51
|
Schulze F, Gao X, Virzonis D, Damiati S, Schneider MR, Kodzius R. Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips. Genes (Basel) 2017; 8:E244. [PMID: 28953246 PMCID: PMC5664094 DOI: 10.3390/genes8100244] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 01/16/2023] Open
Abstract
Air quality depends on the various gases and particles present in it. Both natural phenomena and human activities affect the cleanliness of air. In the last decade, many countries experienced an unprecedented industrial growth, resulting in changing air quality values, and correspondingly, affecting our life quality. Air quality can be accessed by employing microchips that qualitatively and quantitatively determine the present gases and dust particles. The so-called particular matter 2.5 (PM2.5) values are of high importance, as such small particles can penetrate the human lung barrier and enter the blood system. There are cancer cases related to many air pollutants, and especially to PM2.5, contributing to exploding costs within the healthcare system. We focus on various current and potential future air pollutants, and propose solutions on how to protect our health against such dangerous substances. Recent developments in the Organ-on-Chip (OoC) technology can be used to study air pollution as well. OoC allows determination of pollutant toxicity and speeds up the development of novel pharmaceutical drugs.
Collapse
Affiliation(s)
- Frank Schulze
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), 10589 Berlin, Germany.
| | - Xinghua Gao
- iSmart, Materials Genome Institute, Shanghai University (SHU), Shanghai 201800, China.
| | - Darius Virzonis
- Department of Electrical Engineering, Kaunas University of Technology, 35212 Panevezys, Lithuania.
| | - Samar Damiati
- Department of Biochemistry, King Abdulaziz University, Jeddah 80203, Saudi Arabia.
- Institute for Synthetic Bioarchitecture, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), 10589 Berlin, Germany.
| | - Rimantas Kodzius
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), 10589 Berlin, Germany.
- iSmart, Materials Genome Institute, Shanghai University (SHU), Shanghai 201800, China.
- Mathematics and Natural Sciences Department, The American University of Iraq, Sulaimani, Sulaymaniyah 46001, Iraq.
| |
Collapse
|
52
|
Mertens TCJ, Karmouty-Quintana H, Taube C, Hiemstra PS. Use of airway epithelial cell culture to unravel the pathogenesis and study treatment in obstructive airway diseases. Pulm Pharmacol Ther 2017; 45:101-113. [PMID: 28502841 DOI: 10.1016/j.pupt.2017.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are considered as two distinct obstructive diseases. Both chronic diseases share a component of airway epithelial dysfunction. The airway epithelium is localized to deal with inhaled substances, and functions as a barrier preventing penetration of such substances into the body. In addition, the epithelium is involved in the regulation of both innate and adaptive immune responses following inhalation of particles, allergens and pathogens. Through triggering and inducing immune responses, airway epithelial cells contribute to the pathogenesis of both asthma and COPD. Various in vitro research models have been described to study airway epithelial cell dysfunction in asthma and COPD. However, various considerations and cautions have to be taken into account when designing such in vitro experiments. Epithelial features of asthma and COPD can be modelled by using a variety of disease-related invoking substances either alone or in combination, and by the use of primary cells isolated from patients. Differentiation is a hallmark of airway epithelial cells, and therefore models should include the ability of cells to differentiate, as can be achieved in air-liquid interface models. More recently developed in vitro models, including precision cut lung slices, lung-on-a-chip, organoids and human induced pluripotent stem cells derived cultures, provide novel state-of-the-art alternatives to the conventional in vitro models. Furthermore, advanced models in which cells are exposed to respiratory pathogens, aerosolized medications and inhaled toxic substances such as cigarette smoke and air pollution are increasingly used to model e.g. acute exacerbations. These exposure models are relevant to study how epithelial features of asthma and COPD are affected and provide a useful tool to study the effect of drugs used in treatment of asthma and COPD. These new developments are expected to contribute to a better understanding of the complex gene-environment interactions that contribute to development and progression of asthma and COPD.
