51
|
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare malignancy affecting megakaryocytes, platelet-producing cells that reside in the bone marrow. Children with Down syndrome (DS) are particularly prone to developing the disease and have a different age of onset, distinct genetic mutations, and better prognosis as compared with individuals without DS who develop the disease. Here, we discuss the contributions of chromosome 21 genes and other genetic mutations to AMKL, the clinical features of the disease, and the differing features of DS- and non-DS-AMKL. Further studies elucidating the role of chromosome 21 genes in this disease may aid our understanding of how they function in other types of leukemia, in which they are frequently mutated or differentially expressed. Although researchers have made many insights into understanding AMKL, much more remains to be learned about its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Maureen McNulty
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| | - John D Crispino
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| |
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW Despite advances in therapy over the past decades, overall survival for children with acute myeloid leukemia (AML) has not exceeded 70%. In this review, we highlight recent insights into risk stratification for patients with pediatric AML and discuss data driving current and developing therapeutic approaches. RECENT FINDINGS Advances in cytogenetics and molecular profiling, as well as improvements in detection of minimal residual disease after induction therapy, have informed risk stratification, which now relies heavily on these elements. The treatment of childhood AML continues to be based primarily on intensive, conventional chemotherapy. However, recent trials focus on limiting treatment-related toxicity through the identification of low-risk subsets who can safely receive fewer cycles of chemotherapy, allocation of hematopoietic stem-cell transplant to only high-risk patients and optimization of infectious and cardioprotective supportive care. SUMMARY Further incorporation of genomic and molecular data in pediatric AML will allow for additional refinements in risk stratification to enable the tailoring of treatment intensity. These data will also dictate the incorporation of molecularly targeted therapeutics into frontline treatment in the hope of improving survival while decreasing treatment-related toxicity.
Collapse
|
53
|
Smith JL, Ries RE, Hylkema T, Alonzo TA, Gerbing RB, Santaguida MT, Eidenschink Brodersen L, Pardo L, Cummings CL, Loeb KR, Le Q, Imren S, Leonti AR, Gamis AS, Aplenc R, Kolb EA, Farrar JE, Triche TJ, Nguyen C, Meerzaman D, Loken MR, Oehler VG, Bolouri H, Meshinchi S. Comprehensive Transcriptome Profiling of Cryptic CBFA2T3-GLIS2 Fusion-Positive AML Defines Novel Therapeutic Options: A COG and TARGET Pediatric AML Study. Clin Cancer Res 2020; 26:726-737. [PMID: 31719049 PMCID: PMC7002196 DOI: 10.1158/1078-0432.ccr-19-1800] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE A cryptic inv(16)(p13.3q24.3) encoding the CBFA2T3-GLIS2 fusion is associated with poor outcome in infants with acute megakaryocytic leukemia. We aimed to broaden our understanding of the pathogenesis of this fusion through transcriptome profiling. EXPERIMENTAL DESIGN Available RNA from children and young adults with de novo acute myeloid leukemia (AML; N = 1,049) underwent transcriptome sequencing (mRNA and miRNA). Transcriptome profiles for those with the CBFA2T3-GLIS2 fusion (N = 24) and without (N = 1,025) were contrasted to define fusion-specific miRNAs, genes, and pathways. Clinical annotations defined distinct fusion-associated disease characteristics and outcomes. RESULTS The CBFA2T3-GLIS2 fusion was restricted to infants <3 years old (P < 0.001), and the presence of this fusion was highly associated with adverse outcome (P < 0.001) across all morphologic classifications. Further, there was a striking paucity of recurrent cooperating mutations, and transduction of cord blood stem cells with this fusion was sufficient for malignant transformation. CBFA2T3-GLIS2 positive cases displayed marked upregulation of genes with cell membrane/extracellular matrix localization potential, including NCAM1 and GABRE. Additionally, miRNA profiling revealed significant overexpression of mature miR-224 and miR-452, which are intronic miRNAs transcribed from the GABRE locus. Gene-set enrichment identified dysregulated Hippo, TGFβ, and hedgehog signaling, as well as NCAM1 (CD56) interaction pathways. Therapeutic targeting of fusion-positive leukemic cells with CD56-directed antibody-drug conjugate caused significant cytotoxicity in leukemic blasts. CONCLUSIONS The CBFA2T3-GLIS2 fusion defines a highly refractory entity limited to infants that appears to be sufficient for malignant transformation. Transcriptome profiling elucidated several highly targetable genes and pathways, including the identification of CD56, providing a highly plausible target for therapeutic intervention.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/genetics
- CD56 Antigen/genetics
- Child, Preschool
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- MicroRNAs/genetics
- Middle Aged
- Mutation
- Oncogene Proteins, Fusion/genetics
- Prognosis
- RNA, Messenger
- Receptors, GABA-A/genetics
- Young Adult
Collapse
Affiliation(s)
- Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Todd A Alonzo
- Children's Oncology Group, Monrovia, California
- Division of Biostatistics, University of Southern California, Los Angeles, California
- Children's Oncology Group, Department of Preventive Medicine, University of Southern California, Monrovia, California
| | | | | | | | - Laura Pardo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Hematologics Inc, Seattle, Washington
| | - Carrie L Cummings
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Keith R Loeb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Quy Le
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Suzan Imren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Amanda R Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alan S Gamis
- Children's Mercy Cancer Center, Kansas City, Missouri
| | - Richard Aplenc
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - E Anders Kolb
- Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Jason E Farrar
- UAMS, Arkansas Children's Hospital, Little Rock, Arkansas
| | | | - Cu Nguyen
- Center for Biomedical Informatics and Information Technology, NCI, Rockville, Maryland
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, NCI, Rockville, Maryland
| | | | - Vivian G Oehler
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hamid Bolouri
- Informatics and Computational Biology, Allen Institute, Seattle, Washington
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Children's Oncology Group, Monrovia, California
- Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
54
|
The Pediatric Acute Leukemia Fusion Oncogene ETO2-GLIS2 Increases Self-Renewal and Alters Differentiation in a Human Induced Pluripotent Stem Cells-Derived Model. Hemasphere 2020; 4:e319. [PMID: 32072139 PMCID: PMC7000481 DOI: 10.1097/hs9.0000000000000319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
|
55
|
Lopez CK, Noguera E, Stavropoulou V, Robert E, Aid Z, Ballerini P, Bilhou-Nabera C, Lapillonne H, Boudia F, Thirant C, Fagnan A, Arcangeli ML, Kinston SJ, Diop M, Job B, Lecluse Y, Brunet E, Babin L, Villeval JL, Delabesse E, Peters AHFM, Vainchenker W, Gaudry M, Masetti R, Locatelli F, Malinge S, Nerlov C, Droin N, Lobry C, Godin I, Bernard OA, Göttgens B, Petit A, Pflumio F, Schwaller J, Mercher T. Ontogenic Changes in Hematopoietic Hierarchy Determine Pediatric Specificity and Disease Phenotype in Fusion Oncogene-Driven Myeloid Leukemia. Cancer Discov 2019; 9:1736-1753. [PMID: 31662298 DOI: 10.1158/2159-8290.cd-18-1463] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 01/18/2023]
Abstract
Fusion oncogenes are prevalent in several pediatric cancers, yet little is known about the specific associations between age and phenotype. We observed that fusion oncogenes, such as ETO2-GLIS2, are associated with acute megakaryoblastic or other myeloid leukemia subtypes in an age-dependent manner. Analysis of a novel inducible transgenic mouse model showed that ETO2-GLIS2 expression in fetal hematopoietic stem cells induced rapid megakaryoblastic leukemia whereas expression in adult bone marrow hematopoietic stem cells resulted in a shift toward myeloid transformation with a strikingly delayed in vivo leukemogenic potential. Chromatin accessibility and single-cell transcriptome analyses indicate ontogeny-dependent intrinsic and ETO2-GLIS2-induced differences in the activities of key transcription factors, including ERG, SPI1, GATA1, and CEBPA. Importantly, switching off the fusion oncogene restored terminal differentiation of the leukemic blasts. Together, these data show that aggressiveness and phenotypes in pediatric acute myeloid leukemia result from an ontogeny-related differential susceptibility to transformation by fusion oncogenes. SIGNIFICANCE: This work demonstrates that the clinical phenotype of pediatric acute myeloid leukemia is determined by ontogeny-dependent susceptibility for transformation by oncogenic fusion genes. The phenotype is maintained by potentially reversible alteration of key transcription factors, indicating that targeting of the fusions may overcome the differentiation blockage and revert the leukemic state.See related commentary by Cruz Hernandez and Vyas, p. 1653.This article is highlighted in the In This Issue feature, p. 1631.
Collapse
Affiliation(s)
- Cécile K Lopez
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Esteve Noguera
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Vaia Stavropoulou
- University Children's Hospital Beider Basel (UKBB) and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Elie Robert
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Zakia Aid
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | | | | | | | - Fabien Boudia
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
- Université Paris Diderot, Paris, France
| | - Cécile Thirant
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Alexandre Fagnan
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
- Université Paris Diderot, Paris, France
| | - Marie-Laure Arcangeli
- Unité Mixte de Recherche 967 INSERM, CEA/DRF/IBFJ/IRCM/LSHL, Université Paris-Diderot-Université Paris-Sud, Equipe labellisée Association Recherche Contre le Cancer, Fontenay-aux-roses, France
| | - Sarah J Kinston
- Wellcome and MRC Cambridge Stem Cell Institute and the Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | - Erika Brunet
- Genome Dynamics in the Immune System Laboratory, Institut Imagine, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Loélia Babin
- Genome Dynamics in the Immune System Laboratory, Institut Imagine, INSERM, Université Paris Descartes, Sorbonne Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Jean Luc Villeval
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Eric Delabesse
- INSERM U1037, Team 16, Center of Research of Cancerology of Toulouse, Hematology Laboratory, IUCT-Oncopole, France
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - William Vainchenker
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Muriel Gaudry
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Riccardo Masetti
- Department of Pediatrics, "Lalla Seràgnoli," Hematology-Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
- Hematology-Oncology-IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Sébastien Malinge
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Isabelle Godin
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute and the Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Françoise Pflumio
- Unité Mixte de Recherche 967 INSERM, CEA/DRF/IBFJ/IRCM/LSHL, Université Paris-Diderot-Université Paris-Sud, Equipe labellisée Association Recherche Contre le Cancer, Fontenay-aux-roses, France
| | - Juerg Schwaller
- University Children's Hospital Beider Basel (UKBB) and Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy, Villejuif, France.
