51
|
Emerging Role of Myeloid-derived Suppressor Cells in the Biology of Transplantation Tolerance. Transplantation 2020; 104:467-475. [DOI: 10.1097/tp.0000000000002996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
52
|
Application of latent class analysis in diagnosis of graft-versus-host disease by serum markers after allogeneic haematopoietic stem cell transplantation. Sci Rep 2020; 10:3633. [PMID: 32108153 PMCID: PMC7046680 DOI: 10.1038/s41598-020-60524-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/14/2020] [Indexed: 12/29/2022] Open
Abstract
Graft-versus-host disease (GVHD) is one of the major causes of morbidity and mortality in 25–70% of patients. The gold standard (GS) test to confirm the diagnosis of GVHD has some limitations. The current study was conducted to evaluate the accuracy of three serum markers in diagnosing GVHD without a GS. 94 patients who were hospitalized for allogeneic transplantation were studied. Mean levels from day of haematopoietic stem cell transplantation (HSCT) to discharge of serum uric acid (UA), lactate dehydrogenase (LDH), and creatinine (Cr) were measured for all participants. We adapted a Bayesian latent class analysis to modelling the results of each marker and combination of markers. The Sensitivity, Specificity, and area under receiver operating characteristic curve (AUC) for LDH were as 51%, 81%, and 0.70, respectively. For UA, the Sensitivity, Specificity, and AUC were 54%, 75%, and 0.71, respectively. The estimated Sensitivity, Specificity, and AUC of Cr were 72%, 94%, and 0.86, respectively. Adjusting for covariates, the combined Sensitivity, Specificity, and AUC of the optimal marker combination were 76%, 83%, and 0.94, respectively. To conclude, our findings suggested that Cr had the strongest diagnosis power for GVHD. Moreover, the classification accuracy of the three-marker combination outperforms the other combinations.
Collapse
|
53
|
Long-term outcomes of ruxolitinib therapy in steroid-refractory graft-versus-host disease in children and adults. Bone Marrow Transplant 2020; 55:1379-1387. [PMID: 32071418 DOI: 10.1038/s41409-020-0834-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 11/09/2022]
Abstract
Acute and chronic steroid-refractory graft-versus-host disease (srGVHD) is a life-threatening complication of allogeneic stem cell transplantation. There are a number of reports on case series describing efficacy of ruxolitinib in both acute and chronic srGVHD. We conducted a prospective study (NCT02997280) in 75 patients with srGVHD (32 acute, 43 chronic, 41 adults, and 34 children). Patients with chronic GVHD had severe disease in 83% of cases, and acute GVHD patients had grade III-IV disease in 66% of cases. The overall response rate (ORR) was 75% (95% CI 57-89%) in acute GVHD and 81% (95% CI 67-92%) in chronic. Overall survival was 59% (95% CI 49-74%) in acute group and 85% (95% CI 70-93%). The major risk factors for lower survival were grade III-IV gastrointestinal involvement (29% vs 93%, p = 0.0001) in acute form and high disease risk score in chronic (65% vs 90%, p = 0.038). Toxicity was predominantly hematologic with 79% and 44% of grade III-IV neutropenia in acute and chronic groups, respectively. There was no difference between adults and children in terms of ORR (p = 0.31, p = 0.35), survival (p = 0.44, p = 0.12) and toxicity (p > 0.93). The study demonstrated that ruxolitinib is an effective option in acute and chronic srGVHD and can be used both in adults and children.
Collapse
|
54
|
Iamsawat S, Tian L, Daenthanasanmak A, Wu Y, Nguyen HD, Bastian D, Yu XZ. Vitamin C stabilizes CD8+ iTregs and enhances their therapeutic potential in controlling murine GVHD and leukemia relapse. Blood Adv 2019; 3:4187-4201. [PMID: 31856270 PMCID: PMC6929397 DOI: 10.1182/bloodadvances.2019000531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Adoptive transfer of induced regulatory T cells (iTregs) can ameliorate graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT). CD4+ iTregs can effectively prevent GVHD but impair the graft-versus-leukemia (GVL) effect, whereas CD8+ iTregs preserve the GVL effect but have limited efficacy in GVHD control because of their instability under inflammatory conditions. Thus, we aimed to stabilize CD8+ iTregs via treatment with vitamin C (Vit C) to improve their efficacy in controlling GVHD. We found that addition of Vit C significantly improved the stability of forkhead box P3 (Foxp3) expression in CD8+ iTregs. Moreover, Vit C-treated CD8+ iTregs exhibited high efficacy in attenuating acute and chronic GVHD. The mechanistic study revealed that addition of Vit C to CD8+ iTreg culture markedly increased DNA demethylation in the conserved noncoding sequence 2 region and, hence, maintained higher Foxp3 expression levels compared with untreated controls. In acute GVHD, Vit C-treated CD8+ iTregs were able to inhibit pathogenic T-cell expansion and differentiation while reducing thymus damage and B-cell activation in cGVHD. Importantly, in contrast to CD4+ iTregs, Vit C-treated CD8+ iTregs retained the ability to control tumor relapse. These results provide a strong rationale to use Vit C in the clinic to stabilize CD8+ iTregs for the control of GVHD and preservation of GVL after allo-HCT.
Collapse
Affiliation(s)
| | - Linlu Tian
- Department of Microbiology and Immunology and
| | | | - Yongxia Wu
- Department of Microbiology and Immunology and
| | | | | | - Xue-Zhong Yu
- Department of Microbiology and Immunology and
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
55
|
Treatment with Apocynin Limits the Development of Acute Graft-versus-Host Disease in Mice. J Immunol Res 2019; 2019:9015292. [PMID: 31781685 PMCID: PMC6874984 DOI: 10.1155/2019/9015292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/11/2019] [Accepted: 08/25/2019] [Indexed: 12/19/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the most serious complication limiting the clinical utility of allogeneic hematopoietic stem cell transplantation (HSCT), in which lymphocytes of donors (graft) are activated in response to the host antigen. This disease is associated with increased inflammatory response through the release of inflammatory mediators such as cytokines, chemokines, and reactive oxygen species (ROS). In this study, we have evaluated the role of ROS in GVHD pathogenesis by treatment of recipient mice with apocynin (apo), an inhibitor of intracellular translocation of cytosolic components of NADPH oxidase complex. The pharmacological blockade of NADPH oxidase resulted in prolonged survival and reduced GVHD clinical score. This reduction in GVHD was associated with reduced levels of ROS and TBARS in target organs of GVHD in apocynin-treated mice at the onset of the mortality phase. These results correlated with reduced intestinal and liver injuries and decreased levels of proinflammatory cytokines and chemokines. Mechanistically, pharmacological blockade of the NADPH oxidase was associated with inhibition of recruitment and accumulation of leukocytes in the target organs. Additionally, the chimerism remained unaffected after treatment with apocynin. Our study demonstrates that ROS plays an important role in mediating GVHD, suggesting that strategies aimed at blocking ROS production may be useful as an adjuvant therapy in patients subjected to bone marrow transplantation.
Collapse
|
56
|
Resolution of acute intestinal graft-versus-host disease. Semin Immunopathol 2019; 41:655-664. [PMID: 31673757 DOI: 10.1007/s00281-019-00769-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Allogeneic transplantation of hematopoietic stem cells (allo-HCT) represents an increasingly employed therapeutic approach to potentially cure patients suffering from life-threatening malignant and autoimmune disorders. Despite its lifesaving potential, immune-mediated allo-reactivity inherent to the allogeneic transplantation can be observed within up to 50% of all allo-HCT patients regularly resulting in the manifestation of acute and/or chronic graft-versus-host disease (GvHD). Mechanistically, especially donor T cells are assumed to chiefly drive inflammation that can occur in virtually all organs, with the skin, liver, and gut representing as the most frequently affected anatomic sites. Especially in the presence of intestinal manifestations of GvHD, the risk that the disease takes a life-threatening, potentially fatal course is significantly increased. In the light of a rapid gain of knowledge in respect to decode innate and adaptive immunity related mechanisms as, e.g., cytokine networks, intracellular signaling pathways or environmental triggers as, e.g., the intestinal microbiota and the development of novel therapeutic approaches, detailed insight into endogenous mechanisms seeking to counterbalance the proinflammatory machinery or to proactively foster signals promoting the resolution of allo-driven intestinal inflammation is emerging. Here, we seek to highlight the key aspects of those mechanisms involved in and contributing to the resolution of GvHD-associated intestinal inflammation. Concomitantly, we would like to briefly outline and discuss promising future experimental targets suitable to be therapeutically employed to directionally deflect the tissue response from a proinflammatory to an inflammation-resolving type of intestinal GvHD after allo-HCT.
Collapse
|
57
|
Zhang P, Hill GR. Interleukin-10 mediated immune regulation after stem cell transplantation: Mechanisms and implications for therapeutic intervention. Semin Immunol 2019; 44:101322. [PMID: 31640914 DOI: 10.1016/j.smim.2019.101322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Abstract
Interleukin-10 (IL-10) is a multi-faceted anti-inflammatory cytokine which plays an essential role in immune tolerance. Indeed, deficiency of IL-10 or its receptor results in aberrant immune responses that lead to immunopathology. Graft-versus-host disease (GVHD) is the limiting complication of allogeneic stem cell transplantation (SCT) and results from an imbalance in pathological versus regulatory immune networks. A number of immune cells exert their immunomodulatory role through secretion of IL-10 or induction of IL-10-secreting cells after SCT. Type-1 regulatory T cells (Tr1 cells) and FoxP3+ regulatory T cells (Tregs) are predominant sources of IL-10 after SCT and the critical role of this cytokine in preventing GVHD is now established. Recently, intriguing interactions among IL-10, immune cells, commensal microbes and host tissues in the gastrointestinal (GI) tract and other barrier surfaces have been uncovered. We now understand that IL-10 secretion is dynamically modulated by the availability of antigen, co-stimulatory signals, cytokines, commensal microbes and their metabolites in the microenvironment. In this review, we provide an overview of the control of IL-10 secretion and signaling after SCT and the therapeutic interventions, with a focus on Tr1 cells.
Collapse
Affiliation(s)
- Ping Zhang
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Medical Oncology, The University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
58
|
Martinez-Sanchez J, Hamelmann H, Palomo M, Mir E, Moreno-Castaño AB, Torramade S, Rovira M, Escolar G, Cordes S, Kalupa M, Mertlitz S, Riesner K, Carreras E, Penack O, Diaz-Ricart M. Acute Graft-vs.-Host Disease-Associated Endothelial Activation in vitro Is Prevented by Defibrotide. Front Immunol 2019; 10:2339. [PMID: 31649666 PMCID: PMC6794443 DOI: 10.3389/fimmu.2019.02339] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis and endothelial activation and dysfunction have been associated with acute graft-vs.-host disease (aGVHD), pointing to the endothelium as a potential target for pharmacological intervention. Defibrotide (DF) is a drug with an endothelium-protective effect that has been approved for the treatment of veno-occlusive disease/sinusoidal obstruction syndrome after allogeneic hematopoietic cell transplantation. Clinical data suggest that DF also reduces the incidence of aGVHD; however, the mechanisms of DF-mediated aGVHD regulation have not been examined. To investigate possible DF-mediated prophylactic and therapeutic mechanisms in aGVHD, we performed in vitro studies using endothelial cell (EC) lines. We found that DF significantly and dose-dependently suppressed EC proliferation and notably reduced their ability to form vascular tubes in Matrigel. To explore whether DF administered prophylactically or therapeutically has a significant effect on aGVHD endothelial dysfunction, ECs were exposed to media containing sera from patients with aGVHD (n = 22) in the absence or presence of DF and from patients that did not develop aGVHD (n = 13). ECs upregulated adhesion molecules (vascular cell adhesion molecule 1, intercellular adhesion molecule 1), the adherence junction protein VE-cadherin, von Willebrand factor (VWF), and Akt phosphorylation in response to aGVHD sera. These responses were suppressed upon treatment with DF. In summary, DF inhibits vascular angiogenesis and endothelial activation induced by sera from aGVHD patients. Our results support the view that DF has notable positive effects on endothelial biology during aGVHD.