Collapse
Affiliation(s)
- Tinne C J Mertens
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
53
|
Lelièvre SA, Kwok T, Chittiboyina S. Architecture in 3D cell culture: An essential feature for in vitro toxicology. Toxicol In Vitro 2017; 45:287-295. [PMID: 28366709 DOI: 10.1016/j.tiv.2017.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023]
Abstract
Three-dimensional cell culture has the potential to revolutionize toxicology studies by allowing human-based reproduction of essential elements of organs. Beyond the study of toxicants on the most susceptible organs such as liver, kidney, skin, lung, gastrointestinal tract, testis, heart and brain, carcinogenesis research will also greatly benefit from 3D cell culture models representing any normal tissue. No tissue function can be suitably reproduced without the appropriate tissue architecture whether mimicking acini, ducts or tubes, sheets of cells or more complex cellular organizations like hepatic cords. In this review, we illustrate the fundamental characteristics of polarity that is an essential architectural feature of organs for which different 3D cell culture models are available for toxicology studies in vitro. The value of tissue polarity for the development of more accurate carcinogenesis studies is also exemplified, and the concept of using extracellular gradients of gaseous or chemical substances produced with microfluidics in 3D cell culture is discussed. Indeed such gradients-on-a-chip might bring unprecedented information to better determine permissible exposure levels. Finally, the impact of tissue architecture, established via cell-matrix interactions, on the cell nucleus is emphasized in light of the importance in toxicology of morphological and epigenetic alterations of this organelle.
Collapse
Affiliation(s)
- Sophie A Lelièvre
- Purdue University, Department of Basic Medical Sciences, 625 Harrison Street, West Lafayette, IN 47907, USA; 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, 201 S University Street, West Lafayette, IN 47907, USA.
| | - Tim Kwok
- 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA
| | - Shirisha Chittiboyina
- Purdue University, Department of Basic Medical Sciences, 625 Harrison Street, West Lafayette, IN 47907, USA; 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
54
|
Nishiguchi A, Singh S, Wessling M, Kirkpatrick CJ, Möller M. Basement Membrane Mimics of Biofunctionalized Nanofibers for a Bipolar-Cultured Human Primary Alveolar-Capillary Barrier Model. Biomacromolecules 2017; 18:719-727. [PMID: 28100051 DOI: 10.1021/acs.biomac.6b01509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In vitro reconstruction of an alveolar barrier for modeling normal lung functions and pathological events serve as reproducible, high-throughput pharmaceutical platforms for drug discovery, diagnosis, and regenerative medicine. Despite much effort, the reconstruction of organ-level alveolar barrier functions has failed due to the lack of structural similarity to the natural basement membrane, functionalization with specific ligands for alveolar cell function, the use of primary cells and biodegradability. Here we report a bipolar cultured alveolar-capillary barrier model of human primary cells supported by a basement membrane mimics of fully synthetic bifunctional nanofibers. One-step electrospinning process using a bioresorbable polyester and multifunctional star-shaped polyethylene glycols (sPEG) enables the fabrication of an ultrathin nanofiber mesh with interconnected pores. The nanofiber mesh possessed mechanical stability against cyclic expansion as seen in the lung in vivo. The sPEGs as an additive provide biofunctionality to fibers through the conjugation of peptide to the nanofibers and hydrophilization to prevent unspecific protein adsorption. Biofunctionalized nanofiber meshes facilitated bipolar cultivation of endothelial and epithelial cells with fundamental alveolar functionality and showed higher permeability for molecules compared to microporous films. This nanofiber mesh for a bipolar cultured barrier have the potential to promote growth of an organ-level barrier model for modeling pathological conditions and evaluating drug efficacy, environmental pollutants, and nanotoxicology.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstrasse 50, D-52056, Aachen, Germany
| | - Smriti Singh
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstrasse 50, D-52056, Aachen, Germany
| | - Matthias Wessling
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstrasse 50, D-52056, Aachen, Germany
| | - Charles J Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes Gutenberg University , Langenbeckstrasse 1, D-55101, Mainz, Germany
| | - Martin Möller
- DWI - Leibniz-Institute for Interactive Materials , Forckenbeckstrasse 50, D-52056, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
55
|
Stevens S. Synthetic Biology in Cell and Organ Transplantation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029561. [PMID: 28003184 DOI: 10.1101/cshperspect.a029561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transplantation of cells and organs has an extensive history, with blood transfusion and skin grafts described as some of the earliest medical interventions. The speed and efficiency of the human immune system evolved to rapidly recognize and remove pathogens; the human immune system also serves as a barrier against the transplant of cells and organs from even highly related donors. Although this shows the remarkable effectiveness of the immune system, the engineering of cells and organs that will survive in a host patient over the long term remains a steep challenge. Progress in the understanding of host immune responses to donor cells and organs, combined with the rapid advancement in synthetic biology applications, allows the rational engineering of more effective solutions for transplantation.
