51
|
Perlin JR, Robertson AL, Zon LI. Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis. J Exp Med 2017; 214:2817-2827. [PMID: 28830909 PMCID: PMC5626407 DOI: 10.1084/jem.20171069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an important therapy for patients with a variety of hematological malignancies. HSCT would be greatly improved if patient-specific hematopoietic stem cells (HSCs) could be generated from induced pluripotent stem cells in vitro. There is an incomplete understanding of the genes and signals involved in HSC induction, migration, maintenance, and niche engraftment. Recent studies in zebrafish have revealed novel genes that are required for HSC induction and niche regulation of HSC homeostasis. Manipulation of these signaling pathways and cell types may improve HSC bioengineering, which could significantly advance critical, lifesaving HSCT therapies.
Collapse
Affiliation(s)
- Julie R Perlin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Anne L Robertson
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
52
|
MacLean AL, Smith MA, Liepe J, Sim A, Khorshed R, Rashidi NM, Scherf N, Krinner A, Roeder I, Lo Celso C, Stumpf MPH. Single Cell Phenotyping Reveals Heterogeneity Among Hematopoietic Stem Cells Following Infection. Stem Cells 2017; 35:2292-2304. [DOI: 10.1002/stem.2692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/28/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Adam L. MacLean
- Department of Life Sciences; Imperial College London; London United Kingdom
| | - Maia A. Smith
- Department of Life Sciences; Imperial College London; London United Kingdom
| | - Juliane Liepe
- Department of Life Sciences; Imperial College London; London United Kingdom
| | - Aaron Sim
- Department of Life Sciences; Imperial College London; London United Kingdom
| | - Reema Khorshed
- Department of Life Sciences; Imperial College London; London United Kingdom
| | - Narges M. Rashidi
- Department of Life Sciences; Imperial College London; London United Kingdom
| | - Nico Scherf
- Institute for Medical Informatics and Biometry, Technische Universitat Dresden; Dresden Germany
| | - Axel Krinner
- Institute for Medical Informatics and Biometry, Technische Universitat Dresden; Dresden Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Technische Universitat Dresden; Dresden Germany
| | - Cristina Lo Celso
- Department of Life Sciences; Imperial College London; London United Kingdom
| | - Michael P. H. Stumpf
- Department of Life Sciences; Imperial College London; London United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London; London United Kingdom
| |
Collapse
|
53
|
Passaro D, Di Tullio A, Abarrategi A, Rouault-Pierre K, Foster K, Ariza-McNaughton L, Montaner B, Chakravarty P, Bhaw L, Diana G, Lassailly F, Gribben J, Bonnet D. Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia. Cancer Cell 2017; 32:324-341.e6. [PMID: 28870739 PMCID: PMC5598545 DOI: 10.1016/j.ccell.2017.08.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/25/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
The biological and clinical behaviors of hematological malignancies can be influenced by the active crosstalk with an altered bone marrow (BM) microenvironment. In the present study, we provide a detailed picture of the BM vasculature in acute myeloid leukemia using intravital two-photon microscopy. We found several abnormalities in the vascular architecture and function in patient-derived xenografts (PDX), such as vascular leakiness and increased hypoxia. Transcriptomic analysis in endothelial cells identified nitric oxide (NO) as major mediator of this phenotype in PDX and in patient-derived biopsies. Moreover, induction chemotherapy failing to restore normal vasculature was associated with a poor prognosis. Inhibition of NO production reduced vascular permeability, preserved normal hematopoietic stem cell function, and improved treatment response in PDX.
Collapse
Affiliation(s)
- Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alessandro Di Tullio
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Katie Foster
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Beatriz Montaner
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatic Core Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Leena Bhaw
- Advanced Sequencing Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giovanni Diana
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - François Lassailly
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John Gribben
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW This review highlights our current knowledge of oxygen tensions in the bone marrow, and how low oxygen tensions (hypoxia) regulate tumor metastasis to and colonization of the bone marrow. RECENT FINDINGS The bone marrow is a relatively hypoxic microenvironment, but oxygen tensions fluctuate throughout the marrow cavity and across the endosteal and periosteal surfaces. Recent advances in imaging have made it possible to better characterize these fluctuations in bone oxygenation, but technical challenges remain. We have compiled evidence from multiple groups that suggests that hypoxia or hypoxia inducible factor (HIF) signaling may induce spontaneous metastasis to the bone and promote tumor colonization of bone, particularly in the case of breast cancer dissemination to the bone marrow. We are beginning to understand oxygenation patterns within the bone compartment and the role for hypoxia and HIF signaling in tumor cell dissemination to the bone marrow, but further studies are warranted.
