS models that have been developed for these organs, alongside other relevant in vitro models, we review the current state of the art and the challenges that still need to be overcome to ensure application of this technology in enhancing drug discovery.
Collapse
Affiliation(s)
- Lorna Ewart
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| | | | - Kristin Fabre
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451, USA
| | - Susan Gibbs
- Department of Dermatology, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA Amsterdam, The Netherlands
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Ellinor Hornberg
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, 431 83 Mölndal, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - David R Jones
- Medicines & Healthcare Products Regulatory Agency, London SW1W 9SZ, United Kingdom
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Jerome T Mettetal
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451, USA
| | - Amy Pointon
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| | - Dominic Williams
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen 37075, Germany.,German Center for Cardiovascular Research (DZHK), Goettingen 37075, Germany
| | - Peter Newham
- Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge CB4 0WG, United Kingdom;
| |
Collapse
|
59
|
Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Shrike Zhang Y, Shin SR, Zhao L, Aleman J, Hall AR, Shupe TD, Kleensang A, Dokmeci MR, Jin Lee S, Jackson JD, Yoo JJ, Hartung T, Khademhosseini A, Soker S, Bishop CE, Atala A. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep 2017; 7:8837. [PMID: 28821762 PMCID: PMC5562747 DOI: 10.1038/s41598-017-08879-x] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/14/2017] [Indexed: 01/01/2023] Open
Abstract
Many drugs have progressed through preclinical and clinical trials and have been available - for years in some cases - before being recalled by the FDA for unanticipated toxicity in humans. One reason for such poor translation from drug candidate to successful use is a lack of model systems that accurately recapitulate normal tissue function of human organs and their response to drug compounds. Moreover, tissues in the body do not exist in isolation, but reside in a highly integrated and dynamically interactive environment, in which actions in one tissue can affect other downstream tissues. Few engineered model systems, including the growing variety of organoid and organ-on-a-chip platforms, have so far reflected the interactive nature of the human body. To address this challenge, we have developed an assortment of bioengineered tissue organoids and tissue constructs that are integrated in a closed circulatory perfusion system, facilitating inter-organ responses. We describe a three-tissue organ-on-a-chip system, comprised of liver, heart, and lung, and highlight examples of inter-organ responses to drug administration. We observe drug responses that depend on inter-tissue interaction, illustrating the value of multiple tissue integration for in vitro study of both the efficacy of and side effects associated with candidate drugs.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ivy Mead
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Hyun-Wook Kang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Young-Joon Seol
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02139, USA
| | - Su-Ryon Shin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02139, USA
| | - Liang Zhao
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University Baltimore, 615N Wolfe Street, Baltimore, MD, USA
| | - Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02139, USA
| | - Adam R Hall
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas D Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Andre Kleensang
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University Baltimore, 615N Wolfe Street, Baltimore, MD, USA
| | - Mehmet R Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02139, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - John D Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University Baltimore, 615N Wolfe Street, Baltimore, MD, USA.,Steinbeis CAAT-Europe, University of Konstanz, Universitätstr 10, Konstanz, Baden-Württemberg, Germany
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02139, USA.,Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea.,Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
60
|
Cartus A, Schrenk D. Current methods in risk assessment of genotoxic chemicals. Food Chem Toxicol 2017; 106:574-582. [DOI: 10.1016/j.fct.2016.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022]
|
61
|
Computationally Informed Design of a Multi-Axial Actuated Microfluidic Chip Device. Sci Rep 2017; 7:5489. [PMID: 28710359 PMCID: PMC5511244 DOI: 10.1038/s41598-017-05237-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/25/2017] [Indexed: 12/02/2022] Open
Abstract
This paper describes the computationally informed design and experimental validation of a microfluidic chip device with multi-axial stretching capabilities. The device, based on PDMS soft-lithography, consisted of a thin porous membrane, mounted between two fluidic compartments, and tensioned via a set of vacuum-driven actuators. A finite element analysis solver implementing a set of different nonlinear elastic and hyperelastic material models was used to drive the design and optimization of chip geometry and to investigate the resulting deformation patterns under multi-axial loading. Computational results were cross-validated by experimental testing of prototypal devices featuring the in silico optimized geometry. The proposed methodology represents a suite of computationally handy simulation tools that might find application in the design and in silico mechanical characterization of a wide range of stretchable microfluidic devices.