Collapse
Affiliation(s)
- Sean Stevens
- Mammalian Synthetic Biology, Synthetic Genomics, Inc., La Jolla, California 92037
| |
Collapse
|
56
|
Ugolini GS, Cruz-Moreira D, Visone R, Redaelli A, Rasponi M. Microfabricated Physiological Models for In Vitro Drug Screening Applications. MICROMACHINES 2016; 7:E233. [PMID: 30404405 PMCID: PMC6189704 DOI: 10.3390/mi7120233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Microfluidics and microfabrication have recently been established as promising tools for developing a new generation of in vitro cell culture microdevices. The reduced amounts of reagents employed within cell culture microdevices make them particularly appealing to drug screening processes. In addition, latest advancements in recreating physiologically relevant cell culture conditions within microfabricated devices encourage the idea of using such advanced biological models in improving the screening of drug candidates prior to in vivo testing. In this review, we discuss microfluidics-based models employed for chemical/drug screening and the strategies to mimic various physiological conditions: fine control of 3D extra-cellular matrix environment, physical and chemical cues provided to cells and organization of co-cultures. We also envision future directions for achieving multi-organ microfluidic devices.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Daniela Cruz-Moreira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| |
Collapse
|
57
|
Abstract
The discovery of an ever-expanding plethora of coding and non-coding RNAs with nodal and causal roles in the regulation of lung physiology and disease is reinvigorating interest in the clinical utility of the oligonucleotide therapeutic class. This is strongly supported through recent advances in nucleic acids chemistry, synthetic oligonucleotide delivery and viral gene therapy that have succeeded in bringing to market at least three nucleic acid-based drugs. As a consequence, multiple new candidates such as RNA interference modulators, antisense, and splice switching compounds are now progressing through clinical evaluation. Here, manipulation of RNA for the treatment of lung disease is explored, with emphasis on robust pharmacological evidence aligned to the five pillars of drug development: exposure to the appropriate tissue, binding to the desired molecular target, evidence of the expected mode of action, activity in the relevant patient population and commercially viable value proposition.
Collapse
|
58
|
Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR, Cirit M, Daneshian M, Fitzpatrick S, Frey O, Gaertner C, Giese C, Griffith L, Hartung T, Heringa MB, Hoeng J, de Jong WH, Kojima H, Kuehnl J, Luch A, Maschmeyer I, Sakharov D, Sips AJAM, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tralau T, Tsyb S, van de Stolpe A, Vandebriel R, Vulto P, Wang J, Wiest J, Rodenburg M, Roth A. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 2016; 33:272-321. [PMID: 27180100 PMCID: PMC5396467 DOI: 10.14573/altex.1603161] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023]
Abstract
The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.
Collapse
|
59
|
Schilders KAA, Eenjes E, van Riet S, Poot AA, Stamatialis D, Truckenmüller R, Hiemstra PS, Rottier RJ. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices. Respir Res 2016; 17:44. [PMID: 27107715 PMCID: PMC4842297 DOI: 10.1186/s12931-016-0358-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/25/2016] [Indexed: 01/07/2023] Open
Abstract
Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.
Collapse
Affiliation(s)
- Kim A A Schilders
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Evelien Eenjes
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - André A Poot
- Department of Biomaterials Science and Technology, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Roman Truckenmüller
- Department of Complex Tissue Regeneration, Maastricht University, Faculty of Health, Medicine and Life Sciences, MERLN Institute for Technology-Inspired Regenerative Medicine, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
60
|
Nickel S, Clerkin CG, Selo MA, Ehrhardt C. Transport mechanisms at the pulmonary mucosa: implications for drug delivery. Expert Opin Drug Deliv 2016; 13:667-90. [DOI: 10.1517/17425247.2016.1140144] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sabrina Nickel
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caoimhe G. Clerkin
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohammed Ali Selo
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Faculty of Pharmacy, Kufa University, Al-Najaf, Iraq
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
61
|
Darquenne C, Fleming JS, Katz I, Martin AR, Schroeter J, Usmani OS, Venegas J, Schmid O. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung. J Aerosol Med Pulm Drug Deliv 2016; 29:107-26. [PMID: 26829187 DOI: 10.1089/jamp.2015.1270] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy.
