51
|
Wang C, Canali S, Bayer A, Dev S, Agarwal A, Babitt JL. Iron, erythropoietin, and inflammation regulate hepcidin in Bmp2-deficient mice, but serum iron fails to induce hepcidin in Bmp6-deficient mice. Am J Hematol 2019; 94:240-248. [PMID: 30478858 DOI: 10.1002/ajh.25366] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The bone morphogenetic protein (BMP)-SMAD signaling pathway is a key transcriptional regulator of hepcidin in response to tissue iron stores, serum iron, erythropoietic drive and inflammation to increase the iron supply when needed for erythropoiesis, but to prevent the toxicity of iron excess. Recently, BMP2 was reported to play a non-redundant role in hepcidin regulation in addition to BMP6. Here, we used a newly validated BMP2 ELISA assay and mice with a global or endothelial conditional knockout (CKO) of Bmp2 or Bmp6 to examine how BMP2 is regulated and functionally contributes to hepcidin regulation by its major stimuli. Erythropoietin (EPO) did not influence BMP2 expression in control mice, and still suppressed hepcidin in Bmp2 CKO mice. Lipopolysaccharide (LPS) reduced BMP2 expression in control mice, but still induced hepcidin in Bmp2 CKO mice. Chronic dietary iron loading that increased liver iron induced BMP2 expression, whereas acute oral iron gavage that increased serum iron without influencing liver iron did not impact BMP2. However, hepcidin was still induced by both iron loading methods in Bmp2 CKO mice, although the degree of hepcidin induction was blunted relative to control mice. Conversely, acute oral iron gavage failed to induce hepcidin in Bmp6 -/- or CKO mice. Thus, BMP2 has at least a partially redundant role in hepcidin regulation by serum iron, tissue iron, inflammation and erythropoietic drive. In contrast, BMP6 is absolutely required for hepcidin regulation by serum iron.
Collapse
Affiliation(s)
- Chia‐Yu Wang
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Susanna Canali
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Abraham Bayer
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Som Dev
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Aneesh Agarwal
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Jodie L. Babitt
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| |
Collapse
|
52
|
Pfeifhofer-Obermair C, Tymoszuk P, Petzer V, Weiss G, Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front Oncol 2018; 8:549. [PMID: 30534534 PMCID: PMC6275298 DOI: 10.3389/fonc.2018.00549] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Iron metabolism and tumor biology are intimately linked. Iron facilitates the production of oxygen radicals, which may either result in iron-induced cell death, ferroptosis, or contribute to mutagenicity and malignant transformation. Once transformed, malignant cells require high amounts of iron for proliferation. In addition, iron has multiple regulatory effects on the immune system, thus affecting tumor surveillance by immune cells. For these reasons, inconsiderate iron supplementation in cancer patients has the potential of worsening disease course and outcome. On the other hand, chronic immune activation in the setting of malignancy alters systemic iron homeostasis and directs iron fluxes into myeloid cells. While this response aims at withdrawing iron from tumor cells, it may impair the effector functions of tumor-associated macrophages and will result in iron-restricted erythropoiesis and the development of anemia, subsequently. This review summarizes our current knowledge of the interconnections of iron homeostasis with cancer biology, discusses current clinical controversies in the treatment of anemia of cancer and focuses on the potential roles of iron in the solid tumor microenvironment, also speculating on yet unknown molecular mechanisms.
Collapse
Affiliation(s)
- Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
53
|
Abstract
The liver orchestrates systemic iron balance by producing and secreting hepcidin. Known as the iron hormone, hepcidin induces degradation of the iron exporter ferroportin to control iron entry into the bloodstream from dietary sources, iron recycling macrophages, and body stores. Under physiologic conditions, hepcidin production is reduced by iron deficiency and erythropoietic drive to increase the iron supply when needed to support red blood cell production and other essential functions. Conversely, hepcidin production is induced by iron loading and inflammation to prevent the toxicity of iron excess and limit its availability to pathogens. The inability to appropriately regulate hepcidin production in response to these physiologic cues underlies genetic disorders of iron overload and deficiency, including hereditary hemochromatosis and iron-refractory iron deficiency anemia. Moreover, excess hepcidin suppression in the setting of ineffective erythropoiesis contributes to iron-loading anemias such as β-thalassemia, whereas excess hepcidin induction contributes to iron-restricted erythropoiesis and anemia in chronic inflammatory diseases. These diseases have provided key insights into understanding the mechanisms by which the liver senses plasma and tissue iron levels, the iron demand of erythrocyte precursors, and the presence of potential pathogens and, importantly, how these various signals are integrated to appropriately regulate hepcidin production. This review will focus on recent insights into how the liver senses body iron levels and coordinates this with other signals to regulate hepcidin production and systemic iron homeostasis.
Collapse
|
54
|
Yien YY, Shi J, Chen C, Cheung JTM, Grillo AS, Shrestha R, Li L, Zhang X, Kafina MD, Kingsley PD, King MJ, Ablain J, Li H, Zon LI, Palis J, Burke MD, Bauer DE, Orkin SH, Koehler CM, Phillips JD, Kaplan J, Ward DM, Lodish HF, Paw BH. FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. J Biol Chem 2018; 293:19797-19811. [PMID: 30366982 DOI: 10.1074/jbc.ra118.002742] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin (EPO) signaling is critical to many processes essential to terminal erythropoiesis. Despite the centrality of iron metabolism to erythropoiesis, the mechanisms by which EPO regulates iron status are not well-understood. To this end, here we profiled gene expression in EPO-treated 32D pro-B cells and developing fetal liver erythroid cells to identify additional iron regulatory genes. We determined that FAM210B, a mitochondrial inner-membrane protein, is essential for hemoglobinization, proliferation, and enucleation during terminal erythroid maturation. Fam210b deficiency led to defects in mitochondrial iron uptake, heme synthesis, and iron-sulfur cluster formation. These defects were corrected with a lipid-soluble, small-molecule iron transporter, hinokitiol, in Fam210b-deficient murine erythroid cells and zebrafish morphants. Genetic complementation experiments revealed that FAM210B is not a mitochondrial iron transporter but is required for adequate mitochondrial iron import to sustain heme synthesis and iron-sulfur cluster formation during erythroid differentiation. FAM210B was also required for maximal ferrochelatase activity in differentiating erythroid cells. We propose that FAM210B functions as an adaptor protein that facilitates the formation of an oligomeric mitochondrial iron transport complex, required for the increase in iron acquisition for heme synthesis during terminal erythropoiesis. Collectively, our results reveal a critical mechanism by which EPO signaling regulates terminal erythropoiesis and iron metabolism.