Collapse
|
62
|
Abstract
To curb the high cost of drug development, there is an urgent need to develop more predictive tissue models using human cells to determine drug efficacy and safety in advance of clinical testing. Recent insights gained through fundamental biological studies have validated the importance of dynamic cell environments and cellular communication to the expression of high fidelity organ function. Building on this knowledge, emerging organ-on-a-chip technology is poised to fill the gaps in drug screening by offering predictive human tissue models with methods of sophisticated tissue assembly. Organ-on-a-chip start-ups have begun to spawn from academic research to fill this commercial space and are attracting investment to transform the drug discovery industry. This review traces the history, examines the scientific foundation and envisages the prospect of these renowned organ-on-a-chip technologies. It serves as a guide for new members of this dynamic field to navigate the existing scientific and market space.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
63
|
Zhang YS, Zhang YN, Zhang W. Cancer-on-a-chip systems at the frontier of nanomedicine. Drug Discov Today 2017; 22:1392-1399. [PMID: 28390929 DOI: 10.1016/j.drudis.2017.03.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/23/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023]
Abstract
Nanomedicine provides a unique opportunity for promoting drug efficacy through enhanced delivery mechanisms. However, its translation into the clinics has been relatively slow compared with the large amount of research occurring in laboratory settings. Given the limitations of conventional cell culture models and preclinical animal models, we discuss the potential utility of recently developed cancer-on-a-chip platforms, which maximally replicate the pathophysiology of the human tumor microenvironments, as alternatives for effective evaluation of nanomedicine. We begin with a brief discussion of nanomedicine, then chart the history of organ-on-a-chip platform development and their recent evolution as tools for modeling different cancers for assessing nanomedicine efficacy, concluding with future perspectives for the field.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Yi-Nan Zhang
- Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Weijia Zhang
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
64
|
Crawford SE, Hartung T, Hollert H, Mathes B, van Ravenzwaay B, Steger-Hartmann T, Studer C, Krug HF. Green Toxicology: a strategy for sustainable chemical and material development. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:16. [PMID: 28435767 PMCID: PMC5380705 DOI: 10.1186/s12302-017-0115-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/24/2017] [Indexed: 05/04/2023]
Abstract
Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of "Green Chemistry" and "Green Engineering", "Green Toxicology" aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.
Collapse
Affiliation(s)
- Sarah E. Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas Hartung
- John Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA
- CAAT-Europe, University of Konstanz, Universitaetsstrasse 10, 78467 Constance, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Björn Mathes
- DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt, Germany
| | | | | | - Christoph Studer
- Federal Office of Public Health, Schwarzenburgstraße 157, 3003 Bern, Switzerland
| | - Harald F. Krug
- Empa, Materials Science and Technology, Lerchenfeld-straße 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
65
|
|
66
|
Wang YI, Oleaga C, Long CJ, Esch MB, McAleer CW, Miller PG, Hickman JJ, Shuler ML. Self-contained, low-cost Body-on-a-Chip systems for drug development. Exp Biol Med (Maywood) 2017; 242:1701-1713. [PMID: 29065797 DOI: 10.1177/1535370217694101] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Integrated multi-organ microphysiological systems are an evolving tool for preclinical evaluation of the potential toxicity and efficacy of drug candidates. Such systems, also known as Body-on-a-Chip devices, have a great potential to increase the successful conversion of drug candidates entering clinical trials into approved drugs. Systems, to be attractive for commercial adoption, need to be inexpensive, easy to operate, and give reproducible results. Further, the ability to measure functional responses, such as electrical activity, force generation, and barrier integrity of organ surrogates, enhances the ability to monitor response to drugs. The ability to operate a system for significant periods of time (up to 28 d) will provide potential to estimate chronic as well as acute responses of the human body. Here we review progress towards a self-contained low-cost microphysiological system with functional measurements of physiological responses. Impact statement Multi-organ microphysiological systems are promising devices to improve the drug development process. The development of a pumpless system represents the ability to build multi-organ systems that are of low cost, high reliability, and self-contained. These features, coupled with the ability to measure electrical and mechanical response in addition to chemical or metabolic changes, provides an attractive system for incorporation into the drug development process. This will be the most complete review of the pumpless platform with recirculation yet written.
Collapse
Affiliation(s)
- Ying I Wang
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Carlota Oleaga
- 2 NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Christopher J Long
- 2 NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.,3 Hesperos, Inc., Orlando, FL 32826, USA
| | - Mandy B Esch
- 4 Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Christopher W McAleer
- 2 NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.,3 Hesperos, Inc., Orlando, FL 32826, USA
| | - Paula G Miller
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - James J Hickman
- 2 NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.,3 Hesperos, Inc., Orlando, FL 32826, USA
| | - Michael L Shuler
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.,3 Hesperos, Inc., Orlando, FL 32826, USA
| |
Collapse
|
67
|
Mohammadi MH, Heidary Araghi B, Beydaghi V, Geraili A, Moradi F, Jafari P, Janmaleki M, Valente KP, Akbari M, Sanati-Nezhad A. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies. Adv Healthc Mater 2016; 5:2459-2480. [PMID: 27548388 DOI: 10.1002/adhm.201600439] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/30/2016] [Indexed: 12/19/2022]
Abstract
In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes.