Collapse
Affiliation(s)
- Rachelle W Johnson
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Miranda E Sowder
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
55
|
Passaro D, Abarrategi A, Foster K, Ariza-McNaughton L, Bonnet D. Bioengineering of Humanized Bone Marrow Microenvironments in Mouse and Their Visualization by Live Imaging. J Vis Exp 2017:55914. [PMID: 28809828 PMCID: PMC5613813 DOI: 10.3791/55914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human hematopoietic stem cells (HSCs) reside in the bone marrow (BM) niche, an intricate, multifactorial network of components producing cytokines, growth factors, and extracellular matrix. The ability of HSCs to remain quiescent, self-renew or differentiate, and acquire mutations and become malignant depends upon the complex interactions they establish with different stromal components. To observe the crosstalk between human HSCs and the human BM niche in physiological and pathological conditions, we designed a protocol to ectopically model and image a humanized BM niche in immunodeficient mice. We show that the use of different cellular components allows for the formation of humanized structures and the opportunity to sustain long-term human hematopoietic engraftment. Using two-photon microscopy, we can live-image these structures in situ at the single-cell resolution, providing a powerful new tool for the functional characterization of the human BM microenvironment and its role in regulating normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute
| | - Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute
| | - Katie Foster
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute
| | | | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute;
| |
Collapse
|
56
|
Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. J Mol Med (Berl) 2017; 95:809-819. [PMID: 28702683 DOI: 10.1007/s00109-017-1559-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 06/08/2017] [Indexed: 01/13/2023]
Abstract
Cells of the hematopoietic system undergo rapid turnover. Each day, humans require the production of about one hundred billion new blood cells for proper function. Hematopoietic stem cells (HSCs) are rare cells that reside in specialized niches and are required throughout life to produce specific progenitor cells that will replenish all blood lineages. There is, however, an incomplete understanding of the molecular and physical properties that regulate HSC migration, homing, engraftment, and maintenance in the niche. Endothelial cells (ECs) are intimately associated with HSCs throughout the life of the stem cell, from the specialized endothelial cells that give rise to HSCs, to the perivascular niche endothelial cells that regulate HSC homeostasis. Recent studies have dissected the unique molecular and physical properties of the endothelial cells in the HSC vascular niche and their role in HSC biology, which may be manipulated to enhance hematopoietic stem cell transplantation therapies.
Collapse
|
57
|
In vivo longitudinal visualization of bone marrow engraftment process in mouse calvaria using two-photon microscopy. Sci Rep 2017; 7:44097. [PMID: 28276477 PMCID: PMC5343427 DOI: 10.1038/srep44097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/31/2017] [Indexed: 12/13/2022] Open
Abstract
Intravital microscopy of mouse calvarial bone marrow (BM) is a powerful method for studying hematopoietic stem cells (HSCs) and the BM microenvironment at the cellular level. However, the current method used to access the mouse calvaria allows for only a few imaging times in the same mouse because of scar formation and inflammation induced by multiple surgeries. Longitudinal imaging of the BM may help better understand its microenvironment. In this study, a mouse calvarial window model was developed for longitudinal imaging that involves attaching a cover glass window onto the mouse calvaria and sealing the surrounding exposed area with cyanoacrylate glue and dental cement. The model was used for the longitudinal two-photon microscopy (TPM) imaging of the BM engraftment process. The same BM cavity sites were imaged multiple times over 4 weeks after BM transplantation (BMT). Temporal changes in the BM microenvironment, such as the reconstitution of transplanted BM cells and the recovery of vasculature, were observed and analysed qualitatively and quantitatively. Longitudinal intravital microscopy using the mouse calvarial window model was successfully demonstrated and may be useful for further BM studies.
Collapse
|
58
|
Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Adv 2017; 1:407-416. [PMID: 29296956 DOI: 10.1182/bloodadvances.2016003194] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
Bone marrow (BM) constitutes one of the largest organs in mice and humans, continuously generating, in a highly regulated manner, red blood cells, platelets, and white blood cells that together form the majority of cells of the body. In this review, we provide a quantitative overview of BM cellular composition, we summarize emerging knowledge on its structural organization and cellular niches, and we argue for the need of multidimensional approaches such as recently developed imaging techniques to uncover the complex spatial logic that underlies BM function in health and disease.
Collapse
|
59
|
Passaro D, Quang CT, Ghysdael J. Microenvironmental cues for T-cell acute lymphoblastic leukemia development. Immunol Rev 2016; 271:156-72. [PMID: 27088913 DOI: 10.1111/imr.12402] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intensive chemotherapy regimens have led to a substantial improvement in the cure rate of patients suffering from T-cell acute lymphoblastic leukemia (T-ALL). Despite this progress, about 15% and 50% of pediatric and adult cases, respectively, show resistance to treatment or relapse with dismal prognosis, calling for further therapeutic investigations. T-ALL is an heterogeneous disease, which presents intrinsic alterations leading to aberrant expression of transcription factors normally involved in hematopoietic stem/progenitor cell development and mutations in genes implicated in the regulation of cell cycle progression, apoptosis, and T-cell development. Gene expression profiling allowed the classification of T-ALL into defined molecular subgroups that mostly reflects the stage of their differentiation arrest. So far this knowledge has not translated into novel, targeted therapy. Recent evidence points to the importance of extrinsic signaling cues in controlling the ability of T-ALL to home, survive, and proliferate, thus offering the perspective of new therapeutic options. This review summarizes the present understanding of the interactions between hematopoietic cells and bone marrow/thymic niches during normal hematopoiesis, describes the main signaling pathways implicated in this dialog, and finally highlights how malignant T cells rely on specific niches to maintain their ability to sustain and propagate leukemia.