Collapse
Affiliation(s)
- Yvette Y Yien
- From the Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, .,the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jiahai Shi
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Caiyong Chen
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jesmine T M Cheung
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Anthony S Grillo
- the Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rishna Shrestha
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Liangtao Li
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Xuedi Zhang
- From the Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Martin D Kafina
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Paul D Kingsley
- the Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York 14642
| | - Matthew J King
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Julien Ablain
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hojun Li
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Leonard I Zon
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - James Palis
- the Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York 14642
| | - Martin D Burke
- the Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Daniel E Bauer
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Stuart H Orkin
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Carla M Koehler
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - John D Phillips
- the Division of Hematology and Hematologic Malignancy, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jerry Kaplan
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Diane M Ward
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Harvey F Lodish
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Barry H Paw
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
55
|
Artuso I, Pettinato M, Nai A, Pagani A, Sardo U, Billoré B, Lidonnici MR, Bennett C, Mandelli G, Pasricha SR, Ferrari G, Camaschella C, Kautz L, Silvestri L. Transient decrease of serum iron after acute erythropoietin treatment contributes to hepcidin inhibition by ERFE in mice. Haematologica 2018; 104:e87-e90. [PMID: 30266734 DOI: 10.3324/haematol.2018.199810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Irene Artuso
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ugo Sardo
- IRSD, Université de Toulouse, INSERM U1220, INRA U1416, ENVT, UPS, France
| | - Benjamin Billoré
- IRSD, Université de Toulouse, INSERM U1220, INRA U1416, ENVT, UPS, France
| | | | - Cavan Bennett
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Giacomo Mandelli
- SR-Tiget Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sant-Rayn Pasricha
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, VC, Australia
| | - Giuliana Ferrari
- SR-Tiget Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Clara Camaschella
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Léon Kautz
- IRSD, Université de Toulouse, INSERM U1220, INRA U1416, ENVT, UPS, France
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
56
|
Erythroferrone inhibits the induction of hepcidin by BMP6. Blood 2018; 132:1473-1477. [PMID: 30097509 DOI: 10.1182/blood-2018-06-857995] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
Decreased hepcidin mobilizes iron, which facilitates erythropoiesis, but excess iron is pathogenic in β-thalassemia. Erythropoietin (EPO) enhances erythroferrone (ERFE) synthesis by erythroblasts, and ERFE suppresses hepatic hepcidin production through an unknown mechanism. The BMP/SMAD pathway in the liver is critical for hepcidin control, and we show that EPO suppressed hepcidin and other BMP target genes in vivo in a partially ERFE-dependent manner. Furthermore, recombinant ERFE suppressed the hepatic BMP/SMAD pathway independently of changes in serum and liver iron. In vitro, ERFE decreased SMAD1, SMAD5, and SMAD8 phosphorylation and inhibited expression of BMP target genes. ERFE specifically abrogated the induction of hepcidin by BMP5, BMP6, and BMP7 but had little or no effect on hepcidin induction by BMP2, BMP4, BMP9, or activin B. A neutralizing anti-ERFE antibody prevented ERFE from inhibiting hepcidin induction by BMP5, BMP6, and BMP7. Cell-free homogeneous time-resolved fluorescence assays showed that BMP5, BMP6, and BMP7 competed with anti-ERFE for binding to ERFE. We conclude that ERFE suppresses hepcidin by inhibiting hepatic BMP/SMAD signaling via preferentially impairing an evolutionarily closely related BMP subgroup of BMP5, BMP6, and BMP7. ERFE can act as a natural ligand trap generated by stimulated erythropoiesis to regulate the availability of iron.
Collapse
|
57
|
Camaschella C, Pagani A. Advances in understanding iron metabolism and its crosstalk with erythropoiesis. Br J Haematol 2018; 182:481-494. [PMID: 29938779 DOI: 10.1111/bjh.15403] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed impressive advances in our understanding of iron metabolism. A number of studies of iron disorders and of their animal models have provided landmark insights into the mechanisms of iron trafficking, distribution and homeostatic regulation, the latter essential to prevent both iron deficiency and iron excess. Our perception of iron metabolism has been completely changed by an improved definition of cellular and systemic iron homeostasis, of the molecular pathogenesis of iron disorders, the fine tuning of the iron hormone hepcidin by activators and inhibitors and the dissection of the components of the hepcidin regulatory pathway. Important for haematology, the crosstalk of erythropoiesis, the most important iron consumer, and the hepcidin pathway has been at least partially clarified. Novel potential biomarkers are available and novel therapeutic targets for iron-related disorders have been tested in murine models. These preclinical studies provided proofs of principle and are laying the ground for clinical trials. Understanding iron control in tissues other than erythropoiesis remains a challenge for the future.
Collapse
Affiliation(s)
- Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Vita Salute University, Milano, Italy
| | - Alessia Pagani
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Vita Salute University, Milano, Italy
| |
Collapse
|
58
|
Mirciov CSG, Wilkins SJ, Hung GCC, Helman SL, Anderson GJ, Frazer DM. Circulating iron levels influence the regulation of hepcidin following stimulated erythropoiesis. Haematologica 2018; 103:1616-1626. [PMID: 29903760 PMCID: PMC6165793 DOI: 10.3324/haematol.2017.187245] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
The stimulation of erythrocyte formation increases the demand for iron by the bone marrow and this in turn may affect the levels of circulating diferric transferrin. As this molecule influences the production of the iron regulatory hormone hepcidin, we hypothesized that erythropoiesis-driven changes in diferric transferrin levels could contribute to the decrease in hepcidin observed following the administration of erythropoietin. To examine this, we treated mice with erythropoietin and examined diferric transferrin at various time points up to 18 hours. We also investigated the effect of altering diferric transferrin levels on erythropoietin-induced inhibition of Hamp1, the gene encoding hepcidin. We detected a decrease in diferric transferrin levels 5 hours after erythropoietin injection and prior to any inhibition of the hepatic Hamp1 message. Diferric transferrin returned to control levels 12 hours after erythropoietin injection and had increased beyond control levels by 18 hours. Increasing diferric transferrin levels via intravenous iron injection prevented the inhibition of Hamp1 expression by erythropoietin without altering hepatic iron concentration or the expression of Erfe, the gene encoding erythroferrone. These results suggest that diferric transferrin likely contributes to the inhibition of hepcidin production in the period shortly after injection of erythropoietin and that, under the conditions examined, increasing diferric transferrin levels can overcome the inhibitory effect of erythroferrone on hepcidin production. They also imply that the decrease in Hamp1 expression in response to an erythropoietic stimulus is likely to be mediated by multiple signals.