Collapse
Affiliation(s)
- Chantal Darquenne
- 1 Department of Medicine, University of California , San Diego, La Jolla, California
| | - John S Fleming
- 2 National Institute of Health Research Biomedical Research Unit in Respiratory Disease , Southampton, United Kingdom .,3 Department of Medical Physics and Bioengineering, University Hospital Southampton NHS Foundation Trust , Southampton, United Kingdom
| | - Ira Katz
- 4 Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay , Jouy-en-Josas, France .,5 Department of Mechanical Engineering, Lafayette College , Easton, Pennsylvania
| | - Andrew R Martin
- 6 Department of Mechanical Engineering, University of Alberta , Edmonton, Alberta, Canada
| | | | - Omar S Usmani
- 8 Airway Disease Section, National Heart and Lung Institute , Imperial College London and Royal Brompton Hospital, London, United Kingdom
| | - Jose Venegas
- 9 Department of Anesthesia (Bioengineering), MGH/Harvard, Boston, Massachusetts
| | - Otmar Schmid
- 10 Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research , Munich, Germany .,11 Institute of Lung Biology and Disease, Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg, Germany
| |
Collapse
|
62
|
Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering. SENSORS 2015; 15:31142-70. [PMID: 26690442 PMCID: PMC4721768 DOI: 10.3390/s151229848] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/16/2015] [Accepted: 12/04/2015] [Indexed: 12/24/2022]
Abstract
Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.
Collapse
|
63
|
Blume C, Reale R, Held M, Millar TM, Collins JE, Davies DE, Morgan H, Swindle EJ. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics. PLoS One 2015; 10:e0139872. [PMID: 26436734 PMCID: PMC4593539 DOI: 10.1371/journal.pone.0139872] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022] Open
Abstract
The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms.
Collapse
Affiliation(s)
- Cornelia Blume
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Riccardo Reale
- Electronics and Computer Sciences, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, United Kingdom
| | - Marie Held
- Electronics and Computer Sciences, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, United Kingdom
| | - Timothy M. Millar
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jane E. Collins
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Donna E. Davies
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research, Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, United Kingdom
| | - Hywel Morgan
- Electronics and Computer Sciences, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Emily J. Swindle
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research, Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, United Kingdom
| |
Collapse
|
64
|
Prakash YS, Tschumperlin DJ, Stenmark KR. Coming to terms with tissue engineering and regenerative medicine in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 309:L625-38. [PMID: 26254424 DOI: 10.1152/ajplung.00204.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023] Open
Abstract
Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota;
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Division of Pulmonary Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| |
Collapse
|
65
|
Abstract
RATIONALE Much recent interest in lung bioengineering by pulmonary investigators, industry and the organ transplant field has seen a rapid growth of bioreactor development ranging from the microfluidic scale to the human-sized whole lung systems. A comprehension of the findings from these models is needed to provide the basis for further bioreactor development. OBJECTIVE The goal was to comprehensively review the current state of bioreactor development for the lung. METHODS A search using PubMed was done for published, peer-reviewed papers using the keywords "lung" AND "bioreactor" or "bioengineering" or "tissue engineering" or "ex vivo perfusion". MAIN RESULTS Many new bioreactors ranging from the microfluidic scale to the human-sized whole lung systems have been developed by both academic and commercial entities. Microfluidic, lung-mimic and lung slice cultures have the advantages of cost-efficiency and high throughput analyses ideal for pharmaceutical and toxicity studies. Perfused/ventilated rodent whole lung systems can be adapted for mid-throughput studies of lung stem/progenitor cell development, cell behavior, understanding and treating lung injury and for preliminary work that can be translated to human lung bioengineering. Human-sized ex vivo whole lung bioreactors incorporating perfusion and ventilation are amenable to automation and have been used for whole lung decellularization and recellularization. Clinical scale ex vivo lung perfusion systems have been developed for lung preservation and reconditioning and are currently being evaluated in clinical trials. CONCLUSIONS Significant advances in bioreactors for lung engineering have been made at both the microfluidic and the macro scale. The most advanced are closed systems that incorporate pressure-controlled perfusion and ventilation and are amenable to automation. Ex vivo lung perfusion systems have advanced to clinical trials for lung preservation and reconditioning. The biggest challenges that lie ahead for lung bioengineering can only be overcome by future advances in technology that solve the problems of cell production and tissue incorporation.
Collapse
Affiliation(s)
- Angela Panoskaltsis-Mortari
- Departments of Pediatrics and Medicine; Blood and Marrow Transplant Program; Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, 55455, U.S.A
| |
Collapse
|
66
|
Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep 2015; 5:7974. [PMID: 25609567 PMCID: PMC4303938 DOI: 10.1038/srep07974] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022] Open
Abstract
Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing.