- Gustave Roussy, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
- Université Paris Diderot, Paris, France
| |
Collapse
|
56
|
Jetten AM. Emerging Roles of GLI-Similar Krüppel-like Zinc Finger Transcription Factors in Leukemia and Other Cancers. Trends Cancer 2019; 5:547-557. [PMID: 31474360 DOI: 10.1016/j.trecan.2019.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/22/2023]
Abstract
GLI-similar 1-3 (GLIS1-3), a subfamily of Krüppel-like zinc finger transcription factors, function as key regulators of several biological processes important to oncogenesis, including control of cell proliferation, differentiation, self-renewal, and epithelial-mesenchymal transition. This review provides a short overview of the critical roles genetic changes in GLIS1-3 play in the development of several malignancies. This includes intrachromosomal translocations involving GLIS2 and ETO2/CBFA2T3 in the development of pediatric non-Down's syndrome (DS), acute megakaryoblastic leukemia (AMKL), a malignancy with poor prognosis, and an association of interchromosomal translocations between GLIS3, GLIS1, and PAX8, and between GLIS3 and CLPTM1L with hyalinizing trabecular tumors (HTTs) and fibrolamellar hepatocellular carcinoma (FHCC), respectively. Targeting upstream signaling pathways that regulate GLIS signaling may offer new therapeutic strategies in the management of cancer.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
57
|
Rack KA, van den Berg E, Haferlach C, Beverloo HB, Costa D, Espinet B, Foot N, Jeffries S, Martin K, O'Connor S, Schoumans J, Talley P, Telford N, Stioui S, Zemanova Z, Hastings RJ. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia 2019; 33:1851-1867. [PMID: 30696948 PMCID: PMC6756035 DOI: 10.1038/s41375-019-0378-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Cytogenomic investigations of haematological neoplasms, including chromosome banding analysis, fluorescence in situ hybridisation (FISH) and microarray analyses have become increasingly important in the clinical management of patients with haematological neoplasms. The widespread implementation of these techniques in genetic diagnostics has highlighted the need for guidance on the essential criteria to follow when providing cytogenomic testing, regardless of choice of methodology. These recommendations provide an updated, practical and easily available document that will assist laboratories in the choice of testing and methodology enabling them to operate within acceptable standards and maintain a quality service.
Collapse
Affiliation(s)
- K A Rack
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - E van den Berg
- Department of Genetics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C Haferlach
- MLL-Munich Leukemia Laboratory, Munich, Germany
| | - H B Beverloo
- Department of Clinical Genetics, Erasmus MC, University medical center, Rotterdam, The Netherlands
| | - D Costa
- Hematopathology Section, Hospital Clinic, Barcelona, Spain
| | - B Espinet
- Laboratori de Citogenètica Molecular, Servei de Patologia, Grup de Recerca,Translacional en Neoplàsies Hematològiques, Cancer Research Program, imim-Hospital del Mar, Barcelona, Spain
| | - N Foot
- Viapath Genetics laboratories, Guys Hospital, London, UK
| | - S Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - K Martin
- Department of Cytogenetics, Nottingham University Hospital, Nottingham, UK
| | - S O'Connor
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - J Schoumans
- Oncogénomique laboratory, Hematology department, Lausanne University Hospital, Vaudois, Switzerland
| | - P Talley
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - N Telford
- Oncology Cytogenetics Service, The Christie NHS Foundation Trust, Manchester, UK
| | - S Stioui
- Laboratorio di Citogenetica e genetica moleculaire, Laboratorio Analisi, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Z Zemanova
- Prague Center of Oncocytogenetics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - R J Hastings
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK.
| |
Collapse
|
58
|
Not Only Mutations Matter: Molecular Picture of Acute Myeloid Leukemia Emerging from Transcriptome Studies. JOURNAL OF ONCOLOGY 2019; 2019:7239206. [PMID: 31467542 PMCID: PMC6699387 DOI: 10.1155/2019/7239206] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
The last two decades of genome-scale research revealed a complex molecular picture of acute myeloid leukemia (AML). On the one hand, a number of mutations were discovered and associated with AML diagnosis and prognosis; some of them were introduced into diagnostic tests. On the other hand, transcriptome studies, which preceded AML exome and genome sequencing, remained poorly translated into clinics. Nevertheless, gene expression studies significantly contributed to the elucidation of AML pathogenesis and indicated potential therapeutic directions. The power of transcriptomic approach lies in its comprehensiveness; we can observe how genome manifests its function in a particular type of cells and follow many genes in one test. Moreover, gene expression measurement can be combined with mutation detection, as high-impact mutations are often present in transcripts. This review sums up 20 years of transcriptome research devoted to AML. Gene expression profiling (GEP) revealed signatures distinctive for selected AML subtypes and uncovered the additional within-subtype heterogeneity. The results were particularly valuable in the case of AML with normal karyotype which concerns up to 50% of AML cases. With the use of GEP, new classes of the disease were identified and prognostic predictors were proposed. A plenty of genes were detected as overexpressed in AML when compared to healthy control, including KIT, BAALC, ERG, MN1, CDX2, WT1, PRAME, and HOX genes. High expression of these genes constitutes usually an unfavorable prognostic factor. Upregulation of FLT3 and NPM1 genes, independent on their mutation status, was also reported in AML and correlated with poor outcome. However, transcriptome is not limited to the protein-coding genes; other types of RNA molecules exist in a cell and regulate genome function. It was shown that microRNA (miRNA) profiles differentiated AML groups and predicted outcome not worse than protein-coding gene profiles. For example, upregulation of miR-10a, miR-10b, and miR-196b and downregulation of miR-192 were found as typical of AML with NPM1 mutation whereas overexpression of miR-155 was associated with FLT3-internal tandem duplication (FLT3-ITD). Development of high-throughput technologies and microarray replacement by next generation sequencing (RNA-seq) enabled uncovering a real variety of leukemic cell transcriptomes, reflected by gene fusions, chimeric RNAs, alternatively spliced transcripts, miRNAs, piRNAs, long noncoding RNAs (lncRNAs), and their special type, circular RNAs. Many of them can be considered as AML biomarkers and potential therapeutic targets. The relations between particular RNA puzzles and other components of leukemic cells and their microenvironment, such as exosomes, are now under investigation. Hopefully, the results of this research will shed the light on these aspects of AML pathogenesis which are still not completely understood.
Collapse
|
59
|
Ding X, Zhu X. Locating potentially lethal genes using the abnormal distributions of genotypes. Sci Rep 2019; 9:10543. [PMID: 31332212 PMCID: PMC6646374 DOI: 10.1038/s41598-019-47076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/10/2019] [Indexed: 11/09/2022] Open
Abstract
Genes are the basic functional units of heredity. Differences in genes can lead to various congenital physical conditions. One kind of these differences is caused by genetic variations named single nucleotide polymorphisms (SNPs). An SNP is a variation in a single nucleotide that occurs at a specific position in the genome. Some SNPs can affect splice sites and protein structures and cause gene abnormalities. SNPs on paired chromosomes may lead to fatal diseases so that a fertilized embryo cannot develop into a normal fetus or the people born with these abnormalities die in childhood. The distributions of genotypes on these SNP sites are different from those on other sites. Based on this idea, we present a novel statistical method to detect the abnormal distributions of genotypes and locate the potentially lethal genes. The test was performed on HapMap data and 74 suspicious SNPs were found. Ten SNP maps “reviewed” genes in the NCBI database. Among them, 5 genes were related to fatal childhood diseases or embryonic development, 1 gene can cause spermatogenic failure, and the other 4 genes were associated with many genetic diseases. The results validated our method. The method is very simple and is guaranteed by a statistical test. It is an inexpensive way to discover potentially lethal genes and the mutation sites. The mined genes deserve further study.
Collapse
Affiliation(s)
- Xiaojun Ding
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China.
| | - Xiaoshu Zhu
- School of Computer Science and Engineering, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
60
|
Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. Next-Generation Sequencing in Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:ijms20122929. [PMID: 31208040 PMCID: PMC6627957 DOI: 10.3390/ijms20122929] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and accounts for about a quarter of adult acute leukemias, and features different outcomes depending on the age of onset. Improvements in ALL genomic analysis achieved thanks to the implementation of next-generation sequencing (NGS) have led to the recent discovery of several novel molecular entities and to a deeper understanding of the existing ones. The purpose of our review is to report the most recent discoveries obtained by NGS studies for ALL diagnosis, risk stratification, and treatment planning. We also report the first efforts at NGS use for minimal residual disease (MRD) assessment, and early studies on the application of third generation sequencing in cancer research. Lastly, we consider the need for the integration of NGS analyses in clinical practice for genomic patients profiling from the personalized medicine perspective.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
61
|
Masetti R, Guidi V, Ronchini L, Bertuccio NS, Locatelli F, Pession A. The changing scenario of non-Down syndrome acute megakaryoblastic leukemia in children. Crit Rev Oncol Hematol 2019; 138:132-138. [PMID: 31092368 DOI: 10.1016/j.critrevonc.2019.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/30/2023] Open
Abstract
Pediatric non-Down-syndrome acute megakaryoblastic leukemia (non-DS-AMKL) is a heterogeneous subtype of leukemia that has historically been associated with poor prognosis. Until the advent of large-scale genomic sequencing, the management of patients with non-DS-AMKL was very difficult due to the absence of reliable biological prognostic markers. The sequencing of large cohort of pediatric non-DS-AMKL samples led to the discovery of novel genetic aberrations, including high-frequency fusions, such as CBFA2T3-GLIS2 and NUP98-KDM5 A, as well as less frequent aberrations, such as HOX rearrangements. These new insights into the genetic landscape of pediatric non-DS-AMKL has allowed refining the risk-group stratification, leading to important changes in the prognostic scenario of these patients. This review summarizes the most important molecular pathogenic mechanisms of pediatric non-DS-AMKL. A critical discussion on how novel genetic abnormalities have refined the risk profile assessment and changed the management of these patients in clinical practice is also provided.
Collapse
Affiliation(s)
- Riccardo Masetti
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Vanessa Guidi
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy.
| | - Laura Ronchini
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Nicola Salvatore Bertuccio
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | - Andrea Pession
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| |
Collapse
|
62
|
Abstract
Treatment outcomes for acute lymphoblastic leukemia (ALL), especially pediatric ALL, have greatly improved due to the risk-adapted therapy. Combination of drug development, clinical practice, as well as basic genetic researches has brought the survival rate of ALL from less than 10% to more than 90% today, not only increasing the treatment efficacy but also limiting adverse drug reactions (ADRs). In this review, we summarized the landscape identification of ALL genetic alterations, which provided the opportunity to increase the survival rate and especially minimize the relapse risk of ALL, and highlighted the importance of the development of new technologies of genomic investigation for translational medicine.
Collapse
|
63
|
Mercher T, Schwaller J. Pediatric Acute Myeloid Leukemia (AML): From Genes to Models Toward Targeted Therapeutic Intervention. Front Pediatr 2019; 7:401. [PMID: 31681706 PMCID: PMC6803505 DOI: 10.3389/fped.2019.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
This review aims to provide an overview of the current knowledge of the genetic lesions driving pediatric acute myeloid leukemia (AML), emerging biological concepts, and strategies for therapeutic intervention. Hereby, we focus on lesions that preferentially or exclusively occur in pediatric patients and molecular markers of aggressive disease with often poor outcome including fusion oncogenes that involve epigenetic regulators like KMT2A, NUP98, or CBFA2T3, respectively. Functional studies were able to demonstrate cooperation with signaling mutations leading to constitutive activation of FLT3 or the RAS signal transduction pathways. We discuss the issues faced to faithfully model pediatric acute leukemia in mice. Emerging experimental evidence suggests that the disease phenotype is dependent on the appropriate expression and activity of the driver fusion oncogenes during a particular window of opportunity during fetal development. We also highlight biochemical studies that deciphered some molecular mechanisms of malignant transformation by KMT2A, NUP98, and CBFA2T3 fusions, which, in some instances, allowed the development of small molecules with potent anti-leukemic activities in preclinical models (e.g., inhibitors of the KMT2A-MENIN interaction). Finally, we discuss other potential therapeutic strategies that not only target driver fusion-controlled signals but also interfere with the transformed cell state either by exploiting the primed apoptosis or vulnerable metabolic states or by increasing tumor cell recognition and elimination by the immune system.