Collapse
Affiliation(s)
- Cornel S G Mirciov
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Medicine, The University of Queensland, St Lucia, Australia
| | - Sarah J Wilkins
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Grace C C Hung
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Sheridan L Helman
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Biomedical Sciences, Queensland University of Technology, Gardens Point, Australia
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia.,School of Medicine, The University of Queensland, St Lucia, Australia.,School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - David M Frazer
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia .,School of Medicine, The University of Queensland, St Lucia, Australia
| |
Collapse
|
59
|
Mirciov CSG, Wilkins SJ, Anderson GJ, Frazer DM. Food deprivation increases hepatic hepcidin expression and can overcome the effect of Hfe deletion in male mice. FASEB J 2018; 32:fj201701497RR. [PMID: 29799786 DOI: 10.1096/fj.201701497rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron-loading disorders, such as hereditary hemochromatosis, are associated with inappropriately low expression of the iron regulatory hormone, hepcidin. A recent study has demonstrated that food deprivation can increase hepcidin production in mice. We have examined this effect in more detail to determine whether the pathway(s) that are responsible might provide novel targets for pharmaceutical intervention in disorders of iron homeostasis. C57BL/6 mice were deprived of food for 5, 10, 16, or 24 h before euthanasia, then blood and tissue samples were collected for analysis. The effect of food deprivation was also examined in Hfe-/- mice, a model of hereditary hemochromatosis, as well as mice that were maintained on an iron-deficient diet or injected with erythropoietin. Food deprivation increased the hepatic expression of the gene that encodes hepcidin, hepcidin antimicrobial peptide 1 ( Hamp1), with maximal expression observed after 16 h, and was able to overcome the reduction in Hamp1 expression associated with Hfe deficiency. Food deprivation also increased Hamp1 expression in response to stimuli that more strongly suppress the gene, such as iron deficiency and erythropoietin treatment, but the effects were not significant. These results indicate that Hamp1 induction by food deprivation is independent of HFE and suggest that targeting the pathway regulated by food deprivation could have clinical benefit in iron-loading conditions.-Mirciov, C. S. G., Wilkins, S. J., Anderson, G. J., Frazer, D. M. Food deprivation increases hepatic hepcidin expression and can overcome the effect of Hfe deletion in male mice.
Collapse
Affiliation(s)
- Cornel S G Mirciov
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Sarah J Wilkins
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Medicine, The University of Queensland, St Lucia, Queensland, Australia
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - David M Frazer
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
60
|
Abstract
At present, the only definitive cure for β-thalassemia is a bone marrow transplant (BMT); however, HLA-blood-matched donors are scarcely available. Current therapies undergoing clinical investigation with most potential for therapeutic benefit are the β-globin gene transfer of patient-specific hematopoietic stem cells followed by autologous BMT. Other emerging therapies deliver exogenous regulators of several key modulators of erythropoiesis or iron homeostasis. This review focuses on current approaches for the treatment of hemoglobinopathies caused by disruptions of β-globin.
Collapse
Affiliation(s)
- Amaliris Guerra
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Khaled M Musallam
- International Network of Hematology, 31-33 High Holborn, London WC1V 6AX, UK
| | - Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, PO Box: 11-0236, Cairo Street, Hamra, Raid E Solh, Beirut 1107 2020, Lebanon
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group (CAMB), University of Pennsylvania, 421 Curie Boulevard/6064 160 Biomedical Research Building (BRB) 2/3, Philadelphia, PA 19104-6064, USA.
| |
Collapse
|
61
|
Erythroferrone: An Erythroid Regulator of Hepcidin and Iron Metabolism. Hemasphere 2018; 2:e35. [PMID: 31723763 PMCID: PMC6745900 DOI: 10.1097/hs9.0000000000000035] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/04/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Iron homeostasis ensures adequate iron for biological processes while preventing excessive iron accumulation, which can lead to tissue injury. In mammalian systems, iron availability is controlled by the interaction of the iron-regulatory hormone hepcidin with ferroportin, a molecule that functions both as the hepcidin receptor as well as the sole known cellular exporter of iron. By reducing iron export through ferroportin to blood plasma, hepcidin inhibits the mobilization of iron from stores and the absorption of dietary iron. Among the many processes requiring iron, erythropoiesis is the most iron-intensive, consuming most iron circulating in blood plasma. Under conditions of enhanced erythropoiesis, more iron is required to provide developing erythroblasts with adequate iron for heme and hemoglobin synthesis. Here the hormone erythroferrone, produced by erythroblasts, acts on hepatocytes to suppress hepcidin production, and thereby increase dietary iron absorption and mobilization from stores. This review focuses on the discovery of erythroferrone and recent advances in understanding the role of this hormone in the regulation of iron homeostasis during states of increased erythropoietic demand. Gaps in our understanding of the role of erythroferrone are highlighted for future study.