Collapse
Affiliation(s)
- Diana Passaro
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London, UK
| | - Christine Tran Quang
- Institut Curie, Centre Universitaire, Orsay, France.,Centre National de la Recherche Scientifique, Centre Universitaire, Orsay, France
| | - Jacques Ghysdael
- Institut Curie, Centre Universitaire, Orsay, France.,Centre National de la Recherche Scientifique, Centre Universitaire, Orsay, France
| |
Collapse
|
60
|
Hawkins ED, Duarte D, Akinduro O, Khorshed RA, Passaro D, Nowicka M, Straszkowski L, Scott MK, Rothery S, Ruivo N, Foster K, Waibel M, Johnstone RW, Harrison SJ, Westerman DA, Quach H, Gribben J, Robinson MD, Purton LE, Bonnet D, Lo Celso C. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 2016; 538:518-522. [PMID: 27750279 PMCID: PMC5164929 DOI: 10.1038/nature19801] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/24/2016] [Indexed: 11/10/2022]
Abstract
It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment, rather than specific bone marrow stroma, to combat the invasion by and survival of chemo-resistant T-ALL cells.
Collapse
Affiliation(s)
- Edwin D Hawkins
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Delfim Duarte
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Olufolake Akinduro
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Reema A Khorshed
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Diana Passaro
- The Francis Crick Institute, Haematopoietic Stem Cell Laboratory, WC2A 3LY, London, UK
| | - Malgorzata Nowicka
- SIB Swiss Institute of Bioinformatics and Institute of Molecular Life Sciences
- University of Zurich, 8057 Zurich, Switzerland
| | - Lenny Straszkowski
- Stem Cell Regulation Unit, St Vincent’s Institute of Medical Research, Fitzroy, Australia
| | - Mark K Scott
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Steve Rothery
- Imperial College Facility for Imaging by Light Microscopy, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Nicola Ruivo
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| | - Katie Foster
- The Francis Crick Institute, Haematopoietic Stem Cell Laboratory, WC2A 3LY, London, UK
| | - Michaela Waibel
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3052
- Peter MacCallum Cancer Centre, East Melbourne Victoria, Australia 3002
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3052
- Peter MacCallum Cancer Centre, East Melbourne Victoria, Australia 3002
| | - Simon J Harrison
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3052
- Peter MacCallum Cancer Centre, East Melbourne Victoria, Australia 3002
| | - David A Westerman
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia 3052
- Peter MacCallum Cancer Centre, East Melbourne Victoria, Australia 3002
| | - Hang Quach
- Department of Haematology, St. Vincent's Hospital, Fitzroy, Vic., 3065, Australia
- Department of Medicine, The University of Melbourne, Fitzroy, Vic., 3065, Australia
| | - John Gribben
- Centre of Haemato-Oncology, Cancer Research UK Clinical Centre, Barts Cancer Institute, St Bartholomew’s Hospital, Queen Mary University of London, London, UK
| | - Mark D Robinson
- SIB Swiss Institute of Bioinformatics and Institute of Molecular Life Sciences
- University of Zurich, 8057 Zurich, Switzerland
| | - Louise E Purton
- Stem Cell Regulation Unit, St Vincent’s Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, The University of Melbourne, Fitzroy, Vic., 3065, Australia
| | - Dominique Bonnet
- The Francis Crick Institute, Haematopoietic Stem Cell Laboratory, WC2A 3LY, London, UK
| | - Cristina Lo Celso
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, London, United Kingdom
| |
Collapse
|
61
|
Chen Y, Maeda A, Bu J, DaCosta R. Femur Window Chamber Model for In Vivo Cell Tracking in the Murine Bone Marrow. J Vis Exp 2016. [PMID: 27500928 DOI: 10.3791/54205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bone marrow is a complex organ that contains various hematopoietic and non-hematopoietic cells. These cells are involved in many biological processes, including hematopoiesis, immune regulation and tumor regulation. Commonly used methods for understanding cellular actions in the bone marrow, such as histology and blood counts, provide static information rather than capturing the dynamic action of multiple cellular components in vivo. To complement the standard methods, a window chamber (WC)-based model was developed to enable serial in vivo imaging of cells and structures in the murine bone marrow. This protocol describes a surgical procedure for installing the WC in the femur, in order to facilitate long-term optical access to the femoral bone marrow. In particular, to demonstrate its experimental utility, this WC approach was used to image and track neutrophils within the vascular network of the femur, thereby providing a novel method to visualize and quantify immune cell trafficking and regulation in the bone marrow. This method can be applied to study various biological processes in the murine bone marrow, such as hematopoiesis, stem cell transplantation, and immune responses in pathological conditions, including cancer.