Collapse
Affiliation(s)
- Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, Université Paris Diderot, Université Paris-Sud, Villejuif, France
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital Beider Basel (UKBB), University of Basel, Basel, Switzerland
| |
Collapse
|
64
|
Lonetti A, Pession A, Masetti R. Targeted Therapies for Pediatric AML: Gaps and Perspective. Front Pediatr 2019; 7:463. [PMID: 31803695 PMCID: PMC6873958 DOI: 10.3389/fped.2019.00463] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic disorder characterized by numerous cytogenetic and molecular aberrations that accounts for ~25% of childhood leukemia diagnoses. The outcome of children with AML has increased remarkably over the past 30 years, with current survival rates up to 70%, mainly due to intensification of standard chemotherapy and improvements in risk classification, supportive care, and minimal residual disease monitoring. However, childhood AML prognosis remains unfavorable and relapse rates are still around 30%. Therefore, novel therapeutic approaches are needed to increase the cure rate. In AML, the presence of gene mutations and rearrangements prompted the identification of effective targeted molecular strategies, including kinase inhibitors, cell pathway inhibitors, and epigenetic modulators. This review will discuss several new drugs that recently received US Food and Drug Administration approval for AML treatment and promising strategies to treat childhood AML, including FLT3 inhibitors, epigenetic modulators, and Hedgehog pathway inhibitors.
Collapse
Affiliation(s)
- Annalisa Lonetti
- "Giorgio Prodi" Interdepartmental Cancer Research Centre, University of Bologna, Bologna, Italy
| | - Andrea Pession
- "Giorgio Prodi" Interdepartmental Cancer Research Centre, University of Bologna, Bologna, Italy.,Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, Bologna, Italy
| |
Collapse
|
65
|
Masetti R, Bertuccio SN, Pession A, Locatelli F. CBFA2T3-GLIS2-positive acute myeloid leukaemia. A peculiar paediatric entity. Br J Haematol 2018; 184:337-347. [PMID: 30592296 PMCID: PMC6590351 DOI: 10.1111/bjh.15725] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The scenario of paediatric acute myeloid leukaemia (AML), particularly non‐Down syndrome acute megakaryoblastic leukaemia (non‐DS‐AMKL), has been recently revolutionized by the advent of large‐scale, genomic sequencing technologies. In this changing landscape, a significantly relevant discovery has been represented by the identification of the CBFA2T3‐GLIS2 fusion gene, which is the result of a cryptic inversion of chromosome 16. It is the most frequent chimeric oncogene identified to date in non‐DS‐AMKL, although it seems not to be exclusively restricted to the French‐American‐British M7 subgroup. The CBFA2T3‐GLIS2 fusion gene characterizes a subtype of leukaemia that is specific to paediatrics, having never been identified in adults. It characterizes an extremely aggressive leukaemia, as the presence of this fusion is associated with a grim outcome in almost all of the case series reported, with overall survival rates ranging between 15% and 30%. Although the molecular basis that underlies this leukaemia subtype is still far from being completely elucidated, unique functional properties induced by CBFA2T3‐GLIS2 in the leukaemogenesis driving process have been recently identified. We here review the peculiarities of CBFA2T3‐GLIS2‐positive AML, describing its intriguing clinical and biological behaviour and providing some challenging targeting opportunities.
Collapse
Affiliation(s)
- Riccardo Masetti
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Salvatore N Bertuccio
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology-Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
66
|
Pession A, Lonetti A, Bertuccio S, Locatelli F, Masetti R. Targeting Hedgehog pathway in pediatric acute myeloid leukemia: challenges and opportunities. Expert Opin Ther Targets 2018; 23:87-91. [PMID: 30556755 DOI: 10.1080/14728222.2019.1559822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrea Pession
- a Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit , University of Bologna , Bologna , Italy
| | - Annalisa Lonetti
- a Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit , University of Bologna , Bologna , Italy
| | - Salvatore Bertuccio
- a Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit , University of Bologna , Bologna , Italy
| | - Franco Locatelli
- b Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù , Sapienza University , Rome , Italy
| | - Riccardo Masetti
- a Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit , University of Bologna , Bologna , Italy
| |
Collapse
|
67
|
Pikman Y, Stegmaier K. Targeted therapy for fusion-driven high-risk acute leukemia. Blood 2018; 132:1241-1247. [PMID: 30049809 PMCID: PMC6148448 DOI: 10.1182/blood-2018-04-784157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/14/2018] [Indexed: 11/20/2022] Open
Abstract
Despite continued progress in drug development for acute leukemias, outcomes for patients with some subtypes have not changed significantly in the last decade. Recurrent chromosomal translocations have long been recognized as driver events in leukemia, and many of these oncogenic fusions portend high-risk disease. Improved understanding of the molecular underpinnings of these fusions, coupled with novel chemistry approaches, now provide new opportunity for therapeutic inroads into the treatment of leukemia driven by these fusions.
Collapse
Affiliation(s)
- Yana Pikman
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA; and
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA; and
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| |
Collapse
|
68
|
Ikonnikova AY, Ammour YI, Snezhkina AV, Krasnov GS, Kudryavtseva AV, Nasedkina TV. Identification of Fusion Transcripts in Leukеmic Cells by Whole-Transcriptome Sequencing. Mol Biol 2018. [DOI: 10.1134/s0026893318020048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
69
|
Ring1A and Ring1B inhibit expression of Glis2 to maintain murine MOZ-TIF2 AML stem cells. Blood 2018; 131:1833-1845. [PMID: 29371181 DOI: 10.1182/blood-2017-05-787226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
Eradication of chemotherapy-resistant leukemia stem cells is expected to improve treatment outcomes in patients with acute myelogenous leukemia (AML). In a mouse model of AML expressing the MOZ-TIF2 fusion, we found that Ring1A and Ring1B, components of Polycomb repressive complex 1, play crucial roles in maintaining AML stem cells. Deletion of Ring1A and Ring1B (Ring1A/B) from MOZ-TIF2 AML cells diminished self-renewal capacity and induced the expression of numerous genes, including Glis2 Overexpression of Glis2 caused MOZ-TIF2 AML cells to differentiate into mature cells, whereas Glis2 knockdown in Ring1A/B-deficient MOZ-TIF2 cells inhibited differentiation. Thus, Ring1A/B regulate and maintain AML stem cells in part by repressing Glis2 expression, which promotes their differentiation. These findings provide new insights into the mechanism of AML stem cell homeostasis and reveal novel targets for cancer stem cell therapy.
Collapse
|
70
|
Klein K, de Haas V, Kaspers GJL. Clinical challenges in de novo pediatric acute myeloid leukemia. Expert Rev Anticancer Ther 2018; 18:277-293. [DOI: 10.1080/14737140.2018.1428091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kim Klein
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Valérie de Haas
- Dutch Childhood Oncology Group, The Hague, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Gertjan J. L. Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Dutch Childhood Oncology Group, The Hague, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
71
|
Iijima-Yamashita Y, Matsuo H, Yamada M, Deguchi T, Kiyokawa N, Shimada A, Tawa A, Takahashi H, Tomizawa D, Taga T, Kinoshita A, Adachi S, Horibe K. Multiplex fusion gene testing in pediatric acute myeloid leukemia. Pediatr Int 2018; 60:47-51. [PMID: 29105243 DOI: 10.1111/ped.13451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/02/2017] [Accepted: 10/27/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND Gene abnormalities, particularly chromosome rearrangements generating gene fusion, are associated with clinical characteristics and prognosis in pediatric acute myeloid leukemia (AML). Karyotyping is generally performed to enable risk stratification, but the results are not always consistent with those of reverse transcription-polymerase chain reaction (RT-PCR), and more accurate and rapid methods are required. METHODS A total of 487 samples from de novo AML patients enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group (JPLSG) AML-05 study (n = 448), and from acute promyelocytic leukemia (APL) patients enrolled in the JPLSG AML-P05 study (n = 39) were available for this investigation. Multiplex quantitative RT-PCR was performed to detect eight important fusion genes: AML1(RUNX1)-ETO(RUNX1T1), CBFB-MYH11, MLL(KMT2A)-AF9(MLLT3), MLL-ELL, MLL-AF6(MLLT4), FUS(TLS)-ERG, NUP98-HOXA9, and PML-RARA. RESULTS Fusion genes were detected in 207 (46.2%) of the 448 AML-05 patient samples. After exclusion of two samples with PML-RARA, no chromosomal abnormalities were identified on karyotyping in 19 of 205 patients (9.3%) positive for fusion genes on RT-PCR. Fusion genes were confirmed on fluorescence in situ hybridization (FISH) in 11 of these 19 patients. In contrast, fusion genes were detected in 37 of 39 patients (94.9%) from the AML-P05 study, and 33 of these results were consistent with the karyotyping. There were discrepancies in four patients (10.8%), three with normal karyotypes and one in whom karyotyping was not possible. All four of these patients were PML-RARA positive on FISH. CONCLUSIONS Multiplex quantitative RT-PCR-based fusion gene screening may be effective for diagnosis of pediatric AML.
