51
|
Toward a Blood-Borne Biomarker of Chronic Hypoxemia: Red Cell Distribution Width and Respiratory Disease. Adv Clin Chem 2017; 82:105-197. [PMID: 28939210 DOI: 10.1016/bs.acc.2017.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxemia (systemic oxygen desaturation) marks the presence, risk, and progression of many diseases. Episodic or nocturnal hypoxemia can be challenging to detect and quantify. A sensitive, specific, and convenient marker of recent oxygen desaturation represents an unmet medical need. Observations of acclimatization to high altitude in humans and animals reveals several proteosomic, ventilatory, and hematological responses to low oxygen tension. Of these, increased red cell distribution width (RDW) appears to have the longest persistence. Literature review and analyses of a 2M patient database across the full disease pathome revealed that increased RDW is predictive of poor outcome for certain diseases including many if not all hypoxigenic conditions. Comprehensive review of diseases impacting the respiratory axis show many are associated with increased RDW and no apparent counterexamples. The mechanism linking RDW to outcome is unknown. Conjectural roles for iron deficiency, inflammation, and oxidative stress have not been born out experimentally. Sports-doping studies show that erythropoietin (EPO) injection can induce formation of unusually large red blood cells (RBC) in sufficient numbers to increase RDW. Because endogenous EPO responds strongly to hypoxemia, this molecule could potentially mediate a long-lived RDW response to low oxygenation. RDW may be a guidepost signaling that unexploited information is embedded in subtle RBC variation. Applying modern techniques of measurement and analysis to certain RBC characteristics may yield a more specific and sensitive marker of chronic pulmonary and circulatory diseases, sleep apnea, and opioid inhibition of breathing.
Collapse
|
52
|
Akinrinde AS, Omobowale O, Oyagbemi A, Asenuga E, Ajibade T. Protective effects of kolaviron and gallic acid against cobalt-chloride-induced cardiorenal dysfunction via suppression of oxidative stress and activation of the ERK signaling pathway. Can J Physiol Pharmacol 2016; 94:1276-1284. [DOI: 10.1139/cjpp-2016-0197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cobalt (Co) toxicity is a potential public health problem due to recent renewed use of Co in orthopedic implants, dietary supplements, and blood doping in athletes and horses. We investigated the protective roles of kolaviron (KV), a bi-flavonoid of Garcinia kola, and gallic acid (GA) on cobalt chloride (CoCl2)-induced cardiorenal damage in rats. CoCl2 caused significant increases (p < 0.05) in serum creatine kinase–myocardial band (CK-MB), lactate dehydrogenase (LDH), aspartate transaminase (AST), xanthine oxidase (XO), urea, creatinine, malondialdehyde, H2O2, nitric oxide, as well as C-reactive protein expression, along with significant (p < 0.05) reduction in cardiac and renal expression of extracellular signal regulated kinase (ERK) and the activities of superoxide dismutase, catalase, and glutathione S-transferase. KV and GA prevented the toxic effects of CoCl2 by stimulating ERK expression and reversing Co-induced biochemical changes. Administration of CoCl2 alone did not significantly alter ECG patterns in the rats, although co-treatment with KV (200 mg/kg) produced QT-segment prolongation and also appeared to potentiate Co hypotension. Histopathology of the heart and kidneys of rats treated with KV and GA confirmed the biochemical data. KV and GA thus protected against cardiac and renal damage in Co intoxication via antioxidant and (or) cell survival mechanisms, possibly involving ERK activation.
Collapse
Affiliation(s)
- Akinleye Stephen Akinrinde
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, 900001 Nigeria
| | - Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, 900001 Nigeria
| | - Ademola Oyagbemi
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, 900001 Nigeria
| | - Ebunoluwa Asenuga
- Department of Veterinary Biochemistry, Faculty of Veterinary Medicine, University of Benin, Nigeria
| | - Temitayo Ajibade
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, 900001 Nigeria
| |
Collapse
|
53
|
Montero D, Lundby C. Red cell volume response to exercise training: Association with aging. Scand J Med Sci Sports 2016; 27:674-683. [DOI: 10.1111/sms.12798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Affiliation(s)
- D. Montero
- Zurich Center for Integrative Human Physiology (ZIHP); Institute of Physiology; University of Zurich; Zurich Switzerland
| | - C. Lundby
- Zurich Center for Integrative Human Physiology (ZIHP); Institute of Physiology; University of Zurich; Zurich Switzerland
- Food, Nutrition & Sport Science; Gothenburg University; Gothenburg Sweden
| |
Collapse
|
54
|
Malm CB, Khoo NS, Granlund I, Lindstedt E, Hult A. Autologous Doping with Cryopreserved Red Blood Cells - Effects on Physical Performance and Detection by Multivariate Statistics. PLoS One 2016; 11:e0156157. [PMID: 27284981 PMCID: PMC4902314 DOI: 10.1371/journal.pone.0156157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/10/2016] [Indexed: 01/28/2023] Open
Abstract
The discovery of erythropoietin (EPO) simplified blood doping in sports, but improved detection methods, for EPO has forced cheating athletes to return to blood transfusion. Autologous blood transfusion with cryopreserved red blood cells (RBCs) is the method of choice, because no valid method exists to accurately detect such event. In endurance sports, it can be estimated that elite athletes improve performance by up to 3% with blood doping, regardless of method. Valid detection methods for autologous blood doping is important to maintain credibility of athletic performances. Recreational male (N = 27) and female (N = 11) athletes served as Transfusion (N = 28) and Control (N = 10) subjects in two different transfusion settings. Hematological variables and physical performance were measured before donation of 450 or 900 mL whole blood, and until four weeks after re-infusion of the cryopreserved RBC fraction. Blood was analyzed for transferrin, iron, Hb, EVF, MCV, MCHC, reticulocytes, leucocytes and EPO. Repeated measures multivariate analysis of variance (MANOVA) and pattern recognition using Principal Component Analysis (PCA) and Orthogonal Projections of Latent Structures (OPLS) discriminant analysis (DA) investigated differences between Control and Transfusion groups over time. Significant increase in performance (15 ± 8%) and VO2max (17 ± 10%) (mean ± SD) could be measured 48 h after RBC re-infusion, and remained increased for up to four weeks in some subjects. In total, 533 blood samples were included in the study (Clean = 220, Transfused = 313). In response to blood transfusion, the largest change in hematological variables occurred 48 h after blood donation, when Control and Transfused groups could be separated with OPLS-DA (R2 = 0.76/Q2 = 0.59). RBC re-infusion resulted in the best model (R2 = 0.40/Q2 = 0.10) at the first sampling point (48 h), predicting one false positive and one false negative. Over all, a 25% and 86% false positives ratio was achieved in two separate trials. In conclusions, autologous re-infusion of RBCs increased VO2max and performance as hypothesized, but hematological profiling by multivariate statistics could not reach the WADA stipulated false positive ratio of <0.001% at any time point investigated. A majority of samples remained within limits of normal individual variation at all times.