Collapse
Affiliation(s)
- Julia Martinez-Sanchez
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Hannah Hamelmann
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Enrique Mir
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Ana Belen Moreno-Castaño
- Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Sergi Torramade
- Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Montserrat Rovira
- Stem Cell Transplantation Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ginés Escolar
- Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Steffen Cordes
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Martina Kalupa
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Sarah Mertlitz
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Katarina Riesner
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Enric Carreras
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Olaf Penack
- Hematology, Oncology and Tumor Immunology Department, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Medical University of Berlin, Berlin, Germany.,Department of Hematology and Oncology, Berlin Institute of Health, Berlin, Germany
| | - Maribel Diaz-Ricart
- Department of Hematopathology, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Barcelona Endothelium Team, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| |
Collapse
|
59
|
Golay H, Jurkovic Mlakar S, Mlakar V, Nava T, Ansari M. The Biological and Clinical Relevance of G Protein-Coupled Receptors to the Outcomes of Hematopoietic Stem Cell Transplantation: A Systematized Review. Int J Mol Sci 2019; 20:E3889. [PMID: 31404983 PMCID: PMC6719093 DOI: 10.3390/ijms20163889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for several malignant and non-malignant diseases at the cost of serious treatment-related toxicities (TRTs). Recent research on extending the benefits of HSCT to more patients and indications has focused on limiting TRTs and improving immunological effects following proper mobilization and engraftment. Increasing numbers of studies report associations between HSCT outcomes and the expression or the manipulation of G protein-coupled receptors (GPCRs). This large family of cell surface receptors is involved in various human diseases. With ever-better knowledge of their crystal structures and signaling dynamics, GPCRs are already the targets for one third of the current therapeutic arsenal. The present paper assesses the current status of animal and human research on GPCRs in the context of selected HSCT outcomes via a systematized survey and analysis of the literature.
Collapse
Affiliation(s)
- Hadrien Golay
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Vid Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Tiago Nava
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Marc Ansari
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| |
Collapse
|
60
|
Martins JP, Andoniou CE, Fleming P, Kuns RD, Schuster IS, Voigt V, Daly S, Varelias A, Tey SK, Degli-Esposti MA, Hill GR. Strain-specific antibody therapy prevents cytomegalovirus reactivation after transplantation. Science 2019; 363:288-293. [PMID: 30655443 DOI: 10.1126/science.aat0066] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/19/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022]
Abstract
Cytomegalovirus infection is a frequent and life-threatening complication that significantly limits positive transplantation outcomes. We developed preclinical mouse models of cytomegalovirus reactivation after transplantation and found that humoral immunity is essential for preventing viral recrudescence. Preexisting antiviral antibodies decreased after transplant in the presence of graft-versus-host disease and were not replaced, owing to poor reconstitution of donor B cells and elimination of recipient plasma cells. Viral reactivation was prevented by the transfer of immune serum, without a need to identify and target specific antigenic determinants. Notably, serotherapy afforded complete protection, provided that the serum was matched to the infecting viral strain. Thus, we define the mechanisms for cytomegalovirus reactivation after transplantation and identify a readily translatable strategy of exceptional potency, which avoids the constraints of cellular therapies.
Collapse
Affiliation(s)
- Jose Paulo Martins
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia.,Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Peter Fleming
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Iona S Schuster
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia.,Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Valentina Voigt
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Sheridan Daly
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Siok-Keen Tey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia. .,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia.,Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Medical Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
61
|
Hinden L, Avner M, Stepensky P, Or R, Almogi-Hazan O. Lymphocyte counts may predict a good response to mesenchymal stromal cells therapy in graft versus host disease patients. PLoS One 2019; 14:e0217572. [PMID: 31188842 PMCID: PMC6561566 DOI: 10.1371/journal.pone.0217572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023] Open
Abstract
Steroid-resistant GvHD is one of the most significant causes of mortality following allogeneic Hematopoietic Stem Cell Transplantation (HSCT). Treatment with mesenchymal stromal cells (MSC) seems to be a promising solution, however the results from clinical studies are still equivocal. Better selection of candidate patients and improving monitoring of patients following MSC administration can increase treatment effectiveness. In order to determine which characteristics can be used to predict a good response and better monitoring of patients, blood samples were taken prior to therapy, one week and one month after therapy, from 26 allogeneic HSCT patients whom contracted GvHD and were treated with MSCs. Samples were examined for differential blood counts, bilirubin levels and cell surface markers. Serum cytokine levels were also measured. We found that the level of lymphocytes, in particular T and NK cells, may predict a good response to therapy. A better response was observed among patients who expressed low levels of IL-6 and IL-22, Th17 related cytokines, prior to therapy. Patients with high levels of bilirubin prior to therapy showed a poorer response. The results of this study may facilitate early prediction of success or failure of the treatment, and subsequently, will improve selection of patients for MSC therapy.
Collapse
Affiliation(s)
- Liad Hinden
- Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mordechai Avner
- Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Reuven Or
- Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Osnat Almogi-Hazan
- Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
62
|
Geraghty NJ, Belfiore L, Adhikary SR, Alexander SI, Sluyter R, Watson D. Increased splenic human CD4+:CD8+ T cell ratios, serum human interferon-γ and intestinal human interleukin-17 are associated with clinical graft-versus-host disease in humanized mice. Transpl Immunol 2019; 54:38-46. [DOI: 10.1016/j.trim.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022]
|
63
|
Adhikary SR, Geraghty NJ, Cuthbertson P, Sluyter R, Watson D. Altered donor P2X7 activity in human leukocytes correlates with P2RX7 genotype but does not affect the development of graft-versus-host disease in humanised mice. Purinergic Signal 2019; 15:177-192. [PMID: 31001750 PMCID: PMC6635536 DOI: 10.1007/s11302-019-09651-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening consequence of allogeneic haematopoietic stem cell transplantation, a curative therapy for haematological malignancies. The ATP-gated P2X7 receptor channel is implicated in the development of GVHD. P2X7 activity on human leukocytes can be influenced by gain-of-function (GOF) and loss-of-function (LOF) single nucleotide polymorphisms (SNPs) in the P2RX7 gene. In this study, the P2RX7 gene was sequenced in 25 human donors and the P2X7 activity on subsets of peripheral blood T cells, natural killer (NK) cells and monocytes was measured using an ATP-induced dye uptake assay. GOF and LOF SNPs representing 10 of the 17 known P2RX7 haplotypes were identified, and correlated with P2X7 activity on all leukocyte subsets investigated. Notably, invariant (i) NK T cells displayed the highest P2X7 activity amongst all cell types studied. To determine if donor P2X7 activity influenced the development of GVHD, immunodeficient NOD-SCID-IL2Rγnull (NSG) mice were injected with human peripheral blood mononuclear cells isolated from donors of either GOF (hP2X7GOF mice) or LOF (hP2X7LOF mice) P2RX7 genotype. Both hP2X7GOF and hP2X7LOF mice demonstrated similar human leukocyte engraftment, and showed comparable weight loss, GVHD clinical score and overall survival. Donor P2X7 activity did not affect human leukocyte infiltration or GVHD-mediated tissue damage, or the relative expression of human P2X7 or human interferon-γ (hIFNγ) in tissues. Finally, hP2X7GOF and hP2X7LOF mice demonstrated similar concentrations of serum hIFNγ. This study demonstrates that P2X7 activity correlates with donor P2RX7 genotype on human leukocyte subsets important in GVHD development, but does not affect GVHD development in a humanised mouse model of this disease.
Collapse
Affiliation(s)
- S R Adhikary
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - N J Geraghty
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - P Cuthbertson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - R Sluyter
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - D Watson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
64
|
Griesenauer B, Jiang H, Yang J, Zhang J, Ramadan AM, Egbosiuba J, Campa K, Paczesny S. ST2/MyD88 Deficiency Protects Mice against Acute Graft-versus-Host Disease and Spares Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:3053-3064. [PMID: 30979817 DOI: 10.4049/jimmunol.1800447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
Acute graft-versus-host disease (aGVHD) hinders the efficacy of allogeneic hematopoietic cell transplantation (HCT). Plasma levels of soluble membrane-bound ST2 (ST2) are elevated in human and murine aGVHD and correlated to type 1 T cells response. ST2 signals through the adapter protein MyD88. The role of MyD88 in T cells during aGVHD has yet to be elucidated. We found that knocking out MyD88 in the donor T cells protected against aGVHD independent of IL-1R and TLR4 signaling in two murine HCT models. This protection was entirely driven by MyD88-/- CD4 T cells. Transplanting donor MyD88-/- conventional T cells (Tcons) with wild-type (WT) or MyD88-/- regulatory T cells (Tregs) lowered aGVHD severity and mortality. Transcriptome analysis of sorted MyD88-/- CD4 T cells from the intestine 10 d post-HCT showed lower levels of Il1rl1 (gene of ST2), Ifng, Csf2, Stat5, Batf, and Jak2 Transplanting donor ST2-/- Tcons with WT or ST2-/- Tregs showed a similar phenotype with what we observed when using donor MyD88-/- Tcons. Decreased ST2 was confirmed at the protein level with less secretion of soluble ST2 and more expression of ST2 compared with WT T cells. Our data suggest that Treg suppression from lack of MyD88 signaling in donor Tcons during alloreactivity uses the ST2 but not the IL-1R or TLR4 pathways, and ST2 represents a potential aGVHD therapeutic target sparing Tregs.
Collapse
Affiliation(s)
| | - Hua Jiang
- Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jinfeng Yang
- Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jilu Zhang
- Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Jane Egbosiuba
- Indiana University School of Medicine, Indianapolis, IN 46202
| | - Khaled Campa
- Indiana University School of Medicine, Indianapolis, IN 46202
| | - Sophie Paczesny
- Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
65
|
Salvianolic acid B ameliorates liver injury in a murine aGvHD model by decreasing inflammatory responses via upregulation of HO-1. Transpl Immunol 2019; 55:101203. [PMID: 30904623 DOI: 10.1016/j.trim.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
Acute graft-versus-host disease (aGvHD) remains lethal, even after allogeneic hematopoietic stem cell transplantation. Inflammatory responses play an important role in aGvHD. Salvianolic acid B (Sal B) has been widely reported to have a major effect on the anti-inflammatory response, but these effects in an aGvHD model have never been reported. B6 donor splenocytes were transplanted into unirradiated BDF1 recipients and liver and serum were collected on day 14 after transplantation with or without Sal B administration. We measured the expression of pro-inflammatory cytokines and chemokines and other manifestations in aGvHD mice after Sal B treatment. Sal B ameliorated liver injury in aGvHD and promoted survival in mice. Sal B treatment resulted in decreased expression of pro-inflammatory cytokines and chemokines whose expressions in liver are normally elevated by aGvHD. Furthermore, Sal B treatment also enhanced PGC-1α expression in liver tissue and HO-1 expression in nonparenchymal cells. In addition, HO-1 inhibitor abrogated the improvement of survival rate of mice with aGvHD. These results indicated that the protective effect of Sal B relies on suppressing the inflammatory response phase in the aGvHD model, presumably by inducing HO-1. Taken together our data showed that Sal B ameliorates liver injury in aGvHD by decreasing inflammatory responses via upregulation of HO-1. It may provide a novel way to deal with this disease.