Collapse
|
67
|
Abstract
The new cover of Experimental Biology and Medicine features the hermeneutic circle of biology, a concept we have adapted from the hermeneutic principle that one understands the whole only in terms of each part and the parts only in terms of the whole. Our hermeneutic circle summarizes the course of experimental biology through 2500 years of the achievements of reductionist research (understanding the parts), which culminates in our ability to rapidly sequence the genome. Rather than returning along the same path in a constructionist approach that simply builds upon this knowledge, but in reverse, an alternative is to close the circle with synthetic constructions that seek to integrate the full complexity of biological and physiological systems (understanding the whole), of which organs-on-chips are one example. This closing of the circle cannot be a comprehensively accurate representation of biology, but it can be a synthetic one that effectively defines particular biological subsystems. The illustration of the hermeneutic circle of biology is also intended to suggest both the multiple cycles that may be required to reach such a synthesis and the expansion of the circle in an outward spiral as knowledge increases. Our commentary explains the symbolism of the new cover in a philosophical and scientific discussion.
Collapse
Affiliation(s)
- John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics & Astronomy, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrew P Porter
- Center for Theology and the Natural Sciences, Graduate Theological Union, Berkeley, CA 94709-1212, USA
| |
Collapse
|
68
|
Colvin KL, Yeager ME. Applying Biotechnology and Bioengineering to Pediatric Lung Disease: Emerging Paradigms and Platforms. Front Pediatr 2015; 3:45. [PMID: 26106589 PMCID: PMC4460801 DOI: 10.3389/fped.2015.00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/08/2015] [Indexed: 11/15/2022] Open
Abstract
Pediatric lung diseases remain a costly worldwide health burden. For many children with end-stage lung disease, lung transplantation remains the only therapeutic option. Due to the limited number of lungs available for transplantation, alternatives to lung transplant are desperately needed. Recently, major improvements in tissue engineering have resulted in newer technology and methodology to develop viable bioengineered lungs. These include critical advances in lung cell biology, stem cell biology, lung extracellular matrix, microfabrication techniques, and orthotopic transplantation of bioartificial lungs. The goal of this short review is to engage the reader's interest with regard to these emerging concepts and to stimulate their interest to learn more. We review the existing state of the art of lung tissue engineering, and point to emerging paradigms and platforms in the field. Finally, we summarize the challenges and unmet needs that remain to be overcome.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Pediatrics-Critical Care, University of Colorado Denver , Denver, CO , USA ; Cardiovascular Pulmonary Research, University of Colorado Denver , Denver, CO , USA ; Department of Bioengineering, University of Colorado Denver , Denver, CO , USA ; Linda Crnic Institute for Down Syndrome, University of Colorado Denver , Denver, CO , USA
| | - Michael E Yeager
- Department of Pediatrics-Critical Care, University of Colorado Denver , Denver, CO , USA ; Cardiovascular Pulmonary Research, University of Colorado Denver , Denver, CO , USA ; Department of Bioengineering, University of Colorado Denver , Denver, CO , USA ; Linda Crnic Institute for Down Syndrome, University of Colorado Denver , Denver, CO , USA
| |
Collapse
|
69
|
Tenenbaum-Katan J, Fishler R, Rothen-Rutishauser B, Sznitman J. Biomimetics of fetal alveolar flow phenomena using microfluidics. BIOMICROFLUIDICS 2015; 9:014120. [PMID: 25759753 PMCID: PMC4336252 DOI: 10.1063/1.4908269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/23/2015] [Indexed: 05/12/2023]
Abstract
At the onset of life in utero, the respiratory system begins as a liquid-filled tubular organ and undergoes significant morphological changes during fetal development towards establishing a respiratory organ optimized for gas exchange. As airspace morphology evolves, respiratory alveolar flows have been hypothesized to exhibit evolving flow patterns. In the present study, we have investigated flow topologies during increasing phases of embryonic life within an anatomically inspired microfluidic device, reproducing real-scale features of fetal airways representative of three distinct phases of in utero gestation. Micro-particle image velocimetry measurements, supported by computational fluid dynamics simulations, reveal distinct respiratory alveolar flow patterns throughout different stages of fetal life. While attached, streamlined flows characterize the shallow structures of premature alveoli indicative of the onset of saccular stage, separated recirculating vortex flows become the signature of developed and extruded alveoli characteristic of the advanced stages of fetal development. To further mimic physiological aspects of the cellular environment of developing airways, our biomimetic devices integrate an alveolar epithelium using the A549 cell line, recreating a confluent monolayer that produces pulmonary surfactant. Overall, our in vitro biomimetic fetal airways model delivers a robust and reliable platform combining key features of alveolar morphology, flow patterns, and physiological aspects of fetal lungs developing in utero.