Collapse
Affiliation(s)
- Christer B. Malm
- Sports Medicine Unit, Umeå University, Umeå, Sweden
- Winternet, Boden, Sweden
| | | | | | | | - Andreas Hult
- Sports Medicine Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
55
|
Neuberger EWI, Perez I, Le Guiner C, Moser D, Ehlert T, Allais M, Moullier P, Simon P, Snyder RO. Establishment of two quantitative nested qPCR assays targeting the human EPO transgene. Gene Ther 2016; 23:330-9. [DOI: 10.1038/gt.2016.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/02/2015] [Accepted: 12/31/2015] [Indexed: 12/30/2022]
|
56
|
Cheng CM, Kuan CM, Chen CF. Introduction to In Vitro Diagnostic Devices. IN-VITRO DIAGNOSTIC DEVICES 2016. [PMCID: PMC7124134 DOI: 10.1007/978-3-319-19737-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Healthcare investment keeps on increasing substantially in recent years. Such investment has also focused on fighting major diseases, enabled by the novel invention of cost-effective and valid drug development for treatment and side effect reduction, along with improved vector control. In addition, the demand for diagnostics that is essential in determining prognosis, identifying disease stages, monitoring treatment, and assessing the spreading as health services has expanded. Molecular-based diagnostics is critical for prevention, identification, and treatment of disease. Current laboratory analyses support correct diagnosis in over 70 % of all diseases and can be used to aid the continuous monitoring of drug therapy. However, classic diagnostic technologies are not completely well suited to meeting the expanded testing requirement because they rely on complicated sample purification and sophisticated instruments which are labor-intensive, timely, and expensive and require well-trained operators. One of the main challenges for industry is to develop fast, relatively accurate, easy-to-use, and inexpensive devices. In addition to the improved efficiency in laboratory diagnostics, there has been a trend toward a more decentralized diagnostics which occurs directly at patients’ bedside, in outpatient clinics, or at the sites of accidents, so-called point-of-care (POC) systems. The concept of POC testing is mainly for the patient, so short turnaround time, minimum sample preparation, reagent storage and transferring, user-friendly analytical instruments, and digital or visible quantitative or semiquantitative single readout are required. POC test is a great option of potential in vitro diagnostics (IVD) for resource-limited settings. It is clear that on-site or minimum sample preparation and on-chip storage limit the delays that caused by transport and preparation of clinical samples. Shorter turnaround time leads to rapid clinical decision-making and may save fatal consequences. No previous knowledge in sample analysis should be required, so elders can perform the tests at home with minimum training to improve health outcome. Lateral-flow immunoassay (LFIA) devices, for example, which were originally proposed in the 1980s, remain popular largely because of their design simplicity. The purpose of this article is to introduce readers with basic information regarding the LFIA approach that we think the most representative product of IVD test for solving global health issues.
Collapse
|
57
|
Bird SR, Goebel C, Burke LM, Greaves RF. Doping in sport and exercise: anabolic, ergogenic, health and clinical issues. Ann Clin Biochem 2015; 53:196-221. [DOI: 10.1177/0004563215609952] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 12/11/2022]
Abstract
The use of doping agents is evident within competitive sport in senior and junior age groups, where they are taken by non-elite as well as elite participants. They are also taken in non-sporting contexts by individuals seeking to ‘improve’ their physique through an increase in muscle and/or decrease in fat mass. While attaining accurate data on the prevalence of their use has limitations, studies suggest the illicit use of doping agents by athletes and non-athletes may be 1–5% in the population and greater than 50% in some groups; with the prevalence being higher in males. There is conclusive evidence that some doping agents are anabolic and ergogenic. There is also evidence that the use of doping agents such as anabolic androgenic steroids, growth hormone and other anabolic agents, erythropoietin and stimulants conveys considerable health risks that include, but are not limited to: cardiovascular disease, diabetes, cancer, mental health issues, virilisation in females and the suppression of naturally produced androgens in males. This review will outline the anabolic, ergogenic and health impacts of selected doping agents and methods that may be used in both the sporting and physique development contexts. It also provides a brief tabulated overview of the history of doping and how doping agents may impact upon the analyses of clinical samples.