Collapse
|
66
|
Palomo M, Diaz-Ricart M, Carreras E. Endothelial Dysfunction in Hematopoietic Cell Transplantation. Clin Hematol Int 2019; 1:45-51. [PMID: 34595410 PMCID: PMC8432381 DOI: 10.2991/chi.d.190317.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
The goal of this review is to look at the role of endothelial damage and dysfunction in the initiation and development of early complications that appear after hematopoietic cell transplantation (HCT). These early complications share overlapping clinical manifestations and the suspicion of underlying endothelial damage. Several studies using different approaches, such as animal and in vitro models, the analysis of soluble biomarkers and clinical findings have provided evidence of this endothelial dysfunction. Historically, the first complication in which the role of endothelial damage was elucidated was the veno-oclusive disease/sinusoidal obstructive syndrome. In the last two decades, increasing evidence of the implication of the endothelium in the pathophysiology of other syndromes such as capillary leak syndrome, transplant-associated microangiopathy, or even graft versus host disease has accumulated. This knowledge opens up potential pharmacologic interventions to prevent/and/or treat endothelial damage and, therefore, to improve the outcome of patients receiving HCT.
Collapse
Affiliation(s)
- Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
- Hematopathology, Department of Pathology, Hospital Clinic of Barcelona, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team
| | - Maribel Diaz-Ricart
- Hematopathology, Department of Pathology, Hospital Clinic of Barcelona, Biomedical Diagnosis Center (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Barcelona Endothelium Team
| | - Enric Carreras
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
- Barcelona Endothelium Team
| |
Collapse
|
67
|
Yucebay F, Matthews C, Puto M, Li J, William B, Jaglowski SM, Penza SL, Vasu S, Benson DM, Andritsos LA, Devine SM, Efebera YA, Roddy JVF. Tocilizumab as first-line therapy for steroid-refractory acute graft-versus-host-disease: analysis of a single-center experience. Leuk Lymphoma 2019; 60:2223-2229. [PMID: 30764681 DOI: 10.1080/10428194.2019.1573996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute graft-versus-host-disease (aGVHD) is a complication after allogeneic stem cell transplant. After the failure of treatment with high dose corticosteroids, steroid-refractory aGVHD (SR aGVHD) is associated with high rates of mortality. Tocilizumab has evidence of activity in SR aGVHD. For patients ineligible for trials, the OSU James Comprehensive Cancer Center has been utilizing tocilizumab as first-line therapy for SR aGVHD. We retrospectively report on 15 patients who received tocilizumab. aGVHD grading and responses were based on consensus criteria. Median age at transplant was 49 years. Median time to tocilizumab administration was 9 days (range, 3-16). Six patients had complete responses (40%) with a resolution of aGVHD. From the last contact, median overall survival for responders was not yet reached vs. 31 days for non-responders (p = .0002). Patients with skin and/or GI aGVHD demonstrated the greatest benefit. Patients with liver aGVHD did not respond. Future studies are needed to evaluate tocilizumab prior to steroid failure.
Collapse
Affiliation(s)
- Filiz Yucebay
- Department of Pharmacy, The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center , Columbus , Ohio , 43210 , USA
| | - Christina Matthews
- Department of Pharmacy, Roswell Park Comprehensive Cancer Center , Buffalo , New York , USA
| | - Marcin Puto
- Department of Pharmacy, The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center , Columbus , Ohio , 43210 , USA
| | - Junan Li
- College of Pharmacy, Ohio State University , Columbus , Ohio , USA
| | - Basem William
- Division of Hematology, Department of Internal Medicine, The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center , Columbus , Ohio , USA
| | - Samantha M Jaglowski
- Division of Hematology, Department of Internal Medicine, The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center , Columbus , Ohio , USA
| | - Sam L Penza
- Division of Hematology, Department of Internal Medicine, The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center , Columbus , Ohio , USA
| | - Sumithira Vasu
- Division of Hematology, Department of Internal Medicine, The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center , Columbus , Ohio , USA
| | - Don M Benson
- Division of Hematology, Department of Internal Medicine, The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center , Columbus , Ohio , USA
| | - Leslie A Andritsos
- Division of Hematology, Department of Internal Medicine, The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center , Columbus , Ohio , USA
| | - Steven M Devine
- Division of Hematology, Department of Internal Medicine, The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center , Columbus , Ohio , USA
| | - Yvonne A Efebera
- Division of Hematology, Department of Internal Medicine, The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center , Columbus , Ohio , USA
| | - Julianna V F Roddy
- Department of Pharmacy, The James Cancer Hospital, The Ohio State University Comprehensive Cancer Center , Columbus , Ohio , 43210 , USA
| |
Collapse
|
68
|
Du W, Cao X. Cytotoxic Pathways in Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2018; 9:2979. [PMID: 30631325 PMCID: PMC6315278 DOI: 10.3389/fimmu.2018.02979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic malignancies, and other hematologic and immunologic diseases. Donor-derived immune cells identify and attack cancer cells in the patient producing a unique graft-vs.-tumor (GVT) effect. This beneficial response renders allo-HCT one of the most effective forms of tumor immunotherapy. However, alloreactive donor T cells can damage normal host cells thereby causing graft-vs.-host disease (GVHD), which results in substantial morbidity and mortality. To date, GVHD remains as the major obstacle for more successful application of allo-HCT. Of special significance in this context are a number of cytotoxic pathways that are involved in GVHD and GVT response as well as donor cell engraftment. In this review, we summarize progress in the investigation of these cytotoxic pathways, including Fas/Fas ligand (FasL), perforin/granzyme, and cytokine pathways. Many studies have delineated their distinct operating mechanisms and how they are involved in the complex cellular interactions amongst donor, host, tumor, and infectious pathogens. Driven by progressing elucidation of their contributions in immune reconstitution and regulation, various interventional strategies targeting these pathways have entered translational stages with aims to improve the effectiveness of allo-HCT.
Collapse
Affiliation(s)
- Wei Du
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
69
|
Kim DS, Lee WH, Lee MW, Park HJ, Jang IK, Lee JW, Sung KW, Koo HH, Yoo KH. Involvement of TLR3-Dependent PGES Expression in Immunosuppression by Human Bone Marrow Mesenchymal Stem Cells. Stem Cell Rev Rep 2018; 14:286-293. [PMID: 29273868 DOI: 10.1007/s12015-017-9793-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human mesenchymal stem cells (MSCs) are known for their prostaglandin E2 (PGE2)-mediated immunosuppressive function but the precise molecular mechanisms underlying PGE2 biosynthesis during inflammation have not been completely elucidated. In this study, we have investigated the involvement of PGE2 pathway members in PGE2 production by bone marrow (BM)-MSCs in response to inflammatory stimuli, and their role in immunosuppression mediated by BM-MSCs. We found that IFN-γ and TNF-α increased cyclooxygenase (COX)-2 expression but not that of prostaglandin E synthase (PGES), or PGE2 production. On the other hand, the toll like receptor 3 (TLR3) stimulant poly(I:C) increased expression of both COX-2 and PGES, resulting in a significant increase in PGE2 levels. This effect was reversed upon COX-2 inhibition with indomethacin or PGES downregulation by siRNA. Reduced PGE2 levels decreased MSC's capacity to inhibit hPBMC proliferation. In addition, administration of MSCs with inhibited PGES expression into mice with graft-versus-host disease (GVHD) did not reduce mortality. In summary, the present study reveals that upregulation of PGES via TLR3 is critical for BM-MSCs-mediated immunosuppression by PGE2 secretion via the COX-2/PGE2 pathway. These results provide a basis for understanding the molecular mechanisms underlying the PGE2-mediated immunosuppressive properties of MSCs.
Collapse
Affiliation(s)
- Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Whi Hyeong Lee
- Regeneration Medicine Research Institute, Stemlab Inc. TechnoComplex, Korea University, Seoul, South Korea
| | - Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.
| | - Hyun Jin Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - In Keun Jang
- Biomedical Research Institute, LIFELIVER Co., LTD., Yongin, Gyeonggi-do, South Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
70
|
Gong H, Ma S, Liu S, Liu Y, Jin Z, Zhu Y, Song Y, Lei L, Hu B, Mei Y, Liu H, Liu Y, Wu Y, Dong C, Xu Y, Wu D, Liu H. IL-17C Mitigates Murine Acute Graft-vs.-Host Disease by Promoting Intestinal Barrier Functions and Treg Differentiation. Front Immunol 2018; 9:2724. [PMID: 30534126 PMCID: PMC6275224 DOI: 10.3389/fimmu.2018.02724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
Acute graft-vs.-host disease (aGVHD) is one of the major complications and results in high mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). IL-17C is involved in many inflammatory immune disorders. However, the role of IL-17C in aGVHD remains unknown. Here we demonstrated that IL-17C deficiency in the graft significantly promoted alloreactive T cell responses and induced aggravated aGVHD compared with wildtype donors in a fully MHC-mismatched allo-HSCT model. In contrast, IL-17C overexpression ameliorated aGVHD. IL-17C deficiency increased intestinal epithelial permeability and elevated inflammatory cytokine production, leading to an enhanced aGVHD progression. Tregs was reduced in recipients of IL-17C−/− graft, whilst restored after IL-17C overexpression. Decreased Treg differentiation was abrogated after neutralizing IFN-γ, but not IL-6. Moreover, depletion of Tregs diminished the protective effect of IL-17C. Of note, patients with low IL-17C expression displayed higher aGVHD incidence together with poor overall survival, thereby IL-17C could be an independent risk factor for aGVHD development. Our results are the first demonstrating the protective role of IL-17C in aGVHD by promoting intestinal barrier functions and Treg differentiation in a MHC fully mismatched murine aGVHD model. IL-17C may serve as a novel biomarker and potential therapeutic target for aGVHD.
Collapse
Affiliation(s)
- Huanle Gong
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shoubao Ma
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuangzhu Liu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yonghao Liu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziqi Jin
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Zhu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Song
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Mei
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Hong Liu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuejun Liu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Wu
- School of Radiation Medicine and Protection School for Radiological and Interdisciplinary Science, Soochow University, Suzhou, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Yang Xu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Soochow University, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
71
|
Iamsawat S, Daenthanasanmak A, Voss JH, Nguyen H, Bastian D, Liu C, Yu XZ. Stabilization of Foxp3 by Targeting JAK2 Enhances Efficacy of CD8 Induced Regulatory T Cells in the Prevention of Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2018; 201:2812-2823. [PMID: 30242073 DOI: 10.4049/jimmunol.1800793] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/31/2018] [Indexed: 02/02/2023]
Abstract
CD8+ induced regulatory T cells (iTregs) have been identified to suppress alloreactive immune responses and expressed regulatory T cell (Treg) ontological markers as similar as CD4+ iTregs. However, adoptive transfer of CD8+ iTreg-based therapy is hampered by the instability of Treg specific-transcription factor, Foxp3. As CD8+ iTregs were previously demonstrated to possess superior tumor-killing ability to CD4+ iTregs, adoptive transfer of stabilized CD8+ iTregs would be a potential therapy to prevent tumor relapse during graft-versus-leukemia disease (GVHD) treatment. In the current study, we generated alloantigen reactive CD8+ iTregs from JAK2-/- T cells and adoptively transferred them to MHC-mismatched and haploidentical murine models of allogeneic bone marrow transplantation. JAK2-/- CD8+ iTregs not only attenuated GVHD but also preserved graft-versus-leukemia effect. Mechanistic analysis revealed that JAK2-/- CD8+ iTregs upregulated natural Treg marker (neuropilin-1), and augmented DNA demethylation of CNS2 region within Foxp3 gene. These properties licensed JAK2-/- CD8+ iTregs to retain high Foxp3 expression resulting in less conversion to type 1 CTLs; as a result, JAK2-/- CD8+ iTregs were able to maintain their suppressive and cytolytic function. Thus, our findings provide a strong rationale and means to stabilize CD8+ iTregs by targeting JAK2, and the stabilized CD8+ iTregs exhibit therapeutic potential for alleviating GVHD and preserving the graft-versus-leukemia effect.