Collapse
|
62
|
An P, Wang H, Wu Q, Wang J, Xia Z, He X, Wang X, Chen Y, Min J, Wang F. Smad7 deficiency decreases iron and haemoglobin through hepcidin up-regulation by multilayer compensatory mechanisms. J Cell Mol Med 2018; 22:3035-3044. [PMID: 29575577 PMCID: PMC5980186 DOI: 10.1111/jcmm.13546] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023] Open
Abstract
To maintain iron homoeostasis, the iron regulatory hormone hepcidin is tightly controlled by BMP-Smad signalling pathway, but the physiological role of Smad7 in hepcidin regulation remains elusive. We generated and characterized hepatocyte-specific Smad7 knockout mice (Smad7Alb/Alb ), which showed decreased serum iron, tissue iron, haemoglobin concentration, up-regulated hepcidin and increased phosphor-Smad1/5/8 levels in both isolated primary hepatocytes and liver tissues. Increased levels of hepcidin lead to reduced expression of intestinal ferroportin and mild iron deficiency anaemia. Interestingly, we found no difference in hepcidin expression or phosphor-Smad1/5/8 levels between iron-challenged Smad7Alb/Alb and Smad7flox/flox , suggesting other factors assume the role of iron-induced hepcidin regulation in Smad7 deletion. We performed RNA-seq to identify differentially expressed genes in the liver. Significantly up-regulated genes were then mapped to pathways, revealing TGF-β signalling as one of the most relevant pathways, including the up-regulated genes Smad6, Bambi and Fst (Follistatin). We found that Smad6 and Bambi-but not Follistatin-are controlled by the iron-BMP-Smad pathway. Overexpressing Smad6, Bambi or Follistatin in cells significantly reduced hepcidin expression. Smad7 functions as a key regulator of iron homoeostasis by negatively controlling hepcidin expression, and Smad6 and Smad7 have non-redundant roles. Smad6, Bambi and Follistatin serve as additional inhibitors of hepcidin in the liver.
Collapse
Affiliation(s)
- Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qian Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaming Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhidan Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyan He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junxia Min
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fudi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
63
|
|
64
|
Maia MM, Meira-Strejevitch CS, Pereira-Chioccola VL, de Hippólito DDC, Silva VO, Brandão de Mattos CC, Frederico FB, Siqueira RC, de Mattos LC. Evaluation of gene expression levels for cytokines in ocular toxoplasmosis. Parasite Immunol 2018; 39. [PMID: 28836673 DOI: 10.1111/pim.12462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/16/2017] [Indexed: 11/29/2022]
Abstract
This study evaluated levels for mRNA expression of 7 cytokines in ocular toxoplasmosis. Peripheral blood mononuclear cells (PBMC) of patients with ocular toxoplasmosis (OT Group, n = 23) and chronic toxoplasmosis individuals (CHR Group, n = 9) were isolated and stimulated in vitro with T. gondii antigen. Negative controls (NC) were constituted of 7 PBMC samples from individuals seronegative for toxoplasmosis. mRNA expression for cytokines was determined by qPCR. Results showed a significant increase in mRNA levels from antigen stimulated PBMCs derived from OT Group for expressing IL-6 (at P < .005 and P < .0005 for CHR and NC groups, respectively), IL-10 (at P < .0005 and P < .005 for CHR and NC groups, respectively) and TGF-β (at P < .005) for NC group. mRNA levels for TNF-α and IL-12 were also upregulated in patients with OT compared to CHR and NC individuals, although without statistical significance. Additionally, mRNA levels for IL-27 and IFN-γ in PBMC of patients with OT were upregulated in comparison with NC individuals. Differences between OT and NC groups were statistically significant at P < .05 and P < .0005, respectively.
Collapse
Affiliation(s)
- M M Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | | - D D C de Hippólito
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - V O Silva
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - C C Brandão de Mattos
- Laboratório de Imunogenética, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - F B Frederico
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil
| | - R C Siqueira
- Laboratório de Imunogenética, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - L C de Mattos
- Laboratório de Imunogenética, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | | |
Collapse
|
65
|
Cappellini MD, Motta I. New therapeutic targets in transfusion-dependent and -independent thalassemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:278-283. [PMID: 29222267 PMCID: PMC6142569 DOI: 10.1182/asheducation-2017.1.278] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
β-Thalassemias are characterized by reduced production of β-globin chain, resulting in α/β-chain unbalance and precipitation of α-globin-heme complexes and determining ineffective erythropoiesis. Ineffective erythropoiesis, chronic hemolytic anemia, and compensatory hematopoietic expansion are the disease hallmarks, and they are related to the severity of the chain unbalance. Several clinical forms of β-thalassemia, including the coinheritance of β-thalassemia with hemoglobin E resulting in hemoglobin E/β-thalassemia, have been described. Clinically, β-thalassemias can be classified as transfusion-dependent thalassemia (TDT) and non-transfusion-dependent thalassemia (NTDT) according to the severity of the phenotype, which is caused by a wide spectrum of mutations in a homozygous or compound heterozygous state. Current treatment of TDT consists of regular transfusions that lead to iron overload, requiring iron chelation to prevent iron-related organ toxicity. NTDT patients do not require transfusions or only occasionally require them; however, they develop iron overload as well because of increased intestinal iron absorption caused by chronic anemia. Hematopoietic stem cell allogenic transplant is the only approved cure for β-thalassemia; however, it is still limited by clinical conditions and the availability of matched donors as well as by potential graft-versus-host disease (GVHD). Gene therapy could avoid the GVHD risk, although hematopoietic stem cells must be genetically modified ex vivo. Epigenetic manipulation and genomic editing are novel experimental approaches. An increased understanding of the pathophysiology that controls the disease process prompted us to explore alternative therapeutic approaches that address the underlying chain unbalance, ineffective erythropoiesis, and iron dysregulation. Molecules, such as JAK2 inhibitors and the activin-receptor ligand trap that target ineffective erythropoiesis, are already in clinical trials with promising results. Other agents aimed to generate iron-restricted erythropoiesis are also under experimental evaluation.
Collapse
Affiliation(s)
- M Domenica Cappellini
- Fondazione IRCCS, Cà Granda Policlinico, Milan, Italy; and
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Irene Motta
- Fondazione IRCCS, Cà Granda Policlinico, Milan, Italy; and
| |
Collapse
|
66
|
Daher R, Manceau H, Karim Z. Iron metabolism and the role of the iron-regulating hormone hepcidin in health and disease. Presse Med 2017; 46:e272-e278. [DOI: 10.1016/j.lpm.2017.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
|
67
|
Abstract
Anemia is a frequent complication of many inflammatory disorders, including inflammatory bowel disease. Although the pathogenesis of this problem is multifactorial, a key component is the abnormal elevation of the hormone hepcidin, the central regulator of systemic iron homeostasis. Investigations over the last decade have resulted in important insights into the role of hepcidin in iron metabolism and the mechanisms that lead to hepcidin dysregulation in the context of inflammation. These insights provide the foundation for novel strategies to prevent and treat the anemia associated with inflammatory diseases.