Collapse
Affiliation(s)
- Stephen R Bird
- School of Medical Sciences, RMIT University, Victoria, Australia
| | - Catrin Goebel
- Australian Sports Drug Testing Laboratory, Sydney, Australia
| | | | - Ronda F Greaves
- School of Medical Sciences, RMIT University, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
58
|
Montero D, Cathomen A, Jacobs RA, Flück D, de Leur J, Keiser S, Bonne T, Kirk N, Lundby AK, Lundby C. Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. J Physiol 2015; 593:4677-88. [PMID: 26282186 DOI: 10.1113/jp270250] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022] Open
Abstract
It remains unclear whether improvements in peak oxygen uptake (V̇(O2peak)) following endurance training (ET) are primarily determined by central and/or peripheral adaptations. Herein, we tested the hypothesis that the improvement in V̇(O2peak) following 6 weeks of ET is mainly determined by haematological rather than skeletal muscle adaptations. Sixteen untrained healthy male volunteers (age = 25 ± 4 years, V̇(O2peak) = 3.5 ± 0.5 l min(-1)) underwent supervised ET (6 weeks, 3-4 sessions per week). V̇(O2peak), peak cardiac output (Q̇(peak)), haemoglobin mass (Hb(mass)) and blood volumes were assessed prior to and following ET. Skeletal muscle biopsies were analysed for mitochondrial volume density (Mito(VD)), capillarity, fibre types and respiratory capacity (OXPHOS). After the post-ET assessment, red blood cell volume (RBCV) was re-established at the pre-ET level by phlebotomy and V̇(O2peak) and Q̇(peak) were measured again. We speculated that the contribution of skeletal muscle adaptations to the ET-induced increase in V̇(O2peak) would be revealed when controlling for haematological adaptations. V̇(O2peak) and Q̇(peak) were increased (P < 0.05) following ET (9 ± 8 and 7 ± 6%, respectively) and decreased (P < 0.05) after phlebotomy (-7 ± 7 and -10 ± 7%). RBCV, plasma volume and Hb(mass) all increased (P < 0.05) after ET (8 ± 4, 4 ± 6 and 6 ± 5%). As for skeletal muscle adaptations, capillary-to-fibre ratio and total Mito(VD) increased (P < 0.05) following ET (18 ± 16 and 43 ± 30%), but OXPHOS remained unaltered. Through stepwise multiple regression analysis, Q̇(peak), RBCV and Hb(mass) were found to be independent predictors of V̇(O2peak). In conclusion, the improvement in V̇(O2peak) following 6 weeks of ET is primarily attributed to increases in Q̇(peak) and oxygen-carrying capacity of blood in untrained healthy young subjects.
Collapse
Affiliation(s)
- David Montero
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Adrian Cathomen
- Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland
| | - Robert A Jacobs
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland.,Health and Physical Education, School of Teaching and Learning, Western Carolina University, Cullowhee, NC, USA
| | - Daniela Flück
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Jeroen de Leur
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Stefanie Keiser
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Thomas Bonne
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Niels Kirk
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Anne-Kristine Lundby
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| | - Carsten Lundby
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Switzerland
| |
Collapse
|
59
|
Lundby C, Robach P. Performance Enhancement: What Are the Physiological Limits? Physiology (Bethesda) 2015; 30:282-92. [DOI: 10.1152/physiol.00052.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our objective is to highlight some key physiological determinants of endurance exercise performance and to discuss how these can be further improved. V̇o2max remains remarkably stable throughout an athletic career. By contrast, exercise economy, lactate threshold, and critical power may be improved in world-class athletes by specific exercise training regimes and/or with more years of training.
Collapse
Affiliation(s)
- C. Lundby
- Zürich Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
- Food & Nutrition & Sport Science, Gothenburg University, Gothenburg, Sweden; and
| | - P. Robach
- Ecole Nationale des Sports de Montagne, Site de l'Ecole Nationale de Ski et d'Alpinisme, Chamonix, France
| |
Collapse
|
60
|
Hiram-Bab S, Liron T, Deshet-Unger N, Mittelman M, Gassmann M, Rauner M, Franke K, Wielockx B, Neumann D, Gabet Y. Erythropoietin directly stimulates osteoclast precursors and induces bone loss. FASEB J 2015; 29:1890-900. [PMID: 25630969 DOI: 10.1096/fj.14-259085] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/23/2014] [Indexed: 12/24/2022]
Abstract
Erythropoietin (EPO) primarily regulates red blood cell formation, and EPO serum levels are increased on hypoxic stress (e.g., anemia and altitude). In addition to anemia, recent discoveries suggest new therapeutic indications for EPO, unrelated to erythropoiesis. We investigated the skeletal role of EPO using several models of overexpression (Tg6 mice) and EPO administration (intermittent/continuous, high/low doses) in adult C57Bl6 female mice. Using microcomputed tomography, histology, and serum markers, we found that EPO induced a 32%-61% trabecular bone loss caused by increased bone resorption (+60%-88% osteoclast number) and reduced bone formation rate (-19 to -74%; P < 0.05 throughout). EPO targeted the monocytic lineage by increasing the number of bone monocytes/macrophages, preosteoclasts, and mature osteoclasts. In contrast to the attenuated bone formation in vivo, EPO treatment in vitro did not inhibit osteoblast differentiation and activity, suggesting an indirect effect of EPO on osteoblasts. However, EPO had a direct effect on preosteoclasts by stimulating osteoclastogenesis in isolated cultures (+60%) via the Jak2 and PI3K pathways. In summary, our findings demonstrate that EPO negatively regulates bone mass and thus bears significant clinical implications for the potential management of patients with endogenously or therapeutically elevated EPO levels.