Collapse
Affiliation(s)
- Supinya Iamsawat
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Anusara Daenthanasanmak
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Jessica Heinrichs Voss
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Hung Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901; and
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425; .,Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
72
|
Laghmouchi A, Hoogstraten C, van Balen P, Falkenburg JHF, Jedema I. The allogeneic HLA-DP-restricted T-cell repertoire provoked by allogeneic dendritic cells contains T cells that show restricted recognition of hematopoietic cells including primary malignant cells. Haematologica 2018; 104:197-206. [PMID: 30237261 PMCID: PMC6312030 DOI: 10.3324/haematol.2018.193680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/17/2018] [Indexed: 01/09/2023] Open
Abstract
Stem cell grafts from 10/10 HLA-matched unrelated donors are often mismatched for HLA-DP. In some patients, donor T-cell responses targeting the mismatched HLA-DP allele(s) have been found to induce a specific graft-versus-leukemia effect without coinciding graft-versus-host disease, whereas in other cases significant graft-versus-host disease occurred. Cell-lineage-specific recognition patterns within the allogeneic HLA-DP-specific donor T-cell repertoire could explain the differential clinical effects mediated by donor T cells after HLA-DP-mismatched allogeneic stem cell transplantation. To unravel the composition of the HLA-DP T-cell repertoire, donor T-cell responses were provoked by in vitro stimulation with allogeneic HLA-DP-mismatched monocyte-derived dendritic cells. A strategy including depletion of reactivity against autologous dendritic cells allowed efficient identification and enrichment of allo-reactive T cells upon stimulation with HLA-DP-mismatched dendritic cells. In this study we elucidated that the allogeneic HLA-DP-restricted T-cell repertoire contained T cells with differential cell-lineage-specific recognition profiles. As expected, some of the allogeneic HLA-DP-restricted T cells showed broad recognition of a variety of hematopoietic and non-hematopoietic cell types expressing the targeted mismatched HLA-DP allele. However, a significant proportion of the allogeneic HLA-DP-restricted T cells showed restricted recognition of hematopoietic cells, including primary malignant cells, or even restricted recognition of only myeloid cells, including dendritic cells and primary acute myeloid leukemia samples, but not of other hematopoietic and non-hematopoietic cell types. These data demonstrate that the allogeneic HLA-DP-specific T-cell repertoire contains T cells that show restricted recognition of hematopoietic cells, which may contribute to the specific graft-versus-leukemia effect without coinciding graft-versus-host disease.
Collapse
Affiliation(s)
- Aicha Laghmouchi
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Conny Hoogstraten
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
73
|
Gaignage M, Marillier RG, Cochez PM, Dumoutier L, Uyttenhove C, Coutelier JP, Van Snick J. The TLR7 ligand R848 prevents mouse graft- versus-host disease and cooperates with anti-interleukin-27 antibody for maximal protection and regulatory T-cell upregulation. Haematologica 2018; 104:392-402. [PMID: 30213828 PMCID: PMC6355498 DOI: 10.3324/haematol.2018.195628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/07/2018] [Indexed: 11/25/2022] Open
Abstract
In spite of considerable therapeutic progress, acute graft-versus-host disease still limits allogeneic hematopoietic cell transplantation. We recently reported that mouse infection with nidovirus lactate dehydrogenase elevating virus impairs disease in non-conditioned B6D2F1 recipients of parental B6 spleen cells. As this virus activates TLR7, we tested a pharmacological TLR7 ligand, R848, in this model and observed complete survival if donor and recipients were treated before transplantation. Mixed lymphocyte culture performed 48 h after R848-treatment of normal mice demonstrated that both T-cell allo-responsiveness and antigen presentation by CD11b+ and CD8α+ dendritic cells were inhibited. These inhibitions were dependent on IFNAR-1 signaling. In the B6 to B6D2F1 transplantation model, R848 decelerated, but did not abrogate, donor T-cell implantation and activation. However, it decreased interferon-gamma, tumor necrosis factor-alpha and interleukin-27 while upregulating active transforming growth factor-beta 1 plasma levels. In addition, donor and recipient Foxp3+ regulatory T-cell numbers were increased in recipient mice and their elimination compromised disease prevention. R848 also strongly improved survival of lethally irradiated BALB/c recipients of B6 hematopoietic cells and this also correlated with an upregulation of CD4 and CD8 Foxp3+ regulatory T cells that could be further increased by inhibition of interleukin-27. The combination of anti-interleukin-27p28 mono -clonal antibody and R848 showed strong synergy in preventing disease in the B6 to B6D2F1 transplantation model when recipients were sublethally irradiated and this also correlated with upregulation of regulatory T cells. We conclude that R848 modulates multiple aspects of graft-versus-host disease and offers potential for safe allogeneic bone marrow transplantation that can be further optimized by inhibition of interleukin-27.
Collapse
Affiliation(s)
| | | | | | | | - Catherine Uyttenhove
- de Duve Institute, Université Catholique de Louvain.,Ludwig Cancer Research, Brussels, Belgium
| | | | - Jacques Van Snick
- de Duve Institute, Université Catholique de Louvain .,Ludwig Cancer Research, Brussels, Belgium
| |
Collapse
|
74
|
Turcotte LM, Wang T, Hemmer MT, Spellman SR, Arora M, Yingst A, Couriel D, Alousi A, Pidala J, Knight JM, Verneris MR. Proinflammatory Cytokine and Adipokine Levels in Adult Unrelated Marrow Donors Are Not Associated with Hematopoietic Cell Transplantation Outcomes. Biol Blood Marrow Transplant 2018; 25:12-18. [PMID: 30144561 DOI: 10.1016/j.bbmt.2018.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/10/2018] [Indexed: 11/25/2022]
Abstract
Graft-versus-host disease (GVHD) is a frequent cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HCT). GVHD occurs when donor lymphocytes are activated by inflammatory cytokines and alloantigens. The role of donor biologic characteristics, such as basal inflammation, has not been investigated as a risk factor for GVHD but is theoretically transferrable to the recipient. We evaluated donor serum and plasma concentrations of cytokines and adipokines (IL-1β, IL-6, tumor necrosis factor [TNF]-α, leptin, suppression of tumorigenicity-2, and adiponectin) from test (n = 210) and replication (n = 250) cohorts of matched, unrelated transplant peripheral blood stem cell recipients identified through the Center for International Blood and Marrow Transplantation Research between 2000 and 2011 for hematologic malignancies. Hazard ratios were estimated for acute (grades II to IV and III to IV) and chronic GVHD, overall survival, disease-free survival, transplant-related mortality, and relapse for each cytokine or adipokine, adjusting for significant covariates. The lowest cytokine quartile was considered as the reference group for each model. To account for multiple testing P < .01 was considered the threshold for significance. In the test cohort a borderline significant association was identified between donor serum IL-1β concentrations and grades III to IV acute GVHD in the recipient (P = .01), and a significant inverse association was identified between donor TNF-α concentrations and chronic GVHD (P = .006). These findings were not validated in the replication cohort. Although the initial associations between cytokine levels and allo-HCT outcomes were not validated, the idea that donor characteristics may be transferable to the recipient remains an exciting area for future research.
Collapse
Affiliation(s)
- Lucie M Turcotte
- Division of Pediatric Hematology/Oncology, University of Minnesota, Minneapolis, Minnesota.
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael T Hemmer
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be the Match, Minneapolis, Minnesota
| | - Mukta Arora
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical Center, Minneapolis, Minnesota
| | - Ashley Yingst
- Department of Pediatrics, University of Colorado-Denver, Denver, Colorado
| | - Daniel Couriel
- Department of Medicine, Utah Blood and Marrow Transplant Program, Salt Lake City, Utah
| | - Amin Alousi
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Joseph Pidala
- Department of Blood and Marrow Transplantation; H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jennifer M Knight
- Department of Psychiatry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael R Verneris
- Department of Pediatrics, University of Colorado-Denver, Denver, Colorado
| |
Collapse
|
75
|
Cao XN, Kong Y, Song Y, Shi MM, Zhao HY, Wen Q, Lyu ZS, Duan CW, Wang Y, Xu LP, Zhang XH, Huang XJ. Impairment of bone marrow endothelial progenitor cells in acute graft-versus-host disease patients after allotransplant. Br J Haematol 2018; 182:870-886. [PMID: 29984829 DOI: 10.1111/bjh.15456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Xie-Na Cao
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Yuan Kong
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Yang Song
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Min-Min Shi
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing China
| | - Hong-Yan Zhao
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Qi Wen
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Zhong-Shi Lyu
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing China
| | - Cai-Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute; Shanghai Children's Medical Center; Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology; Shanghai Jiao Tong University School of medicine; Shanghai China
| | - Yu Wang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Lan-Ping Xu
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Xiao-Hui Zhang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
| | - Xiao-Jun Huang
- Peking University People's Hospital; Peking University Institute of Hematology; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation; Collaborative Innovation Center of Hematology; Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Academy for Advanced Interdisciplinary Studies; Peking University; Beijing China
| |
Collapse
|
76
|
Heterocellular molecular contacts in the mammalian stem cell niche. Eur J Cell Biol 2018; 97:442-461. [PMID: 30025618 DOI: 10.1016/j.ejcb.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Adult tissue homeostasis and repair relies on prompt and appropriate intervention by tissue-specific adult stem cells (SCs). SCs have the ability to self-renew; upon appropriate stimulation, they proliferate and give rise to specialized cells. An array of environmental signals is important for maintenance of the SC pool and SC survival, behavior, and fate. Within this special microenvironment, commonly known as the stem cell niche (SCN), SC behavior and fate are regulated by soluble molecules and direct molecular contacts via adhesion molecules providing connections to local supporting cells and the extracellular matrix. Besides the extensively discussed array of soluble molecules, the expression of adhesion molecules and molecular contacts is another fundamental mechanism regulating niche occupancy and SC mobilization upon activation. Some adhesion molecules are differentially expressed and have tissue-specific consequences, likely reflecting the structural differences in niche composition and design, especially the presence or absence of a stromal counterpart. However, the distribution and identity of intercellular molecular contacts for adhesion and adhesion-mediated signaling within stromal and non-stromal SCN have not been thoroughly studied. This review highlights common details or significant differences in cell-to-cell contacts within representative stromal and non-stromal niches that could unveil new standpoints for stem cell biology and therapy.