Collapse
Affiliation(s)
- Janna Tenenbaum-Katan
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , 32000 Haifa, Israel
| | - Rami Fishler
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , 32000 Haifa, Israel
| | | | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , 32000 Haifa, Israel
| |
Collapse
|
70
|
Kool H, Mous D, Tibboel D, de Klein A, Rottier RJ. Pulmonary vascular development goes awry in congenital lung abnormalities. ACTA ACUST UNITED AC 2014; 102:343-58. [PMID: 25424472 DOI: 10.1002/bdrc.21085] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/29/2014] [Indexed: 01/04/2023]
Abstract
Pulmonary vascular diseases of the newborn comprise a wide range of pathological conditions with developmental abnormalities in the pulmonary vasculature. Clinically, pulmonary arterial hypertension (PH) is characterized by persistent increased resistance of the vasculature and abnormal vascular response. The classification of PH is primarily based on clinical parameters instead of morphology and distinguishes five groups of PH. Congenital lung anomalies, such as alveolar capillary dysplasia (ACD) and PH associated with congenital diaphragmatic hernia (CDH), but also bronchopulmonary dysplasia (BPD), are classified in group three. Clearly, tight and correct regulation of pulmonary vascular development is crucial for normal lung development. Human and animal model systems have increased our knowledge and make it possible to identify and characterize affected pathways and study pivotal genes. Understanding of the normal development of the pulmonary vasculature will give new insights in the origin of the spectrum of rare diseases, such as CDH, ACD, and BPD, which render a significant clinical problem in neonatal intensive care units around the world. In this review, we describe normal pulmonary vascular development, and focus on four diseases of the newborn in which abnormal pulmonary vascular development play a critical role in morbidity and mortality. In the future perspective, we indicate the lines of research that seem to be very promising for elucidating the molecular pathways involved in the origin of congenital pulmonary vascular disease.
Collapse
Affiliation(s)
- Heleen Kool
- Department of Pediatric Surgery of the Erasmus MC, Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
71
|
Wikswo JP. The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med (Maywood) 2014; 239:1061-72. [PMID: 25187571 PMCID: PMC4330974 DOI: 10.1177/1535370214542068] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microphysiological systems (MPS), consisting of interacting organs-on-chips or tissue-engineered, 3D organ constructs that use human cells, present an opportunity to bring new tools to biology, medicine, pharmacology, physiology, and toxicology. This issue of Experimental Biology and Medicine describes the ongoing development of MPS that can serve as in-vitro models for bone and cartilage, brain, gastrointestinal tract, lung, liver, microvasculature, reproductive tract, skeletal muscle, and skin. Related topics addressed here are the interconnection of organs-on-chips to support physiologically based pharmacokinetics and drug discovery and screening, and the microscale technologies that regulate stem cell differentiation. The initial motivation for creating MPS was to increase the speed, efficiency, and safety of pharmaceutical development and testing, paying particular regard to the fact that neither monolayer monocultures of immortal or primary cell lines nor animal studies can adequately recapitulate the dynamics of drug-organ, drug-drug, and drug-organ-organ interactions in humans. Other applications include studies of the effect of environmental toxins on humans, identification, characterization, and neutralization of chemical and biological weapons, controlled studies of the microbiome and infectious disease that cannot be conducted in humans, controlled differentiation of induced pluripotent stem cells into specific adult cellular phenotypes, and studies of the dynamics of metabolism and signaling within and between human organs. The technical challenges are being addressed by many investigators, and in the process, it seems highly likely that significant progress will be made toward providing more physiologically realistic alternatives to monolayer monocultures or whole animal studies. The effectiveness of this effort will be determined in part by how easy the constructs are to use, how well they function, how accurately they recapitulate and report human pharmacology and toxicology, whether they can be generated in large numbers to enable parallel studies, and if their use can be standardized consistent with the practices of regulatory science.
Collapse
Affiliation(s)
- John P Wikswo
- Departments of Biomedical Engineering, Molecular Physiology and Biophysics, and Physics and Astronomy, Vanderbilt University, The Vanderbilt Institute for Integrative Biosystems Research and Education, VU Station B 351807, Nashville, TN 37235-1807, USA
| |
Collapse
|