Collapse
Affiliation(s)
| | - Azusa Maeda
- Princess Margaret Cancer Centre; Department of Medical Biophysics, University of Toronto
| | | | - Ralph DaCosta
- Princess Margaret Cancer Centre; Department of Medical Biophysics, University of Toronto; Techna Institute, University Health Network;
| |
Collapse
|
62
|
Faivre L, Chaussard M, Vercellino L, Vanneaux V, Hosten B, Teixera K, Parietti V, Merlet P, Sarda-Mantel L, Rizzo-Padoin N, Larghero J. 18F-FDG labelling of hematopoietic stem cells: Dynamic study of bone marrow homing by PET–CT imaging and impact on cell functionality. Curr Res Transl Med 2016; 64:141-148. [DOI: 10.1016/j.retram.2016.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/21/2023]
|
63
|
Oxidative stress and hypoxia in normal and leukemic stem cells. Exp Hematol 2016; 44:540-60. [PMID: 27179622 DOI: 10.1016/j.exphem.2016.04.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/20/2022]
Abstract
The main hematopoietic stem cell (HSC) functions, self-renewal and differentiation, are finely regulated by both intrinsic mechanisms such as transcriptional and epigenetic regulators and extrinsic signals originating in the bone marrow microenvironment (HSC niche) or in the body (humoral mediators). The interaction between regulatory signals and cellular metabolism is an emerging area. Several metabolic pathways function differently in HSCs compared with progenitors and differentiated cells. Hypoxia, acting through hypoxia-inducing factors, has emerged as a key regulator of stem cell biology and acts by maintaining HSC quiescence and a condition of metabolic dormancy based on anaerobic glycolytic energetic metabolism, with consequent low production reactive oxygen species (ROS) and high antioxidant defense. Hematopoietic cell differentiation is accompanied by changes in oxidative metabolism (decrease of anaerobic glycolysis and increase of oxidative phosphorylation) and increased levels of ROS. Leukemic stem cells, defined as the cells that initiate and maintain the leukemic process, show peculiar metabolic properties in that they are more dependent on oxidative respiration than on glycolysis and are more sensitive to oxidative stress than normal HSCs. Several mitochondrial abnormalities have been described in acute myeloid leukemia (AML) cells, explaining the shift to aerobic glycolysis observed in these cells and offering the unique opportunity for therapeutic metabolic targeting. Finally, frequent mutations of the mitochondrial isocitrate dehydrogenase-2 (IDH2) enzyme are observed in AML cells, in which the mutated enzyme acts as an oncogenic driver and can be targeted using specific inhibitors under clinical evaluation with promising results.
Collapse
|
64
|
Engert A, Balduini C, Brand A, Coiffier B, Cordonnier C, Döhner H, de Wit TD, Eichinger S, Fibbe W, Green T, de Haas F, Iolascon A, Jaffredo T, Rodeghiero F, Salles G, Schuringa JJ. The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica 2016; 101:115-208. [PMID: 26819058 PMCID: PMC4938336 DOI: 10.3324/haematol.2015.136739] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/27/2016] [Indexed: 01/28/2023] Open
Abstract
The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
Collapse
Affiliation(s)
| | | | - Anneke Brand
- Leids Universitair Medisch Centrum, Leiden, the Netherlands
| | | | | | | | | | | | - Willem Fibbe
- Leids Universitair Medisch Centrum, Leiden, the Netherlands
| | - Tony Green
- Cambridge Institute for Medical Research, United Kingdom
| | - Fleur de Haas
- European Hematology Association, The Hague, the Netherlands
| | | | | | | | - Gilles Salles
- Hospices Civils de Lyon/Université de Lyon, Pierre-Bénite, France
| | | |
Collapse
|
65
|
Geerman S, Hickson S, Brasser G, Pascutti MF, Nolte MA. Quantitative and Qualitative Analysis of Bone Marrow CD8(+) T Cells from Different Bones Uncovers a Major Contribution of the Bone Marrow in the Vertebrae. Front Immunol 2016; 6:660. [PMID: 26793197 PMCID: PMC4710685 DOI: 10.3389/fimmu.2015.00660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/24/2015] [Indexed: 12/23/2022] Open
Abstract
Bone marrow (BM) plays an important role in the long-term maintenance of memory T cells. Yet, BM is found in numerous bones throughout the body, which are not equal in structure, as they differ in their ratio of cortical and trabecular bone. This implies that BM cells within different bones are subjected to different microenvironments, possibly leading to differences in their frequencies and function. To address this, we examined BM from murine tibia, femur, pelvis, sternum, radius, humerus, calvarium, and the vertebrae and analyzed the presence of effector memory (TEM), central memory (TCM), and naïve (TNV) CD8(+) T cells. During steady-state conditions, the frequency of the total CD8(+) T cell population was comparable between all bones. Interestingly, most CD8(+) T cells were located in the vertebrae, as it contained the highest amount of BM cells. Furthermore, the frequencies of TEM, TCM, and TNV cells were similar between all bones, with a majority of TNV cells. Additionally, CD8(+) T cells collected from different bones similarly expressed the key survival receptors IL-7Rα and IL-15Rβ. We also examined BM for memory CD8(+) T cells with a tissue-resident memory phenotype and observed that approximately half of all TEM cells expressed the retention marker CD69. Remarkably, in the memory phase of acute infection with the lymphocytic choriomeningitis virus (LCMV), we found a massive compositional change in the BM CD8(+) T cell population, as the TEM cells became the dominant subset at the cost of TNV cells. Analysis of Ki-67 expression established that these TEM cells were in a quiescent state. Finally, we detected higher frequencies of LCMV-specific CD8(+) T cells in BM compared to spleen and found that BM in its entirety contained fivefold more LCMV-specific CD8(+) T cells. In conclusion, although infection with LCMV caused a dramatic change in the BM CD8(+) T cell population, this did not result in noticeable differences between BM collected from different bones. Our findings suggest that in respect to CD8(+) T cells, BM harvested from a single bone is a fair reflection of the rest of the BM present in the murine body.