Collapse
|
77
|
Kean LS. Defining success with cellular therapeutics: the current landscape for clinical end point and toxicity analysis. Blood 2018; 131:2630-2639. [PMID: 29728399 PMCID: PMC6032897 DOI: 10.1182/blood-2018-02-785881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Cellular therapies play a major and expanding role in the treatment of hematologic diseases. For each of these therapies, a narrow therapeutic window exists, where efficacy is maximized and toxicities minimized. This review focuses on one of the most established cellular therapies, hematopoietic stem cell transplant, and one of the newest cellular therapies, chimeric antigen receptor-T cells. In this review, I will discuss the current state of the field for clinical end point analysis with each of these therapeutics, including their critical toxicities, and focus on the major elements of success for each of these complex treatments for hematologic disease.
Collapse
Affiliation(s)
- Leslie S Kean
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA; Clinical Research Division, The Fred Hutchinson Cancer Research Center, Seattle, WA; and Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
78
|
Wang L, Zhu CY, Ma DX, Gu ZY, Xu CC, Wang FY, Chen JG, Liu CJ, Guan LX, Gao R, Gao Z, Fang S, Zhuo DJ, Liu SF, Gao CJ. Efficacy and safety of mesenchymal stromal cells for the prophylaxis of chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation: a meta-analysis of randomized controlled trials. Ann Hematol 2018; 97:1941-1950. [PMID: 29947972 DOI: 10.1007/s00277-018-3384-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
A meta-analysis of randomized controlled trials (RCTs) was conducted to evaluate the efficacy and safety of mesenchymal stromal cells (MSCs) for the prophylaxis of chronic graft-versus-host disease (cGVHD) in patients with hematological malignancies undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). Six studies involving 365 patients were included. The pooled results showed that MSCs significantly reduced the incidence of cGVHD (risk ratio [RR] 0.63, 95% confidence interval [CI] 0.46 to 0.86, P = 0.004). Favorable prophylactic effects of MSCs on cGVHD were observed with umbilical cord-derived, high-dose, and late-infusion MSCs, while bone marrow-derived, low-dose, and coinfused MSCs did not confer beneficial prophylactic effects. In addition, MSC infusion did not increase the risk of primary disease relapse and infection (RR 1.02, 95% CI 0.70 to 1.50, P = 0.913; RR 0.89, 95% CI 0.44 to 1.81, P = 0.752; respectively). Moreover, there was an apparent trend toward increased overall survival (OS) in the MSC group compared with that in the control group (RR 1.13, 95% CI 0.98 to 1.29, P = 0.084). In conclusion, this meta-analysis demonstrated that MSC infusion is an effective and safe prophylactic strategy for cGVHD in patients with hematological malignancies undergoing allo-HSCT.
Collapse
Affiliation(s)
- Li Wang
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China.,Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Cheng-Ying Zhu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - De-Xun Ma
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Zhen-Yang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Chang-Chun Xu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Fei-Yan Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Ji-Gang Chen
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Cheng-Jun Liu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Li-Xun Guan
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Rui Gao
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Zhe Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Shu Fang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Du-Jun Zhuo
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China
| | - Shu-Feng Liu
- Department of Hematology, Laoshan Branch of No. 401 Hospital of Chinese People's Liberation Army (PLA), 109 Laoshan Road, Qingdao, 266101, China.
| | - Chun-Ji Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
79
|
Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood 2018; 131:2651-2660. [PMID: 29728401 DOI: 10.1182/blood-2017-11-785865] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Current approaches to prevent and treat graft-versus-host disease (GVHD) after stem cell transplantation rely principally on pharmacological immune suppression. Such approaches are limited by drug toxicity, nonspecific immune suppression, and a requirement for long-term therapy. Our increased understanding of the regulatory cells and molecular pathways involved in limiting pathogenic immune responses opens the opportunity for the use of these cell subsets to prevent and/or GVHD. The theoretical advantages of this approach is permanency of effect, potential for facilitating tissue repair, and induction of tolerance that obviates a need for ongoing drug therapy. To date, a number of potential cell subsets have been identified, including FoxP3+ regulatory T (Treg) and FoxP3negIL-10+ (FoxP3-negative) regulatory T (Tr1), natural killer (NK) and natural killer T (NKT) cells, innate lymphoid cells, and various myeloid suppressor populations of hematopoietic (eg, myeloid derived suppressor cells) and stromal origin (eg, mesenchymal stem cells). Despite initial technical challenges relating to large-scale selection and expansion, these regulatory lineages are now undergoing early phase clinical testing. To date, Treg therapies have shown promising results in preventing clinical GVHD when infused early after transplant. Results from ongoing studies over the next 5 years will delineate the most appropriate cell lineage, source (donor, host, third party), timing, and potential exogenous cytokine support needed to achieve the goal of clinical transplant tolerance.
Collapse
|
80
|
Santos e Sousa P, Bennett CL, Chakraverty R. Unraveling the Mechanisms of Cutaneous Graft-Versus-Host Disease. Front Immunol 2018; 9:963. [PMID: 29770141 PMCID: PMC5940745 DOI: 10.3389/fimmu.2018.00963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
The skin is the most common target organ affected by graft-versus-host disease (GVHD), with severity and response to therapy representing important predictors of patient survival. Although many of the initiating events in GVHD pathogenesis have been defined, less is known about why treatment resistance occurs or why there is often a permanent failure to restore tissue homeostasis. Emerging data suggest that the unique immune microenvironment in the skin is responsible for defining location- and context-specific mechanisms of injury that are distinct from those involved in other target organs. In this review, we address recent advances in our understanding of GVHD biology in the skin and outline the new research themes that will ultimately enable design of precision therapies.
Collapse
Affiliation(s)
- Pedro Santos e Sousa
- UCL Cancer Institute, University College London, London, United Kingdom
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Clare L. Bennett
- UCL Cancer Institute, University College London, London, United Kingdom
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Ronjon Chakraverty
- UCL Cancer Institute, University College London, London, United Kingdom
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
81
|
Comprehensive Analysis of the Activation and Proliferation Kinetics and Effector Functions of Human Lymphocytes, and Antigen Presentation Capacity of Antigen-Presenting Cells in Xenogeneic Graft-Versus-Host Disease. Biol Blood Marrow Transplant 2018; 24:1563-1574. [PMID: 29678638 DOI: 10.1016/j.bbmt.2018.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/12/2018] [Indexed: 11/21/2022]
Abstract
Xenogeneic graft-versus-host disease (GVHD) models in highly immunodeficient mice are currently being used worldwide to investigate human immune responses against foreign antigens in vivo. However, the individual roles of CD4+ and CD8+ T cells, and donor/host hematopoietic and nonhematopoietic antigen-presenting cells (APCs) in the induction and development of GVHD have not been fully investigated. In the present study, we comprehensively investigated the immune responses of human T cells and the antigen presentation capacity of donor/host hematopoietic and nonhematopoietic APCs in xenogeneic GVHD models using nonobese diabetic/Shi-scid-IL2rgnull mice. CD4+ T cells and, to a lesser extent, CD8+ T cells individually mediated potentially lethal GVHD. In addition to inflammatory cytokine production, CD4+ T cells also supported the activation and proliferation of CD8+ T cells. Using bone marrow chimeras, we demonstrated that host hematopoietic, but not nonhematopoietic, APCs play a critical role in the development of CD4+ T cell-mediated GVHD. During early GVHD, we detected 2 distinct populations in memory CD4+ T cells. One population was highly activated and proliferated in major histocompatibility complex antigen (MHC)+/+ mice but not in MHC-/- mice, indicating alloreactive T cells. The other population showed a less activated and slowly proliferative status regardless of host MHC expression, and was associated with higher susceptibility to apoptosis, indicating nonalloreactive T cells in homeostasis-driven proliferation. These observations are clinically relevant to donor T cell response after allogeneic hematopoietic stem cell transplantation. Our findings provide a better understanding of the immunobiology of humanized mice and support the development of novel options for the prevention and treatment for GVHD.
Collapse
|
82
|
Varelias A, Bunting MD, Ormerod KL, Koyama M, Olver SD, Straube J, Kuns RD, Robb RJ, Henden AS, Cooper L, Lachner N, Gartlan KH, Lantz O, Kjer-Nielsen L, Mak JY, Fairlie DP, Clouston AD, McCluskey J, Rossjohn J, Lane SW, Hugenholtz P, Hill GR. Recipient mucosal-associated invariant T cells control GVHD within the colon. J Clin Invest 2018; 128:1919-1936. [PMID: 29629900 DOI: 10.1172/jci91646] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a unique innate-like T cell subset that responds to a wide array of bacteria and yeast through recognition of riboflavin metabolites presented by the MHC class I-like molecule MR1. Here, we demonstrate using MR1 tetramers that recipient MAIT cells are present in small but definable numbers in graft-versus-host disease (GVHD) target organs and protect from acute GVHD in the colon following bone marrow transplantation (BMT). Consistent with their preferential juxtaposition to microbial signals in the colon, recipient MAIT cells generate large amounts of IL-17A, promote gastrointestinal tract integrity, and limit the donor alloantigen presentation that in turn drives donor Th1 and Th17 expansion specifically in the colon after BMT. Allogeneic BMT recipients deficient in IL-17A also develop accelerated GVHD, suggesting MAIT cells likely regulate GVHD, at least in part, by the generation of this cytokine. Indeed, analysis of stool microbiota and colon tissue from IL-17A-/- and MR1-/- mice identified analogous shifts in microbiome operational taxonomic units (OTU) and mediators of barrier integrity that appear to represent pathways controlled by similar, IL-17A-dependent mechanisms. Thus, MAIT cells act to control barrier function to attenuate pathogenic T cell responses in the colon and, given their very high frequency in humans, likely represent an important population in clinical BMT.
Collapse
Affiliation(s)
- Antiopi Varelias
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, and
| | - Mark D Bunting
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate L Ormerod
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Motoko Koyama
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stuart D Olver
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jasmin Straube
- Gordon and Jessie Gilmour Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rachel D Kuns
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Renee J Robb
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrea S Henden
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Leanne Cooper
- Gordon and Jessie Gilmour Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Kate H Gartlan
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, and
| | - Olivier Lantz
- INSERM U932 and Department de Biologie des Tumeurs, Institute Curie and Centre d'Investigation Clinique, CICBT507 IGR/Curie, Paris, France
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Jeffrey Yw Mak
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - Steven W Lane
- Faculty of Medicine, and.,Gordon and Jessie Gilmour Leukaemia Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, and.,The Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
83
|
Wang L, Zhang H, Guan L, Zhao S, Gu Z, Wei H, Gao Z, Wang F, Yang N, Luo L, Li Y, Wang L, Liu D, Gao C. Mesenchymal stem cells provide prophylaxis against acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation: A meta-analysis of animal models. Oncotarget 2018; 7:61764-61774. [PMID: 27528221 PMCID: PMC5308689 DOI: 10.18632/oncotarget.11238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023] Open
Abstract
A meta-analysis of animal models was conducted to evaluate the prophylactic effects of mesenchymal stem cells (MSCs) on acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation. A total of 50 studies involving 1848 animals were included. The pooled results showed that MSCs significantly reduced aGVHD-associated mortality (risk ratio = 0.70, 95% confidence interval 0.62 to 0.79, P = 2.73×10−9) and clinical scores (standardized mean difference = −3.60, 95% confidence interval −4.43 to −2.76, P = 3.61×10−17). In addition, MSCs conferred robust favorable prophylactic effects on aGVHD across recipient species, MSC doses, and administration times, but not MSC sources. Our meta-analysis showed that MSCs significantly prevented mortality and alleviated the clinical manifestations of aGVHD in animal models. These data support further clinical trials aimed at evaluating the efficacy of using MSCs to prevent aGVHD.