Collapse
Affiliation(s)
- Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Behnaz Heidary Araghi
- Department of Materials Science and Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Vahid Beydaghi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Farshid Moradi
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Parya Jafari
- Department of Electrical Engineering; Sharif University of Technology; Azadi Ave Tehran Iran
| | - Mohsen Janmaleki
- Department of Mechanical and Manufacturing Engineering; Center for Bioengineering Research and Education; University of Calgary; 2500 University Drive NW Calgary AB Canada
| | - Karolina Papera Valente
- Department of Mechanical Engineering, and Center for Biomedical Research; University of Victoria; Victoria BC Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, and Center for Biomedical Research; University of Victoria; Victoria BC Canada
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering; Center for Bioengineering Research and Education; University of Calgary; 2500 University Drive NW Calgary AB Canada
| |
Collapse
|
68
|
Lee H, Kim DS, Ha SK, Choi I, Lee JM, Sung JH. A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model. Biotechnol Bioeng 2016; 114:432-443. [PMID: 27570096 DOI: 10.1002/bit.26087] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/09/2016] [Accepted: 08/21/2016] [Indexed: 12/15/2022]
Abstract
A multi-organ-on-a-chip (MOC), also known as a human-on-a-chip, aims to simulate whole body response to drugs by connecting microscale cell cultures of multiple tissue types via fluidic channels and reproducing the interaction between them. While several studies have demonstrated the usefulness of MOC at a proof-of-concept level, improvements are needed to enable wider acceptance of such systems; ease of use for general biological researchers, and a mathematical framework to design and interpret the MOC systems. Here, we introduce a pumpless, user-friendly MOC which can be easily assembled and operated, and demonstrate the use of a PK-PD model for interpreting drug's action inside the MOC. The metabolism-dependent anticancer activity of a flavonoid, luteolin, was evaluated in a two-compartment MOC containing the liver (HepG2) and the tumor (HeLa) cells, and the observed anticancer activity was significantly weaker than that anticipated from a well plate study. Simulation of a PK-PD model revealed that simultaneous metabolism and tumor-killing actions likely resulted in a decreased anti-cancer effect. Our work demonstrates that the combined platform of mathematical PK-PD model and an experimental MOC can be a useful tool for gaining an insight into the mechanism of action of drugs with interactions between multiple organs. Biotechnol. Bioeng. 2017;114: 432-443. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyuna Lee
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Dae Shik Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, Seongnam-si, Gyenggi-do, Republic of Korea
| | - Inwook Choi
- Korea Food Research Institute, Seongnam-si, Gyenggi-do, Republic of Korea
| | - Jong Min Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| |
Collapse
|
69
|
Weltin A, Hammer S, Noor F, Kaminski Y, Kieninger J, Urban GA. Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids. Biosens Bioelectron 2016; 87:941-948. [PMID: 27665516 DOI: 10.1016/j.bios.2016.07.094] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
3D hepatic microtissues, unlike 2D cell cultures, retain many of the in-vivo-like functionalities even after long-term cultivation. Such 3D cultures are increasingly applied to investigate liver damage due to drug exposure in toxicology. However, there is a need for thorough metabolic characterization of these microtissues for mechanistic understanding of effects on culture behaviour. We measured metabolic parameters from single human HepaRG hepatocyte spheroids online and continuously with electrochemical microsensors. A microsensor platform for lactate and oxygen was integrated in a standard 96-well plate. Electrochemical microsensors for lactate and oxygen allow fast, precise and continuous long-term measurement of metabolic parameters directly in the microwell. The demonstrated capability to precisely detect small concentration changes by single spheroids is the key to access their metabolism. Lactate levels in the culture medium starting from 50µM with production rates of 5µMh-1 were monitored and precisely quantified over three days. Parallel long-term oxygen measurements showed no oxygen depletion or hypoxic conditions in the microwell. Increased lactate production by spheroids upon suppression of the aerobic metabolism was observed. The dose-dependent decrease in lactate production caused by the addition of the hepatotoxic drug Bosentan was determined. We showed that in a toxicological application, metabolic monitoring yields quantitative, online information on cell viability, which complements and supports other methods such as microscopy. The demonstrated continuous access to 3D cell culture metabolism within a standard setup improves in vitro toxicology models in replacement strategies of animal experiments. Controlling the microenvironment of such organotypic cultures has impact in tissue engineering, cancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Andreas Weltin
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.
| | - Steffen Hammer
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Fozia Noor
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| | - Yeda Kaminski
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| | - Jochen Kieninger
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Gerald A Urban
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
70
|
Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today 2016; 21:1399-1411. [PMID: 27422270 DOI: 10.1016/j.drudis.2016.07.003] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
In recent years, advances in tissue engineering and microfabrication technologies have enabled rapid growth in the areas of in vitro organoid development as well as organoid-on-a-chip platforms. These 3D model systems often are able to mimic human physiology more accurately than traditional 2D cultures and animal models. In this review, we describe the progress that has been made to generate organ-on-a-chip platforms and, more recently, more complex multi-organoid body-on-a-chip platforms and their applications. Importantly, these systems have the potential to dramatically impact biomedical applications in the areas of drug development, drug and toxicology screening, disease modeling, and the emerging area of personalized precision medicine.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Department of Urology, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
71
|
Song MJ, Bharti K. Looking into the future: Using induced pluripotent stem cells to build two and three dimensional ocular tissue for cell therapy and disease modeling. Brain Res 2016; 1638:2-14. [PMID: 26706569 PMCID: PMC4837038 DOI: 10.1016/j.brainres.2015.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 01/02/2023]
Abstract
Retinal degenerative diseases are the leading cause of irreversible vision loss in developed countries. In many cases the diseases originate in the homeostatic unit in the back of the eye that contains the retina, retinal pigment epithelium (RPE) and the choriocapillaris. RPE is a central and a critical component of this homeostatic unit, maintaining photoreceptor function and survival on the apical side and choriocapillaris health on the basal side. In diseases like age-related macular degeneration (AMD), it is thought that RPE dysfunctions cause disease-initiating events and as the RPE degenerates photoreceptors begin to die and patients start loosing vision. Patient-specific induced pluripotent stem (iPS) cell-derived RPE provides direct access to a patient's genetics and allow the possibility of identifying the initiating events of RPE-associated degenerative diseases. Furthermore, iPS cell-derived RPE cells are being tested as a potential cell replacement in disease stages with RPE atrophy. In this article we summarize the recent progress in the field of iPS cell-derived RPE "disease modeling" and cell therapies and also discuss the possibilities of developing a model of the entire homeostatic unit to aid in studying disease processes in the future. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Min Jae Song
- Unit on Ocular and Stem Cell Translational Research National Eye Institute, 10 Center Drive, Room 10B10, Bethesda, MD 20892, United States
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research National Eye Institute, 10 Center Drive, Room 10B10, Bethesda, MD 20892, United States.