Collapse
Affiliation(s)
- Sulima Geerman
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands; Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sarah Hickson
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands; Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Giso Brasser
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands; Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Maria Fernanda Pascutti
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands; Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Martijn A Nolte
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands; Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
66
|
Schepers K, Campbell TB, Passegué E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 2016; 16:254-67. [PMID: 25748932 DOI: 10.1016/j.stem.2015.02.014] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) rely on instructive cues from the bone marrow (BM) niche to maintain their quiescence and adapt blood production to the organism's needs. Alterations in the BM niche are commonly observed in blood malignancies and directly contribute to the aberrant function of disease-initiating leukemic stem cells (LSCs). Here, we review recent insights into the cellular and molecular determinants of the normal HSC niche and describe how genetic changes in stromal cells and leukemia-induced BM niche remodeling contribute to blood malignancies. Moreover, we discuss how these findings can be applied to non-cell-autonomous therapies targeting the LSC niche.
Collapse
Affiliation(s)
- Koen Schepers
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Timothy B Campbell
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
67
|
Foster K, Lassailly F, Anjos-Afonso F, Currie E, Rouault-Pierre K, Bonnet D. Different Motile Behaviors of Human Hematopoietic Stem versus Progenitor Cells at the Osteoblastic Niche. Stem Cell Reports 2015; 5:690-701. [PMID: 26455414 PMCID: PMC4649139 DOI: 10.1016/j.stemcr.2015.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023] Open
Abstract
Despite advances in our understanding of interactions between mouse hematopoietic stem cells (HSCs) and their niche, little is known about communication between human HSCs and the microenvironment. Using a xenotransplantation model and intravital imaging, we demonstrate that human HSCs display distinct motile behaviors to their hematopoietic progenitor cell (HPC) counterparts, and the same pattern can be found between mouse HSCs and HPCs. HSCs become significantly less motile after transplantation, while progenitor cells remain motile. We show that human HSCs take longer to find their niche than previously expected and suggest that the niche be defined as the position where HSCs stop moving. Intravital imaging is the only technique to determine where in the bone marrow stem cells stop moving, and future analyses should focus on the environment surrounding the HSC at this point.
Collapse
Affiliation(s)
- Katie Foster
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - François Lassailly
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Erin Currie
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK.
| |
Collapse
|
68
|
Bălan M, Kiefer F. A novel model for ectopic, chronic, intravital multiphoton imaging of bone marrow vasculature and architecture in split femurs. INTRAVITAL 2015; 4:e1066949. [PMID: 28243515 PMCID: PMC5312711 DOI: 10.1080/21659087.2015.1066949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 01/21/2023]
Abstract
Creating a model for intravital visualization of femoral bone marrow, a major site of hematopoiesis in adult mammalian organisms, poses a serious challenge, in that it needs to overcome bone opacity and the inaccessibility of marrow. Furthermore, meaningful analysis of bone marrow developmental and differentiation processes requires the repetitive observation of the same site over long periods of time, which we refer to as chronic imaging. To surmount these issues, we developed a chronic intravital imaging model that allows the observation of split femurs, ectopically transplanted into a dorsal skinfold chamber of a host mouse. Repeated, long term observations are facilitated by multiphoton microscopy, an imaging technique that combines superior imaging capacity at greater tissue depth with low phototoxicity. The transplanted, ectopic femur was stabilized by its sterile environment and rapidly connected to the host vasculature, allowing further development and observation of extended processes. After optimizing transplant age and grafting procedure, we observed the development of new woven bone and maturation of secondary ossification centers in the transplanted femurs, preceded by the sprouting of a sinusoidal-like vascular network, which was almost entirely composed of femoral endothelial cells. After two weeks, the transplant was still populated with stromal and haematopoietic cells belonging both to donor and host. Over this time frame, the transplant partially retained myeloid progenitor cells with single and multi-lineage differentiation capacity. In summary, our model allowed repeated intravital imaging of bone marrow angiogenesis and hematopoiesis. It represents a promising starting point for the development of improved chronic optical imaging models for femoral bone marrow.
Collapse
Affiliation(s)
- Mirela Bălan
- Mammalian Cell Signaling Laboratory; Max Planck Institute for Molecular Biomedicine; Münster, Germany; Cluster of Excellence; Cells in Motion, CiM; Münster, Germany; Current address: Division of Vascular Biology; Department of Medical Biochemistry and Biophysics (MBB); Karolinska Institute; Stockholm, Sweden
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory; Max Planck Institute for Molecular Biomedicine; Münster, Germany; Cluster of Excellence; Cells in Motion, CiM; Münster, Germany
| |
Collapse
|
69
|
Passaro D, Irigoyen M, Catherinet C, Gachet S, Da Costa De Jesus C, Lasgi C, Tran Quang C, Ghysdael J. CXCR4 Is Required for Leukemia-Initiating Cell Activity in T Cell Acute Lymphoblastic Leukemia. Cancer Cell 2015; 27:769-79. [PMID: 26058076 DOI: 10.1016/j.ccell.2015.05.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 04/05/2015] [Accepted: 05/07/2015] [Indexed: 12/21/2022]
Abstract
Impaired cell migration has been demonstrated in T cell acute lymphoblastic leukemia (T-ALL) cells upon calcineurin inactivation, among other phenotypic traits including increased apoptosis, inhibition of cell proliferation, and ultimately inhibition of leukemia-initiating cell (LIC) activity. Herein we demonstrate that the chemokine receptor CXCR4 is essential to the LIC activity of T-ALL leukemic cells both in NOTCH-induced mouse T-ALL and human T-ALL xenograft models. We further demonstrate that calcineurin regulates CXCR4 cell-surface expression in a cortactin-dependent manner, a mechanism essential to the migratory properties of T-ALL cells. Because 20%-25% of pediatric and over 50% of adult patients with T-ALL do not achieve complete remission and relapse, our results call for clinical trials incorporating CXCR4 antagonists in T-ALL treatment.