Collapse
Affiliation(s)
- Yuka Iijima-Yamashita
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Hidemasa Matsuo
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan.,Department of Human Health Sciences, Kyoto University, Kyoto, Japan.,Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Miho Yamada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Takao Deguchi
- Department of Pediatrics, Mie University, Mie, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akira Shimada
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Akio Tawa
- Department of Pediatrics, Osaka National Hospital, Osaka, Japan
| | | | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Akitoshi Kinoshita
- Department of Pediatrics, St Marianna University School of Medicine, Kanagawa, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| |
Collapse
|
72
|
Mitsui-Sekinaka K, Sekinaka Y, Ogura Y, Honda M, Ohyama R, Oyama C, Isobe K, Mori M, Arakawa Y, Koh K, Hanada R, Nonoyama S, Kawaguchi H. A pediatric case of acute megakaryocytic leukemia with double chimeric transcripts of CBFA2T3-GLIS2 and DHH-RHEBL1. Leuk Lymphoma 2017; 59:1511-1513. [PMID: 29043865 DOI: 10.1080/10428194.2017.1387901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Yujin Sekinaka
- a Department of Pediatrics , National Defense Medical College , Saitama , Japan
| | - Yumi Ogura
- a Department of Pediatrics , National Defense Medical College , Saitama , Japan
| | - Mamoru Honda
- a Department of Pediatrics , National Defense Medical College , Saitama , Japan
| | - Ryo Ohyama
- b Department of Hematology/Oncology , Saitama Children's Medical Center , Saitama , Japan
| | - Chigusa Oyama
- b Department of Hematology/Oncology , Saitama Children's Medical Center , Saitama , Japan
| | - Kiyotaka Isobe
- b Department of Hematology/Oncology , Saitama Children's Medical Center , Saitama , Japan
| | - Makiko Mori
- b Department of Hematology/Oncology , Saitama Children's Medical Center , Saitama , Japan
| | - Yuki Arakawa
- b Department of Hematology/Oncology , Saitama Children's Medical Center , Saitama , Japan
| | - Katsuyoshi Koh
- b Department of Hematology/Oncology , Saitama Children's Medical Center , Saitama , Japan
| | - Ryoji Hanada
- b Department of Hematology/Oncology , Saitama Children's Medical Center , Saitama , Japan
| | - Shigeaki Nonoyama
- a Department of Pediatrics , National Defense Medical College , Saitama , Japan
| | - Hiroyuki Kawaguchi
- a Department of Pediatrics , National Defense Medical College , Saitama , Japan
| |
Collapse
|
73
|
Scoville DW, Kang HS, Jetten AM. GLIS1-3: emerging roles in reprogramming, stem and progenitor cell differentiation and maintenance. Stem Cell Investig 2017; 4:80. [PMID: 29057252 DOI: 10.21037/sci.2017.09.01] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/27/2017] [Indexed: 12/12/2022]
Abstract
Recent studies have provided evidence for a regulatory role of GLI-similar (GLIS) transcription factors in reprogramming, maintenance and differentiation of several stem and progenitor cell populations. GLIS1, in conjunction with several other reprogramming factors, was shown to markedly increase the efficiency of generating induced pluripotent stem cells (iPSC) from somatic cells. GLIS2 has been reported to contribute to the maintenance of the pluripotent state in hPSCs. In addition, GLIS2 has a function in regulating self-renewal of hematopoietic progenitors and megakaryocytic differentiation. GLIS3 plays a critical role during the development of several tissues. GLIS3 is able to promote reprogramming of human fibroblasts into retinal pigmented epithelial (RPE) cells. Moreover, GLIS3 is essential for spermatogonial stem cell renewal and spermatogonial progenitor cell differentiation. During pancreas development, GLIS3 protein is first detectable in bipotent pancreatic progenitors and pro-endocrine progenitors and plays a critical role in the generation of pancreatic beta cells. Here, we review the current status of the roles of GLIS proteins in the maintenance and differentiation of these different stem and progenitor cells.
Collapse
Affiliation(s)
- David W Scoville
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
74
|
Roloff GW, Lai C, Hourigan CS, Dillon LW. Technical Advances in the Measurement of Residual Disease in Acute Myeloid Leukemia. J Clin Med 2017; 6:jcm6090087. [PMID: 28925935 PMCID: PMC5615280 DOI: 10.3390/jcm6090087] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022] Open
Abstract
Outcomes for those diagnosed with acute myeloid leukemia (AML) remain poor. It has been widely established that persistent residual leukemic burden, often referred to as measurable or minimal residual disease (MRD), after induction therapy or at the time of hematopoietic stem cell transplant (HSCT) is highly predictive for adverse clinical outcomes and can be used to identify patients likely to experience clinically evident relapse. As a result of inherent genetic and molecular heterogeneity in AML, there is no uniform method or protocol for MRD measurement to encompass all cases. Several techniques focusing on identifying recurrent molecular and cytogenetic aberrations or leukemia-associated immunophenotypes have been described, each with their own strengths and weaknesses. Modern technologies enabling the digital quantification and tracking of individual DNA or RNA molecules, next-generation sequencing (NGS) platforms, and high-resolution imaging capabilities are among several new avenues under development to supplement or replace the current standard of flow cytometry. In this review, we outline emerging modalities positioned to enhance MRD detection and discuss factors surrounding their integration into clinical practice.
Collapse
Affiliation(s)
- Gregory W Roloff
- Myeloid Malignances Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Catherine Lai
- Myeloid Malignances Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Christopher S Hourigan
- Myeloid Malignances Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Laura W Dillon
- Myeloid Malignances Section, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
75
|
Voigt AP, Brodersen LE, Alonzo TA, Gerbing RB, Menssen AJ, Wilson ER, Kahwash S, Raimondi SC, Hirsch BA, Gamis AS, Meshinchi S, Wells DA, Loken MR. Phenotype in combination with genotype improves outcome prediction in acute myeloid leukemia: a report from Children's Oncology Group protocol AAML0531. Haematologica 2017; 102:2058-2068. [PMID: 28883080 PMCID: PMC5709105 DOI: 10.3324/haematol.2017.169029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Abstract
Diagnostic biomarkers can be used to determine relapse risk in acute myeloid leukemia, and certain genetic aberrancies have prognostic relevance. A diagnostic immunophenotypic expression profile, which quantifies the amounts of distinct gene products, not just their presence or absence, was established in order to improve outcome prediction for patients with acute myeloid leukemia. The immunophenotypic expression profile, which defines each patient’s leukemia as a location in 15-dimensional space, was generated for 769 patients enrolled in the Children’s Oncology Group AAML0531 protocol. Unsupervised hierarchical clustering grouped patients with similar immunophenotypic expression profiles into eleven patient cohorts, demonstrating high associations among phenotype, genotype, morphology, and outcome. Of 95 patients with inv(16), 79% segregated in Cluster A. Of 109 patients with t(8;21), 92% segregated in Clusters A and B. Of 152 patients with 11q23 alterations, 78% segregated in Clusters D, E, F, G, or H. For both inv(16) and 11q23 abnormalities, differential phenotypic expression identified patient groups with different survival characteristics (P<0.05). Clinical outcome analysis revealed that Cluster B (predominantly t(8;21)) was associated with favorable outcome (P<0.001) and Clusters E, G, H, and K were associated with adverse outcomes (P<0.05). Multivariable regression analysis revealed that Clusters E, G, H, and K were independently associated with worse survival (P range <0.001 to 0.008). The Children’s Oncology Group AAML0531 trial: clinicaltrials.gov Identifier: 00372593.
Collapse
Affiliation(s)
| | | | - Todd A Alonzo
- Children's Oncology Group, Monrovia, CA, USA.,University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | - Betsy A Hirsch
- University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Alan S Gamis
- Children's Mercy Hospitals & Clinics, Kansas City, MO, USA
| | - Soheil Meshinchi
- Children's Oncology Group, Monrovia, CA, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | |
Collapse
|
76
|
Lopez CK, Malinge S, Gaudry M, Bernard OA, Mercher T. Pediatric Acute Megakaryoblastic Leukemia: Multitasking Fusion Proteins and Oncogenic Cooperations. Trends Cancer 2017; 3:631-642. [PMID: 28867167 DOI: 10.1016/j.trecan.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
Pediatric leukemia presents specific clinical and genetic features from adult leukemia but the underpinning mechanisms of transformation are still unclear. Acute megakaryoblastic leukemia (AMKL) is the malignant accumulation of progenitors of the megakaryocyte lineage that normally produce blood platelets. AMKL is diagnosed de novo, in patients showing a poor prognosis, or in Down syndrome (DS) patients with a better prognosis. Recent data show that de novo AMKL is primarily associated with chromosomal alterations leading to the expression of fusions between transcriptional regulators. This review highlights the most recurrent genetic events found in de novo pediatric AMKL patients and, based on recent functional analyses, proposes a mechanism of leukemogenesis common to de novo and DS-AMKL.
Collapse
MESH Headings
- Age Factors
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Child
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Megakaryoblastic, Acute/drug therapy
- Leukemia, Megakaryoblastic, Acute/etiology
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Megakaryoblastic, Acute/pathology
- Megakaryocytes/metabolism
- Megakaryocytes/pathology
- Molecular Targeted Therapy
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Cécile K Lopez
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Sébastien Malinge
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France
| | - Muriel Gaudry
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Olivier A Bernard
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France; Université Paris Diderot, 75013 Paris, France.
| |
Collapse
|
77
|
Pombo-de-Oliveira MS, Andrade FG. Early-age Acute Leukemia: Revisiting Two Decades of the Brazilian Collaborative Study Group. Arch Med Res 2017; 47:593-606. [PMID: 28476187 DOI: 10.1016/j.arcmed.2016.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022]
Abstract
The understanding of leukemogenesis in early-age acute leukemia (EAL) has improved remarkably. Initiating somatic mutations detected in dried neonatal blood spots (DNBS) and in cord blood samples of affected children with leukemia have been proven to be acquired prenatally. However, to date, few epidemiological studies have been carried out exploring EAL that include infants and children 13-24 months of age at the diagnosis. Maternal exposure to transplacental DNA-damaging substances during pregnancy has been suggested to be a risk factor for EAL. Most cases of infants with acute lymphoblastic (i-ALL) or myeloid leukemia (i-AML) have KMT2A gene rearrangements (KMT2A-r), which disturb its essential role as an epigenetic regulator of hematopoiesis. Due to the short latency period for EAL and the fact that KMT2A-r resembles those found in secondary AML, exposure to topoisomerase II inhibitors has been associated with transplacental risk as proxi for causality. EAL studies have been conducted in Brazil for over two decades, combining observational epidemiology, leukemia biology, and clinical data. EAL was investigated considering (i) age strata (infants vs. 13-24 months-old); (ii) somatic mutations associated with i-ALL and i-AML; (iii) ethnic-geographic variations; (iv) contribution of maternal genotypes; and (v) time latency of exposures and mutations in DNBS. Interactions of acquired and constitutive gene mutations are challenging tools to test risk factor associations for EAL. In this review we summarize the EAL scenario (including B-cell precursor-ALL, T-ALL, and AML) results combining environmental and genetic susceptibility risk factors and we raise questions that should be considered for further action.