Collapse
Affiliation(s)
- Smriti Verma
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Building 114, 16th Street, Charlestown, Boston, MA 02129, USA.
| | - Bobby J Cherayil
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Building 114, 16th Street, Charlestown, Boston, MA 02129, USA.
| |
Collapse
|
68
|
Frýdlová J, Rychtarčíková Z, Gurieva I, Vokurka M, Truksa J, Krijt J. Effect of erythropoietin administration on proteins participating in iron homeostasis in Tmprss6-mutated mask mice. PLoS One 2017; 12:e0186844. [PMID: 29073189 PMCID: PMC5658091 DOI: 10.1371/journal.pone.0186844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Tmprss6-mutated mask mice display iron deficiency anemia and high expression of hepcidin. The aim of the study was to determine the effect of erythropoietin administration on proteins participating in the control of iron homeostasis in the liver and spleen in C57BL/6 and mask mice. Administration of erythropoietin for four days at 50 IU/mouse/day increased hemoglobin and hematocrit in C57BL/6 mice, no such increase was seen in mask mice. Erythropoietin administration decreased hepcidin expression in C57BL/6 mice, but not in mask mice. Erythropoietin treatment significantly increased the spleen size in both C57BL/6 and mask mice. Furthermore, erythropoietin administration increased splenic Fam132b, Fam132a and Tfr2 mRNA content. At the protein level, erythropoietin increased the amount of splenic erythroferrone and transferrin receptor 2 both in C57BL/6 and mask mice. Splenic ferroportin content was decreased in erythropoietin-treated mask mice in comparison with erythropoietin-treated C57BL/6 mice. In mask mice, the amount of liver hemojuvelin was decreased in comparison with C57BL/6 mice. The pattern of hemojuvelin cleavage was different between C57BL/6 and mask mice: In both groups, a main hemojuvelin band was detected at approximately 52 kDa; in C57BL/6 mice, a minor cleaved band was seen at 47 kDa. In mask mice, the 47 kDa band was absent, but additional minor bands were detected at approximately 45 kDa and 48 kDa. The results provide support for the interaction between TMPRSS6 and hemojuvelin in vivo; they also suggest that hemojuvelin could be cleaved by another as yet unknown protease in the absence of functional TMPRSS6. The lack of effect of erythropoietin on hepcidin expression in mask mice can not be explained by changes in erythroferrone synthesis, as splenic erythroferrone content increased after erythropoietin administration in both C57BL/6 and mask mice.
Collapse
Affiliation(s)
- Jana Frýdlová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Rychtarčíková
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Iuliia Gurieva
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Truksa
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
- * E-mail: (JT); (JK)
| | - Jan Krijt
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- * E-mail: (JT); (JK)
| |
Collapse
|
69
|
Wahedi M, Wortham AM, Kleven MD, Zhao N, Jue S, Enns CA, Zhang AS. Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway. J Biol Chem 2017; 292:18354-18371. [PMID: 28924039 DOI: 10.1074/jbc.m117.801795] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Systemic iron homeostasis is maintained by regulation of iron absorption in the duodenum, iron recycling from erythrocytes, and iron mobilization from the liver and is controlled by the hepatic hormone hepcidin. Hepcidin expression is induced via the bone morphogenetic protein (BMP) signaling pathway that preferentially uses two type I (ALK2 and ALK3) and two type II (ActRIIA and BMPR2) BMP receptors. Hemojuvelin (HJV), HFE, and transferrin receptor-2 (TfR2) facilitate this process presumably by forming a plasma membrane complex with BMP receptors. Matriptase-2 (MT2) is a protease and key suppressor of hepatic hepcidin expression and cleaves HJV. Previous studies have therefore suggested that MT2 exerts its inhibitory effect by inactivating HJV. Here, we report that MT2 suppresses hepcidin expression independently of HJV. In Hjv-/- mice, increased expression of exogenous MT2 in the liver significantly reduced hepcidin expression similarly as observed in wild-type mice. Exogenous MT2 could fully correct abnormally high hepcidin expression and iron deficiency in MT2-/- mice. In contrast to MT2, increased Hjv expression caused no significant changes in wild-type mice, suggesting that Hjv is not a limiting factor for hepcidin expression. Further studies revealed that MT2 cleaves ALK2, ALK3, ActRIIA, Bmpr2, Hfe, and, to a lesser extent, Hjv and Tfr2. MT2-mediated Tfr2 cleavage was also observed in HepG2 cells endogenously expressing MT2 and TfR2. Moreover, iron-loaded transferrin blocked MT2-mediated Tfr2 cleavage, providing further insights into the mechanism of Tfr2's regulation by transferrin. Together, these observations indicate that MT2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway.
Collapse
Affiliation(s)
- Mastura Wahedi
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Aaron M Wortham
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Mark D Kleven
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Ningning Zhao
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona 85721
| | - Shall Jue
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| |
Collapse
|
70
|
Pasricha SR, Lim PJ, Duarte TL, Casu C, Oosterhuis D, Mleczko-Sanecka K, Suciu M, Da Silva AR, Al-Hourani K, Arezes J, McHugh K, Gooding S, Frost JN, Wray K, Santos A, Porto G, Repapi E, Gray N, Draper SJ, Ashley N, Soilleux E, Olinga P, Muckenthaler MU, Hughes JR, Rivella S, Milne TA, Armitage AE, Drakesmith H. Hepcidin is regulated by promoter-associated histone acetylation and HDAC3. Nat Commun 2017; 8:403. [PMID: 28864822 PMCID: PMC5581335 DOI: 10.1038/s41467-017-00500-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/04/2017] [Indexed: 12/21/2022] Open
Abstract
Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency and increased erythropoiesis but is pathologic in thalassemia and hemochromatosis. Here we show that epigenetic events govern hepcidin expression. Erythropoiesis and iron deficiency suppress hepcidin via erythroferrone-dependent and -independent mechanisms, respectively, in vivo, but both involve reversible loss of H3K9ac and H3K4me3 at the hepcidin locus. In vitro, pan-histone deacetylase inhibition elevates hepcidin expression, and in vivo maintains H3K9ac at hepcidin-associated chromatin and abrogates hepcidin suppression by erythropoietin, iron deficiency, thalassemia, and hemochromatosis. Histone deacetylase 3 and its cofactor NCOR1 regulate hepcidin; histone deacetylase 3 binds chromatin at the hepcidin locus, and histone deacetylase 3 knockdown counteracts hepcidin suppression induced either by erythroferrone or by inhibiting bone morphogenetic protein signaling. In iron deficient mice, the histone deacetylase 3 inhibitor RGFP966 increases hepcidin, and RNA sequencing confirms hepcidin is one of the genes most differentially regulated by this drug in vivo. We conclude that suppression of hepcidin expression involves epigenetic regulation by histone deacetylase 3.Hepcidin controls systemic iron levels by inhibiting intestinal iron absorption and iron recycling. Here, Pasricha et al. demonstrate that the hepcidin-chromatin locus displays HDAC3-mediated reversible epigenetic modifications during both erythropoiesis and iron deficiency.