Collapse
Affiliation(s)
- Li Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Hematology and Oncology, Laoshan Branch, No. 401 Hospital of Chinese PLA, Qingdao, China
| | - Haiyan Zhang
- Department of Hematology, Linyi People's Hospital, Linyi, China
| | - Lixun Guan
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shasha Zhao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenyang Gu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huaping Wei
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhe Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Feiyan Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nan Yang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lan Luo
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yonghui Li
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lili Wang
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Daihong Liu
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Chunji Gao
- Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
84
|
Santos e Sousa P, Ciré S, Conlan T, Jardine L, Tkacz C, Ferrer IR, Lomas C, Ward S, West H, Dertschnig S, Blobner S, Means TK, Henderson S, Kaplan DH, Collin M, Plagnol V, Bennett CL, Chakraverty R. Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease. JCI Insight 2018; 3:97011. [PMID: 29515032 PMCID: PMC5922296 DOI: 10.1172/jci.insight.97011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic stem cell transplantation induced by the influx of donor-derived effector T cells (TE) into peripheral tissues. Current treatment strategies rely on targeting systemic T cells; however, the precise location and nature of instructions that program TE to become pathogenic and trigger injury are unknown. We therefore used weighted gene coexpression network analysis to construct an unbiased spatial map of TE differentiation during the evolution of GVHD and identified wide variation in effector programs in mice and humans according to location. Idiosyncrasy of effector programming in affected organs did not result from variation in T cell receptor repertoire or the selection of optimally activated TE. Instead, TE were reprogrammed by tissue-autonomous mechanisms in target organs for site-specific proinflammatory functions that were highly divergent from those primed in lymph nodes. In the skin, we combined the correlation-based network with a module-based differential expression analysis and showed that Langerhans cells provided in situ instructions for a Notch-dependent T cell gene cluster critical for triggering local injury. Thus, the principal determinant of TE pathogenicity in GVHD is the final destination, highlighting the need for target organ-specific approaches to block immunopathology while avoiding global immune suppression.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Bone Marrow Transplantation/adverse effects
- Cells, Cultured
- Cellular Reprogramming/genetics
- Cellular Reprogramming/immunology
- Disease Models, Animal
- Female
- Gene Expression Regulation/immunology
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Langerhans Cells/immunology
- Langerhans Cells/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Multigene Family/genetics
- Multigene Family/immunology
- Primary Cell Culture
- Receptors, Notch/metabolism
- Skin/cytology
- Skin/immunology
- Skin/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Transplantation Chimera
- Transplantation, Homologous/adverse effects
Collapse
Affiliation(s)
- Pedro Santos e Sousa
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Séverine Ciré
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Thomas Conlan
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Laura Jardine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Ivana R. Ferrer
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Cara Lomas
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Sophie Ward
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Heather West
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Simone Dertschnig
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Sven Blobner
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Terry K. Means
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | - Daniel H. Kaplan
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Clare L. Bennett
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| | - Ronjon Chakraverty
- Haematology, UCL Cancer Institute and Institute of Immunity & Transplantation, London, United Kingdom (UK)
| |
Collapse
|
85
|
Ringdén O, Labopin M, Sadeghi B, Mailhol A, Beelen D, Fløisand Y, Ghavamzadeh A, Finke J, Ehninger G, Volin L, Socié G, Kröger N, Stuhler G, Ganser A, Schmid C, Giebel S, Mohty M, Nagler A. What is the outcome in patients with acute leukaemia who survive severe acute graft-versus-host disease? J Intern Med 2018; 283:166-177. [PMID: 29027756 DOI: 10.1111/joim.12695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) is a major complication of allogeneic haematopoietic stem cell transplantation (HSCT). With new promising therapies, survival may improve for severe aGVHD. OBJECTIVES We wanted to analyze the long-term outcome in patients who survive severe aGVHD. METHODS This study was a landmark analysis of 23 567 patients with acute Leukaemia who survived for more than 6 months after HSCT, 2002-2014. Patients alive after severe aGVHD (n = 1738) were compared to controls. RESULTS Patients with severe aGVHD had higher non-relapse mortality (NRM) and higher rate of extensive chronic GVHD (cGVHD) than the controls (P < 10-5 ). The probability of relapse was significantly lower in the severe aGVHD group, but Leukaemia-free survival (LFS) and overall survival were significantly lower than for the controls (P < 10-5 ). Five-year LFS in patients with severe aGVHD was 49%, as opposed to 61% in controls with no or mild GVHD and 59% in patients with moderate GVHD. CONCLUSIONS HSCT patients who survive severe aGVHD have higher risk of developing extensive cGVHD, a higher NRM, a lower relapse probability, and lower LFS than other HSCT patients. This study is a platform for outcome analysis in patients treated with novel therapies for acute GVHD.
Collapse
Affiliation(s)
- O Ringdén
- Division of Therapeutic Immunology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - M Labopin
- Hôpital Saint Antoine, Paris, France
| | - B Sadeghi
- Division of Therapeutic Immunology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A Mailhol
- Hôpital Saint Antoine, Paris, France
| | - D Beelen
- University of Essen, Duisburg, Germany
| | - Y Fløisand
- Department of Hematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - A Ghavamzadeh
- Shariati Hospital, Hematology-Oncology and BMT Research, Tehran, Iran
| | - J Finke
- Department of Medicine-Hematology, Oncology, University of Freiburg, Freiburg, Germany
| | - G Ehninger
- Medizinische Klinik und Poliklinik 1, Universitätsklinikum Dresden, Dresden, Germany
| | - L Volin
- Comprehensive Cancer Center, Stem Cell Transplantation Unit, Helsinki University Hospital, Helsinki, Finland
| | - G Socié
- Department of Hematology - BMT, Hopital St. Louis, Paris, France
| | - N Kröger
- Department of Stem cell Transplantation, University Hospital Eppendorf, Hamburg, Germany
| | - G Stuhler
- Deutsche Klinik für Diagnostik, KMT Zentrum, Wiesbaden, Germany
| | - A Ganser
- Medical University Hannover, Hannover, Germany
| | - C Schmid
- University of Munich, Munich, Germany
| | - S Giebel
- Department of Bone Marrow Transplantation and Oncohematology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - M Mohty
- Hôpital Saint Antoine, Paris, France
| | - A Nagler
- Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
86
|
Ullrich E, Abendroth B, Rothamer J, Huber C, Büttner-Herold M, Buchele V, Vogler T, Longerich T, Zundler S, Völkl S, Beilhack A, Rose-John S, Wirtz S, Weber GF, Ghimire S, Kreutz M, Holler E, Mackensen A, Neurath MF, Hildner K. BATF-dependent IL-7RhiGM-CSF+ T cells control intestinal graft-versus-host disease. J Clin Invest 2018; 128:916-930. [PMID: 29376889 DOI: 10.1172/jci89242] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/12/2017] [Indexed: 11/17/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) represents a severe, T cell-driven inflammatory complication following allogeneic hematopoietic cell transplantation (allo-HCT). GVHD often affects the intestine and is associated with a poor prognosis. Although frequently detectable, proinflammatory mechanisms exerted by intestinal tissue-infiltrating Th cell subsets remain to be fully elucidated. Here, we show that the Th17-defining transcription factor basic leucine zipper transcription factor ATF-like (BATF) was strongly regulated across human and mouse intestinal GVHD tissues. Studies in complete MHC-mismatched and minor histocompatibility-mismatched (miHA-mismatched) GVHD models revealed that BATF-expressing T cells were functionally indispensable for intestinal GVHD manifestation. Mechanistically, BATF controlled the formation of colon-infiltrating, IL-7 receptor-positive (IL-7R+), granulocyte-macrophage colony-stimulating factor-positive (GM-CSF+), donor T effector memory (Tem) cells. This T cell subset was sufficient to promote intestinal GVHD, while its occurrence was largely dependent on T cell-intrinsic BATF expression, required IL-7-IL-7R interaction, and was enhanced by GM-CSF. Thus, this study identifies BATF-dependent pathogenic GM-CSF+ effector T cells as critical promoters of intestinal inflammation in GVHD and hence putatively provides mechanistic insight into inflammatory processes previously assumed to be selectively Th17 driven.
Collapse
Affiliation(s)
- Evelyn Ullrich
- Department of Medicine 5, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.,Children's Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, and.,LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Benjamin Abendroth
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Johanna Rothamer
- Department of Medicine 5, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.,Children's Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, and.,LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Carina Huber
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Maike Büttner-Herold
- Institute of Pathology, Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Vera Buchele
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Tina Vogler
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Simon Völkl
- Department of Medicine 5, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Beilhack
- Center for Interdisciplinary Clinical Research, Würzburg University, Würzburg, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sakhila Ghimire
- Department of Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Mackensen
- Department of Medicine 5, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| |
Collapse
|
87
|
Markey KA, Kuns RD, Browne DJ, Gartlan KH, Robb RJ, Martins JP, Henden AS, Minnie SA, Cheong M, Koyama M, Smyth MJ, Steptoe RJ, Belz GT, Brocker T, Degli-Esposti MA, Lane SW, Hill GR. Flt-3L Expansion of Recipient CD8α + Dendritic Cells Deletes Alloreactive Donor T Cells and Represents an Alternative to Posttransplant Cyclophosphamide for the Prevention of GVHD. Clin Cancer Res 2018; 24:1604-1616. [PMID: 29367429 DOI: 10.1158/1078-0432.ccr-17-2148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/01/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Allogeneic bone marrow transplantation (BMT) provides curative therapy for leukemia via immunologic graft-versus-leukemia (GVL) effects. In practice, this must be balanced against life threatening pathology induced by graft-versus-host disease (GVHD). Recipient dendritic cells (DC) are thought to be important in the induction of GVL and GVHD.Experimental Design: We have utilized preclinical models of allogeneic BMT to dissect the role and modulation of recipient DCs in controlling donor T-cell-mediated GVHD and GVL.Results: We demonstrate that recipient CD8α+ DCs promote activation-induced clonal deletion of allospecific donor T cells after BMT. We compared pretransplant fms-like tyrosine kinase-3 ligand (Flt-3L) treatment to the current clinical strategy of posttransplant cyclophosphamide (PT-Cy) therapy. Our results demonstrate superior protection from GVHD with the immunomodulatory Flt-3L approach, and similar attenuation of GVL responses with both strategies. Strikingly, Flt-3L treatment permitted maintenance of the donor polyclonal T-cell pool, where PT-Cy did not.Conclusions: These data highlight pre-transplant Flt-3L therapy as a potent new therapeutic strategy to delete alloreactive T cells and prevent GVHD, which appears particularly well suited to haploidentical BMT where the control of infection and the prevention of GVHD are paramount. Clin Cancer Res; 24(7); 1604-16. ©2018 AACR.