| |
Collapse
|
72
|
Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2253-82. [PMID: 26901595 DOI: 10.1002/smll.201503208] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/09/2015] [Indexed: 05/20/2023]
Abstract
"Organ-on-a-chip" systems integrate microengineering, microfluidic technologies, and biomimetic principles to create key aspects of living organs faithfully, including critical microarchitecture, spatiotemporal cell-cell interactions, and extracellular microenvironments. This creative platform and its multiorgan integration recapitulating organ-level structures and functions can bring unprecedented benefits to a diversity of applications, such as developing human in vitro models for healthy or diseased organs, enabling the investigation of fundamental mechanisms in disease etiology and organogenesis, benefiting drug development in toxicity screening and target discovery, and potentially serving as replacements for animal testing. Recent advances in novel designs and examples for developing organ-on-a-chip platforms are reviewed. The potential for using this emerging technology in understanding human physiology including mechanical, chemical, and electrical signals with precise spatiotemporal controls are discussed. The current challenges and future directions that need to be pursued for these proof-of-concept studies are also be highlighted.
Collapse
Affiliation(s)
- Fuyin Zheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Chunyan Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| |
Collapse
|
73
|
Miller PG, Shuler ML. Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol Bioeng 2016; 113:2213-27. [PMID: 27070809 DOI: 10.1002/bit.25989] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/09/2023]
Abstract
We describe a human "Body-on-a-chip" device (or microphysiological system) that could be used to emulate drug distribution, metabolism, and action in the body. It is based upon a physiologically based pharmacokinetic-pharmacodynamic (PBPK-PD) model, where multiple chambers representing different organs are connected with fluidic channels to mimic multi-organ interactions within the body. Here we describe a pumpless 14 chamber (13 organs) microfluidic cell culture device that provides a separation between barrier and nonbarrier types of cell cultures. Our barrier chamber layer (skin, GI tract, and lung) allows for direct access and/or exposures to chemical or biological reagents forcing these reagents to pass through a barrier of cells established on a microfabricated membrane before exposing the nonbarrier tissue chambers (fat, kidney, heart, adrenal glands, liver, spleen, pancreas, bone marrow, brain, muscle) or entering the microfluidic circulation within the device. Our nonbarrier tissue chambers were created as three-dimensional configurations by resuspending cells in hydrogel (PGMatrix). We used cell lines to represent five of these organs (barrier lines-A549 [lung] and Caco2 [GI]) (nonbarrier lines-HepG2 C3A [liver], Meg01 [bone marrow], and HK2 [kidney]). The dimensions of our straight duct-like channels to each organ chamber were designed to provide the appropriate flow of a culture medium. The organ volumes and organ flow rates that have been reported for an average human male were used to estimate the desired fluid retention times in each organ chamber. The flow through the channels was induced by gravity on a custom programmed rocker platform which enabled pumpless operation and minimized bubble entrapment. The purpose of this paper is to describe the design and operation of a 14 chamber multi-organ system representing 13 tissues/organs with both barrier and nonbarrier tissue chambers and to study the interactive responses among the various cell lines. We demonstrate that five different cell lines survived with high viability (above 85%) for 7 days. We compared the individual observed flow rates to the compartments to the desired or estimated flow rates. This work demonstrates the feasibility of constructing, operating and maintaining a simple, gravity-driven, multi-organ microphysiological system with the capability of measuring cellular functions such as CYP1A1 and CYP3A4 activities, albumin release, urea, maintenance of tight junctions, and presence of surfactant for a sustained period. Biotechnol. Bioeng. 2016;113: 2213-2227. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paula G Miller
- Department of Biomedical Engineering, Cornell University, 113 Weill Hall, Ithaca, 14853, New York
| | - Michael L Shuler
- Department of Biomedical Engineering, Cornell University, 113 Weill Hall, Ithaca, 14853, New York.
| |
Collapse
|
74
|
Kim RS, Goossens N, Hoshida Y. Use of big data in drug development for precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016; 1:245-253. [PMID: 27430024 DOI: 10.1080/23808993.2016.1174062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Drug development has been a costly and lengthy process with an extremely low success rate and lack of consideration of individual diversity in drug response and toxicity. Over the past decade, an alternative "big data" approach has been expanding at an unprecedented pace based on the development of electronic databases of chemical substances, disease gene/protein targets, functional readouts, and clinical information covering inter-individual genetic variations and toxicities. This paradigm shift has enabled systematic, high-throughput, and accelerated identification of novel drugs or repurposed indications of existing drugs for pathogenic molecular aberrations specifically present in each individual patient. The exploding interest from the information technology and direct-to-consumer genetic testing industries has been further facilitating the use of big data to achieve personalized Precision Medicine. Here we overview currently available resources and discuss future prospects.