Collapse
Affiliation(s)
- Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Research Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
| | - Francianne Gomes Andrade
- Pediatric Hematology-Oncology Research Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | -
- Pediatric Hematology-Oncology Research Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
78
|
Buldini B, Rizzati F, Masetti R, Fagioli F, Menna G, Micalizzi C, Putti MC, Rizzari C, Santoro N, Zecca M, Disarò S, Rondelli R, Merli P, Pigazzi M, Pession A, Locatelli F, Basso G. Prognostic significance of flow-cytometry evaluation of minimal residual disease in children with acute myeloid leukaemia treated according to the AIEOP-AML 2002/01 study protocol. Br J Haematol 2017; 177:116-126. [PMID: 28240765 DOI: 10.1111/bjh.14523] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
Abstract
In children with acute myeloid leukaemia (AML), assessment of initial treatment response is an essential prognostic factor; methods more sensitive than morphology are still under evaluation. We report on the measurement of minimal residual disease (MRD), by multicolour flow-cytometry in one centralized laboratory, in 142 children with newly diagnosed AML enrolled in the Associazione Italiana di EmatoOncologia Pediatrica-AML 2002/01 trial. At the end of the first induction course, MRD was <0·1% in 69, 0·1-1% in 16 and >1% in 51 patients. The 8-year disease-free survival (DFS) of 125 children in morphological complete remission and with MRD <0·1%, 0·1-1% and ≥1% was 73·1 ± 5·6%, 37·8 ± 12·1% and 34·1 ± 8·8%, respectively (P < 0·01). MRD was also available after the second induction course in 92/142 patients. MRD was ≥0·1% at the end of the first induction course in 36 patients; 13 reached an MRD <0·1% after the second one and their DFS was 45·4 ± 16·7% vs. 22·8 ± 8·9% in patients with persisting MRD ≥0·1% (P = 0·037). Multivariate analysis demonstrated that MRD ≥0·1% after first induction course was, together with a monosomal karyotype, an independent adverse prognostic factor for DFS. Our results show that MRD detected by flow-cytometry after induction therapy predicts outcome in patients with childhood AML and can help stratifying post-remission treatment.
Collapse
Affiliation(s)
- Barbara Buldini
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| | - Frida Rizzati
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| | - Riccardo Masetti
- Department of Pediatrics, Lalla Seragnoli, Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franca Fagioli
- Pediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Torino, Italy
| | - Giuseppe Menna
- Department of Pediatric Haemato-Oncology, Santobono-Pausilipon Hospital, Napoli, Italy
| | - Concetta Micalizzi
- Department of Pediatric Haemato-Oncology, IRCCS Istituto "Giannina Gaslini", Genova, Italy
| | - Maria Caterina Putti
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| | - Carmelo Rizzari
- Department of Pediatrics, Centro Ricerca Tettamanti, Università di Milano-Bicocca, Monza, Italy
| | - Nicola Santoro
- Department of Pediatrics, Policlinico di Bari, Bari, Italy
| | - Marco Zecca
- Department of Pediatric Haemato-Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Silvia Disarò
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| | - Roberto Rondelli
- Department of Pediatrics, Lalla Seragnoli, Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Pietro Merli
- Department of Pediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Bambino Gesù, Rome; University of Pavia, Pavia, Italy
| | - Martina Pigazzi
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| | - Andrea Pession
- Department of Pediatrics, Lalla Seragnoli, Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology-Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Bambino Gesù, Rome; University of Pavia, Pavia, Italy
| | - Giuseppe Basso
- Department of Woman and Child Health, Laboratory of Haematology-Oncology, University of Padova, Padova, Italy
| |
Collapse
|
79
|
Hara Y, Shiba N, Ohki K, Tabuchi K, Yamato G, Park MJ, Tomizawa D, Kinoshita A, Shimada A, Arakawa H, Saito AM, Kiyokawa N, Tawa A, Horibe K, Taga T, Adachi S, Taki T, Hayashi Y. Prognostic impact of specific molecular profiles in pediatric acute megakaryoblastic leukemia in non-Down syndrome. Genes Chromosomes Cancer 2017; 56:394-404. [DOI: 10.1002/gcc.22444] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yusuke Hara
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Norio Shiba
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Kentaro Ohki
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatric Hematology and Oncology Research; National Research Institute for Child Health and Development; Tokyo Japan
| | - Ken Tabuchi
- Department of Pediatrics; Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital; Tokyo Japan
| | - Genki Yamato
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Myoung-ja Park
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma; Children's Cancer Center, National Center for Child Health and Development; Tokyo Japan
| | - Akitoshi Kinoshita
- Department of Pediatrics; St Marianna University School of Medicine; Kawasaki Japan
| | - Akira Shimada
- Department of Pediatrics; Okayama University Hospital; Okayama Japan
| | - Hirokazu Arakawa
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Akiko M. Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research; National Research Institute for Child Health and Development; Tokyo Japan
| | - Akio Tawa
- Department of Pediatrics; National Hospital Organization Osaka National Hospital; Osaka Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Takashi Taga
- Department of Pediatrics; Shiga University of Medical Science; Otsu Japan
| | - Souichi Adachi
- Department of Human Health Sciences Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Tomohiko Taki
- Department of Molecular Diagnostics and Therapeutics; Kyoto Prefectural University of Medicine Graduate School of Medical Science; Kyoto Japan
| | - Yasuhide Hayashi
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
- Gunma Red Cross Blood Center; Maebashi Japan
| |
Collapse
|
80
|
Masetti R, Bertuccio SN, Astolfi A, Chiarini F, Lonetti A, Indio V, De Luca M, Bandini J, Serravalle S, Franzoni M, Pigazzi M, Martelli AM, Basso G, Locatelli F, Pession A. Hh/Gli antagonist in acute myeloid leukemia with CBFA2T3-GLIS2 fusion gene. J Hematol Oncol 2017; 10:26. [PMID: 28109323 PMCID: PMC5251306 DOI: 10.1186/s13045-017-0396-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/10/2017] [Indexed: 11/23/2022] Open
Abstract
Background CBFA2T3-GLIS2 is a fusion gene found in 17% of non-Down syndrome acute megakaryoblastic leukemia (non-DS AMKL, FAB M7) and in 8% of pediatric cytogenetically normal acute myeloid leukemia (CN-AML, in association with several French-American-British (FAB) subtypes). Children with AML harboring this aberration have a poor outcome, regardless of the FAB subtype. This fusion gene drives a peculiar expression pattern and leads to overexpression of some of Hedgehog-related genes. GLI-similar protein 2 (GLIS2) is closely related to the GLI family, the final effectors of classic Hedgehog pathway. These observations lend compelling support to the application of GLI inhibitors in the treatment of AML with the aberration CBFA2T3-GLIS2. GANT61 is, nowadays, the most potent inhibitor of GLI family proteins. Methods We exposed to GANT61 AML cell lines and primary cells positive and negative for CBFA2T3-GLIS2 and analyzed the effect on cellular viability, induction of apoptosis, cell cycle, and expression profile. Results As compared to AML cells without GLIS2 fusion, GANT61 exposure resulted in higher sensitivity of both cell lines and primary AML cells carrying CBFA2T3-GLIS2 to undergo apoptosis and G1 cell cycle arrest. Remarkably, gene expression studies demonstrated downregulation of GLIS2-specific signature genes in both treated cell lines and primary cells, in comparison with untreated cells. Moreover, chromatin immunoprecipitation analysis revealed direct regulation by GLIS2 chimeric protein of DNMT1 and DNMT3B, two genes implicated in important epigenetic functions. Conclusions Our findings indicate that the GLI inhibitor GANT61 may be used to specifically target the CBFA2T3-GLIS2 fusion gene in pediatric AML. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0396-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riccardo Masetti
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 11, 40137, Bologna, Italy
| | - Salvatore Nicola Bertuccio
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 11, 40137, Bologna, Italy.
| | - Annalisa Astolfi
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 11, 40137, Bologna, Italy.,"Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council-IOR, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Matilde De Luca
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Jessica Bandini
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 11, 40137, Bologna, Italy
| | - Salvatore Serravalle
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 11, 40137, Bologna, Italy
| | - Monica Franzoni
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 11, 40137, Bologna, Italy
| | - Martina Pigazzi
- Department of Woman and Child Health, Hematology-Oncology, University of Padova, Padova, Italy
| | | | - Giuseppe Basso
- Department of Woman and Child Health, Hematology-Oncology, University of Padova, Padova, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS Ospedale Bambino Gesù, Rome, Italy.,University of Pavia, Pavia, Italy
| | - Andrea Pession
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 11, 40137, Bologna, Italy
| |
Collapse
|
81
|
Oberg JA, Glade Bender JL, Sulis ML, Pendrick D, Sireci AN, Hsiao SJ, Turk AT, Dela Cruz FS, Hibshoosh H, Remotti H, Zylber RJ, Pang J, Diolaiti D, Koval C, Andrews SJ, Garvin JH, Yamashiro DJ, Chung WK, Emerson SG, Nagy PL, Mansukhani MM, Kung AL. Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med 2016; 8:133. [PMID: 28007021 PMCID: PMC5180407 DOI: 10.1186/s13073-016-0389-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular characterization has the potential to advance the management of pediatric cancer and high-risk hematologic disease. The clinical integration of genome sequencing into standard clinical practice has been limited and the potential utility of genome sequencing to identify clinically impactful information beyond targetable alterations has been underestimated. METHODS The Precision in Pediatric Sequencing (PIPseq) Program at Columbia University Medical Center instituted prospective clinical next generation sequencing (NGS) for pediatric cancer and hematologic disorders at risk for treatment failure. We performed cancer whole exome sequencing (WES) of patient-matched tumor-normal samples and RNA sequencing (RNA-seq) of tumor to identify sequence variants, fusion transcripts, relative gene expression, and copy number variation (CNV). A directed cancer gene panel assay was used when sample adequacy was a concern. Constitutional WES of patients and parents was performed when a constitutionally encoded disease was suspected. Results were initially reviewed by a molecular pathologist and subsequently by a multi-disciplinary molecular tumor board. Clinical reports were issued to the ordering physician and posted to the patient's electronic medical record. RESULTS NGS was performed on tumor and/or normal tissue from 101 high-risk pediatric patients. Potentially actionable alterations were identified in 38% of patients, of which only 16% subsequently received matched therapy. In an additional 38% of patients, the genomic data provided clinically relevant information of diagnostic, prognostic, or pharmacogenomic significance. RNA-seq was clinically impactful in 37/65 patients (57%) providing diagnostic and/or prognostic information for 17 patients (26%) and identified therapeutic targets in 15 patients (23%). Known or likely pathogenic germline alterations were discovered in 18/90 patients (20%) with 14% having germline alternations in cancer predisposition genes. American College of Medical Genetics (ACMG) secondary findings were identified in six patients. CONCLUSIONS Our results demonstrate the feasibility of incorporating clinical NGS into pediatric hematology-oncology practice. Beyond the identification of actionable alterations, the ability to avoid ineffective/inappropriate therapies, make a definitive diagnosis, and identify pharmacogenomic modifiers is clinically impactful. Taking a more inclusive view of potential clinical utility, 66% of cases tested through our program had clinically impactful findings and samples interrogated with both WES and RNA-seq resulted in data that impacted clinical decisions in 75% of cases.