Collapse
Affiliation(s)
- Diana Passaro
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France.
| | - Marta Irigoyen
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Claire Catherinet
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Stéphanie Gachet
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Cindy Da Costa De Jesus
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Charlène Lasgi
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Christine Tran Quang
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Jacques Ghysdael
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France.
| |
Collapse
|
70
|
Hypoxia inducible factor (HIF)-2α accelerates disease progression in mouse models of leukemia and lymphoma but is not a poor prognosis factor in human AML. Leukemia 2015; 29:2075-85. [DOI: 10.1038/leu.2015.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/12/2015] [Accepted: 03/30/2015] [Indexed: 12/15/2022]
|
71
|
Lafage-Proust MH, Roche B, Langer M, Cleret D, Vanden Bossche A, Olivier T, Vico L. Assessment of bone vascularization and its role in bone remodeling. BONEKEY REPORTS 2015; 4:662. [PMID: 25861447 DOI: 10.1038/bonekey.2015.29] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 02/04/2015] [Indexed: 02/06/2023]
Abstract
Bone is a composite organ that fulfils several interconnected functions, which may conflict with each other in pathological conditions. Bone vascularization is at the interface between these functions. The roles of bone vascularization are better documented in bone development, growth and modeling than in bone remodeling. However, every bone remodeling unit is associated with a capillary in both cortical and trabecular envelopes. Here we summarize the most recent data on vessel involvement in bone remodeling, and we present the characteristics of bone vascularization. Finally, we describe the various techniques used for bone vessel imaging and quantitative assessment, including histology, immunohistochemistry, microtomography and intravital microscopy. Studying the role of vascularization in adult bone should provide benefits for the understanding and treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Marie-Hélène Lafage-Proust
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Bernard Roche
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Max Langer
- Université de Lyon , Lyon, France ; CREATIS, CNRS UMR 5220-INSERM U1044 , Lyon, France
| | - Damien Cleret
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Arnaud Vanden Bossche
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| | - Thomas Olivier
- Université de Lyon , Lyon, France ; Laboratoire Hubert Curien , Saint-Etienne, France
| | - Laurence Vico
- Laboratoire de Biologie Intégrée du Tissu Osseux, INSERM U 1059 , Saint-Etienne, France ; Université de Lyon , Lyon, France
| |
Collapse
|
72
|
Costello P, Sargent M, Maurice D, Esnault C, Foster K, Anjos-Afonso F, Treisman R. MRTF-SRF signaling is required for seeding of HSC/Ps in bone marrow during development. Blood 2015; 125:1244-55. [PMID: 25573994 PMCID: PMC4335080 DOI: 10.1182/blood-2014-08-595603] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022] Open
Abstract
Chemokine signaling is important for the seeding of different sites by hematopoietic stem cells (HSCs) during development. Serum response factor (SRF) controls multiple genes governing adhesion and migration, mainly by recruiting members of the myocardin-related transcription factor (MRTF) family of G-actin-regulated cofactors. We used vav-iCre to inactivate MRTF-SRF signaling early during hematopoietic development. In both Srf- and Mrtf-deleted animals, hematopoiesis in fetal liver and spleen is intact but does not become established in fetal bone marrow. Srf-null HSC progenitor cells (HSC/Ps) fail to effectively engraft in transplantation experiments, exhibiting normal proximal signaling responses to SDF-1, but reduced adhesiveness, F-actin assembly, and reduced motility. Srf-null HSC/Ps fail to polarize in response to SDF-1 and cannot migrate through restrictive membrane pores to SDF-1 or Scf in vitro. Mrtf-null HSC/Ps were also defective in chemotactic responses to SDF-1. Srf-null HSC/Ps exhibit substantial deficits in cytoskeletal gene expression. MRTF-SRF signaling is thus critical for expression of genes required for the response to chemokine signaling during hematopoietic development.
Collapse
Affiliation(s)
| | | | | | | | - Katie Foster
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | | |
Collapse
|
73
|
Tronik-Le Roux D, Nicola MA, Vaigot P, Nurden P. Single thrombopoietin dose alleviates hematopoietic stem cells intrinsic short- and long-term ionizing radiation damage. In vivo identification of anatomical cell expansion sites. Radiat Res 2015; 183:52-63. [PMID: 25564715 DOI: 10.1667/rr13742.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem cells (HSC) are essential for maintaining the integrity of complex and long-lived organisms. HSC, which are self-renewing, reconstitute the hematopoietic system through out life and facilitate long-term repopulation of myeloablated recipients. We have previously demonstrated that when mice are exposed to sublethal doses of ionizing radiation, subsets of the stem/progenitor compartment are affected. In this study we examine the role of thrombopoietin (TPO) on the regenerative capacities of HSC after irradiation and report the first demonstration of efficacy of a single injection of TPO shortly after in vivo exposure to ionizing radiation for reducing HSC injury and improving their functional outcome. Our results demonstrate that TPO treatment not only reduced the number of apoptotic cells but also induced a significant modification of their intrinsic characteristics. These findings were supported by transplantation assays with long-term HSC that were irradiated or unirradiated, TPO treated or untreated, in CD45.1/CD45.2 systems and by using luciferase-labeled HSC for direct bioluminescence imaging in living animals. Of particular importance, our data demonstrate the skull to be a highly favorable site for the TPO-induced emergence of hematopoietic cells after irradiation, suggesting a TPO-mediated relationship of primitive hematopoietic cells to an anatomical component. Together, the data presented here: provide novel findings about aspects of TPO action on stem cells, open new areas of investigation for therapeutic options in patients who are treated with radiation therapy, and show that early administration of a clinically suitable TPO-agonist counteracts the previously observed adverse effects.
