51
|
Acciaroli G, Zanon M, Facchinetti A, Caduff A, Sparacino G. Retrospective Continuous-Time Blood Glucose Estimation in Free Living Conditions with a Non-Invasive Multisensor Device. SENSORS 2019; 19:s19173677. [PMID: 31450547 PMCID: PMC6749353 DOI: 10.3390/s19173677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023]
Abstract
Even if still at an early stage of development, non-invasive continuous glucose monitoring (NI-CGM) sensors represent a promising technology for optimizing diabetes therapy. Recent studies showed that the Multisensor provides useful information about glucose dynamics with a mean absolute relative difference (MARD) of 35.4% in a fully prospective setting. Here we propose a method that, exploiting the same Multisensor measurements, but in a retrospective setting, achieves a much better accuracy. Data acquired by the Multisensor during a long-term study are retrospectively processed following a two-step procedure. First, the raw data are transformed to a blood glucose (BG) estimate by a multiple linear regression model. Then, an enhancing module is applied in cascade to the regression model to improve the accuracy of the glucose estimation by retrofitting available BG references through a time-varying linear model. MARD between the retrospectively reconstructed BG time-series and reference values is 20%. Here, 94% of values fall in zone A or B of the Clarke Error Grid. The proposed algorithm achieved a level of accuracy that could make this device a potential complementary tool for diabetes management and also for guiding prediabetic or nondiabetic users through life-style changes.
Collapse
Affiliation(s)
- Giada Acciaroli
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | | | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | | | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
52
|
Cappon G, Vettoretti M, Sparacino G, Facchinetti A. Continuous Glucose Monitoring Sensors for Diabetes Management: A Review of Technologies and Applications. Diabetes Metab J 2019; 43:383-397. [PMID: 31441246 PMCID: PMC6712232 DOI: 10.4093/dmj.2019.0121] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/10/2019] [Indexed: 01/21/2023] Open
Abstract
By providing blood glucose (BG) concentration measurements in an almost continuous-time fashion for several consecutive days, wearable minimally-invasive continuous glucose monitoring (CGM) sensors are revolutionizing diabetes management, and are becoming an increasingly adopted technology especially for diabetic individuals requiring insulin administrations. Indeed, by providing glucose real-time insights of BG dynamics and trend, and being equipped with visual and acoustic alarms for hypo- and hyperglycemia, CGM devices have been proved to improve safety and effectiveness of diabetes therapy, reduce hypoglycemia incidence and duration, and decrease glycemic variability. Furthermore, the real-time availability of BG values has been stimulating the realization of new tools to provide patients with decision support to improve insulin dosage tuning and infusion. The aim of this paper is to offer an overview of current literature and future possible developments regarding CGM technologies and applications. In particular, first, we outline the technological evolution of CGM devices through the last 20 years. Then, we discuss about the current use of CGM sensors from patients affected by diabetes, and, we report some works proving the beneficial impact provided by the adoption of CGM. Finally, we review some recent advanced applications for diabetes treatment based on CGM sensors.
Collapse
Affiliation(s)
- Giacomo Cappon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Martina Vettoretti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Padova, Italy.
| |
Collapse
|
53
|
Cappon G, Facchinetti A, Sparacino G, Georgiou P, Herrero P. Classification of Postprandial Glycemic Status with Application to Insulin Dosing in Type 1 Diabetes-An In Silico Proof-of-Concept. SENSORS 2019; 19:s19143168. [PMID: 31323886 PMCID: PMC6679291 DOI: 10.3390/s19143168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023]
Abstract
In the daily management of type 1 diabetes (T1D), determining the correct insulin dose to be injected at meal-time is fundamental to achieve optimal glycemic control. Wearable sensors, such as continuous glucose monitoring (CGM) devices, are instrumental to achieve this purpose. In this paper, we show how CGM data, together with commonly recorded inputs (carbohydrate intake and bolus insulin), can be used to develop an algorithm that allows classifying, at meal-time, the post-prandial glycemic status (i.e., blood glucose concentration being too low, too high, or within target range). Such an outcome can then be used to improve the efficacy of insulin therapy by reducing or increasing the corresponding meal bolus dose. A state-of-the-art T1D simulation environment, including intraday variability and a behavioral model, was used to generate a rich in silico dataset corresponding to 100 subjects over a two-month scenario. Then, an extreme gradient-boosted tree (XGB) algorithm was employed to classify the post-prandial glycemic status. Finally, we demonstrate how the XGB algorithm outcome can be exploited to improve glycemic control in T1D through real-time adjustment of the meal insulin bolus. The proposed XGB algorithm obtained good accuracy at classifying post-prandial glycemic status (AUROC = 0.84 [0.78, 0.87]). Consequently, when used to adjust, in real-time, meal insulin boluses obtained with a bolus calculator, the proposed approach improves glycemic control when compared to the baseline bolus calculator. In particular, percentage time in target [70, 180] mg/dL was improved from 61.98 (±13.89) to 67.00 (±11.54; p < 0.01) without increasing hypoglycemia.