Collapse
Affiliation(s)
- Jennifer A. Oberg
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
| | - Julia L. Glade Bender
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Maria Luisa Sulis
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Danielle Pendrick
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
| | - Anthony N. Sireci
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Susan J. Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Andrew T. Turk
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
- Present address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Rebecca J. Zylber
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
| | - Jiuhong Pang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Daniel Diolaiti
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Present address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Carrie Koval
- Department of Clinical Genetics, Columbia University Medical Center, New York, NY 10032 USA
| | - Stuart J. Andrews
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - James H. Garvin
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Darrell J. Yamashiro
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Stephen G. Emerson
- Department of Medicine, Columbia University Medical Center, New York, NY 10032 USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Peter L. Nagy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Present address: MNG Laboratories, 5424 Glenridge Drive, Atlanta, GA 30342 USA
| | - Mahesh M. Mansukhani
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Andrew L. Kung
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
- Present address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| |
Collapse
|
82
|
Bisio V, Zampini M, Tregnago C, Manara E, Salsi V, Di Meglio A, Masetti R, Togni M, Di Giacomo D, Minuzzo S, Leszl A, Zappavigna V, Rondelli R, Mecucci C, Pession A, Locatelli F, Basso G, Pigazzi M. NUP98-fusion transcripts characterize different biological entities within acute myeloid leukemia: a report from the AIEOP-AML group. Leukemia 2016; 31:974-977. [PMID: 27890935 DOI: 10.1038/leu.2016.361] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- V Bisio
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Università di Padova, Padova, Italy
| | - M Zampini
- Istituto di Ricerca Pediatrica-Città della Speranza, Padova, Italy
| | - C Tregnago
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Università di Padova, Padova, Italy
| | - E Manara
- Istituto di Ricerca Pediatrica-Città della Speranza, Padova, Italy
| | - V Salsi
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, University of Modena and Reggio Emilia, Modena, Italy
| | - A Di Meglio
- Istituto di Ricerca Pediatrica-Città della Speranza, Padova, Italy
| | - R Masetti
- Clinica Pediatrica, Università di Bologna, Ospedale 'S. Orsola', Bologna, Italy
| | - M Togni
- Clinica Pediatrica, Università di Bologna, Ospedale 'S. Orsola', Bologna, Italy
| | - D Di Giacomo
- Department of Medicine, Laboratory of Molecular Medicine, CREO, University of Perugia, Perugia, Italy
| | - S Minuzzo
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università di Padova, Padova, Italy
| | - A Leszl
- UOC Oncoematologia Pediatrica, Azienda Ospedaliera-Università degli Studi di Padova, Padova, Italy
| | - V Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - R Rondelli
- Clinica Pediatrica, Università di Bologna, Ospedale 'S. Orsola', Bologna, Italy
| | - C Mecucci
- Department of Medicine, Laboratory of Molecular Medicine, CREO, University of Perugia, Perugia, Italy
| | - A Pession
- Clinica Pediatrica, Università di Bologna, Ospedale 'S. Orsola', Bologna, Italy
| | - F Locatelli
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Università di Pavia, Italy
| | - G Basso
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Università di Padova, Padova, Italy
| | - M Pigazzi
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Università di Padova, Padova, Italy
| |
Collapse
|
83
|
Manara E, Basso G, Zampini M, Buldini B, Tregnago C, Rondelli R, Masetti R, Bisio V, Frison M, Polato K, Cazzaniga G, Menna G, Fagioli F, Merli P, Biondi A, Pession A, Locatelli F, Pigazzi M. Characterization of children with FLT3-ITD acute myeloid leukemia: a report from the AIEOP AML-2002 study group. Leukemia 2016; 31:18-25. [PMID: 27416911 DOI: 10.1038/leu.2016.177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 01/02/2023]
Abstract
Recurrent molecular markers have been routinely used in acute myeloid leukemia (AML) for risk assessment at diagnosis, whereas their post-induction monitoring still represents a debated issue. We evaluated the prognostic value and biological impact of minimal residual disease (MRD) and of the allelic ratio (AR) of FLT3-internal-tandem duplication (ITD) in childhood AML. We retrospectively screened 494 children with de novo AML for FLT3-ITD mutation, identifying 54 harboring the mutation; 51% of them presented high ITD-AR at diagnosis and had worse event-free survival (EFS, 19.2 versus 63.5% for low ITD-AR, <0.05). Forty-one percent of children with high levels of MRD after the 1st induction course, measured by a patient-specific real-time-PCR, had worse EFS (22.2 versus 59.4% in low-MRD patients, P<0.05). Next, we correlated these parameters with gene expression, showing that patients with high ITD-AR or persistent MRD had characteristic expression profiles with deregulated genes involved in methylation and acetylation. Moreover, patients with high CyclinA1 expression presented an unfavorable EFS (20.3 versus 51.2% in low CyclinA1 group, P<0.01). Our results suggest that ITD-AR levels and molecular MRD should be considered in planning clinical management of FLT3-ITD patients. Different transcriptional activation of epigenetic and oncogenic profiles may explain variability in outcome among these patients, for whom novel therapeutic approaches are desirable.
Collapse
Affiliation(s)
- E Manara
- Istituto di Ricerca Pediatrica - Città della Speranza, Padova, Italy
| | - G Basso
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Università di Padova, Padova, Italy
| | - M Zampini
- Istituto di Ricerca Pediatrica - Città della Speranza, Padova, Italy
| | - B Buldini
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Università di Padova, Padova, Italy
| | - C Tregnago
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Università di Padova, Padova, Italy
| | - R Rondelli
- Clinica Pediatrica, Università di Bologna, Ospedale 'S. Orsola', Bologna, Italy
| | - R Masetti
- Clinica Pediatrica, Università di Bologna, Ospedale 'S. Orsola', Bologna, Italy
| | - V Bisio
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Università di Padova, Padova, Italy
| | - M Frison
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Università di Padova, Padova, Italy
| | - K Polato
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Università di Padova, Padova, Italy
| | - G Cazzaniga
- Clinica Pediatrica, Centro Ricerca Tettamanti, Università di Milano-Bicocca, Monza, Italia
| | - G Menna
- Department of Paediatric Haemato-Oncology, Santobono-Pausilipon Hospital, Napoli, Italy
| | - F Fagioli
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Torino, Italy
| | - P Merli
- IRCCS Bambino Gesù Children's Hospital Rome, Università di Pavia, Rome, Italy
| | - A Biondi
- Clinica Pediatrica, Centro Ricerca Tettamanti, Università di Milano-Bicocca, Monza, Italia
| | - A Pession
- Clinica Pediatrica, Università di Bologna, Ospedale 'S. Orsola', Bologna, Italy
| | - F Locatelli
- IRCCS Bambino Gesù Children's Hospital Rome, Università di Pavia, Rome, Italy
| | - M Pigazzi
- Dipartimento di Salute della Donna e del Bambino, Clinica di Oncoematologia Pediatrica, Università di Padova, Padova, Italy
| |
Collapse
|
84
|
Recurrent abnormalities can be used for risk group stratification in pediatric AMKL: a retrospective intergroup study. Blood 2016; 127:3424-30. [PMID: 27114462 DOI: 10.1182/blood-2016-01-695551] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/14/2016] [Indexed: 12/18/2022] Open
Abstract
Genetic abnormalities and early treatment response are the main prognostic factors in acute myeloid leukemia (AML). Acute megakaryoblastic leukemia (AMKL) is a rare subtype of AML. Deep sequencing has identified CBFA2T3/GLIS2 and NUP98/KDM5A as recurrent aberrations, occurring in similar frequencies as RBM15/MKL1 and KMT2A-rearrangements. We studied whether these cytogenetic aberrations can be used for risk group stratification. To assess frequencies and outcome parameters of recurrent cytogenetic aberrations in AMKL, samples and clinical data of patients treated by the Associazione Italiana Ematologia Oncologia Pediatrica, Berlin-Frankfurt-Munster Study Group, Children's Oncology Group, Dutch Childhood Oncology Group, and the Saint Louis Hôpital were collected, enabling us to screen 153 newly diagnosed pediatric AMKL cases for the aforementioned aberrations and to study their clinical characteristics and outcome. CBFA2T3/GLIS2 was identified in 16% of the cases; RBM15/MKL1, in 12%; NUP98/KDM5A and KMT2A rearrangements, in 9% each; and monosomy 7, in 6%. These aberrations were mutually exclusive. RBM15/MKL1-rearranged patients were significantly younger. No significant differences in sex and white blood cell count were found. NUP98/KDM5A, CBFA2T3/GLIS2, KMT2A-rearranged lesions and monosomy 7 (NCK-7) independently predicted a poor outcome, compared with RBM15/MKL1-rearranged patients and those with AMKL not carrying these molecular lesions. NCK-7-patients (n = 61) showed a 4-year probability of overall survival of 35 ± 6% vs 70 ± 5% in the RBM15/MKL1-other groups (n = 92, P < .0001) and 4-year probability of event-free survival of 33 ± 6% vs 62 ± 5% (P = .0013), the 4-year cumulative incidence of relapse being 42 ± 7% and 19 ± 4% (P = .003), respectively. We conclude that these genetic aberrations may be used for risk group stratification of pediatric AMKL and for treatment tailoring.
Collapse
|
85
|
Ishibashi M, Yokosuka T, Yanagimachi MD, Iwasaki F, Tsujimoto SI, Sasaki K, Takeuchi M, Tanoshima R, Kato H, Kajiwara R, Tanaka F, Goto H, Yokota S. Clinical Courses of Two Pediatric Patients with Acute Megakaryoblastic Leukemia Harboring the CBFA2T3-GLIS2 Fusion Gene. Turk J Haematol 2016; 33:331-334. [PMID: 27094503 PMCID: PMC5204189 DOI: 10.4274/tjh.2016.0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) in children without Down syndrome (DS) has an extremely poor outcome with 3-year survival of less than 40%, whereas AMKL in children with DS has an excellent survival rate. Recently, a novel recurrent translocation involving CBFA2T3 and GLIS2 was identified in about 30% of children with non-DS AMKL, and the fusion gene was reported as a strong poor prognostic factor in pediatric AMKL. We report the difficult clinical courses of pediatric patients with AMKL harboring the CBFA2T3-GLIS2 fusion gene.
Collapse
|
86
|
miR-27a and miR-27a* contribute to metastatic properties of osteosarcoma cells. Oncotarget 2016; 6:4920-35. [PMID: 25749032 PMCID: PMC4467124 DOI: 10.18632/oncotarget.3025] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/01/2015] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in adolescents and young adults. The essential mechanisms underlying osteosarcomagenesis and progression continue to be obscure. MicroRNAs (miRNAs) have far-reaching effects on the cellular biology of development and cancer. We recently reported that unique miRNA signatures associate with the pathogenesis and progression of OS. Of particular interest, we found that higher expression of miR-27a is associated with clinical metastatic disease. We report here that overexpression of miR-27a/miR-27a*, a microRNA pair derived from a single precursor, promotes pulmonary OS metastases formation. By contrast, sequestering miR-27a/miR-27a* by sponge technology suppressed OS cells invasion and metastases formation. miR-27a/miR-27a* directly repressed CBFA2T3 expression among other target genes. We demonstrated that CBFA2T3 is downregulated in majority of OS samples and its over expression significantly attenuated OS metastatic process mediated by miR-27a/miR-27a* underscoring CBFA2T3 functions as a tumor suppressor in OS. These findings establish that miR-27a/miR-27a* pair plays a significant role in OS metastasis and proposes it as a potential diagnostic and therapeutic target in managing OS metastases.