Collapse
Affiliation(s)
- Rosa S Kim
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
75
|
DeMarse TB, Pan L, Alagapan S, Brewer GJ, Wheeler BC. Feed-Forward Propagation of Temporal and Rate Information between Cortical Populations during Coherent Activation in Engineered In Vitro Networks. Front Neural Circuits 2016; 10:32. [PMID: 27147977 PMCID: PMC4840215 DOI: 10.3389/fncir.2016.00032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/07/2016] [Indexed: 12/28/2022] Open
Abstract
Transient propagation of information across neuronal assembles is thought to underlie many cognitive processes. However, the nature of the neural code that is embedded within these transmissions remains uncertain. Much of our understanding of how information is transmitted among these assemblies has been derived from computational models. While these models have been instrumental in understanding these processes they often make simplifying assumptions about the biophysical properties of neurons that may influence the nature and properties expressed. To address this issue we created an in vitro analog of a feed-forward network composed of two small populations (also referred to as assemblies or layers) of living dissociated rat cortical neurons. The populations were separated by, and communicated through, a microelectromechanical systems (MEMS) device containing a strip of microscale tunnels. Delayed culturing of one population in the first layer followed by the second a few days later induced the unidirectional growth of axons through the microtunnels resulting in a primarily feed-forward communication between these two small neural populations. In this study we systematically manipulated the number of tunnels that connected each layer and hence, the number of axons providing communication between those populations. We then assess the effect of reducing the number of tunnels has upon the properties of between-layer communication capacity and fidelity of neural transmission among spike trains transmitted across and within layers. We show evidence based on Victor-Purpura's and van Rossum's spike train similarity metrics supporting the presence of both rate and temporal information embedded within these transmissions whose fidelity increased during communication both between and within layers when the number of tunnels are increased. We also provide evidence reinforcing the role of synchronized activity upon transmission fidelity during the spontaneous synchronized network burst events that propagated between layers and highlight the potential applications of these MEMs devices as a tool for further investigation of structure and functional dynamics among neural populations.
Collapse
Affiliation(s)
- Thomas B DeMarse
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, USA; Department of Pediatric Neurology, University of FloridaGainesville, FL, USA
| | - Liangbin Pan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Sankaraleengam Alagapan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Gregory J Brewer
- Department of Bioengineering, University of California Irvine, CA, USA
| | - Bruce C Wheeler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, USA; Department of Bioengineering, University of CaliforniaSan Diego, CA, USA
| |
Collapse
|
76
|
Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2016; 6:147-172. [PMID: 27066112 PMCID: PMC4785608 DOI: 10.1002/wcms.1240] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/27/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023]
Abstract
Determining the toxicity of chemicals is necessary to identify their harmful effects on humans, animals, plants, or the environment. It is also one of the main steps in drug design. Animal models have been used for a long time for toxicity testing. However, in vivo animal tests are constrained by time, ethical considerations, and financial burden. Therefore, computational methods for estimating the toxicity of chemicals are considered useful. In silico toxicology is one type of toxicity assessment that uses computational methods to analyze, simulate, visualize, or predict the toxicity of chemicals. In silico toxicology aims to complement existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and minimize late-stage failures in drugs design. There are various methods for generating models to predict toxicity endpoints. We provide a comprehensive overview, explain, and compare the strengths and weaknesses of the existing modeling methods and algorithms for toxicity prediction with a particular (but not exclusive) emphasis on computational tools that can implement these methods and refer to expert systems that deploy the prediction models. Finally, we briefly review a number of new research directions in in silico toxicology and provide recommendations for designing in silico models. WIREs Comput Mol Sci 2016, 6:147-172. doi: 10.1002/wcms.1240 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Arwa B Raies
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Centre (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE) Thuwal Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST) Computational Bioscience Research Centre (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE) Thuwal Saudi Arabia
| |
Collapse
|
77
|
Wobma H, Vunjak-Novakovic G. Tissue Engineering and Regenerative Medicine 2015: A Year in Review. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:101-13. [PMID: 26714410 DOI: 10.1089/ten.teb.2015.0535] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This may be the most exciting time ever for the field of tissue engineering and regenerative medicine (TERM). After decades of progress, it has matured, integrated, and diversified into entirely new areas, and it is starting to make the pivotal shift toward translation. The most exciting science and applications continue to emerge at the boundaries of disciplines, through increasingly effective interactions between stem cell biologists, bioengineers, clinicians, and the commercial sector. In this "Year in Review," we highlight some of the major advances reported over the last year (Summer 2014-Fall 2015). Using a methodology similar to that established in previous years, we identified four areas that generated major progress in the field: (i) pluripotent stem cells, (ii) microtissue platforms for drug testing and disease modeling, (iii) tissue models of cancer, and (iv) whole organ engineering. For each area, we used some of the most impactful articles to illustrate the important concepts and results that advanced the state of the art of TERM. We conclude with reflections on emerging areas and perspectives for future development in the field.
Collapse
Affiliation(s)
- Holly Wobma
- 1 Department of Biomedical Engineering, Columbia University , New York
| | - Gordana Vunjak-Novakovic
- 1 Department of Biomedical Engineering, Columbia University , New York.,2 Department of Medicine, Columbia University , New York
| |
Collapse
|
78
|
Alexander FA, Wiest J. Online, label-free monitoring of organ-on-a-chip models: The case for microphysiometry. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:7091-4. [PMID: 26737926 DOI: 10.1109/embc.2015.7320026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Primarily composed of cells on a porous membrane embedded in microfluidic channels, organ-on-a-Chip (OOC) models are coming into the spotlight as an innovative, new approach to in vitro modeling. However, more work is required to understand the impact OOCs have on cellular function including basal metabolism, barrier resistance and oxygen consumption. Electrochemical sensor-based cellular microphysiometry provides a noninvasive, real-time methodology for monitoring these attribute and can be applied to develop robust, automated assays for organ toxicology, but only few to date have been used with OOCs. In this presentation, we define organ-on-a-chip systems, outline which have been studied with integrated sensors, and present a novel method to study cells cultured directly on a porous membrane.