Collapse
Affiliation(s)
- Sant-Rayn Pasricha
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Department of Medicine, The Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Pei Jin Lim
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Tiago L Duarte
- Instituto de Investigação e Inovação em Saúde and IBMC-Instituto de Biologia Molecular e Celular, University of Porto, 4200-135, Porto, Portugal
| | - Carla Casu
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Dorenda Oosterhuis
- Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9700-AD, Groningen, The Netherlands
| | - Katarzyna Mleczko-Sanecka
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg; and Molecular Medicine Partnership Unit, Heidelberg, 69117, Germany
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Maria Suciu
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Rita Da Silva
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg; and Molecular Medicine Partnership Unit, Heidelberg, 69117, Germany
| | - Kinda Al-Hourani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - João Arezes
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Kirsty McHugh
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Sarah Gooding
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joe N Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Katherine Wray
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Santos
- Instituto de Investigação e Inovação em Saúde and IBMC-Instituto de Biologia Molecular e Celular, University of Porto, 4200-135, Porto, Portugal
| | - Graça Porto
- Instituto de Investigação e Inovação em Saúde and IBMC-Instituto de Biologia Molecular e Celular, University of Porto, 4200-135, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto Portugal, 4050-313, Porto, Portugal
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Nicki Gray
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Simon J Draper
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Neil Ashley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Elizabeth Soilleux
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DU, UK
- Division of Cellular and Molecular Pathology, Department of Pathology, Cambridge University, Cambridge, CB2 0QQ, UK
| | - Peter Olinga
- Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9700-AD, Groningen, The Netherlands
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg; and Molecular Medicine Partnership Unit, Heidelberg, 69117, Germany
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
71
|
Wang C, Fang Z, Zhu Z, Liu J, Chen H. Reciprocal regulation between hepcidin and erythropoiesis and its therapeutic application in erythroid disorders. Exp Hematol 2017; 52:24-31. [DOI: 10.1016/j.exphem.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
|
72
|
Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 2017; 16:400-423. [PMID: 28154410 PMCID: PMC5455971 DOI: 10.1038/nrd.2016.248] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron fulfils a central role in many essential biochemical processes in human physiology; thus, proper processing of iron is crucial. Although iron metabolism is subject to relatively strict physiological control, numerous disorders, such as cancer and neurodegenerative diseases, have recently been linked to deregulated iron homeostasis. Consequently, iron metabolism constitutes a promising and largely unexploited therapeutic target for the development of new pharmacological treatments for these diseases. Several iron metabolism-targeted therapies are already under clinical evaluation for haematological disorders, and these and newly developed therapeutic agents are likely to have substantial benefit in the clinical management of iron metabolism-associated diseases, for which few efficacious treatments are currently available.
Collapse
Affiliation(s)
- Bart J. Crielaard
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, Groningen, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Stefano Rivella
- Children’s Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA, United States of America
| |
Collapse
|
73
|
Muckenthaler MU, Rivella S, Hentze MW, Galy B. A Red Carpet for Iron Metabolism. Cell 2017; 168:344-361. [PMID: 28129536 DOI: 10.1016/j.cell.2016.12.034] [Citation(s) in RCA: 885] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023]
Abstract
200 billion red blood cells (RBCs) are produced every day, requiring more than 2 × 1015 iron atoms every second to maintain adequate erythropoiesis. These numbers translate into 20 mL of blood being produced each day, containing 6 g of hemoglobin and 20 mg of iron. These impressive numbers illustrate why the making and breaking of RBCs is at the heart of iron physiology, providing an ideal context to discuss recent progress in understanding the systemic and cellular mechanisms that underlie the regulation of iron homeostasis and its disorders.
Collapse
Affiliation(s)
- Martina U Muckenthaler
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany
| | - Stefano Rivella
- Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
74
|
Abstract
There are numerous blood-based biomarkers for assessing iron stores, but all come with certain limitations. Hepcidin is a hormone primarily produced in the liver that has been proposed as the 'master regulator' of dietary uptake and iron metabolism, and has enormous potential to provide a 'real time' indicator of body iron levels. In this Minireview, the biochemical function of hepcidin in regulating iron levels will be discussed, with a specific focus on how hepcidin can aid in the assessment of iron stores and clinical diagnosis of iron deficiency, iron deficiency anaemia and other iron-related disorders. The role hepcidin itself plays in diseases of iron metabolism will be examined, and current efforts to translate hepcidin assays into the clinic will be critically appraised. Potential limitations of hepcidin as a marker of iron need will also be addressed, as well as the development of new therapies that directly target the hormone that sits atop the hierarchy of systemic iron metabolism.