Collapse
Affiliation(s)
- Giacomo Cappon
- Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy
| | - Pantelis Georgiou
- Department of Electrical and Electronical Engineering, Imperial College London, London W5 5SA, UK
| | - Pau Herrero
- Department of Electrical and Electronical Engineering, Imperial College London, London W5 5SA, UK.
| |
Collapse
|
54
|
Toward Long-Term Implantable Glucose Biosensors for Clinical Use. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous glucose monitoring (CGM) sensors have led a paradigm shift to painless, continuous, zero-finger pricking measurement in blood glucose monitoring. Recent electrochemical CGM sensors have reached two-week lifespans and no calibration with clinically acceptable accuracy. The system with the recent CGM sensors is identified as an “integrated glucose monitoring system,” which can replace finger-pricking glucose-testing for diabetes treatment decisions. Although such innovation has brought CGM technology closer to realizing the artificial pancreas, discomfort and infection problems have arisen from short lifespans and open wounds. A fully implantable sensor with a longer-term lifespan (90 days) is considered as an alternative CGM sensor with high comfort and low running cost. However, it still has barriers, including surgery for applying and replacing and frequent calibration. If technical refinement is conducted (e.g., stability and reproducibility of sensor fabrication), fully implantable, long-term CGM sensors can open the new era of continuous glucose monitoring.
Collapse
|
55
|
Stechova K, Hlubik J, Pithova P, Cikl P, Lhotska L. Comprehensive Analysis of the Real Lifestyles of T1D Patients for the Purpose of Designing a Personalized Counselor for Prandial Insulin Dosing. Nutrients 2019; 11:nu11051148. [PMID: 31126048 PMCID: PMC6567095 DOI: 10.3390/nu11051148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022] Open
Abstract
Post-prandial hyperglycemia is still a challenging issue in intensified insulin therapy. Data of 35 T1D patients during a four-week period were analyzed: RT-CGM (real time continuous glucose monitoring) record, insulin doses, diet (including meal photos), energy expenditure, and other relevant conditions. Patients made significant errors in carbohydrate counting (in 56% of cooked and 44% of noncooked meals), which resulted in inadequate insulin doses. Subsequently, a mobile application was programmed to provide individualized advice on prandial insulin dose. When using the application, a patient chooses only the type of categorized situation (e.g., meals with other relevant data) without carbohydrates counting. The application significantly improved postprandial glycemia as normoglycemia was reached in 95/105 testing sessions. Other important findings of the study include: A high intake of saturated fat (median: 162% of recommended intake); a low intake of fiber and vitamin C (median: 42% and 37%, respectively, of recommended intake); an increase in overweight/obesity status (according to body fat measurement), especially in women (median of body fat: 30%); and low physical activity (in 16/35 patients). The proposed individualized approach without carbohydrate counting may help reach postprandial normoglycemia but it is necessary to pay attention to the lifestyle habits of T1D patients too.
Collapse
Affiliation(s)
- Katerina Stechova
- Department of Internal Medicine, University Hospital Motol, V Uvalu 84, 15006 Prague 5-Motol, Czech Republic.
| | - Jan Hlubik
- The Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague, Czech Republic.
| | - Pavlina Pithova
- Department of Internal Medicine, University Hospital Motol, V Uvalu 84, 15006 Prague 5-Motol, Czech Republic.
| | - Petr Cikl
- Fitsport Complex Inc., Polní 1006/11, 664 91 Ivancice, Czech Republic.
| | - Lenka Lhotska
- The Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague, Czech Republic.
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 272 01 Kladno, Czech Republic.
| |
Collapse
|
56
|
Vettoretti M, Facchinetti A. Combining continuous glucose monitoring and insulin pumps to automatically tune the basal insulin infusion in diabetes therapy: a review. Biomed Eng Online 2019; 18:37. [PMID: 30922295 PMCID: PMC6440103 DOI: 10.1186/s12938-019-0658-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
For individuals affected by Type 1 diabetes (T1D), a chronic disease in which the pancreas does not produce any insulin, maintaining the blood glucose (BG) concentration as much as possible within the safety range (70–180 mg/dl) allows avoiding short- and long-term complications. The tuning of exogenous insulin infusion can be difficult, especially because of the inter- and intra-day variability of physiological and behavioral factors. Continuous glucose monitoring (CGM) sensors, which monitor glucose concentration in the subcutaneous tissue almost continuously, allowed improving the detection of critical hypo- and hyper-glycemic episodes. Moreover, their integration with insulin pumps for continuous subcutaneous insulin infusion allowed developing algorithms that automatically tune insulin dosing based on CGM measurements in order to mitigate the incidence of critical episodes. In this work, we aim at reviewing the literature on methods for CGM-based automatic attenuation or suspension of basal insulin with a focus on algorithms, their implementation in commercial devices and clinical evidence of their effectiveness and safety.
Collapse
Affiliation(s)
- Martina Vettoretti
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy.
| |
Collapse
|
57
|
Lucidi P, Porcellati F, Bolli GB, Fanelli CG. Real-time continuous glucose monitoring decreases the risk of severe hypoglycemia in people with type 1 diabetes and impaired awareness of hypoglycemia. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S97. [PMID: 30740418 DOI: 10.21037/atm.2018.11.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paola Lucidi
- Department of Medicine, Section of Endocrinology & Metabolism, Perugia University School of Medicine, Perugia, Italy
| | - Francesca Porcellati
- Department of Medicine, Section of Endocrinology & Metabolism, Perugia University School of Medicine, Perugia, Italy
| | - Geremia B Bolli
- Department of Medicine, Section of Endocrinology & Metabolism, Perugia University School of Medicine, Perugia, Italy
| | - Carmine G Fanelli
- Department of Medicine, Section of Endocrinology & Metabolism, Perugia University School of Medicine, Perugia, Italy
| |
Collapse
|