Collapse
|
79
|
Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering. SENSORS 2015; 15:31142-70. [PMID: 26690442 PMCID: PMC4721768 DOI: 10.3390/s151229848] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/16/2015] [Accepted: 12/04/2015] [Indexed: 12/24/2022]
Abstract
Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.
Collapse
|
80
|
Jin H, Yu Y. A Review of the Application of Body-on-a-Chip for Drug Test and Its Latest Trend of Incorporating Barrier Tissue. ACTA ACUST UNITED AC 2015; 21:615-24. [PMID: 26721822 DOI: 10.1177/2211068215619126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 12/12/2022]
Abstract
High-quality preclinical bioassay models are essential for drug research and development. We reviewed the emerging body-on-a-chip technology, which serves as a promising model to overcome the limitations of traditional bioassay models, and introduced existing models of body-on-a-chip, their constitutional details, application for drug testing, and individual features of these models. We put special emphasis on the latest trend in this field of incorporating barrier tissue into body-on-a-chip and discussed several remaining challenges of current body-on-a-chip.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Pathophysiology, College of Basic Medicine, China Medical University, Undergraduate, Shenyang, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medicine, China Medical University, Undergraduate, Shenyang, China
| |
Collapse
|
81
|
Laquieze L, Lorencini M, Granjeiro JM. Alternative Methods to Animal Testing and Cosmetic Safety: An Update on Regulations and Ethical Considerations in Brazil. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Leslie Laquieze
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Brazil
| | | | | |
Collapse
|
82
|
Abstract
The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools - in conjunction with advanced imaging, bioinformatics and molecular biology approaches - will transform biology into a precision science.
Collapse
|
83
|
Caplin JD, Granados NG, James MR, Montazami R, Hashemi N. Microfluidic Organ-on-a-Chip Technology for Advancement of Drug Development and Toxicology. Adv Healthc Mater 2015; 4:1426-50. [PMID: 25820344 DOI: 10.1002/adhm.201500040] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/18/2015] [Indexed: 01/09/2023]
Abstract
In recent years, the exploitation of phenomena surrounding microfluidics has seen an increase in popularity, as researchers have found a way to use their unique properties to create superior design alternatives. One such application is representing the properties and functions of different organs on a microscale chip for the purpose of drug testing or tissue engineering. With the introduction of "organ-on-a-chip" systems, researchers have proposed various methods on various organ-on-a-chip systems to mimic their in vivo counterparts. In this article, a systematic approach is taken to review current technologies pertaining to organ-on-a-chip systems. Design processes with attention to the particular instruments, cells, and materials used are presented.
Collapse
Affiliation(s)
- Jeremy D. Caplin
- Department of Mechanical Engineering; Iowa State University; Ames IA 50011 USA
| | - Norma G. Granados
- Department of Mechanical Engineering; Iowa State University; Ames IA 50011 USA
| | - Myra R. James
- Department of Mechanical Engineering; Iowa State University; Ames IA 50011 USA
| | - Reza Montazami
- Department of Mechanical Engineering; Iowa State University; Ames IA 50011 USA
- Center for Advanced Host Defense Immunobiotics and Translational Comparative Medicine; Iowa State University; Ames IA 50011 USA
| | - Nastaran Hashemi
- Department of Mechanical Engineering; Iowa State University; Ames IA 50011 USA
- Center for Advanced Host Defense Immunobiotics and Translational Comparative Medicine; Iowa State University; Ames IA 50011 USA
| |
Collapse
|
84
|
Pan L, Alagapan S, Franca E, Leondopulos SS, DeMarse TB, Brewer GJ, Wheeler BC. An in vitro method to manipulate the direction and functional strength between neural populations. Front Neural Circuits 2015; 9:32. [PMID: 26236198 PMCID: PMC4500931 DOI: 10.3389/fncir.2015.00032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/19/2015] [Indexed: 01/04/2023] Open
Abstract
We report the design and application of a Micro Electro Mechanical Systems (MEMs) device that permits investigators to create arbitrary network topologies. With this device investigators can manipulate the degree of functional connectivity among distinct neural populations by systematically altering their geometric connectivity in vitro. Each polydimethylsilxane (PDMS) device was cast from molds and consisted of two wells each containing a small neural population of dissociated rat cortical neurons. Wells were separated by a series of parallel micrometer scale tunnels that permitted passage of axonal processes but not somata; with the device placed over an 8 × 8 microelectrode array, action potentials from somata in wells and axons in microtunnels can be recorded and stimulated. In our earlier report we showed that a one week delay in plating of neurons from one well to the other led to a filling and blocking of the microtunnels by axons from the older well resulting in strong directionality (older to younger) of both axon action potentials in tunnels and longer duration and more slowly propagating bursts of action potentials between wells. Here we show that changing the number of tunnels, and hence the number of axons, connecting the two wells leads to changes in connectivity and propagation of bursting activity. More specifically, the greater the number of tunnels the stronger the connectivity, the greater the probability of bursting propagating between wells, and shorter peak-to-peak delays between bursts and time to first spike measured in the opposing well. We estimate that a minimum of 100 axons are needed to reliably initiate a burst in the opposing well. This device provides a tool for researchers interested in understanding network dynamics who will profit from having the ability to design both the degree and directionality connectivity among multiple small neural populations.