Collapse
Affiliation(s)
- Kate A Markey
- QIMR Berghofer Medical Research Institute, Brisbane, Australia. .,Royal Brisbane and Women's Hospital, Brisbane, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel J Browne
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Renee J Robb
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - J Paulo Martins
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrea S Henden
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Simone A Minnie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Melody Cheong
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Motoko Koyama
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Raymond J Steptoe
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Thomas Brocker
- Institute for Immunology, Ludwig-Maximilians Universitat, Munich, Germany
| | - Mariapia A Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia.,Immunology and Virology Program, Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, Western Australia
| | - Steven W Lane
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
88
|
Naserian S, Leclerc M, Thiolat A, Pilon C, Le Bret C, Belkacemi Y, Maury S, Charlotte F, Cohen JL. Simple, Reproducible, and Efficient Clinical Grading System for Murine Models of Acute Graft-versus-Host Disease. Front Immunol 2018; 9:10. [PMID: 29403494 PMCID: PMC5786520 DOI: 10.3389/fimmu.2018.00010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) represents a challenging complication after allogeneic hematopoietic stem cell transplantation. Despite the intensive preclinical research in the field of prevention and treatment of aGVHD, and the presence of a well-established clinical grading system to evaluate human aGVHD, such a valid tool is still lacking for the evaluation of murine aGVHD. Indeed, several scoring systems have been reported, but none of them has been properly evaluated and they all share some limitations: they incompletely reflect the disease, rely on severity stages that are distinguished by subjective assessment of clinical criteria and are not easy to discriminate, which could render evaluation more time consuming, and their reproducibility among different experimenters is uncertain. Consequently, clinical murine aGVHD description is often based merely on animal weight loss and mortality. Here, we propose a simple scoring system of aGVHD relying on the binary (yes or no) evaluation of five important visual parameters that reflect the complexity of the disease without the need to sacrifice the mice. We show that this scoring system is consistent with the gold standard histological staging of aGVHD across several donor/recipient mice combinations. This system is also a strong predictor of survival of recipient mice when used early after transplant and is highly reproducible between experimenters.
Collapse
Affiliation(s)
- Sina Naserian
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France
| | - Mathieu Leclerc
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France.,APHP, Service d'hématologie Clinique, Hôpital Henri Mondor, Créteil, France
| | - Allan Thiolat
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France
| | - Caroline Pilon
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France.,UPEC, APHP, INSERM, CIC Biothérapie, Hôpital Henri Mondor, Créteil, France
| | - Cindy Le Bret
- Université Paris-Est Créteil Val de Marne, APHP, Service d'Oncologie-Radiothérapie, Hôpital Henri Mondor, Créteil, France
| | - Yazid Belkacemi
- Université Paris-Est Créteil Val de Marne, APHP, Service d'Oncologie-Radiothérapie, Hôpital Henri Mondor, Créteil, France
| | - Sébastien Maury
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France.,APHP, Service d'hématologie Clinique, Hôpital Henri Mondor, Créteil, France
| | - Frédéric Charlotte
- APHP, Hôpital Pitié Salpêtrière, Service d'Anatomopathologie, Paris, France
| | - José L Cohen
- Université Paris-Est, UMR_S955, Université Paris-Est Créteil Val de Marne, Créteil, France.,INSERM, U955, Equipe 21, Créteil, France.,UPEC, APHP, INSERM, CIC Biothérapie, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
89
|
Reddy P, Ferrara JL. Graft-Versus-Host Disease and Graft-Versus-Leukemia Responses. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
90
|
Is Osteopontin a Friend or Foe of Cell Apoptosis in Inflammatory Gastrointestinal and Liver Diseases? Int J Mol Sci 2017; 19:ijms19010007. [PMID: 29267211 PMCID: PMC5795959 DOI: 10.3390/ijms19010007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Osteopontin (OPN) is involved in a variety of biological processes, including bone remodeling, innate immunity, acute and chronic inflammation, and cancer. The expression of OPN occurs in various tissues and cells, including intestinal epithelial cells and immune cells such as macrophages, dendritic cells, and T lymphocytes. OPN plays an important role in the efficient development of T helper 1 immune responses and cell survival by inhibiting apoptosis. The association of OPN with apoptosis has been investigated. In this review, we described the role of OPN in inflammatory gastrointestinal and liver diseases, focusing on the association of OPN with apoptosis. OPN changes its association with apoptosis depending on the type of disease and the phase of disease activity, acting as a promoter or a suppressor of inflammation and inflammatory carcinogenesis. It is essential that the roles of OPN in those diseases are elucidated, and treatments based on its mechanism are developed.
Collapse
|
91
|
Zogas N, Karponi G, Iordanidis F, Malasidis S, Paraskevas V, Papadopoulou A, Scouras ZG, Anagnostopoulos A, Yannaki E. The ex vivo toll-like receptor 7 tolerance induction in donor lymphocytes prevents murine acute graft-versus-host disease. Cytotherapy 2017; 20:149-164. [PMID: 29150086 DOI: 10.1016/j.jcyt.2017.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/27/2017] [Accepted: 09/11/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Acute graft-versus-host disease (aGVHD) remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation, mediated by alloreactive donor T cells. Toll-like receptors (TLRs), a family of conserved pattern-recognition receptors (PRRs), represent key players in donors' T-cell activation during aGVHD; however, a regulatory, tolerogenic role for certain TLRs has been recognized in a different context. We investigated whether the ex vivo-induced TLR-2,-4,-7 tolerance in donor cells could prevent alloreactivity in a mismatched transplantation model. METHODS TLR-2,-4,-7 tolerance was induced in mouse splenocytes, after stimulation with low doses of corresponding ligands. Cellular and molecular changes of the TLR-tolerant splenocytes and purified T cells were assessed by immunophenotypic and gene expression analyses. Incidence of aGVHD was evaluated by the clinical score and survival as well as histopathology of target tissues. RESULTS Only the R848-induced TLR7 tolerance prevented aGVHD. The TLR7 ligand-induced tolerance lasted for a critical post-transplant period and was associated with distinct cellular and molecular signatures characterized by induction of regulatory T cells, reduced alloreactivity and balanced regulation of inflammatory signaling and innate immune responses. The TLR7-tolerant T cells preserved the immunological memory and generated in vitro virus-specific T cells upon antigen stimulation. The anti-aGVHD tolerization effect was direct and specific to TLR7 and required the receptor-ligand interaction; TLR7-/- T cells isolated from B6 TLR7-/- mice presented a distinct gene expression profile but failed to prevent aGVHD. DISCUSSION We propose an effective and clinically applicable ex vivo approach for aGVHD prevention through a transient and reversible immune reprogramming exerted by TLR7-tolerant donor lymphocytes.
Collapse
Affiliation(s)
- Nikolaos Zogas
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Garyfalia Karponi
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Fotios Iordanidis
- Cellular Pathology Laboratory, Cheltenham General Hospital, Cheltenham, United Kingdom
| | - Stylianos Malasidis
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Vasilios Paraskevas
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Zaharias George Scouras
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Achilles Anagnostopoulos
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
92
|
Kasahara H, Kondo T, Nakatsukasa H, Chikuma S, Ito M, Ando M, Kurebayashi Y, Sekiya T, Yamada T, Okamoto S, Yoshimura A. Generation of allo-antigen-specific induced Treg stabilized by vitamin C treatment and its application for prevention of acute graft versus host disease model. Int Immunol 2017; 29:457-469. [DOI: 10.1093/intimm/dxx060] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/28/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hidenori Kasahara
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takashi Sekiya
- Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine, Japan
| | - Taketo Yamada
- Department of Pathology, Saitama Medical University, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
93
|
Shibasaki Y, Suwabe T, Katagiri T, Tanaka T, Kobayashi H, Fuse K, Ushiki T, Sato N, Yano T, Kuroha T, Hashimoto S, Narita M, Furukawa T, Sone H, Masuko M. The Glasgow Prognostic Score as a pre-transplant risk assessment for allogeneic hematopoietic cell transplantation. Clin Transplant 2017; 31. [DOI: 10.1111/ctr.13103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Yasuhiko Shibasaki
- Department of Hematopoietic Cell Transplantation; Niigata University Medical and Dental Hospital; Niigata City Japan
- Department of Hematology; Endocrinology and Metabolism; Niigata University Faculty of Medicine; Niigata City Japan
| | - Tatsuya Suwabe
- Department of Hematology; Endocrinology and Metabolism; Niigata University Faculty of Medicine; Niigata City Japan
| | - Takayuki Katagiri
- Department of Hematology; Endocrinology and Metabolism; Niigata University Faculty of Medicine; Niigata City Japan
| | - Tomoyuki Tanaka
- Department of Hematology; Endocrinology and Metabolism; Niigata University Faculty of Medicine; Niigata City Japan
| | - Hironori Kobayashi
- Department of Hematology; Endocrinology and Metabolism; Niigata University Faculty of Medicine; Niigata City Japan
| | - Kyoko Fuse
- Department of Hematology; Endocrinology and Metabolism; Niigata University Faculty of Medicine; Niigata City Japan
| | - Takashi Ushiki
- Department of Hematology; Endocrinology and Metabolism; Niigata University Faculty of Medicine; Niigata City Japan
| | - Naoko Sato
- Department of Hematology; Nagaoka Red Cross Hospital; Nagaoka City Japan
| | - Toshio Yano
- Department of Hematology; Nagaoka Red Cross Hospital; Nagaoka City Japan
| | - Takashi Kuroha
- Department of Hematology; Nagaoka Red Cross Hospital; Nagaoka City Japan
| | - Shigeo Hashimoto
- Department of Hematology; Nagaoka Red Cross Hospital; Nagaoka City Japan
| | - Miwako Narita
- Department of Hematology; Endocrinology and Metabolism; Niigata University Faculty of Medicine; Niigata City Japan
| | - Tatsuo Furukawa
- Department of Hematology; Nagaoka Red Cross Hospital; Nagaoka City Japan
| | - Hirohito Sone
- Department of Hematology; Endocrinology and Metabolism; Niigata University Faculty of Medicine; Niigata City Japan
| | - Masayoshi Masuko
- Department of Hematopoietic Cell Transplantation; Niigata University Medical and Dental Hospital; Niigata City Japan
| |
Collapse
|
94
|
Dukat-Mazurek A, Bieniaszewska M, Hellmann A, Moszkowska G, Trzonkowski P. Association of cytokine gene polymorphisms with the complications of allogeneic haematopoietic stem cell transplantation. Hum Immunol 2017; 78:672-683. [PMID: 28987962 DOI: 10.1016/j.humimm.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/12/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
The purpose of our study was to confirm the prevalence of the association between single nucleotide polymorphisms present in genes encoding cytokines and the complications occurring after haematopoietic stem cell transplantation (HSCT). 108 recipients and 81 donors were typed for TNF-α (-308), TGF-β1 (codon 10, 25), IL-10 (-1082, -819, -592), IL-6 (-174) and INF-γ (+874). Our studies have shown a tendency toward association between the occurrence of acute form of graft versus host disease (aGVHD) and IL-6 genotype. Homozygote C/C was less likely to develop aGVHD (p=0,09). Genotype GCC/ATA in IL-10 recipient gene alone had protective effect against the occurrence of aGVHD (p=0,01). Furthermore, GCC/ATA protected the host against developing the disease in the clinically relevant grades (II-IV) (p=0,03). In addition, the recipient's T/T G/G genotype (TGF-β1) predisposed to the development of both acute (p=0,06 - trend) and chronic (p=0,04) GVHD and also severe aGVHD (p=0,004). We also observed a statistically significant association between the genotype of recipient and the risk of infection - the protective function of the G/C IL-6 in the bloodstream infections (p=0,001). Our results suggest that IL-6, IL-10 and TGF-β1 genotypes of recipient are the most associated with the risk of complications after HSCT.