Collapse
|
87
|
Holmfeldt P, Ganuza M, Marathe H, He B, Hall T, Kang G, Moen J, Pardieck J, Saulsberry AC, Cico A, Gaut L, McGoldrick D, Finkelstein D, Tan K, McKinney-Freeman S. Functional screen identifies regulators of murine hematopoietic stem cell repopulation. J Exp Med 2016; 213:433-49. [PMID: 26880577 PMCID: PMC4813668 DOI: 10.1084/jem.20150806] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/07/2016] [Indexed: 11/12/2022] Open
Abstract
Holmfeldt et al. perform a transplant-based screen to identify regulators of HSPC engraftment and report that Foxa3 is critical for optimal HSC function after transplant. Understanding the molecular regulation of hematopoietic stem and progenitor cell (HSPC) engraftment is paramount to improving transplant outcomes. To discover novel regulators of HSPC repopulation, we transplanted >1,300 mice with shRNA-transduced HSPCs within 24 h of isolation and transduction to focus on detecting genes regulating repopulation. We identified 17 regulators of HSPC repopulation: Arhgef5, Armcx1, Cadps2, Crispld1, Emcn, Foxa3, Fstl1, Glis2, Gprasp2, Gpr56, Myct1, Nbea, P2ry14, Smarca2, Sox4, Stat4, and Zfp521. Knockdown of each of these genes yielded a loss of function, except in the cases of Armcx1 and Gprasp2, whose loss enhanced hematopoietic stem cell (HSC) repopulation. The discovery of multiple genes regulating vesicular trafficking, cell surface receptor turnover, and secretion of extracellular matrix components suggests active cross talk between HSCs and the niche and that HSCs may actively condition the niche to promote engraftment. We validated that Foxa3 is required for HSC repopulating activity, as Foxa3−/− HSC fails to repopulate ablated hosts efficiently, implicating for the first time Foxa genes as regulators of HSPCs. We further show that Foxa3 likely regulates the HSC response to hematologic stress. Each gene discovered here offers a window into the novel processes that regulate stable HSPC engraftment into an ablated host.
Collapse
Affiliation(s)
- Per Holmfeldt
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Himangi Marathe
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Bing He
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Joseph Moen
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Jennifer Pardieck
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | - Alba Cico
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ludovic Gaut
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Daniel McGoldrick
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Kai Tan
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
88
|
Zwaan CM, Kolb EA, Reinhardt D, Abrahamsson J, Adachi S, Aplenc R, De Bont ESJM, De Moerloose B, Dworzak M, Gibson BES, Hasle H, Leverger G, Locatelli F, Ragu C, Ribeiro RC, Rizzari C, Rubnitz JE, Smith OP, Sung L, Tomizawa D, van den Heuvel-Eibrink MM, Creutzig U, Kaspers GJL. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia. J Clin Oncol 2015; 33:2949-62. [PMID: 26304895 DOI: 10.1200/jco.2015.62.8289] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML--supportive care--and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects.
Collapse
Affiliation(s)
- C Michel Zwaan
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Edward A Kolb
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Dirk Reinhardt
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Jonas Abrahamsson
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Souichi Adachi
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Richard Aplenc
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Eveline S J M De Bont
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Barbara De Moerloose
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Michael Dworzak
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Brenda E S Gibson
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Henrik Hasle
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Guy Leverger
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Franco Locatelli
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Christine Ragu
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Raul C Ribeiro
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Carmelo Rizzari
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Jeffrey E Rubnitz
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Owen P Smith
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Lillian Sung
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Daisuke Tomizawa
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Marry M van den Heuvel-Eibrink
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Ursula Creutzig
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| | - Gertjan J L Kaspers
- C. Michel Zwaan, Marry M. van den Heuvel-Eibrink, Sophia Children's Hospital/Erasmus MC, Rotterdam; C. Michel Zwaan, International Berlin-Frankfurt-Münster Study Group (I-BFM-SG) New Agents Committee; C. Michel Zwaan, Innovative Therapies for Children With Cancer Consortium; C. Michel Zwaan, Eveline S.J.M. De Bont, Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Dutch Childhood Oncology Group, Den Haag; Eveline S.J.M. De Bont, University of Groningen, University Medical Center Groningen, Groningen; Marry M. van den Heuvel-Eibrink, Gertjan J.L. Kaspers, Princess Máxima Center for Pediatric Oncology, Utrecht; Gertjan J.L. Kaspers, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Edward A. Kolb, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, DE; Edward A. Kolb, Richard Aplenc, Lilian Sung, Children's Oncology Group, Monrovia, CA; Dirk Reinhardt, Universitäts-Klinikum, Essen; Ursula Creutzig, Hannover Medical School, Hannover; Dirk Reinhardt, Michael Dworzak, Henrik Hasle, Ursula Creutzig, Gertjan J.L. Kaspers, I-BFM Acute Myeloid Leukemia (AML) Study Group, Kiel, Germany; Jonas Abrahamsson, Sahlgrenska University Hospital, Goteborg; Jonas Abrahamsson and Henrik Hasle, Nordic Society for Pediatric Hematology and Oncology, Stockholm, Sweden; Souichi Adachi, Kyoto University, Kyoto; Souichi Adachi, Daisuke Tomizawa, The Japanese Pediatric Leukemia/Lymphoma Study Group, Nagoya; Daisuke Tomizawa, National Center for Child Health and Development, Tokyo, Japan; Richard Aplenc, Children's Hospital of Philadelphia, Philadelphia, PA; Barbara De Moerloose, Ghent University Hospital and Belgian Society of Paediatric Haematology Oncology, Ghent, Belgium; Michael Dworzak, St Anna Children's Hospital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria; Brenda E.S. Gibson, Royal Hospital for Sick Children, Glasgow; Brenda E.S. Gibson and Owen Smith, Children's Cancer and Leukemia Study Group, London, United King
| |
Collapse
|
89
|
Zhou M, Tong X. Downregulated Poly-C binding protein-1 is a novel predictor associated with poor prognosis in Acute Myeloid Leukemia. Diagn Pathol 2015; 10:147. [PMID: 26293996 PMCID: PMC4546103 DOI: 10.1186/s13000-015-0377-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023] Open
Abstract
Background Depletion of Poly-C binding protein-1(PCBP1) is implicated in various human malignancies. However, the underlying biological effect of PCBP1 in cancers, including acute myeloid leukemia (AML), still remains elusive. The purpose of this study was to examine the expression and clinical outcome of PCBP1in acute myeloid leukemia. Methods Bone marrow fluids of 88 newly diagnosed AML patients were sampled, and the PCBP1 mRNA expression level was evaluated using quantitative RT-PCR. The association between PCBP1 expression and clinicopathological features or the survival status of the patients was assessed by Chi-square test and Kaplan-Meier method. Results Comparing newly diagnosed AML patients to normal healthy donors, PCBP1 expression was significantly decreased in AML patients (P < 0.001). Conversely, PCBP1 expression had accordingly recovered back to normal in patients with complete remission (P < 0.001). Clinical feature analyses showed that PCBP1 expression was negatively correlated with white blood cell count (P = 0.024). In addition, patients with low PCBP1 expression had poor disease-free survival (11.8 % vs. 45.3 %; P = 0.01) and overall survival (18.2 % vs. 42.4 %; P = 0.032), respectively. Conclusions Taken together, our results showed for the first time that expression of PCBP1 was down-regulated in newly diagnosed AML patients and might be an independent prognostic marker in AML and should to be further investigated.
Collapse
Affiliation(s)
- Meifeng Zhou
- Department of Hematology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Xiuzhen Tong
- Department of Hematology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
90
|
The biology of pediatric acute megakaryoblastic leukemia. Blood 2015; 126:943-9. [PMID: 26186939 DOI: 10.1182/blood-2015-05-567859] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) comprises between 4% and 15% of newly diagnosed pediatric acute myeloid leukemia patients. AMKL in children with Down syndrome (DS) is characterized by a founding GATA1 mutation that cooperates with trisomy 21, followed by the acquisition of additional somatic mutations. In contrast, non-DS-AMKL is characterized by chimeric oncogenes consisting of genes known to play a role in normal hematopoiesis. CBFA2T3-GLIS2 is the most frequent chimeric oncogene identified to date in this subset of patients and confers a poor prognosis.
Collapse
|
91
|
Togni M, Masetti R, Pigazzi M, Astolfi A, Zama D, Indio V, Serravalle S, Manara E, Bisio V, Rizzari C, Basso G, Pession A, Locatelli F. Identification of the NUP98-PHF23 fusion gene in pediatric cytogenetically normal acute myeloid leukemia by whole-transcriptome sequencing. J Hematol Oncol 2015; 8:69. [PMID: 26066811 PMCID: PMC4467064 DOI: 10.1186/s13045-015-0167-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/03/2015] [Indexed: 02/05/2023] Open
Abstract
The genomic landscape of children with acute myeloid leukemia (AML) who do not carry any cytogenetic abnormality (CN-AML) is particularly heterogeneous and challenging, being characterized by different clinical outcomes. To provide new genetic insights into this AML subset, we analyzed through RNA-seq 13 pediatric CN-AML cases, corroborating our findings in an independent cohort of 168 AML patients enrolled in the AIEOP AML 2002/01 study. We identified a chimeric transcript involving NUP98 and PHF23, resulting from a cryptic t(11;17)(p15;p13) translocation, demonstrating, for the first time, that NUP98-PHF23 is a novel recurrent (2.6 %) abnormality in pediatric CN-AML.
Collapse
Affiliation(s)
- Marco Togni
- Department of Pediatrics, "Lalla Seràgnoli" Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Riccardo Masetti
- Department of Pediatrics, "Lalla Seràgnoli" Hematology-Oncology Unit, University of Bologna, Bologna, Italy.
| | - Martina Pigazzi
- Department of Paediatric Haematology, University of Padova, Padova, Italy
| | - Annalisa Astolfi
- Giorgio Prodi Cancer Research Centre, University of Bologna, Bologna, Italy
| | - Daniele Zama
- Department of Pediatrics, "Lalla Seràgnoli" Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Valentina Indio
- Giorgio Prodi Cancer Research Centre, University of Bologna, Bologna, Italy
| | - Salvatore Serravalle
- Department of Pediatrics, "Lalla Seràgnoli" Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Elena Manara
- Department of Paediatric Haematology, University of Padova, Padova, Italy
| | - Valeria Bisio
- Department of Paediatric Haematology, University of Padova, Padova, Italy
| | - Carmelo Rizzari
- Department of Pediatrics, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Basso
- Department of Paediatric Haematology, University of Padova, Padova, Italy
| | - Andrea Pession
- Department of Pediatrics, "Lalla Seràgnoli" Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS Ospedale Bambino Gesù, Roma - University of Pavia, Pavia, Italy
| |
Collapse
|
92
|
Molecular characterization and testing in acute myeloid leukemia. J Hematop 2015. [DOI: 10.1007/s12308-015-0242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
93
|
Gustafsson BM. Different aspects of stem cell procedures in children with poor responding AML: when is HSCT the best answer? Int J Hematol Oncol 2015. [DOI: 10.2217/ijh.15.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute myeloid leukemia in children is a heterogeneous disease with different morphological and cytogenetic features. New diagnostic tools and treatments, improved supportive care and the use of genomic tissue typing in selecting donors for hematopoietic stem cell transplantation (HSCT) adds to increased survival rates. Candidates to HSCT in first complete remission are patients with cytogenetic or molecular unfavorable prognostic markers, or blasts >15% after first induction. The use of minimal residual disease can also identify children benefiting from HSCT in first complete remission and the patients post HSCT with signs of relapse. The outcome and cure rate of acute myeloid leukemia, still remains poor and new diagnostic tools and treatments strategies need to be evaluated. In this management perspective, future management of novel minimal residual disease tools are discussed, conditioning therapies, as well as different transplantation procedures including haplo-transplantation and haplo-identical natural killer cell transplantation, but also altered graft-versus-host-disease treatments.