Collapse
Affiliation(s)
- Liangbin Pan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Sankaraleengam Alagapan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Eric Franca
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Stathis S Leondopulos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Thomas B DeMarse
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Gregory J Brewer
- Department of Biomedical Engineering, University of California Irvine Irvine, CA, USA
| | - Bruce C Wheeler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| |
Collapse
|
85
|
Zhang YS, Aleman J, Arneri A, Bersini S, Piraino F, Shin SR, Dokmeci MR, Khademhosseini A. From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed Mater 2015; 10:034006. [PMID: 26065674 PMCID: PMC4489846 DOI: 10.1088/1748-6041/10/3/034006] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The heart is one of the most vital organs in the human body, which actively pumps the blood through the vascular network to supply nutrients to as well as to extract wastes from all other organs, maintaining the homeostasis of the biological system. Over the past few decades, tremendous efforts have been exerted in engineering functional cardiac tissues for heart regeneration via biomimetic approaches. More recently, progress has been made toward the transformation of knowledge obtained from cardiac tissue engineering to building physiologically relevant microfluidic human heart models (i.e. heart-on-chips) for applications in drug discovery. The advancement in stem cell technologies further provides the opportunity to create personalized in vitro models from cells derived from patients. Here, starting from heart biology, we review recent advances in engineering cardiac tissues and heart-on-a-chip platforms for their use in heart regeneration and cardiotoxic/cardiotherapeutic drug screening, and then briefly conclude with characterization techniques and personalization potential of the cardiac models.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea Arneri
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Bioengineering Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Simone Bersini
- Bioengineering Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesco Piraino
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
86
|
Ree AH, Redalen KR. Personalized radiotherapy: concepts, biomarkers and trial design. Br J Radiol 2015; 88:20150009. [PMID: 25989697 DOI: 10.1259/bjr.20150009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points-given the imperative development of open-source data repositories to allow investigators the access to the complex data sets-will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice.
Collapse
Affiliation(s)
- A H Ree
- 1 Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K R Redalen
- 1 Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
87
|
Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. ACTA ACUST UNITED AC 2015; 20:107-26. [PMID: 25586998 DOI: 10.1177/2211068214561025] [Citation(s) in RCA: 1393] [Impact Index Per Article: 139.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) is a widely accepted quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial and epithelial monolayers. TEER values are strong indicators of the integrity of the cellular barriers before they are evaluated for transport of drugs or chemicals. TEER measurements can be performed in real time without cell damage and generally are based on measuring ohmic resistance or measuring impedance across a wide spectrum of frequencies. The measurements for various cell types have been reported with commercially available measurement systems and also with custom-built microfluidic implementations. Some of the barrier models that have been widely characterized using TEER include the blood-brain barrier (BBB), gastrointestinal (GI) tract, and pulmonary models. Variations in these values can arise due to factors such as temperature, medium formulation, and passage number of cells. The aim of this article is to review the different TEER measurement techniques and analyze their strengths and weaknesses, determine the significance of TEER in drug toxicity studies, examine the various in vitro models and microfluidic organs-on-chips implementations using TEER measurements in some widely studied barrier models (BBB, GI tract, and pulmonary), and discuss the various factors that can affect TEER measurements.
Collapse
Affiliation(s)
- Balaji Srinivasan
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Aditya Reddy Kolli
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | | | | | | | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
88
|
Abstract
The new cover of Experimental Biology and Medicine features the hermeneutic circle of biology, a concept we have adapted from the hermeneutic principle that one understands the whole only in terms of each part and the parts only in terms of the whole. Our hermeneutic circle summarizes the course of experimental biology through 2500 years of the achievements of reductionist research (understanding the parts), which culminates in our ability to rapidly sequence the genome. Rather than returning along the same path in a constructionist approach that simply builds upon this knowledge, but in reverse, an alternative is to close the circle with synthetic constructions that seek to integrate the full complexity of biological and physiological systems (understanding the whole), of which organs-on-chips are one example. This closing of the circle cannot be a comprehensively accurate representation of biology, but it can be a synthetic one that effectively defines particular biological subsystems. The illustration of the hermeneutic circle of biology is also intended to suggest both the multiple cycles that may be required to reach such a synthesis and the expansion of the circle in an outward spiral as knowledge increases. Our commentary explains the symbolism of the new cover in a philosophical and scientific discussion.