Collapse
Affiliation(s)
- Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
75
|
Aschemeyer S, Gabayan V, Ganz T, Nemeth E, Kautz L. Erythroferrone and matriptase-2 independently regulate hepcidin expression. Am J Hematol 2017; 92:E61-E63. [PMID: 28187515 DOI: 10.1002/ajh.24672] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Sharraya Aschemeyer
- Departments of MedicineDavid Geffen School of Medicine, University of California, Los AngelesLos Angeles California
- Departments of Molecular Biology Interdepartmental Doctoral ProgramDavid Geffen School of Medicine, University of California, Los AngelesLos Angeles California
| | - Victoria Gabayan
- Departments of MedicineDavid Geffen School of Medicine, University of California, Los AngelesLos Angeles California
| | - Tomas Ganz
- Departments of MedicineDavid Geffen School of Medicine, University of California, Los AngelesLos Angeles California
- Departments of PathologyDavid Geffen School of Medicine, University of California, Los AngelesLos Angeles California
| | - Elizabeta Nemeth
- Departments of MedicineDavid Geffen School of Medicine, University of California, Los AngelesLos Angeles California
| | - Léon Kautz
- IRSD, Université de Toulouse, INSERM U1220, INRA U1416, ENVT, UPSToulouse France
| |
Collapse
|
76
|
Smad1/5 is required for erythropoietin-mediated suppression of hepcidin in mice. Blood 2017; 130:73-83. [PMID: 28438754 DOI: 10.1182/blood-2016-12-759423] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Anemia suppresses liver hepcidin expression to supply adequate iron for erythropoiesis. Erythroferrone mediates hepcidin suppression by anemia, but its mechanism of action remains uncertain. The bone morphogenetic protein (BMP)-SMAD signaling pathway has a central role in hepcidin transcriptional regulation. Here, we explored the contribution of individual receptor-activated SMADs in hepcidin regulation and their involvement in erythroferrone suppression of hepcidin. In Hep3B cells, SMAD5 or SMAD1 but not SMAD8, knockdown inhibited hepcidin (HAMP) messenger RNA (mRNA) expression. Hepatocyte-specific double-knockout Smad1fl/fl;Smad5fl/fl;Cre+ mice exhibited ∼90% transferrin saturation and massive liver iron overload, whereas Smad1fl/fl;Smad5fl/wt;Cre+ mice or Smad1fl/wt;Smad5fl/fl;Cre+ female mice with 1 functional Smad5 or Smad1 allele had modestly increased serum and liver iron, and single-knockout Smad5fl/fl;Cre+ or Smad1fl/fl;Cre+ mice had minimal to no iron loading, suggesting a gene dosage effect. Hamp mRNA was reduced in all Cre+ mouse livers at 12 days and in all Cre+ primary hepatocytes. However, only double-knockout mice continued to exhibit low liver Hamp at 8 weeks and failed to induce Hamp in response to Bmp6 in primary hepatocyte cultures. Epoetin alfa (EPO) robustly induced bone marrow erythroferrone (Fam132b) mRNA in control and Smad1fl/fl;Smad5fl/fl;Cre+ mice but suppressed hepcidin only in control mice. Likewise, erythroferrone failed to decrease Hamp mRNA in Smad1fl/fl;Smad5fl/fl;Cre+ primary hepatocytes and SMAD1/SMAD5 knockdown Hep3B cells. EPO and erythroferrone reduced liver Smad1/5 phosphorylation in parallel with Hamp mRNA in control mice and Hep3B cells. Thus, Smad1 and Smad5 have overlapping functions to govern hepcidin transcription. Moreover, erythropoietin and erythroferrone target Smad1/5 signaling and require Smad1/5 to suppress hepcidin expression.
Collapse
|
77
|
Papanikolaou G, Pantopoulos K. Systemic iron homeostasis and erythropoiesis. IUBMB Life 2017; 69:399-413. [DOI: 10.1002/iub.1629] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- George Papanikolaou
- Department of Nutrition and DieteticsSchool of Health Science and Education, Harokopion UniversityAthens Greece
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of MedicineMcGill UniversityMontreal Quebec Canada
| |
Collapse
|
78
|
Gurieva I, Frýdlová J, Rychtarčíková Z, Vokurka M, Truksa J, Krijt J. Erythropoietin administration increases splenic erythroferrone protein content and liver TMPRSS6 protein content in rats. Blood Cells Mol Dis 2017; 64:1-7. [PMID: 28282554 DOI: 10.1016/j.bcmd.2017.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/25/2017] [Indexed: 02/09/2023]
Abstract
Erythroferrone (ERFE) and TMPRSS6 are important proteins in the regulation of iron metabolism. The objective of the study was to examine splenic ERFE and liver TMPRSS6 synthesis in rats treated with a combination of iron and erythropoietin (EPO). EPO was administered to female Wistar rats at 600U/day for four days, iron-pretreated rats received 150mg of iron before EPO treatment. Content of ERFE and TMPRSS6 proteins was determined by commercial antibodies. Iron pretreatment prevented the EPO-induced decrease in hepcidin expression. Content of phosphorylated SMAD 1,5,8 proteins was decreased in the liver by both EPO and iron plus EPO treatment. Fam132b expression in the spleen was increased both by EPO and iron plus EPO treatments; these treatments also significantly induced splenic Fam132a expression. ERFE protein content in the spleen was increased both by EPO and iron plus EPO to a similar extent. EPO administration increased TMPRSS6 content in the plasma membrane-enriched fraction of liver homogenate; in iron-pretreated rats, this increase was abolished. The results confirm that iron pretreatment prevents the EPO-induced decrease in liver Hamp expression. This effect probably occurs despite high circulating ERFE levels, since EPO-induced ERFE protein synthesis is not influenced by iron pretreatment.