Collapse
Affiliation(s)
- Diana Tronik-Le Roux
- a CEA, SRHI, Institute of Emerging Diseases and Innovative Therapies (iMETI), 75010 Paris, France
| | | | | | | |
Collapse
|
74
|
Abstract
Abstract
In blood, oxygen is transported principally by hemoglobin tetrameric molecules in erythocytes, which allow for the delivery to tissue cells. When anemia occurs, such as perisurgically or after trauma, blood transfusion is administered to replace the deficit in oxygen-carrying capacity. During embryogenesis and later in adult life, tissue oxygen levels control multiple key cellular functions. Low tissue oxygen levels in particular are physiologically relevant to stem cells by controlling their metabolism and cell fate. In adult life, hematopoietic stem cells reside in specified BM microenvironments/niches, where their quiescence and differentiation are presumably also influenced by cell-intrinsic and cell-extrinsic (niche) factors. Novel imaging technologies have allowed determination of the spatial localization of hematopoietic stem/progenitor cells (HSPCs), as well as the topography of oxygen distribution in BM cavities. Together, these recent advances have contributed to the emergence of a novel model that challenges the previous concept of a hypoxic hematopoietic stem cell niche characterized by poorly perfused endosteal zones with the deepest hypoxia. HSPCs display a hypoxic phenotype despite residing in close association with arterial or sinusoidal vascular networks. The entire BM cavity is hypoxic and unexpectedly exhibits an opposite oxygen gradient to the one initially proposed because arteriole-rich endosteal zones are relatively less hypoxic than deeper regions of the BM perfused by dense sinusoidal networks. Therefore, further studies are warranted to elucidate to what extent differences in oxygen tensions in these diverse microenvironments influence HSPC homeostasis.
Collapse
|
75
|
Bone marrow localization and functional properties of human hematopoietic stem cells. Curr Opin Hematol 2014; 21:249-55. [DOI: 10.1097/moh.0000000000000055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
76
|
Gezer D, Vukovic M, Soga T, Pollard PJ, Kranc KR. Concise review: genetic dissection of hypoxia signaling pathways in normal and leukemic stem cells. Stem Cells 2014; 32:1390-7. [PMID: 24496882 DOI: 10.1002/stem.1657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/21/2013] [Indexed: 02/11/2024]
Abstract
Adult hematopoiesis depends on rare multipotent hematopoietic stem cells (HSCs) that self-renew and give rise to progenitor cells, which differentiate to all blood lineages. The strict regulation of the fine balance between self-renewal and differentiation is essential for normal hematopoiesis and suppression of leukemia development. HSCs and progenitor cells are commonly assumed to reside within the hypoxic BM microenvironment, however, there is no direct evidence supporting this notion. Nevertheless, HSCs and progenitors do exhibit a hypoxic profile and strongly express Hif-1α. Although hypoxia signaling pathways are thought to play important roles in adult HSC maintenance and leukemogenesis, the precise function of Hif-dependent signaling in HSCs remains to be uncovered. Here we discuss recent gain-of-function and loss-of-function studies that shed light on the complex roles of hypoxia-signaling pathways in HSCs and their niches in normal and malignant hematopoiesis. Importantly, we comment on the current and often contrasting interpretations of the role of Hif-dependent signaling in stem cell functions.
Collapse
Affiliation(s)
- Deniz Gezer
- MRC Centre for Regenerative Medicine. University of Edinburgh, Edinburgh, United Kingdom; Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, United Kingdom; 3Klinik fuer Haematologie, Onkologie und Stammzelltransplantation, Universitaetsklinikum Aachen, Aachen, Germany
| | | | | | | | | |
Collapse
|
77
|
Abstract
To comprehend the complexity of cancer, the biological characteristics acquired during the initiation and progression of tumours were classified as the 'hallmarks of cancer'. Intravital microscopy techniques have been developed to study individual cells that acquire these crucial traits, by visualizing tissues with cellular or subcellular resolution in living animals. In this Review, we highlight the latest intravital microscopy techniques that have been used in living animals (predominantly mice) to unravel fundamental and dynamic aspects of various hallmarks of cancer. In addition, we discuss the application of intravital microscopy techniques to cancer therapy, as well as limitations and future perspectives for these techniques.