Collapse
Affiliation(s)
- Anna Dukat-Mazurek
- Department of Hematology and Transplantology, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland.
| | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland.
| | - Andrzej Hellmann
- Department of Hematology and Transplantology, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland.
| | - Grażyna Moszkowska
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland.
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland.
| |
Collapse
|
95
|
Rezende BM, Athayde RM, Gonçalves WA, Resende CB, Teles de Tolêdo Bernardes P, Perez DA, Esper L, Reis AC, Rachid MA, Castor MGME, Cunha TM, Machado FS, Teixeira MM, Pinho V. Inhibition of 5-lipoxygenase alleviates graft-versus-host disease. J Exp Med 2017; 214:3399-3415. [PMID: 28947611 PMCID: PMC5679175 DOI: 10.1084/jem.20170261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/24/2017] [Accepted: 08/18/2017] [Indexed: 01/26/2023] Open
Abstract
Rezende et al. report that the transplant of 5-lipoxygenase (5-LO)−deficient leukocytes protects mice from GVHD. Treatment with the 5-LO inhibitor zileuton or a LTB4 antagonist at the initial phase of the transplant achieves similar protective effects. 5-LO is a crucial contributor to tissue damage in GVHD. Leukotriene B4 (LTB4), a proinflammatory mediator produced by the enzyme 5-lipoxygenase (5-LO), is associated with the development of many inflammatory diseases. In this study, we evaluated the participation of the 5-LO/LTB4 axis in graft-versus-host disease (GVHD) pathogenesis by transplanting 5-LO–deficient leukocytes and investigated the effect of pharmacologic 5-LO inhibition by zileuton and LTB4 inhibition by CP-105,696. Mice that received allogeneic transplant showed an increase in nuclear 5-LO expression in splenocytes, indicating enzyme activation after GVHD. Mice receiving 5-LO–deficient cell transplant or zileuton treatment had prolonged survival, reduced GVHD clinical scores, reduced intestinal and liver injury, and decreased levels of serum and hepatic LTB4. These results were associated with inhibition of leukocyte recruitment and decreased production of cytokines and chemokines. Treatment with CP-105,696 achieved similar effects. The chimerism or the beneficial graft-versus-leukemia response remained unaffected. Our data provide evidence that the 5-LO/LTB4 axis orchestrates GVHD development and suggest it could be a target for the development of novel therapeutic strategies for GVHD treatment.
Collapse
Affiliation(s)
- Barbara Maximino Rezende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Rayssa Maciel Athayde
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - William Antônio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Carolina Braga Resende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Priscila Teles de Tolêdo Bernardes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Denise Alves Perez
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Lísia Esper
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Alesandra Côrte Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Milene Alvarenga Rachid
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Marina Gomes Miranda E Castor
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Thiago Mattar Cunha
- Departamento de Farmacologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Fabiana Simão Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
96
|
Fleischhauer K, Shaw BE. HLA-DP in unrelated hematopoietic cell transplantation revisited: challenges and opportunities. Blood 2017; 130:1089-1096. [PMID: 28667011 DOI: 10.1182/blood-2017-03-742346] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/17/2017] [Indexed: 11/20/2022] Open
Abstract
When considering HLA-matched hematopoietic cell transplantation (HCT), sibling and unrelated donors (UDs) are biologically different because UD-HCT is typically performed across HLA-DP disparities absent in sibling HCT. Mismatched HLA-DP is targeted by direct alloreactive T cell responses with important implications for graft-versus-host disease and graft-versus-leukemia. This concise review details special features of HLA-DP as model antigens for clinically permissive mismatches mediating limited T-cell alloreactivity with minimal toxicity, and describes future avenues for their exploitation in cellular immunotherapy of malignant blood disorders.
Collapse
Affiliation(s)
- Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, Essen University Hospital, Essen, Germany
- German Cancer Consortium, Heidelberg, Germany; and
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research, Froedtert & The Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
97
|
Role of the intestinal mucosa in acute gastrointestinal GVHD. Blood 2017; 128:2395-2402. [PMID: 27856471 DOI: 10.1182/blood-2016-06-716738] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/14/2016] [Indexed: 12/11/2022] Open
Abstract
Intestinal graft-versus-host disease (GVHD) remains a significant obstacle to the success of allogeneic hematopoietic cell transplantation. The intestinal mucosa comprises the inner lining of the intestinal tract and maintains close proximity with commensal microbes that reside within the intestinal lumen. Recent advances have significantly improved our understanding of the interactions between the intestinal mucosa and the enteric microbiota. Changes in host mucosal tissue and commensals posttransplant have been actively investigated, and provocative insights into mucosal immunity and the enteric microbiota are now being translated into clinical trials of novel approaches for preventing and treating acute GVHD. In this review, we summarize recent findings related to aspects of the intestinal mucosa during acute GVHD.
Collapse
|
98
|
Geraghty NJ, Belfiore L, Ly D, Adhikary SR, Fuller SJ, Varikatt W, Sanderson-Smith ML, Sluyter V, Alexander SI, Sluyter R, Watson D. The P2X7 receptor antagonist Brilliant Blue G reduces serum human interferon-γ in a humanized mouse model of graft-versus-host disease. Clin Exp Immunol 2017; 190:79-95. [PMID: 28665482 DOI: 10.1111/cei.13005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 01/31/2023] Open
Abstract
Graft-versus-host disease (GVHD) remains a major problem after allogeneic haematopoietic stem cell transplantation, a curative therapy for haematological malignancies. Previous studies have demonstrated a role for the adenosine triphosphate (ATP)-gated P2X7 receptor channel in allogeneic mouse models of GVHD. In this study, injection of human peripheral blood mononuclear cells (PBMCs) into immunodeficient non-obese diabetic-severe combined immunodeficiency-interleukin (NOD-SCID-IL)-2Rγnull (NSG) mice established a humanized mouse model of GVHD. This model was used to study the effect of P2X7 blockade in this disease. From five weeks post-PBMC injection, humanized mice exhibited clinical signs and histopathology characteristic of GVHD. The P2X7 antagonist, Brilliant Blue G (BBG), blocked ATP-induced cation uptake into both murine and human cells in vitro. Injection of BBG (50 mg/kg) into NSG mice did not affect engraftment of human leucocytes (predominantly T cells), or the clinical score and survival of mice. In contrast, BBG injection reduced circulating human interferon (IFN)-γ significantly, which was produced by human CD4+ and CD8+ T cells. BBG also reduced human T cell infiltration and apoptosis in target organs of GVHD. In conclusion, the P2X7 antagonist BBG reduced circulating IFN-γ in a humanized mouse model of GVHD supporting a potential role for P2X7 to alter the pathology of this disease in humans.
Collapse
Affiliation(s)
- N J Geraghty
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.,Centre for Medical and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - L Belfiore
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.,Centre for Medical and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - D Ly
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.,Centre for Medical and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - S R Adhikary
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.,Centre for Medical and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - S J Fuller
- Sydney Medical School Nepean, University of Sydney, Nepean Hospital, Penrith, NSW, Australia
| | - W Varikatt
- Sydney Medical School Westmead, University of Sydney, Westmead Hospital, NSW, Australia.,Institute for Clinical Pathology and Medical Research, Westmead, NSW Health Pathology, Australia
| | - M L Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.,Centre for Medical and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - V Sluyter
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.,Centre for Medical and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - S I Alexander
- Children's Hospital at Westmead, Westmead, NSW, Australia
| | - R Sluyter
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.,Centre for Medical and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - D Watson
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.,Centre for Medical and Molecular Biosciences, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
99
|
MacDonald KP, Blazar BR, Hill GR. Cytokine mediators of chronic graft-versus-host disease. J Clin Invest 2017; 127:2452-2463. [PMID: 28665299 DOI: 10.1172/jci90593] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Substantial preclinical and clinical research into chronic graft-versus-host disease (cGVHD) has come to fruition in the last five years, generating a clear understanding of a complex cytokine-driven cellular network. cGVHD is mediated by naive T cells differentiating within IL-17-secreting T cell and follicular Th cell paradigms to generate IL-21 and IL-17A, which drive pathogenic germinal center (GC) B cell reactions and monocyte-macrophage differentiation, respectively. cGVHD pathogenesis includes thymic damage, impaired antigen presentation, and a failure in IL-2-dependent Treg homeostasis. Pathogenic GC B cell and macrophage reactions culminate in antibody formation and TGF-β secretion, respectively, leading to fibrosis. This new understanding permits the design of rational cytokine and intracellular signaling pathway-targeted therapeutics, reviewed herein.
Collapse
Affiliation(s)
- Kelli Pa MacDonald
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bruce R Blazar
- Masonic Cancer Center; and Division of Blood and Marrow Transplantation, Department of Pediatrics; University of Minnesota, Minneapolis, USA
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
100
|
Mir E, Palomo M, Rovira M, Pereira A, Escolar G, Penack O, Holler E, Carreras E, Diaz-Ricart M. Endothelial damage is aggravated in acute GvHD and could predict its development. Bone Marrow Transplant 2017. [PMID: 28650450 DOI: 10.1038/bmt.2017.121] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to explore whether there is enhanced endothelial dysfunction in patients developing acute GvHD (aGvHD) after allogeneic hematopoietic cell transplantation (allo-HCT) and to identify biomarkers with predictive and/or diagnostic value. In in vitro experiments, endothelial cells (ECs) were exposed to serum from patients with (aGvHD, n=31) and without (NoGvHD, n=13) aGvHD, to evaluate changes in surface adhesion receptors, the reactivity of the extracellular matrix by measuring the presence of Von Willebrand factor (VWF) and platelet adhesion, and the activation of intracellular signaling proteins. Plasma levels of VWF, ADAMTS-13, TNF receptor 1 (TNFR1), soluble vascular cell adhesion molecule 1 and soluble intercellular adhesion molecule 1 were also measured. In vitro results showed a more marked proinflammatory and prothrombotic phenotype in ECs in association with aGvHD. Regarding circulating biomarkers, levels of VWF and TNFR1 above an optimal cutoff score, taken independently or combined, at day 7 after allo-HCT, would be able to positively predict that around 90% of patients will develop aGvHD. Our results demonstrate that endothelial damage is aggravated in those allo-HCT recipients developing aGvHD, and that VWF and TNFR1 are promising predictive aGvHD biomarkers. These findings could contribute to improve the understanding of the pathophysiology of aGvHD.
Collapse
Affiliation(s)
- E Mir
- Josep Carreras Research Institute, Hospital Clinic Campus, University of Barcelona, Barcelona, Spain.,Hemotherapy and Hemostasis Department, CDB, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - M Palomo
- Josep Carreras Research Institute, Hospital Clinic Campus, University of Barcelona, Barcelona, Spain.,Hemotherapy and Hemostasis Department, CDB, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - M Rovira
- Stem Cell Transplantation Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - A Pereira
- Hemotherapy and Hemostasis Department, CDB, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - G Escolar
- Hemotherapy and Hemostasis Department, CDB, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - O Penack
- Department of Hematology, Oncology and Tumorimmunology, Charité Campus Virchow, Berlin, Germany
| | - E Holler
- Department of Hematology and Oncology, University Clinic Regensburg, Regensburg, Germany
| | - E Carreras
- Josep Carreras Research Institute, Hospital Clinic Campus, University of Barcelona, Barcelona, Spain
| | - M Diaz-Ricart
- Hemotherapy and Hemostasis Department, CDB, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|