Collapse
Affiliation(s)
- John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics & Astronomy, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrew P Porter
- Center for Theology and the Natural Sciences, Graduate Theological Union, Berkeley, CA 94709-1212, USA
| |
Collapse
|
89
|
Ho CMB, Ng SH, Li KHH, Yoon YJ. 3D printed microfluidics for biological applications. LAB ON A CHIP 2015; 15:3627-37. [PMID: 26237523 DOI: 10.1039/c5lc00685f] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The term "Lab-on-a-Chip," is synonymous with describing microfluidic devices with biomedical applications. Even though microfluidics have been developing rapidly over the past decade, the uptake rate in biological research has been slow. This could be due to the tedious process of fabricating a chip and the absence of a "killer application" that would outperform existing traditional methods. In recent years, three dimensional (3D) printing has been drawing much interest from the research community. It has the ability to make complex structures with high resolution. Moreover, the fast building time and ease of learning has simplified the fabrication process of microfluidic devices to a single step. This could possibly aid the field of microfluidics in finding its "killer application" that will lead to its acceptance by researchers, especially in the biomedical field. In this paper, a review is carried out of how 3D printing helps to improve the fabrication of microfluidic devices, the 3D printing technologies currently used for fabrication and the future of 3D printing in the field of microfluidics.
Collapse
Affiliation(s)
- Chee Meng Benjamin Ho
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore (639798).
| | | | | | | |
Collapse
|
90
|
Reif R. The body-on-a-chip concept: possibilities and limitations. EXCLI JOURNAL 2014; 13:1283-5. [PMID: 26417343 PMCID: PMC4464493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Raymond Reif
- Leibniz Institut für Arbeitsforschung an der TU Dortmund, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany,*To whom correspondence should be addressed: Raymond Reif, Leibniz Institut für Arbeitsforschung an der TU Dortmund, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany, E-mail:
| |
Collapse
|
91
|
Ree AH, Meltzer S, Flatmark K, Dueland S, Kalanxhi E. Biomarkers of treatment toxicity in combined-modality cancer therapies with radiation and systemic drugs: study design, multiplex methods, molecular networks. Int J Mol Sci 2014; 15:22835-56. [PMID: 25501337 PMCID: PMC4284741 DOI: 10.3390/ijms151222835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/23/2014] [Accepted: 12/02/2014] [Indexed: 01/21/2023] Open
Abstract
Organ toxicity in cancer therapy is likely caused by an underlying disposition for given pathophysiological mechanisms in the individual patient. Mechanistic data on treatment toxicity at the patient level are scarce; hence, probabilistic and translational linkages among different layers of data information, all the way from cellular targets of the therapeutic exposure to tissues and ultimately the patient’s organ systems, are required. Throughout all of these layers, untoward treatment effects may be viewed as perturbations that propagate within a hierarchically structured network from one functional level to the next, at each level causing disturbances that reach a critical threshold, which ultimately are manifested as clinical adverse reactions. Advances in bioinformatics permit compilation of information across the various levels of data organization, presumably enabling integrated systems biology-based prediction of treatment safety. In view of the complexity of biological responses to cancer therapy, this communication reports on a “top-down” strategy, starting with the systematic assessment of adverse effects within a defined therapeutic context and proceeding to transcriptomic and proteomic analysis of relevant patient tissue samples and computational exploration of the resulting data, with the ultimate aim of utilizing information from functional connectivity networks in evaluation of patient safety in multimodal cancer therapy.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway.
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway.
| | - Kjersti Flatmark
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway.
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Erta Kalanxhi
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway.
| |
Collapse
|
92
|
Abstract
Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems.
Collapse
Affiliation(s)
- Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854 ; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 ; Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
93
|
Wikswo JP. The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med (Maywood) 2014; 239:1061-72. [PMID: 25187571 PMCID: PMC4330974 DOI: 10.1177/1535370214542068] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microphysiological systems (MPS), consisting of interacting organs-on-chips or tissue-engineered, 3D organ constructs that use human cells, present an opportunity to bring new tools to biology, medicine, pharmacology, physiology, and toxicology. This issue of Experimental Biology and Medicine describes the ongoing development of MPS that can serve as in-vitro models for bone and cartilage, brain, gastrointestinal tract, lung, liver, microvasculature, reproductive tract, skeletal muscle, and skin. Related topics addressed here are the interconnection of organs-on-chips to support physiologically based pharmacokinetics and drug discovery and screening, and the microscale technologies that regulate stem cell differentiation. The initial motivation for creating MPS was to increase the speed, efficiency, and safety of pharmaceutical development and testing, paying particular regard to the fact that neither monolayer monocultures of immortal or primary cell lines nor animal studies can adequately recapitulate the dynamics of drug-organ, drug-drug, and drug-organ-organ interactions in humans. Other applications include studies of the effect of environmental toxins on humans, identification, characterization, and neutralization of chemical and biological weapons, controlled studies of the microbiome and infectious disease that cannot be conducted in humans, controlled differentiation of induced pluripotent stem cells into specific adult cellular phenotypes, and studies of the dynamics of metabolism and signaling within and between human organs. The technical challenges are being addressed by many investigators, and in the process, it seems highly likely that significant progress will be made toward providing more physiologically realistic alternatives to monolayer monocultures or whole animal studies. The effectiveness of this effort will be determined in part by how easy the constructs are to use, how well they function, how accurately they recapitulate and report human pharmacology and toxicology, whether they can be generated in large numbers to enable parallel studies, and if their use can be standardized consistent with the practices of regulatory science.
Collapse
Affiliation(s)
- John P Wikswo
- Departments of Biomedical Engineering, Molecular Physiology and Biophysics, and Physics and Astronomy, Vanderbilt University, The Vanderbilt Institute for Integrative Biosystems Research and Education, VU Station B 351807, Nashville, TN 37235-1807, USA
| |
Collapse
|