Collapse
Affiliation(s)
- Britt M Gustafsson
- Department of Clinical Science, Intervention & Technology, CLINTEC, Karolinska Institutet, SE141 86 Stockholm, Sweden
- Center for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
94
|
Tarlock K, Meshinchi S. Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin North Am 2015; 62:75-93. [PMID: 25435113 DOI: 10.1016/j.pcl.2014.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acute myeloid leukemia (AML) is a molecularly heterogeneous disease and age-associated molecular alterations result in younger children harboring a distinct signature from older children and adolescents. Pediatric AML has a genetic and epigenetic profile with significant differences compared to adult AML. Somatic and epigenetic alterations contribute to myeloid leukemogenesis and can evolve from diagnosis to relapse. Cytogenetic alterations, somatic mutations and response to induction therapy are important in informing risk stratification and appropriate therapy allocation. Next-generation sequencing technologies are providing novel insights into the biology of AML and have the ability to identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Katherine Tarlock
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA.
| |
Collapse
|
95
|
Ilyas AM, Ahmad S, Faheem M, Naseer MI, Kumosani TA, Al-Qahtani MH, Gari M, Ahmed F. Next generation sequencing of acute myeloid leukemia: influencing prognosis. BMC Genomics 2015; 16 Suppl 1:S5. [PMID: 25924101 PMCID: PMC4315161 DOI: 10.1186/1471-2164-16-s1-s5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder of the blood forming cells characterized by accumulation of immature blast cells in the bone marrow and peripheral blood. Being a heterogeneous disease, AML has been the subject of numerous studies that focus on unraveling the clinical, cellular and molecular variations with the aim to better understand and treat the disease. Cytogenetic-risk stratification of AML is well established and commonly used by clinicians in therapeutic management of cases with chromosomal abnormalities. Successive inclusion of novel molecular abnormalities has substantially modified the classification and understanding of AML in the past decade. With the advent of next generation sequencing (NGS) technologies the discovery of novel molecular abnormalities has accelerated. NGS has been successfully used in several studies and has provided an unprecedented overview of molecular aberrations as well as the underlying clonal evolution in AML. The extended spectrum of abnormalities discovered by NGS is currently under extensive validation for their prognostic and therapeutic values. In this review we highlight the recent advances in the understanding of AML in the NGS era.
Collapse
|
96
|
Masetti R, Vendemini F, Zama D, Biagi C, Pession A, Locatelli F. Acute myeloid leukemia in infants: biology and treatment. Front Pediatr 2015; 3:37. [PMID: 25973412 PMCID: PMC4411976 DOI: 10.3389/fped.2015.00037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/11/2015] [Indexed: 11/30/2022] Open
Abstract
Children aged 0-2 years (i.e., infants) with acute myeloid leukemia (AML) are a peculiar subgroup of patients in the childhood AML scenario. They present with distinctive biological and clinical characteristics, including a high prevalence of prognostically unfavorable risk factors and an increased susceptibility to therapy-related toxicity. Remarkable improvements have been achieved over the last two decades in the treatment of these patients and their outcome is becoming superimposable to that of the older age groups. In this review, we will focus on peculiarities of this young subgroup of children with AML, describing their clinical presentation, the biology of disease, and factors influencing outcome. Treatment results and toxicity data reported by major collaborative groups are also summarized and compared.
Collapse
Affiliation(s)
- Riccardo Masetti
- Hematology-Oncology Unit "Lalla Seràgnoli", Department of Pediatrics, University of Bologna , Bologna , Italy
| | - Francesca Vendemini
- Hematology-Oncology Unit "Lalla Seràgnoli", Department of Pediatrics, University of Bologna , Bologna , Italy
| | - Daniele Zama
- Hematology-Oncology Unit "Lalla Seràgnoli", Department of Pediatrics, University of Bologna , Bologna , Italy
| | - Carlotta Biagi
- Hematology-Oncology Unit "Lalla Seràgnoli", Department of Pediatrics, University of Bologna , Bologna , Italy
| | - Andrea Pession
- Hematology-Oncology Unit "Lalla Seràgnoli", Department of Pediatrics, University of Bologna , Bologna , Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS Ospedale Bambino Gesù, University of Pavia , Pavia , Italy
| |
Collapse
|
97
|
Pigazzi M, Manara E, Buldini B, Beqiri V, Bisio V, Tregnago C, Rondelli R, Masetti R, Putti MC, Fagioli F, Rizzari C, Pession A, Locatelli F, Basso G. Minimal residual disease monitored after induction therapy by RQ-PCR can contribute to tailor treatment of patients with t(8;21) RUNX1-RUNX1T1 rearrangement. Haematologica 2014; 100:e99-101. [PMID: 25480496 DOI: 10.3324/haematol.2014.114579] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Martina Pigazzi
- Clinica Oncoematologia Pediatrica, Università di Padova, Padova
| | - Elena Manara
- Clinica Oncoematologia Pediatrica, Università di Padova, Padova
| | - Barbara Buldini
- Clinica Oncoematologia Pediatrica, Università di Padova, Padova
| | - Valzerda Beqiri
- Clinica Oncoematologia Pediatrica, Università di Padova, Padova
| | - Valeria Bisio
- Clinica Oncoematologia Pediatrica, Università di Padova, Padova
| | | | - Roberto Rondelli
- Clinica Pediatrica, Università di Bologna, Ospedale "S. Orsola," Bologna
| | - Riccardo Masetti
- Clinica Pediatrica, Università di Bologna, Ospedale "S. Orsola," Bologna
| | | | - Franca Fagioli
- Oncoematologia Pediatrica, Ospedale Infantile "Regina Margherita", Torino
| | - Carmelo Rizzari
- Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Ospedale S. Gerardo, Monza
| | - Andrea Pession
- Clinica Pediatrica, Università di Bologna, Ospedale "S. Orsola," Bologna
| | - Franco Locatelli
- Oncoematologia Pediatrica, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, University of Pavia, Italy
| | - Giuseppe Basso
- Clinica Oncoematologia Pediatrica, Università di Padova, Padova
| |
Collapse
|
98
|
Outcome of children with high-risk acute myeloid leukemia given autologous or allogeneic hematopoietic cell transplantation in the aieop AML-2002/01 study. Bone Marrow Transplant 2014; 50:181-8. [DOI: 10.1038/bmt.2014.246] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 01/24/2023]
|
99
|
DHH-RHEBL1 fusion transcript: a novel recurrent feature in the new landscape of pediatric CBFA2T3-GLIS2-positive acute myeloid leukemia. Oncotarget 2014; 4:1712-20. [PMID: 24127550 PMCID: PMC3858557 DOI: 10.18632/oncotarget.1280] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Childhood Acute Myeloid Leukemia (AML) is a clinically and genetically heterogeneous malignant disease. Despite improvements in outcome over the past decades, the current survival rate still is approximately 60-70%. Cytogenetic, recurrent genetic abnormalities and early response to induction treatment are the main factors predicting clinical outcome. While the majority of children carry recurrent chromosomal translocations, 20% of patients do not show any recognizable cytogenetic alteration and are defined to have cytogenetically normal AML (CN-AML). This subset of patients is characterized by a significant heterogeneity in clinical outcome, which is influenced by factors only recently started to be identified. In this respect, genome-wide analyses have been used with the aim of defining the full array of genetic lesions in CN-AML. Recently, through whole-transcriptome massively parallel sequencing of seven cases of pediatric CN-AML, we identified a novel recurrent CBFA2T3-GLIS2 fusion, predicting poorer outcome. However, since the expression of CBFA2T3-GLIS2 fusion in mice is not sufficient for leukemogenesis, we speculated that further unknown abnormalities could contribute to both cancer transformation and response to treatment. Thus, we analyzed, by whole-transcriptome sequencing, 4 CBFA2T3-GLIS2-positive patients, as well as 4 CN-AML patients. We identified a new fusion transcript in the CBFA2T3-GLIS2 -positive patients, involving Desert Hedgehog (DHH), a member of Hedgehog family, and Ras Homologue Enrich in Brain Like 1 (RHEBL1), a gene coding for a small GTPase of the Ras family. Through the screening of a validation cohort of 55 additional pediatric AML patients, we globally detected DHH-RHEBL1 fusion in 8 out of 20 (40%) CBFA2T3-GLIS2- rearranged patients. Gene expression analysis performed on RNA-seq data revealed that DHH-RHEBL1 –positive patients exhibited a specific signature. These 8 patients had an 8-year overall survival worse than that of the remaining 12 CBFA2T3-GLIS2- rearranged patients not harboring DHH-RHEBL1 fusion (25% vs 55%, respectively, P =0.1). Taken together, these findings are unprecedented and indicate that the DHH-RHEBL1 fusion transcript is a novel recurrent feature in the changing landscape of CBFA2T3-GLIS2 -positive childhood AML. Moreover, it could be instrumental in the identification of a subgroup of CBFA2T3-GLIS2 -positive patients with a very poor outcome.
Collapse
|
100
|
Masetti R, Rondelli R, Fagioli F, Mastronuzzi A, Pierani P, Togni M, Menna G, Pigazzi M, Putti MC, Basso G, Pession A, Locatelli F. Infants with acute myeloid leukemia treated according to the Associazione Italiana di Ematologia e Oncologia Pediatrica 2002/01 protocol have an outcome comparable to that of older children. Haematologica 2014; 99:e127-9. [PMID: 24837468 DOI: 10.3324/haematol.2014.106526] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Riccardo Masetti
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Torino
| | - Roberto Rondelli
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Torino
| | - Franca Fagioli
- Oncoematologia Pediatrica, Ospedale Infantile "Regina Margherita", Torino
| | - Angela Mastronuzzi
- Department of Pediatric Hematology-Oncology, IRCCS Ospedale Bambino Gesù, Rome
| | - Paolo Pierani
- Division of Pediatric Hematology and Oncology, Ospedale G. Salesi, Ancona
| | - Marco Togni
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Torino
| | | | - Martina Pigazzi
- Clinica Oncoematologia Pediatrica, Università di Padova, Italy
| | | | - Giuseppe Basso
- Clinica Oncoematologia Pediatrica, Università di Padova, Italy
| | - Andrea Pession
- Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Torino
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS Ospedale Bambino Gesù, Rome University of Pavia, Italy
| |
Collapse
|