Collapse
Affiliation(s)
- Saskia I J Ellenbroek
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW & University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW & University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
78
|
Greim H, Kaden DA, Larson RA, Palermo CM, Rice JM, Ross D, Snyder R. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann N Y Acad Sci 2014; 1310:7-31. [PMID: 24495159 PMCID: PMC4002179 DOI: 10.1111/nyas.12362] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs) are a unique population of somatic stem cells that can both self-renew for long-term reconstitution of HSCs and differentiate into hematopoietic progenitor cells (HPCs), which in turn give rise, in a hierarchical manner, to the entire myeloid and lymphoid lineages. The differentiation and maturation of these lineages occurs in the bone marrow (BM) niche, a microenvironment that regulates self-renewal, survival, differentiation, and proliferation, with interactions among signaling pathways in the HSCs and the niche required to establish and maintain homeostasis. The accumulation of genetic mutations and cytogenetic abnormalities within cells of the partially differentiated myeloid lineage, particularly as a result of exposure to benzene or cytotoxic anticancer drugs, can give rise to malignancies like acute myeloid leukemia and myelodysplastic syndrome. Better understanding of the mechanisms driving these malignancies and susceptibility factors, both within HPCs and cells within the BM niche, may lead to the development of strategies for prevention of occupational and cancer therapy-induced disease.
Collapse
|
79
|
Abstract
Over the past 50 years, much insight has been gained into the biology of hematopoietic stem cells (HSCs). Much of this information has been gained though isolation of specific bone marrow populations, and transplantation into irradiated recipients followed by characterization of chimeras months later. These studies have yielded insights into the function of HSCs, but have shed little light on the interactions of individual stem cells with their environment. Characterization of the behavior of single HSCs awaited the use of relatively noninvasive intravital microscopy, which allows one to identify rare cells in real time and follow them in multiple imaging sessions. Here we describe techniques used to image transplanted HSCs in the mouse calvarium using hybrid confocal/multi-photon microscopy and second harmonic imaging. For detection, fluorescently tagged HSCs are transplanted into a recipient mouse. The architecture of the bone marrow can be delineated using a combination of fluorescent probes and vascular dyes, second harmonic generation to detect the collagen signal from bone, and transgenic recipient mice containing specific fluorescent support cell populations.
Collapse
|
80
|
Forristal CE, Levesque JP. Targeting the hypoxia-sensing pathway in clinical hematology. Stem Cells Transl Med 2013; 3:135-40. [PMID: 24371328 DOI: 10.5966/sctm.2013-0134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors regulated by oxygen-dependent prolyl hydroxylase domain (PHD) enzymes and are key to cell adaptation to low oxygen. The hematopoietic stem cell (HSC) niche in the bone marrow is highly heterogeneous in terms of microvasculature and thus oxygen concentration. The importance of hypoxia and HIFs in the hematopoietic environment is becoming increasingly recognized. Many small compounds that inhibit PHDs have been developed, enabling HIFs to be pharmacologically stabilized in an oxygen-independent manner. The use of PHD inhibitors for therapeutic intervention in hematopoiesis is being increasingly investigated. PHD inhibitors are well established to increase erythropoietin production to correct anemia in hemodialysis patients. Pharmacological stabilization of HIF-1α protein with PHD inhibitors is also emerging as an important regulator of HSC proliferation and self-renewal. Administration of PHD inhibitors increases quiescence and decreases proliferation of HSCs in the bone marrow in vivo, thereby protecting them from high doses of irradiation and accelerating hematological recovery. Recent findings also show that stabilization of HIF-1α increases mobilization of HSCs in response to granulocyte colony-stimulating factor and plerixafor, suggesting that PHD inhibitors could be useful agents to increase mobilization success in patients requiring transplantation. These findings highlight the importance of the hypoxia-sensing pathway and HIFs in clinical hematology.
Collapse
Affiliation(s)
- Catherine E Forristal
- Stem Cell Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | | |
Collapse
|
81
|
Spindler TJ, Tseng AW, Zhou X, Adams GB. Adipocytic cells augment the support of primitive hematopoietic cells in vitro but have no effect in the bone marrow niche under homeostatic conditions. Stem Cells Dev 2013; 23:434-41. [PMID: 24083324 DOI: 10.1089/scd.2013.0227] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as well as osteoblastic cells derived from these MSCs, have been shown to be key components of the hematopoietic stem cell (HSC) niche. In this study, we wished to examine whether other cell types that are known to differentiate from MSCs similarly regulate the stem cell niche, namely cells of the adipocyte lineage. Recent studies have examined the role that adipocytes play in the biology of the HSCs in different bone locations and in transplantation settings; however, none have examined their role under homeostatic conditions. We compared the ability of adipocytic and nonadipocytic cell lines to support primitive hematopoietic cells in vitro. Preadipocytic cell lines demonstrated enhanced support of hematopoietic cells. Similarly, primary bone marrow (BM) cells treated with troglitazone, a drug that enhances adipogenesis, also demonstrated augmented support over control-treated stromal cells. We further examined the effects of increased adipocyte number in vivo under homeostatic conditions using troglitazone treatment and found that these alterations had no effect on HSC frequency. Taken together, we demonstrate that cells of the adipocyte lineage promote the ability of stromal cells to support primitive hematopoietic cells in vitro, yet alterations of adipocyte number and volume in vivo have no effect. These data suggest that adipocytes are not a component of the adult BM HSC niche under homeostatic conditions.
Collapse
Affiliation(s)
- Tassja J Spindler
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California , Los Angeles, California
| | | | | | | |
Collapse
|