Collapse
Affiliation(s)
- Sahar Hiram-Bab
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Tamar Liron
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Naamit Deshet-Unger
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Moshe Mittelman
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Max Gassmann
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Martina Rauner
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Kristin Franke
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Ben Wielockx
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Drorit Neumann
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| | - Yankel Gabet
- *Department of Cell and Developmental Biology, Department of Anatomy and Anthropology, and Department of Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Medicine III, Dresden University Medical Center, Dresden, Germany; and Institute of Pathology, University of Technology, Dresden, Germany
| |
Collapse
|
61
|
Tvermoes BE, Paustenbach DJ, Kerger BD, Finley BL, Unice KM. Review of cobalt toxicokinetics following oral dosing: Implications for health risk assessments and metal-on-metal hip implant patients. Crit Rev Toxicol 2015; 45:367-87. [DOI: 10.3109/10408444.2014.985818] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
62
|
Kruse TN, Carter RE, Rosedahl JK, Joyner MJ. Speed trends in male distance running. PLoS One 2014; 9:e112978. [PMID: 25409192 PMCID: PMC4237511 DOI: 10.1371/journal.pone.0112978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022] Open
Abstract
The major cycling "Grand Tours" have shown an attenuation of performance over the last decade. This has been interpreted as circumstantial evidence that newer anti-doping strategies have reduced the use of performance-enhancing drugs. To examine this idea under more controlled conditions, speed trends for world class 5000 m, 10000 m, and marathon performances by men from 1980 to 2013 were analyzed. We obtained comprehensive records from the International Association of Athletics Federations, Association of Road Racing Statisticians, and the Track and Field All-time Performances database webpages. The top 40 performances for each event and year were selected for regression analysis. For the three distances, we noted cumulative performance improvements in the 1990s thru the mid-2000s. After the peak speed years of the mid 2000 s, there has been limited improvement in the 5000 m and 10,000 m and world records set during that time remain in place today, marking the longest period of time between new records since the early 1940s. By contrast marathon speed continues to increase and the world record has been lowered four times since 2007, including in 2013. While the speed trends for 5000 m and 10000 m track results parallel those seen in elite cycling, the marathon trends do not. We discuss a number of explanations other than improved anti-doping strategies that might account for these divergent findings.
Collapse
Affiliation(s)
- Timothy N. Kruse
- The University of Washington School of Medicine, 1959 N. E. Pacific Street, Seattle, WA, 98195, United States of America
| | - Rickey E. Carter
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States of America
| | - Jordan K. Rosedahl
- Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States of America
| | - Michael J. Joyner
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States of America
| |
Collapse
|
63
|
Aachmann-Andersen NJ, Just Christensen S, Lisbjerg K, Oturai P, Meinild-Lundby AK, Holstein-Rathlou NH, Lundby C, Vidiendal Olsen N. Recombinant erythropoietin in humans has a prolonged effect on circulating erythropoietin isoform distribution. PLoS One 2014; 9:e110903. [PMID: 25335123 PMCID: PMC4204994 DOI: 10.1371/journal.pone.0110903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022] Open
Abstract
The membrane-assisted isoform immunoassay (MAIIA) quantitates erythropoietin (EPO) isoforms as percentages of migrated isoforms (PMI). We evaluated the effect of recombinant human EPO (rhEPO) on the distribution of EPO isoforms in plasma in a randomized, placebo-controlled, double-blinded, cross-over study. 16 healthy subjects received either low-dose Epoetin beta (5000 IU on days 1, 3, 5, 7, 9, 11 and 13); high-dose Epoetin beta (30.000 IU on days 1, 2 and 3 and placebo on days 5, 7, 9, 11 and 13); or placebo on all days. PMI on days 4, 11 and 25 was determined by interaction of N-acetyl glucosamine with the glycosylation dependent desorption of EPO isoforms. At day 25, plasma-EPO in both rhEPO groups had returned to values not different from the placebo group. PMI with placebo, reflecting the endogenous EPO isoforms, averaged 82.5 (10.3) % (mean (SD)). High-dose Epoetin beta decreased PMI on days 4 and 11 to 31.0 (4.2)% (p<0.00001) and 45.2 (7.3)% (p<0.00001). Low-dose Epoetin beta decreased PMI on days 4 and 11 to 46.0 (12.8)% (p<0.00001) and 46.1 (10.4)% (p<0.00001). In both rhEPO groups, PMI on day 25 was still decreased (high-dose Epoetin beta: 72.9 (19.4)% (p = 0.029); low-dose Epoetin beta: 73.1 (17.8)% (p = 0.039)). In conclusion, Epoetin beta leaves a footprint in the plasma-EPO isoform pattern. MAIIA can detect changes in EPO isoform distribution up til at least three weeks after administration of Epoetin beta even though the total EPO concentration has returned to normal.
Collapse
Affiliation(s)
| | - Søren Just Christensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Lisbjerg
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Oturai
- Clinic of Clinical Physiology, Nuclear Medicine and PET, Centre of Clinical Investigation, Rigshospitalet, Copenhagen, Denmark
| | - Anne-Kristine Meinild-Lundby
- Center for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Zürich, Switzerland
| | | | - Carsten Lundby
- Center for Integrative Human Physiology (ZIHP), University of Zurich, Institute of Physiology, Zürich, Switzerland
| | - Niels Vidiendal Olsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroanaesthesia, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
64
|
Affiliation(s)
- J. V. Brugniaux
- Neurovascular Research Laboratory; Faculty of Life Sciences and Education; University of South Wales; Glamorgan UK
| |
Collapse
|
65
|
|
66
|
Oliveira CDRD, Bairros AVD, Yonamine M. Blood doping: risks to athletes' health and strategies for detection. Subst Use Misuse 2014; 49:1168-81. [PMID: 24766400 DOI: 10.3109/10826084.2014.903754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Blood doping has been defined as the misuse of substances or certain techniques to optimize oxygen delivery to muscles with the aim to increase performance in sports activities. It includes blood transfusion, administration of erythropoiesis-stimulating agents or blood substitutes, and gene manipulations. The main reasons for the widespread use of blood doping include: its availability for athletes (erythropoiesis-stimulating agents and blood transfusions), its efficiency in improving performance, and its difficult detection. This article reviews and discusses the blood doping substances and methods used for in sports, the adverse effects related to this practice, and current strategies for its detection.