Collapse
Affiliation(s)
- Iuliia Gurieva
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Frýdlová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Rychtarčíková
- Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Krijt
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
79
|
Abstract
Iron is required for many biological processes but is also toxic in excess; thus, body iron balance is maintained through sophisticated regulatory mechanisms. The lack of a regulated iron excretory mechanism means that body iron balance is controlled at the level of absorption from the diet. Iron absorption is regulated by the hepatic peptide hormone hepcidin. Hepcidin also controls iron release from cells that recycle or store iron, thus regulating plasma iron concentrations. Hepcidin exerts its effects through its receptor, the cellular iron exporter ferroportin. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, and erythropoiesis. Disturbances in the regulation of hepcidin contribute to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and nontransfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic kidney disease, chronic inflammatory diseases, some cancers, and inherited iron-refractory iron deficiency anemia. This review summarizes our current understanding of the molecular mechanisms and signaling pathways involved in the control of hepcidin synthesis in the liver, a principal determinant of plasma hepcidin concentrations.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Elizabeta Nemeth
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
80
|
|
81
|
Sebastiani G, Wilkinson N, Pantopoulos K. Pharmacological Targeting of the Hepcidin/Ferroportin Axis. Front Pharmacol 2016; 7:160. [PMID: 27445804 PMCID: PMC4914558 DOI: 10.3389/fphar.2016.00160] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
The iron regulatory hormone hepcidin limits iron fluxes to the bloodstream by promoting degradation of the iron exporter ferroportin in target cells. Hepcidin insufficiency causes hyperabsorption of dietary iron, hyperferremia and tissue iron overload, which are hallmarks of hereditary hemochromatosis. Similar responses are also observed in iron-loading anemias due to ineffective erythropoiesis (such as thalassemias, dyserythropoietic anemias and myelodysplastic syndromes) and in chronic liver diseases. On the other hand, excessive hepcidin expression inhibits dietary iron absorption and leads to hypoferremia and iron retention within tissue macrophages. This reduces iron availability for erythroblasts and contributes to the development of anemias with iron-restricted erythropoiesis (such as anemia of chronic disease and iron-refractory iron-deficiency anemia). Pharmacological targeting of the hepcidin/ferroportin axis may offer considerable therapeutic benefits by correcting iron traffic. This review summarizes the principles underlying the development of hepcidin-based therapies for the treatment of iron-related disorders, and discusses the emerging strategies for manipulating hepcidin pathways.
Collapse
Affiliation(s)
- Giada Sebastiani
- Department of Medicine, McGill UniversityMontreal, QC, Canada; Division of Gastroenterology, Royal Victoria HospitalMontreal, QC, Canada
| | - Nicole Wilkinson
- Lady Davis Institute for Medical Research, Jewish General Hospital Montreal, QC, Canada
| | - Kostas Pantopoulos
- Department of Medicine, McGill UniversityMontreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General HospitalMontreal, QC, Canada
| |
Collapse
|
82
|
Matriptase-2 links erythropoietin to iron. Blood 2016; 127:2270-1. [DOI: 10.1182/blood-2016-02-694919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
83
|
Camaschella C, Pagani A, Nai A, Silvestri L. The mutual control of iron and erythropoiesis. Int J Lab Hematol 2016; 38 Suppl 1:20-6. [PMID: 27161430 DOI: 10.1111/ijlh.12505] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Iron is essential for hemoglobin synthesis during terminal erythropoiesis. To supply adequate iron the carrier transferrin is required together with transferrin receptor endosomal cycle and normal mitochondrial iron utilization. Iron and iron protein deficiencies result in different types of anemia. Iron-deficiency anemia is the commonest anemia worldwide due to increased requirements, malnutrition, chronic blood losses and malabsorption. Mutations of transferrin, transferrin receptor cycle proteins, enzymes of the first step of heme synthesis and iron sulfur cluster biogenesis lead to rare anemias, usually accompanied by iron overload. Hepcidin plays an indirect role in erythropoiesis by controlling plasma iron. Inappropriately high hepcidin levels characterize the rare genetic iron-refractory iron-deficiency anemia (IRIDA) and the common anemia of chronic disease. Iron modulates both effective and ineffective erythropoiesis: iron restriction reduces heme and alpha-globin synthesis that may be of benefit in thalassemia. MATERIAL AND METHODS This review relies on the analysis of the most recent literature and personal data. RESULTS Erythropoiesis controls iron homeostasis, by releasing erythroferrone that inhibits hepcidin transcription to increase iron acquisition in iron deficiency, hypoxia and EPO treatment. Erythroferrone, produced by EPO-stimulated erythropoiesis, inhibits hepcidin only when the activity of BMP/SMAD pathway is low, suggesting that EPO somehow modulates the latter signaling. Erythroblasts sense circulating iron through the second transferrin receptor (TFR2) that, in animal models, modulates the sensitivity of the erythroid cells to EPO. DISCUSSION The advanced knowledge of the regulation of systemic iron homeostasis and erythropoiesis-mediated hepcidin regulation is leading to the development of targeted therapies for anemias and iron disorders.
Collapse
Affiliation(s)
- C Camaschella
- Vita Salute University and San Raffaele Scientific Institute, Milano, Italy
| | - A Pagani
- Vita Salute University and San Raffaele Scientific Institute, Milano, Italy
| | - A Nai
- Vita Salute University and San Raffaele Scientific Institute, Milano, Italy
| | - L Silvestri
- Vita Salute University and San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
84
|
Zhao N, Maxson JE, Zhang RH, Wahedi M, Enns CA, Zhang AS. Neogenin Facilitates the Induction of Hepcidin Expression by Hemojuvelin in the Liver. J Biol Chem 2016; 291:12322-35. [PMID: 27072365 DOI: 10.1074/jbc.m116.721191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/24/2023] Open
Abstract
Hemojuvelin (HJV) regulates iron homeostasis by direct interaction with bone morphogenetic protein (BMP) ligands to induce hepcidin expression through the BMP signaling pathway in the liver. Crystallography studies indicate that HJV can simultaneously bind to both BMP2 and the ubiquitously expressed cell surface receptor neogenin. However, the role of the neogenin-HJV interaction in the function of HJV is unknown. Here we identify a mutation in HJV that specifically lowers its interaction with neogenin. Expression of this mutant Hjv in the liver of Hjv(-/-) mice dramatically attenuated its induction of BMP signaling and hepcidin mRNA, suggesting that interaction with neogenin is critical for the iron regulatory function of HJV. Further studies revealed that neogenin co-immunoprecipitated with ALK3, an essential type-I BMP receptor for hepatic hepcidin expression. Neogenin has also been shown to facilitate the cleavage of HJV by furin in transfected cells. Surprisingly, although cleavage of HJV by furin has been implicated in the regulation of HJV function in cell culture models and furin-cleaved soluble Hjv is detectable in the serum of mice, mutating the furin cleavage site did not alter the stimulation of hepcidin expression by Hjv in mice. In vivo studies validated the important role of HJV-BMP interaction for Hjv stimulation of BMP signaling and hepcidin expression. Together these data support a model in which neogenin acts as a scaffold to facilitate assembly of the HJV·BMP·BMP receptor complex to induce hepcidin expression.
Collapse
Affiliation(s)
- Ningning Zhao
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Julia E Maxson
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Richard H Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Mastura Wahedi
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|