Collapse
|
67
|
Unice KM, Kerger BD, Paustenbach DJ, Finley BL, Tvermoes BE. Refined biokinetic model for humans exposed to cobalt dietary supplements and other sources of systemic cobalt exposure. Chem Biol Interact 2014; 216:53-74. [DOI: 10.1016/j.cbi.2014.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/21/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
|
68
|
Segura J, Lundby C. Blood doping: potential of blood and urine sampling to detect autologous transfusion. Br J Sports Med 2014; 48:837-41. [DOI: 10.1136/bjsports-2014-093601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
69
|
Bonne TC, Lundby C, Jørgensen S, Johansen L, Mrgan M, Bech SR, Sander M, Papoti M, Nordsborg NB. “Live High–Train High” increases hemoglobin mass in Olympic swimmers. Eur J Appl Physiol 2014; 114:1439-49. [DOI: 10.1007/s00421-014-2863-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
|
70
|
Saugy M, Lundby C, Robinson N. Monitoring of biological markers indicative of doping: the athlete biological passport. Br J Sports Med 2014; 48:827-32. [DOI: 10.1136/bjsports-2014-093512] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
71
|
Tvermoes BE, Unice KM, Paustenbach DJ, Finley BL, Otani JM, Galbraith DA. Effects and blood concentrations of cobalt after ingestion of 1 mg/d by human volunteers for 90 d. Am J Clin Nutr 2014; 99:632-46. [PMID: 24500148 DOI: 10.3945/ajcn.113.071449] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Over-the-counter cobalt supplements are available for sale in the United States, but little is known regarding their clinical effects and biokinetic distribution with long-term use. OBJECTIVE We assessed blood kinetics, biochemical responses, and clinical effects in 5 adult men and 5 adult women who voluntarily ingested ∼ 1.0 mg Co/d (0.080-0.19 mg Co · kg⁻¹ · d⁻¹) of a commercially available cobalt supplement over a 3-mo period. DESIGN Volunteers were instructed to take the cobalt dietary supplement in the morning according to the manufacturer's label. Blood samples were collected and analyzed for a number of biochemical variables before, during, and after dosing. Hearing, vision, cardiac, and neurologic functions were also assessed in volunteers before, during, and after dosing. RESULTS After ∼ 90 d of dosing, mean cobalt blood concentrations were lower in men than in women. Mean cobalt whole blood and serum concentrations in men were 20 μg/L (range: 12-33 μg/L) and 25 μg/L (range: 15-46 μg/L), respectively. In women, mean cobalt whole blood and serum concentrations were 53 μg/L (range: 6-117 μg/L) and 71 μg/L (range: 9-149 μg/L), respectively. Estimated red blood cell (RBC) cobalt concentrations suggested that cobalt was sequestered in RBCs during their 120-d life span, which resulted in a slower whole blood clearance compared with serum. The renal clearance of cobalt increased with the serum concentration and was, on average, lower in women (3.5 ± 1.3 mL/min) than in men (5.5 ± 1.9 mL/min). Sex-specific differences were observed in cobalt absorption and excretion. There were no clinically significant changes in biochemical, hematologic, and clinical variables assessed in this study. CONCLUSION Peak cobalt whole blood concentrations ranging between 9.4 and 117 μg/L were not associated with clinically significant changes in basic hematologic and clinical variables.
Collapse
Affiliation(s)
- Brooke E Tvermoes
- From Cardno ChemRisk LLC, San Francisco, CA (DJP, JMO, DAG, and BLF); Cardno ChemRisk LLC, Boulder, CO (BET); and Cardno ChemRisk LLC, Pittsburgh, PA (KMU)
| | | | | | | | | | | |
Collapse
|
72
|
Mairbäurl H. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front Physiol 2013; 4:332. [PMID: 24273518 PMCID: PMC3824146 DOI: 10.3389/fphys.2013.00332] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/25/2013] [Indexed: 11/24/2022] Open
Abstract
During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood's buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called “sports anemia.” This is not anemia in a clinical sense, because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume (PV). The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g., in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise.
Collapse
Affiliation(s)
- Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, University of Heidelberg Heidelberg, Germany
| |
Collapse
|
73
|
Malczewska-Lenczowska J, Sitkowski D, Orysiak J, Pokrywka A, Szygula Z. Total haemoglobin mass, blood volume and morphological indices among athletes from different sport disciplines. Arch Med Sci 2013; 9:780-7. [PMID: 24273557 PMCID: PMC3832821 DOI: 10.5114/aoms.2013.36926] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Haemoglobin is a key determinant of maximal oxygen uptake. This study's objective was to assess total haemoglobin mass (tHb-mass), as well as blood volume and morphological indices in athletes training different sports disciplines. MATERIAL AND METHODS This study was conducted on 176 endurance and non-endurance athletes (males and females). tHb-mass, blood volume (BV), plasma volume (PV), and red cell volume (RCV) were determined by optimized carbon monoxide rebreathing method. Haemoglobin concentration (Hb), haematocrit (Hct), red blood count (RBC) were also determined. RESULTS In endurance sports, gender regardless, no significant differences in relative mean values of tHb-mass (12.8-13.1 g/kg - males; 10.4-10.6 g/kg - females), BV (90.8-94.0 ml/kg - males; 82.7-86.9 ml/kg - females), RCV (36.6-38.0 ml/kg - males; 31.1-31.5 ml/kg - females) or of PV in males (54.2-56.4 ml/kg) were observed. The above indices' relative values, gender regardless, were significantly lower in judo (11.2 ±0.7 g/kg, 81.8 ±5.9 ml/kg, 48.6 ±4.5 ml/kg and 33.1 ±2.0 ml/kg - males; 9.3 ±0.7 g/kg, 74.3 ±5.6 ml/kg, 46.4 ±4.0 ml/kg and 27.9 ±2.1 ml/kg - females) compared to endurance sports (p < 0.001). No substantial differences were observed in morphological blood indices in males, whereas this differentiation was found between certain sports in female athletes. CONCLUSIONS The lack of differences in tHb-mass, BV, PV and RCV in endurance sports and presence of this differentiation between various sports shows that the types of training might affect levels of mentioned indices. Measurements of tHb-mass and BV parameters prove Hb, Hct and RBC to have limited value for haematological status evaluations.
Collapse
Affiliation(s)
| | | | - Joanna Orysiak
- Department of Nutrition Physiology, Institute of Sport, Warsaw, Poland
| | - Andrzej Pokrywka
- Department of Anti-Doping Research, Institute of Sport, Warsaw, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine, University School of Physical Education, Cracow, Poland
- University of Social Sciences, Lodz, Poland
| |
Collapse
|
74
|
Sanchis-Gomar F, Pareja-Galeano H, Brioche T, Martinez-Bello V, Lippi G. Altitude exposure in sports: the Athlete Biological Passport standpoint. Drug Test Anal 2013; 6:190-3. [DOI: 10.1002/dta.1539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/14/2013] [Accepted: 08/14/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Fabian Sanchis-Gomar
- Faculty of Medicine, Department of Physiology; University of Valencia; Spain
- Fundación Investigación Hospital Clínico Universitario/INCLIVA; Spain
| | - Helios Pareja-Galeano
- Faculty of Medicine, Department of Physiology; University of Valencia; Spain
- Fundación Investigación Hospital Clínico Universitario/INCLIVA; Spain
| | - Thomas Brioche
- Faculty of Medicine, Department of Physiology; University of Valencia; Spain
- Fundación Investigación Hospital Clínico Universitario/INCLIVA; Spain
- Laboratory M2S (Movement, Sport and Health Sciences); UFR-APS Rennes Cedex France
| | - Vladimir Martinez-Bello
- Faculty of Teaching, Department of Teaching of Musical, Visual and Corporal Expression; University of Valencia; Spain
| | - Giuseppe Lippi
- Clinical Chemistry and Hematology Laboratory, Department of Pathology and Laboratory Medicine; Academic Hospital of Parma; Italy
| |
Collapse
|
75
|
Ebert B, Jelkmann W. Intolerability of cobalt salt as erythropoietic agent. Drug Test Anal 2013; 6:185-9. [PMID: 24039233 DOI: 10.1002/dta.1528] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/22/2022]
Abstract
Unfair athletes seek ways to stimulate erythropoiesis, because the mass of haemoglobin is a critical factor in aerobic sports. Here, the potential misuse of cobalt deserves special attention. Cobalt ions (Co(2+) ) stabilize the hypoxia-inducible transcription factors (HIFs) that increase the expression of the erythropoietin (Epo) gene. Co(2+) is orally active, easy to obtain, and inexpensive. However, its intake can bear risks to health. To elaborate this issue, a review of the pertinent literature was retrieved by a search with the keywords 'anaemia', 'cobalt', 'cobalt chloride', 'erythropoiesis', 'erythropoietin', 'Epo', 'side-effects' and 'treatment', amongst others. In earlier years, cobalt chloride was administered at daily doses of 25 to 300 mg for use as an anti-anaemic agent. Co(2+) therapy proved effective in stimulating erythropoiesis in both non-renal and renal anaemia, yet there were also serious medical adverse effects. The intake of inorganic cobalt can cause severe organ damage, concerning primarily the gastrointestinal tract, the thyroid, the heart and the sensory systems. These insights should keep athletes off taking Co(2+) to stimulate erythropoiesis.
Collapse
Affiliation(s)
- Bastian Ebert
- Institute of Physiology, University of Luebeck, D-23562, Luebeck, Germany
| | | |
Collapse
|
76
|
Jelkmann I, Jelkmann W. Impact of erythropoietin on intensive care unit patients. ACTA ACUST UNITED AC 2013; 40:310-8. [PMID: 24273484 DOI: 10.1159/000354128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022]
Abstract
Anemia is common in intensive care unit (ICU) patients. Red blood cell (RBC) transfusions are mainstays of their treatment and can be life-saving. Allogeneic blood components inherently bear risks of infection and immune reactions. Although these risks are rare in developed countries, recombinant human erythropoietin (rhEpo) and other erythropoiesis-stimulating agents (ESAs) have been considered alternative anti-anemia treatment options. As summarized herein, however, most of the clinical studies suggest that ESAs are not usually advisable in ICU patients unless approved indications exist (e.g., renal disease). First, ESAs act in a delayed way, inducing an increase in reticulocytes only after a lag of 3-4 days. Second, many critically ill patients present with ESA resistance as inflammatory mediators impair erythropoietic cell proliferation and iron availability. Third, the ESA doses used for treatment of ICU patients are very high. Fourth, ESAs are not legally approved for general use in ICU patients. Solely in distinct cases, such as Jehovah's Witnesses who refuse allogeneic blood transfusions due to religious beliefs, ESAs may be considered an exceptional therapy.
Collapse
Affiliation(s)
- Ines Jelkmann
- Department of Surgery, University of Lübeck, Germany
| | | |
Collapse
|
77
|
Targeting prohibited substances in doping control blood samples by means of chromatographic–mass spectrometric methods. Anal Bioanal Chem 2013; 405:9655-67. [DOI: 10.1007/s00216-013-7224-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/26/2013] [Accepted: 07/04/2013] [Indexed: 12/28/2022]
|
78
|
Cacic DL, Hervig T, Seghatchian J. Blood doping: The flip side of transfusion and transfusion alternatives. Transfus Apher Sci 2013; 49:90-4. [DOI: 10.1016/j.transci.2013.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
79
|
Jelkmann W. Physiology and pharmacology of erythropoietin. ACTA ACUST UNITED AC 2013; 40:302-9. [PMID: 24273483 DOI: 10.1159/000356193] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/03/2013] [Indexed: 12/13/2022]
Abstract
Human erythropoietin (Epo) is a 30.4 kDa glycoprotein hormone composed of a single 165 amino acid residues chain to which four glycans are attached. The kidneys are the primary sources of Epo, its synthesis is controlled by hypoxia-inducible transcription factors (HIFs). Epo is an essential factor for the viability and proliferation of erythrocytic progenitors. Whether Epo exerts cytoprotection outside the bone marrow still needs to be clarified. Epo deficiency is the primary cause of the anemia in chronic kidney disease (CKD). Treatment with recombinant human Epo (rhEpo, epoetin) can be beneficial not only in CKD but also for other indications, primarily anemia in cancer patients receiving chemotherapy. Considering unwanted events, the administration of rhEpo or its analogs may increase the incidence of thromboembolism. The expiry of the patents for the original epoetins has initiated the production of similar biological medicinal products ('biosimilars'). Furthermore, analogs (darbepoetin alfa, methoxy PEG-epoetin beta) with prolonged survival in circulation have been developed ('biobetter'). New erythropoiesis-stimulating agents are in clinical trials. These include compounds that augment erythropoiesis directly (e.g. Epo mimetic peptides or activin A binding protein) and chemicals that act indirectly by stimulating endogenous Epo synthesis (HIF stabilizers).
Collapse
|
80
|
Paustenbach DJ, Tvermoes BE, Unice KM, Finley BL, Kerger BD. A review of the health hazards posed by cobalt. Crit Rev Toxicol 2013; 43:316-62. [DOI: 10.3109/10408444.2013.779633] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
81
|
Abstract
An erythrocytosis occurs when there is an increased red-cell mass. The causes of erythrocytosis are divided into primary, when there is an intrinsic defect in the erythroid cell, and secondary, when the cause is extrinsic to the erythroid cell. An idiopathic erythrocytosis occurs when the increased red-cell mass has no identifiable cause. Primary and secondary defects can be further classified as either congenital or acquired causes. The diagnostic pathway starts with a careful history and examination followed by measurement of the erythropoietin (EPO) levels. This allows a division of those patients with a low EPO level, who can then be investigated for primary causes of erythrocytosis, and those with a normal or high EPO level, where the oxygen-sensing pathway needs to be explored further. Physiological studies in those with congenital defects in the oxygen-sensing pathway show many changes in the downstream metabolism adapting to the defect, which has a bearing on the management of the disorders. Low-dose aspirin and venesection to an achievable target are the main therapeutic options that can be considered in the management of erythrocytosis. Specific guidance on venesection options should be considered with certain causes such as high oxygen-affinity hemoglobins.
Collapse
Affiliation(s)
- Mary Frances McMullin
- Department of Haematology, 'C' Floor, Belfast City Hospital, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AB, Northern Ireland, UK
| |
Collapse
|
82
|
Abstract
Reticulocytes are young red blood cells which develop from erythroblasts and circulate in the bloodstream for about 1-4 days before maturing into erythrocytes. With the introduction of reticulocyte count in equations and statistical models for detecting suspected blood doping, its application to sports medicine has attracted growing interest in reticulocyte behavior during training and competition seasons in athletes and experimental blood doping treatment in healthy volunteers. An update on recent publications is therefore needed to improve the interpretation of reticulocyte analysis and its variability in sportsmen. Reticulocyte count constitutes a robust parameter during the preanalytical phase, but cell stability can be assured only if blood samples are kept at constantly cold temperatures (4 degrees C) and test results will differ depending on the blood analyzer system used. Marked intraindividual variability is the principal finding to be evaluated when exercise-induced changes are observed or illicit procedures suspected. Furthermore, reticulocyte variability is greater than that of other hematological parameters such as hemoglobin or hematocrit. Ideally, any variation should be interpreted against long-term time series for the individual athlete: values obtained from large athlete cohorts ought to be used only for extrapolating outliers that deserve further examination. Reticulocyte distribution in athletes is similar to that found in the general population, and a gender effect in some sports disciplines or selected athlete groups may be seen. Reticulocyte variability is strongly influenced by seasonal factors linked to training and competition schedules and by the type of sports discipline. Published experimental data have confirmed the high sensitivity of reticulocyte analysis in identifying abnormal bone marrow stimulation by either erythropoietin administration or blood withdrawal and reinfusion.
Collapse
|
83
|
Tvermoes BE, Finley BL, Unice KM, Otani JM, Paustenbach DJ, Galbraith DA. Cobalt whole blood concentrations in healthy adult male volunteers following two-weeks of ingesting a cobalt supplement. Food Chem Toxicol 2013. [DOI: 10.1016/j.fct.2012.11.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
84
|
Okano M, Sato M, Kageyama S. Identification of the long-acting erythropoiesis-stimulating agent darbepoetin alfa in human urine by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 2013; 406:1317-29. [DOI: 10.1007/s00216-013-6836-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/25/2013] [Accepted: 02/07/2013] [Indexed: 12/11/2022]
|
85
|
Derivation of a chronic oral reference dose for cobalt. Regul Toxicol Pharmacol 2012; 64:491-503. [DOI: 10.1016/j.yrtph.2012.08.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/31/2012] [Accepted: 08/30/2012] [Indexed: 11/21/2022]
|
86
|
Beuck S, Schänzer W, Thevis M. Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesis-stimulating agents in current and preventive doping analysis. Drug Test Anal 2012; 4:830-45. [PMID: 22362605 DOI: 10.1002/dta.390] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 10/21/2011] [Accepted: 10/22/2011] [Indexed: 12/12/2022]
Abstract
Increasing the blood's capacity for oxygen transport by erythropoiesis-stimulating agents (ESAs) constitutes a prohibited procedure of performance enhancement according to the World Anti-Doping Agency (WADA). The advent of orally bio-available small-molecule ESAs such as hypoxia-inducible factor (HIF) stabilizers in the development of novel anti-anaemia therapies expands the list of potential ESA doping techniques. Here, the erythropoiesis-stimulating properties and doping relevance of experimental HIF-stabilizers, such as cobaltous chloride, 3,4-dihydroxybenzoic acid or GSK360A, amongst others, are discussed. The stage of clinical trials is reviewed for the anti-anaemia drug candidates FG-2216, FG-4592, GSK1278863, AKB-6548, and BAY85-3934. Currently available methods and strategies for the determination of selected HIF stabilizers in sports drug testing are based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). For the support of further analytical assay development, patents claiming distinct compounds for the use in HIF-mediated therapies are evaluated and exemplary molecular structures of HIF stabilizers presented. Moreover, data concerning the erythropoiesis-enhancing effects of the GATA inhibitors K7174 and K11706 as well as the lipidic small-molecule ESA PBI-1402 are elucidated the context of doping analysis.
Collapse
Affiliation(s)
- Simon Beuck
- German Sport University Cologne, Cologne, Germany
| | | | | |
Collapse
|
87
|
Ex vivo erythrocyte generation and blood doping. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 11:161-3. [PMID: 23114519 DOI: 10.2450/2012.0028-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/28/2012] [Indexed: 11/21/2022]
|
88
|
|
89
|
Robach P, Lundby C. Is live high-train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports 2012; 22:303-5. [PMID: 22612361 DOI: 10.1111/j.1600-0838.2012.01457.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
90
|
Detection of erythropoiesis-stimulating agents in human anti-doping control: past, present and future. Bioanalysis 2012; 4:1565-75. [DOI: 10.4155/bio.12.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Stimulation of erythropoiesis is one of the most efficient ways of doping. This type of doping is advantageous for aerobic physical exercise and of particular interest to endurance athletes. Erythropoiesis, which takes place in bone marrow, is under the control of EPO, a hormone secreted primarily by the kidneys when the arterial oxygen tension decreases. In certain pathological disorders, such as chronic renal failure, the production of EPO is insufficient and results in anemia. The pharmaceutical industry has, thus, been very interested in developing drugs that stimulate erythropoiesis. With this aim, various strategies have been, and continue to be, envisaged, giving rise to an expanding range of drugs that are good candidates for doping. Anti-doping control has had to deal with this situation by developing appropriate methods for their detection. This article presents an overview of both the drugs and the corresponding methods of detection, and thus follows a roughly chronological order.
Collapse
|
91
|
Inorganic cobalt supplementation: Prediction of cobalt levels in whole blood and urine using a biokinetic model. Food Chem Toxicol 2012; 50:2456-61. [DOI: 10.1016/j.fct.2012.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/23/2012] [Accepted: 04/03/2012] [Indexed: 11/18/2022]
|
92
|
Lundby C, Robach P, Saltin B. The evolving science of detection of 'blood doping'. Br J Pharmacol 2012; 165:1306-15. [PMID: 22225538 PMCID: PMC3372716 DOI: 10.1111/j.1476-5381.2011.01822.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/15/2011] [Accepted: 11/25/2011] [Indexed: 12/21/2022] Open
Abstract
Blood doping practices in sports have been around for at least half a century and will likely remain for several years to come. The main reason for the various forms of blood doping to be common is that they are easy to perform, and the effects on exercise performance are gigantic. Yet another reason for blood doping to be a popular illicit practice is that detection is difficult. For autologous blood transfusions, for example, no direct test exists, and the direct testing of misuse with recombinant human erythropoietin (rhEpo) has proven very difficult despite a test exists. Future blood doping practice will likely include the stabilization of the transcription factor hypoxia-inducible factor which leads to an increased endogenous erythropoietin synthesis. It seems unrealistic to develop specific test against such drugs (and the copies hereof originating from illegal laboratories). In an attempt to detect and limit blood doping, the World Anti-Doping Agency (WADA) has launched the Athlete Biological Passport where indirect markers for all types of blood doping are evaluated on an individual level. The approach seemed promising, but a recent publication demonstrates the system to be incapable of detecting even a single subject as 'suspicious' while treated with rhEpo for 10-12 weeks. Sad to say, the hope that the 2012 London Olympics should be cleaner in regard to blood doping seems faint. We propose that WADA strengthens the quality and capacities of the National Anti-Doping Agencies and that they work more efficiently with the international sports federations in an attempt to limit blood doping.
Collapse
Affiliation(s)
- Carsten Lundby
- Center for Integrative Human Physiology, Institute of Physiology, University of Zurich, Switzerland.
| | | | | |
Collapse
|
93
|
Thevis M, Kuuranne T, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2012; 4:2-16. [DOI: 10.1002/dta.415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Tiia Kuuranne
- Doping Control Laboratory; United Medix Laboratories; Helsinki; Finland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Germany
| |
Collapse
|
94
|
Finley BL, Monnot AD, Gaffney SH, Paustenbach DJ. Dose-response relationships for blood cobalt concentrations and health effects: a review of the literature and application of a biokinetic model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2012; 15:493-523. [PMID: 23199219 DOI: 10.1080/10937404.2012.744287] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cobalt (Co) is an essential component of vitamin B(12). As with all metals, at sufficiently high doses, Co may exert detrimental effects on different organ systems, and adverse responses have been observed in animals, patients undergoing Co therapy, and workers exposed to respirable Co particulates. Although blood Co concentrations are postulated to be the most accurate indicator of ongoing Co exposure, little is known regarding the dose-response relationships between blood Co concentrations and adverse health effects in various organ systems. In this analysis, the animal toxicology and epidemiology literature were evaluated to identify blood Co concentrations at which effects have, and have not, been reported. Where necessary, a biokinetic model was used to convert oral doses to blood Co concentrations. Our results indicated that blood Co concentrations of 300 μg/L and less have not been associated with adverse responses of any type in humans. Concentrations of 300 μg/L and higher were associated with certain hematological and reversible endocrine responses, including polycythemia and reduced iodide uptake. Blood Co concentrations of 700-800 μg Co/L and higher may pose a risk of more serious neurological, reproductive, or cardiac effects. These blood concentrations should be useful to clinicians and toxicologists who are attempting to interpret blood Co concentrations in exposed individuals.
Collapse
|
95
|
Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of Care Diagnostics: Status and Future. Anal Chem 2011; 84:487-515. [DOI: 10.1021/ac2030199] [Citation(s) in RCA: 832] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vladimir Gubala
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Leanne F. Harris
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Antonio J. Ricco
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Ming X. Tan
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - David E. Williams
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
96
|
|